351
|
Sabouny R, Wong R, Lee-Glover L, Greenway SC, Sinasac DS, Khan A, Shutt TE. Characterization of the C584R variant in the mtDNA depletion syndrome gene FBXL4, reveals a novel role for FBXL4 as a regulator of mitochondrial fusion. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165536. [PMID: 31442532 DOI: 10.1016/j.bbadis.2019.165536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/16/2019] [Accepted: 08/18/2019] [Indexed: 12/16/2022]
Abstract
Mutations in FBXL4 (F-Box and Leucine rich repeat protein 4), a nuclear-encoded mitochondrial protein with an unknown function, cause mitochondrial DNA depletion syndrome. We report two siblings, from consanguineous parents, harbouring a previously uncharacterized homozygous variant in FBXL4 (c.1750 T > C; p.Cys584Arg). Both patients presented with encephalomyopathy, lactic acidosis and cardiac hypertrophy, which are reported features of FBXL4 impairment. Remarkably, dichloroacetate (DCA) administration to the younger sibling improved metabolic acidosis and reversed cardiac hypertrophy. Characterization of FBXL4 patient fibroblasts revealed severe bioenergetic defects, mtDNA depletion, fragmentation of mitochondrial networks, and abnormalities in mtDNA nucleoids. These phenotypes, observed with other pathogenic FBXL4 variants, confirm the pathogenicity of the p.Cys584Arg variant. Although treating FBXL4 fibroblasts with DCA improved extracellular acidification, in line with reduced lactate levels in patients, DCA treatment did not improve any of the other mitochondrial functions. Nonetheless, we highlight DCA as a potentially effective drug for the management of elevated lactate and cardiomyopathy in patients with pathogenic FBXL4 variants. Finally, as the exact mechanism through which FBXL4 mutations lead to mtDNA depletion was unknown, we tested the hypothesis that FBXL4 promotes mitochondrial fusion. Using a photo-activatable GFP fusion assay, we found reduced mitochondrial fusion rates in cells harbouring a pathogenic FBXL4 variant. Meanwhile, overexpression of wildtype FBXL4, but not the p.Cys584Arg variant, promoted mitochondrial hyperfusion. Thus, we have uncovered a novel function for FBXL4 in promoting mitochondrial fusion, providing important mechanistic insights into the pathogenic mechanism underlying FBXL4 dysfunction.
Collapse
Affiliation(s)
- Rasha Sabouny
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Rachel Wong
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laurie Lee-Glover
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Steven C Greenway
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - David S Sinasac
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy E Shutt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
352
|
Jiang T, Zhang L, Ding M, Li M. Protective Effect Of Vasicine Against Myocardial Infarction In Rats Via Modulation Of Oxidative Stress, Inflammation, And The PI3K/Akt Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3773-3784. [PMID: 31802850 PMCID: PMC6827513 DOI: 10.2147/dddt.s220396] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Background Myocardial infarction is the leading cause of damage to the heart and is classified as a major cause of death related to cardiovascular disease. In the present study, we intended to investigate the protective effect of vasicine (VAS) against myocardial infarction in rats, and its mechanism. Methods Myocardial infarction was induced by isoproterenol (ISO, 100 mg/kg) at an interval of 24 h for 2 days. Different doses of VAS (2.5, 5, and 10 mg/kg body weight) were administered to the rats. The effect of VAS on oxidative stress markers such as, myocardial necrosis, myocardial ability and infarct volume, inflammatory cytokines, membrane-bound myocardial enzymes, and histopathological changes was investigated. Western blot analysis was also conducted to analyze the effect of VAS on autophagy (PI3K/Akt) and apoptosis (Bcl-2, Bax, and caspase-3). The number of apoptotic cells in the different groups was also identified using TUNEL. Results Results suggested that VAS causes reduction in myocardial necrosis by reduction of elevated LDH, CK-MB, and TnT levels. It also causes augmentation of left ventricular systolic pressure (LVSP) and myocardial contractility as determined in terms of +dp/dtmax and –dp/dtmax. Furthermore, VAS causes reduction of TNF-α and IL-6 levels. VAS also improved cardiac function via enhancing posterior wall thickness of the LV with concurrent increase in the mass of LV. In the present study, VAS caused activation of phosphorylated PI3K (p-PI3K) and phosphorylated Akt (p-Akt) in a dose-dependent manner. Furthermore, VAS suppressed apoptosis when tested on animals suffering from ISO-induced MI, by decreasing the expression of cleaved Caspase-3 and Bax while increasing the expression of Bcl-2. Conclusion In conclusion, vasicine has a protective effect against MI in vivo, through inhibiting oxidative stress, inflammation and excessive autophagy, to suppress apoptosis via activation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Tiechao Jiang
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun 130033, People's Republic of China
| | - Lirong Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Mei Ding
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.,Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun 130033, People's Republic of China
| | - Min Li
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| |
Collapse
|
353
|
Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol Rev 2019; 99:1765-1817. [PMID: 31364924 DOI: 10.1152/physrev.00022.2018] [Citation(s) in RCA: 661] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Twelve regulated cell death programs have been described. We review in detail the basic biology of nine including death receptor-mediated apoptosis, death receptor-mediated necrosis (necroptosis), mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, ferroptosis, pyroptosis, parthanatos, and immunogenic cell death. This is followed by a dissection of the roles of these cell death programs in the major cardiac syndromes: myocardial infarction and heart failure. The most important conclusion relevant to heart disease is that regulated forms of cardiomyocyte death play important roles in both myocardial infarction with reperfusion (ischemia/reperfusion) and heart failure. While a role for apoptosis in ischemia/reperfusion cannot be excluded, regulated forms of necrosis, through both death receptor and mitochondrial pathways, are critical. Ferroptosis and parthanatos are also likely important in ischemia/reperfusion, although it is unclear if these entities are functioning as independent death programs or as amplification mechanisms for necrotic cell death. Pyroptosis may also contribute to ischemia/reperfusion injury, but potentially through effects in non-cardiomyocytes. Cardiomyocyte loss through apoptosis and necrosis is also an important component in the pathogenesis of heart failure and is mediated by both death receptor and mitochondrial signaling. Roles for immunogenic cell death in cardiac disease remain to be defined but merit study in this era of immune checkpoint cancer therapy. Biology-based approaches to inhibit cell death in the various cardiac syndromes are also discussed.
Collapse
Affiliation(s)
- Dominic P Del Re
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Dulguun Amgalan
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Andreas Linkermann
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Qinghang Liu
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
354
|
Zheng X, Qian Y, Fu B, Jiao D, Jiang Y, Chen P, Shen Y, Zhang H, Sun R, Tian Z, Wei H. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat Immunol 2019; 20:1656-1667. [PMID: 31636463 DOI: 10.1038/s41590-019-0511-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells have crucial roles in tumor surveillance. We found that tumor-infiltrating NK cells in human liver cancers had small, fragmented mitochondria in their cytoplasm, whereas liver NK cells outside tumors, as well as peripheral NK cells, had normal large, tubular mitochondria. This fragmentation was correlated with reduced cytotoxicity and NK cell loss, resulting in tumor evasion of NK cell-mediated surveillance, which predicted poor survival in patients with liver cancer. The hypoxic tumor microenvironment drove the sustained activation of mechanistic target of rapamycin-GTPase dynamin-related protein 1 (mTOR-Drp1) in NK cells, resulting in excessive mitochondrial fission into fragments. Inhibition of mitochondrial fragmentation improved mitochondrial metabolism, survival and the antitumor capacity of NK cells. These data reveal a mechanism of immune escape that might be targetable and could invigorate NK cell-based cancer treatments.
Collapse
Affiliation(s)
- Xiaohu Zheng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yeben Qian
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Binqing Fu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Defeng Jiao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yong Jiang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiqing Shen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Huafeng Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China.
| | - Haiming Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
355
|
Cho B, Kim T, Huh YJ, Lee J, Lee YI. Amelioration of Mitochondrial Quality Control and Proteostasis by Natural Compounds in Parkinson's Disease Models. Int J Mol Sci 2019; 20:ijms20205208. [PMID: 31640129 PMCID: PMC6829248 DOI: 10.3390/ijms20205208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD) is a well-known age-related neurodegenerative disorder associated with longer lifespans and rapidly aging populations. The pathophysiological mechanism is a complex progress involving cellular damage such as mitochondrial dysfunction and protein homeostasis. Age-mediated degenerative neurological disorders can reduce the quality of life and also impose economic burdens. Currently, the common treatment is replacement with levodopa to address low dopamine levels; however, this does not halt the progression of PD and is associated with adverse effects, including dyskinesis. In addition, elderly patients can react negatively to treatment with synthetic neuroprotection agents. Recently, natural compounds such as phytochemicals with fewer side effects have been reported as candidate treatments of age-related neurodegenerative diseases. This review focuses on mitochondrial dysfunction, oxidative stress, hormesis, proteostasis, the ubiquitin‒proteasome system, and autophagy (mitophagy) to explain the neuroprotective effects of using natural products as a therapeutic strategy. We also summarize the efforts to use natural extracts to develop novel pharmacological candidates for treatment of age-related PD.
Collapse
Affiliation(s)
- Bongki Cho
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Taeyun Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Yu-Jin Huh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| | - Yun-Il Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea.
| |
Collapse
|
356
|
Morales PE, Arias-Durán C, Ávalos-Guajardo Y, Aedo G, Verdejo HE, Parra V, Lavandero S. Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med 2019; 71:100822. [PMID: 31587811 DOI: 10.1016/j.mam.2019.09.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
Healthy mitochondrial function is imperative for most tissues, but especially those with a high energy demand. Robust evidence linking mitochondrial dysfunction with cardiovascular disease has demonstrated that mitochondrial activity is highly relevant to cardiac muscle performance. Mitochondrial homeostasis is maintained through coordination among the processes that comprise the so-called mitochondrial dynamics machinery. The most-studied elements of cardiac mitochondrial dynamics are mitochondrial fission and fusion, biogenesis and degradation. Selective autophagic removal of mitochondria (mitophagy) is essential for clearing away defective mitochondria but can lead to cell damage and death if not tightly controlled. In cardiovascular cells such as cardiomyocytes and cardiac fibroblasts, mitophagy is involved in metabolic activity, cell differentiation, apoptosis and other physiological processes related to major phenotypic changes. Modulation of mitophagy has detrimental and/or beneficial outcomes in various cardiovascular diseases, suggesting that a deeper understanding of the mechanisms underlying mitochondrial degradation in the heart could provide valuable clinical insights. Here, we discuss current evidence supporting the role of mitophagy in cardiac pathophysiology, with an emphasis on different research models and their interpretations; basic concepts related to this selective autophagy; and the most commonly used experimental approaches for studying this mechanism. Finally, we provide a comprehensive literature analysis on the role of mitophagy in heart failure, ischemia/reperfusion, diabetic cardiomyopathy and other cardiovascular diseases, as well as its potential biomedical applications.
Collapse
Affiliation(s)
- Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carla Arias-Durán
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Universidad de Chile, Santiago, Chile
| | - Yáreni Ávalos-Guajardo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Geraldine Aedo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Universidad de Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile; Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
357
|
Omelchenko A, Shrirao AB, Bhattiprolu AK, Zahn JD, Schloss RS, Dickson S, Meaney DF, Boustany NN, Yarmush ML, Firestein BL. Dynamin and reverse-mode sodium calcium exchanger blockade confers neuroprotection from diffuse axonal injury. Cell Death Dis 2019; 10:727. [PMID: 31562294 PMCID: PMC6765020 DOI: 10.1038/s41419-019-1908-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Mild traumatic brain injury (mTBI) is a frequently overlooked public health concern that is difficult to diagnose and treat. Diffuse axonal injury (DAI) is a common mTBI neuropathology in which axonal shearing and stretching induces breakdown of the cytoskeleton, impaired axonal trafficking, axonal degeneration, and cognitive dysfunction. DAI is becoming recognized as a principal neuropathology of mTBI with supporting evidence from animal model, human pathology, and neuroimaging studies. As mitochondrial dysfunction and calcium overload are critical steps in secondary brain and axonal injury, we investigated changes in protein expression of potential targets following mTBI using an in vivo controlled cortical impact model. We show upregulated expression of sodium calcium exchanger1 (NCX1) in the hippocampus and cortex at distinct time points post-mTBI. Expression of dynamin-related protein1 (Drp1), a GTPase responsible for regulation of mitochondrial fission, also changes differently post-injury in the hippocampus and cortex. Using an in vitro model of DAI previously reported by our group, we tested whether pharmacological inhibition of NCX1 by SN-6 and of dynamin1, dynamin2, and Drp1 by dynasore mitigates secondary damage. Dynasore and SN-6 attenuate stretch injury-induced swelling of axonal varicosities and mitochondrial fragmentation. In addition, we show that dynasore, but not SN-6, protects against H2O2-induced damage in an organotypic oxidative stress model. As there is currently no standard treatment to mitigate cell damage induced by mTBI and DAI, this work highlights two potential therapeutic targets for treatment of DAI in multiple models of mTBI and DAI.
Collapse
Affiliation(s)
- Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Anil B Shrirao
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Atul K Bhattiprolu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Samantha Dickson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6391, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6391, USA
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
358
|
Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 2019; 22:1635-1648. [PMID: 31551592 PMCID: PMC6764589 DOI: 10.1038/s41593-019-0486-0] [Citation(s) in RCA: 389] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/05/2019] [Indexed: 02/08/2023]
Abstract
In neurodegenerative diseases, debris of dead neurons are thought to trigger glia-mediated neuroinflammation, thus increasing neuronal death. Here we show that the expression of neurotoxic proteins associated with these diseases in microglia alone is sufficient to directly trigger death of naive neurons and to propagate neuronal death through activation of naive astrocytes to the A1 state. Injury propagation is mediated, in great part, by the release of fragmented and dysfunctional microglial mitochondria into the neuronal milieu. The amount of damaged mitochondria released from microglia relative to functional mitochondria and the consequent neuronal injury are determined by Fis1-mediated mitochondrial fragmentation within the glial cells. The propagation of the inflammatory response and neuronal cell death by extracellular dysfunctional mitochondria suggests a potential new intervention for neurodegeneration-one that inhibits mitochondrial fragmentation in microglia, thus inhibiting the release of dysfunctional mitochondria into the extracellular milieu of the brain, without affecting the release of healthy neuroprotective mitochondria.
Collapse
|
359
|
Singh-Mallah G, Nair S, Sandberg M, Mallard C, Hagberg H. The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxid Redox Signal 2019; 31:643-663. [PMID: 30957515 PMCID: PMC6657303 DOI: 10.1089/ars.2019.7779] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
Significance: Perinatal brain injury is caused by hypoxia-ischemia (HI) in term neonates, perinatal arterial stroke, and infection/inflammation leading to devastating long-term neurodevelopmental deficits. Therapeutic hypothermia is the only currently available treatment but is not successful in more than 50% of term neonates suffering from hypoxic-ischemic encephalopathy. Thus, there is an urgent unmet need for alternative or adjunct therapies. Reactive oxygen species (ROS) are important for physiological signaling, however, their overproduction/accumulation from mitochondria and endoplasmic reticulum (ER) during HI aggravate cell death. Recent Advances and Critical Issues: Mechanisms underlying ER stress-associated ROS production have been primarily elucidated using either non-neuronal cells or adult neurodegenerative experimental models. Findings from mature brain cannot be simply transferred to the immature brain. Therefore, age-specific studies investigating ER stress modulators may help investigate ER stress-associated ROS pathways in the immature brain. New therapeutics such as mitochondrial site-specific ROS inhibitors that selectively inhibit superoxide (O2•-)/hydrogen peroxide (H2O2) production are currently being developed. Future Directions: Because ER stress and oxidative stress accentuate each other, a combinatorial therapy utilizing both antioxidants and ER stress inhibitors may prove to be more protective against perinatal brain injury. Moreover, multiple relevant targets need to be identified for targeting ROS before they are formed. The role of organelle-specific ROS in brain repair needs investigation. Antioxid. Redox Signal. 31, 643-663.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
360
|
Abstract
Mitochondria are considered highly plastic organelles. This plasticity enables the mitochondria to undergo morphological and functional changes in response to cellular demands. Stem cells also need to remain functionally plastic (i.e. to have the ability to "decide" whether to remain quiescent or to undergo activation upon signaling cues to support tissue function and homeostasis). Mitochondrial plasticity is thought to enable this reshaping of stem cell functions, integrating signaling cues with stem cell outcomes. Indeed, recent evidence highlights the crucial role of maintaining mitochondrial plasticity for stem cell biology. For example, tricarboxylic acid (TCA) cycle metabolites generated and metabolized in the mitochondria serve as cofactors for epigenetic enzymes, thereby coupling mitochondrial metabolism and transcriptional regulation. Another layer of mitochondrial plasticity has emerged, pointing toward mitochondrial dynamics in regulating stem cell fate decisions. Imposing imbalanced mitochondrial dynamics by manipulating the expression levels of the key molecular regulators of this process influences cellular outcomes by changing the nuclear transcriptional program. Moreover, reactive oxygen species have also been shown to play an important role in regulating transcriptional profiles in stem cells. In this review, we focus on recent findings demonstrating that mitochondria are essential regulators of stem cell activation and fate decisions. We also discuss the suggested mechanisms and alternative routes for mitochondria-to-nucleus communications.
Collapse
Affiliation(s)
- Amir Bahat
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
361
|
Kowaltowski AJ, Menezes-Filho SL, Assali EA, Gonçalves IG, Cabral-Costa JV, Abreu P, Miller N, Nolasco P, Laurindo FRM, Bruni-Cardoso A, Shirihai OS. Mitochondrial morphology regulates organellar Ca 2+ uptake and changes cellular Ca 2+ homeostasis. FASEB J 2019; 33:13176-13188. [PMID: 31480917 DOI: 10.1096/fj.201901136r] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Changes in mitochondrial size and shape have been implicated in several physiologic processes, but their role in mitochondrial Ca2+ uptake regulation and overall cellular Ca2+ homeostasis is largely unknown. Here we show that modulating mitochondrial dynamics toward increased fusion through expression of a dominant negative (DN) form of the fission protein [dynamin-related protein 1 (DRP1)] markedly increased both mitochondrial Ca2+ retention capacity and Ca2+ uptake rates in permeabilized C2C12 cells. Similar results were seen using the pharmacological fusion-promoting M1 molecule. Conversely, promoting a fission phenotype through the knockdown of the fusion protein mitofusin (MFN)-2 strongly reduced the mitochondrial Ca2+ uptake speed and capacity in these cells. These changes were not dependent on modifications in mitochondrial calcium uniporter expression, inner membrane potentials, or the mitochondrial permeability transition. Implications of mitochondrial morphology modulation on cellular calcium homeostasis were measured in intact cells; mitochondrial fission promoted lower basal cellular calcium levels and lower endoplasmic reticulum (ER) calcium stores, as indicated by depletion with thapsigargin. Indeed, mitochondrial fission was associated with ER stress. Additionally, the calcium-replenishing process of store-operated calcium entry was impaired in MFN2 knockdown cells, whereas DRP1-DN-promoted fusion resulted in faster cytosolic Ca2+ increase rates. Overall, our results show a novel role for mitochondrial morphology in the regulation of mitochondrial Ca2+ uptake, which impacts cellular Ca2+ homeostasis.-Kowaltowski, A. J., Menezes-Filho, S. L., Assali, E. A., Gonçalves, I. G., Cabral-Costa, J. V., Abreu, P., Miller, N., Nolasco, P., Laurindo, F. R. M., Bruni-Cardoso, A., Shirihai, O. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sergio L Menezes-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Essam A Assali
- Department of Molecular and Medical Pharmacology and Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, (UCLA), Los Angeles, California, USA
| | - Isabela G Gonçalves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Phablo Abreu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nathanael Miller
- Department of Molecular and Medical Pharmacology and Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, (UCLA), Los Angeles, California, USA
| | - Patricia Nolasco
- Laboratório de Biologia Vascular, Biologia Cardiovascular Translacional (LIM-64), Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Francisco R M Laurindo
- Laboratório de Biologia Vascular, Biologia Cardiovascular Translacional (LIM-64), Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Orian S Shirihai
- Department of Molecular and Medical Pharmacology and Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, (UCLA), Los Angeles, California, USA
| |
Collapse
|
362
|
Lee DG, Kim KM, Lee HS, Bae YC, Huh JW, Lee SR, Lee DS. Peroxiredoxin 5 prevents diethylhexyl phthalate-induced neuronal cell death by inhibiting mitochondrial fission in mouse hippocampal HT-22 cells. Neurotoxicology 2019; 74:242-251. [DOI: 10.1016/j.neuro.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
|
363
|
Ford MGJ, Chappie JS. The structural biology of the dynamin-related proteins: New insights into a diverse, multitalented family. Traffic 2019; 20:717-740. [PMID: 31298797 DOI: 10.1111/tra.12676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Dynamin-related proteins are multidomain, mechanochemical GTPases that self-assemble and orchestrate a wide array of cellular processes. Over the past decade, structural insights from X-ray crystallography and cryo-electron microscopy have reshaped our mechanistic understanding of these proteins. Here, we provide a historical perspective on these advances that highlights the structural attributes of different dynamin family members and explores how these characteristics affect GTP hydrolysis, conformational coupling and oligomerization. We also discuss a number of lingering challenges remaining in the field that suggest future directions of study.
Collapse
Affiliation(s)
- Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
364
|
Oliver D, Reddy PH. Dynamics of Dynamin-Related Protein 1 in Alzheimer's Disease and Other Neurodegenerative Diseases. Cells 2019; 8:cells8090961. [PMID: 31450774 PMCID: PMC6769467 DOI: 10.3390/cells8090961] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
The purpose of this article is to highlight the role of dynamin-related protein 1 (Drp1) in abnormal mitochondrial dynamics, mitochondrial fragmentation, autophagy/mitophagy, and neuronal damage in Alzheimer's disease (AD) and other neurological diseases, including Parkinson's, Huntington's, amyotrophic lateral sclerosis, multiple sclerosis, diabetes, and obesity. Dynamin-related protein 1 is one of the evolutionarily highly conserved large family of GTPase proteins. Drp1 is critical for mitochondrial division, size, shape, and distribution throughout the neuron, from cell body to axons, dendrites, and nerve terminals. Several decades of intense research from several groups revealed that Drp1 is enriched at neuronal terminals and involved in synapse formation and synaptic sprouting. Different phosphorylated forms of Drp1 acts as both increased fragmentation and/or increased fusion of mitochondria. Increased levels of Drp1 were found in diseased states and caused excessive fragmentation of mitochondria, leading to mitochondrial dysfunction and neuronal damage. In the last two decades, several Drp1 inhibitors have been developed, including Mdivi-1, Dynasore, P110, and DDQ and their beneficial effects tested using cell cultures and mouse models of neurodegenerative diseases. Recent research using genetic crossing studies revealed that a partial reduction of Drp1 is protective against mutant protein(s)-induced mitochondrial and synaptic toxicities. Based on findings from cell cultures, mouse models and postmortem brains of AD and other neurodegenerative disease, we cautiously conclude that reduced Drp1 is a promising therapeutic target for AD and other neurological diseases.
Collapse
Affiliation(s)
- Darryll Oliver
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX 79413, USA.
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
365
|
Chandra R, Calarco CA, Lobo MK. Differential mitochondrial morphology in ventral striatal projection neuron subtypes. J Neurosci Res 2019; 97:1579-1589. [PMID: 31392754 DOI: 10.1002/jnr.24511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022]
Abstract
The two striatal projection neuron subtypes (medium spiny neurons- MSNs), those enriched in dopamine receptor 1 versus 2 (D1-MSNs and D2-MSNs), display dichotomous properties at the level of the transcriptome, projections, morphology, and electrophysiology. Recent work illustrates dichotomous mitochondrial length in NAc MSN subtype dendrites after cocaine self-administration, with a shift toward smaller mitochondria, due to enhanced fission, occurring in D1-MSN dendrites and a shift toward larger mitochondria in D2-MSN dendrites. However, to date there has been no comparison of mitochondrial morphological properties between MSN subtypes. In this study, we examine mitochondrial morphology in NAc D1-MSNs versus D2-MSNs. We observe an increase in the frequency of smaller length mitochondria in D2-MSN dendrites relative to D1-MSN dendrites, while D1-MSN dendrites display an increase in larger length mitochondria. The differences in mitochondrial length occur in both NAc core and shell, although to a greater extent in NAc core. Finally, we demonstrate that the mitochondrial fusion molecule, Opa1, is differentially expressed in NAc MSN subtypes, with D1-MSNs displaying higher expression of Opa1 ribosome-associated mRNA. The difference in Opa1 levels may account for the bias toward enhanced smaller mitochondria in D2-MSNs and enhanced larger mitochondria in D1-MSNs. Collectively, our study demonstrates differential mitochondrial size and a potential molecular mediator of these mitochondrial differences in NAc MSN subtypes.
Collapse
Affiliation(s)
- Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Cali A Calarco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
366
|
Sun L, Wang Y, Cen J, Ma X, Cui L, Qiu Z, Zhang Z, Li H, Yang RZ, Wang C, Chen X, Wang L, Ye Y, Zhang H, Pan G, Kang JS, Ji Y, Zheng YW, Zheng S, Hui L. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat Cell Biol 2019; 21:1015-1026. [PMID: 31332348 DOI: 10.1038/s41556-019-0359-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 06/11/2019] [Indexed: 12/24/2022]
Abstract
Human liver cancers, including hepatocellular carcinomas and intra-hepatic cholangiocarcinomas, are often diagnosed late with poor prognosis. A better understanding of cancer initiation could provide potential preventive therapies and increase survival. Models for studying human liver cancer initiation are largely missing. Here, using directly reprogrammed human hepatocytes (hiHeps) and inactivation of p53 and RB, we established organoids possessing liver architecture and function. HiHep organoids were genetically engineered to model the initial alterations in human liver cancers. Bona fide hepatocellular carcinomas were developed by overexpressing c-Myc. Excessive mitochondrion-endoplasmic reticulum coupling induced by c-Myc facilitated hepatocellular carcinoma initiation and seemed to be a target of preventive treatment. Furthermore, through the analysis of human intra-hepatic cholangiocarcinoma-enriched mutations, we demonstrate that the RAS-induced lineage conversion from hepatocytes to intra-hepatic cholangiocarcinoma cells can be prevented by the combined inhibition of Notch and JAK-STAT. Together, hiHep organoids represent a system that can be genetically manipulated to model cancer initiation and identify potential preventive therapies.
Collapse
Affiliation(s)
- Lulu Sun
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuqing Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaolong Ma
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lei Cui
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhixin Qiu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhengtao Zhang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hong Li
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Run-Zhou Yang
- Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaotao Chen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Le Wang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yao Ye
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haibin Zhang
- Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guoyu Pan
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Sheng Kang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yun-Wen Zheng
- Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Japan.
- School of Medicine, Yokohama City University, Yokohama, Japan.
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang, China.
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
367
|
Ma JT, Zhang XY, Cao R, Sun L, Jing W, Zhao JZ, Zhang SL, Huang LT, Han CB. Effects of Dynamin-related Protein 1 Regulated Mitochondrial Dynamic Changes on Invasion and Metastasis of Lung Cancer Cells. J Cancer 2019; 10:4045-4053. [PMID: 31417649 PMCID: PMC6692611 DOI: 10.7150/jca.29756] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/19/2019] [Indexed: 11/12/2022] Open
Abstract
Objective: Mitochondrial imbalance of division and fusion will lead to uncontrolled cell growth. This study investigated the effects of mitochondrial dynamics regulated by dynamin-related protein 1 (Drp1) on the invasion and metastasis of lung cancer cells at the cellular level. Methods: Lentivirus-mediated RNAi and gene overexpression vectors containing shDrp1 and Lv-Drp1 were transfected into lung adenocarcinoma cell lines 95D and A549, respectively. An MTT assay was used to assess cell viability and a cell clone assay was used to evaluate the tumorigenic ability of lentivirus-infected cells. Cell invasion and wound healing assays were used to assess cell invasiveness and the migration rate after lentivirus infection. Annexin V-APC staining was used to determine the cell apoptosis rate. Results: In 95D cells, when the Drp1 gene is overexpressed (OE) the proliferation rate and apoptosis rate were significantly higher than those in the control group (NCOE) (P < 0. 05). There was no significant difference in clone number, invasion rate, and migration rate between the two groups (P > 0. 05). The proliferation rate and clone number in the shDrp1 infected 95D cell group (KD) were significantly lower than those in the control group (NCKD) (P < 0. 05). There was no difference in apoptosis rate, invasion rate, and migration rate between h (P > 0.05). In A549 cells, unlike in 95D cells, the invasion rate of the KD group was 25% lower than that of the NCKD group (P < 0.05). After 8 hours, the cell migration rates of the two groups were basically the same, but after 24 hours, the migration rate of the KD group was 10% lower than that of the NCKD group (P < 0.05). Compared with the NCOE group, the migration rate of the OE group increased significantly (P < 0.05). Conclusion: Mitochondrial Drp1 is associated with the proliferation, invasion, and metastasis of lung adenocarcinoma cells. Inhibition of Drp1 expression may contribute to anti-tumor therapy for lung cancer.
Collapse
Affiliation(s)
- Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Xiang-Yan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Rui Cao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Wei Jing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jian-Zhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Shu-Ling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Cheng-Bo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| |
Collapse
|
368
|
Chandra R, Engeln M, Schiefer C, Patton MH, Martin JA, Werner CT, Riggs LM, Francis TC, McGlincy M, Evans B, Nam H, Das S, Girven K, Konkalmatt P, Gancarz AM, Golden SA, Iñiguez SD, Russo SJ, Turecki G, Mathur BN, Creed M, Dietz DM, Lobo MK. Drp1 Mitochondrial Fission in D1 Neurons Mediates Behavioral and Cellular Plasticity during Early Cocaine Abstinence. Neuron 2019; 96:1327-1341.e6. [PMID: 29268097 DOI: 10.1016/j.neuron.2017.11.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/12/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
Altered brain energy homeostasis is a key adaptation occurring in the cocaine-addicted brain, but the effect of cocaine on the fundamental source of energy, mitochondria, is unknown. We demonstrate an increase of dynamin-related protein-1 (Drp1), the mitochondrial fission mediator, in nucleus accumbens (NAc) after repeated cocaine exposure and in cocaine-dependent individuals. Mdivi-1, a demonstrated fission inhibitor, blunts cocaine seeking and locomotor sensitization, while blocking c-Fos induction and excitatory input onto dopamine receptor-1 (D1) containing NAc medium spiny neurons (MSNs). Drp1 and fission promoting Drp1 are increased in D1-MSNs, consistent with increased smaller mitochondria in D1-MSN dendrites after repeated cocaine. Knockdown of Drp1 in D1-MSNs blocks drug seeking after cocaine self-administration, while enhancing the fission promoting Drp1 enhances seeking after long-term abstinence from cocaine. We demonstrate a role for altered mitochondrial fission in the NAc, during early cocaine abstinence, suggesting potential therapeutic treatment of disrupting mitochondrial fission in cocaine addiction.
Collapse
Affiliation(s)
- Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michel Engeln
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher Schiefer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary H Patton
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Craig T Werner
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lace M Riggs
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - T Chase Francis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Madeleine McGlincy
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brianna Evans
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shweta Das
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kasey Girven
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prasad Konkalmatt
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, D.C., USA
| | - Amy M Gancarz
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Sam A Golden
- Fishberg Department of Neuroscience and Friedman Brain Institute, Graduate School of Biomedical Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergio D Iñiguez
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Graduate School of Biomedical Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meaghan Creed
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
369
|
Zhao Q, Sun Q, Zhou L, Liu K, Jiao K. Complex Regulation of Mitochondrial Function During Cardiac Development. J Am Heart Assoc 2019; 8:e012731. [PMID: 31215339 PMCID: PMC6662350 DOI: 10.1161/jaha.119.012731] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Qiancong Zhao
- Department of Cardiovascular SurgeryThe Second Hospital of Jilin UniversityChangchunChina
- Department of GeneticsThe University of Alabama at BirminghamAL
| | - Qianchuang Sun
- Department of AnesthesiologyThe Second Hospital of Jilin UniversityChangchunChina
- Department of GeneticsThe University of Alabama at BirminghamAL
| | - Lufang Zhou
- Department of MedicineThe University of Alabama at BirminghamAL
| | - Kexiang Liu
- Department of Cardiovascular SurgeryThe Second Hospital of Jilin UniversityChangchunChina
| | - Kai Jiao
- Department of GeneticsThe University of Alabama at BirminghamAL
| |
Collapse
|
370
|
Sehrawat A, Samanta SK, Hahm ER, St Croix C, Watkins S, Singh SV. Withaferin A-mediated apoptosis in breast cancer cells is associated with alterations in mitochondrial dynamics. Mitochondrion 2019; 47:282-293. [PMID: 30685490 PMCID: PMC6599725 DOI: 10.1016/j.mito.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022]
Abstract
Withaferin A (WA), a steroidal lactone derived from a medicinal plant (Withania somnifera), inhibits cancer development in transgenic and chemically-induced rodent models of breast cancer but the underlying mechanism is not fully grasped. We have shown previously that WA treatment causes apoptotic cell death in human breast cancer cells that is preceded by inhibition of complex III of the mitochondrial electron transport chain. This study extends these observations to now demonstrate alterations in mitochondrial dynamics in WA-induced apoptosis. Assembly of complex III was decreased in MCF-7 and SUM159 cells but not in MDA-MB-231 as determined by native blue gel electrophoresis. Because WA is a Michael acceptor (electrophile), we explored the possibility of whether it covalently modifies cysteine residue(s) in ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1 (UQCRFS1). Covalent modification of cysteine in UQCRFS1 was not observed after WA treatment. Instead, WA treatment inhibited chemically-induced mitochondrial fusion and decreased the mitochondrial volume, and this effect was accompanied by a decrease in the expression of proteins involved in fusion process, including mitofusin1, mitofusin2, and full-length optic atrophy protein 1 (OPA1). A loss of volume in fragmented mitochondria also occurred in WA-exposed cells when compared to vehicle-treated control. WA treatment also caused a decrease in protein level of mitochondrial fission-regulating protein dynamin-related protein 1 (DRP1). Functional studies revealed that DRP1 deficiency and OPA1 knockdown attenuated apoptotic potential of WA. Taken together, these results indicate that WA not only alters Complex III assembly but also inhibits mitochondrial dynamics in breast cancer cells.
Collapse
Affiliation(s)
- Anuradha Sehrawat
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Suman K Samanta
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claudette St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
371
|
King AP, Marker SC, Swanda RV, Woods JJ, Qian SB, Wilson JJ. A Rhenium Isonitrile Complex Induces Unfolded Protein Response-Mediated Apoptosis in Cancer Cells. Chemistry 2019; 25:9206-9210. [PMID: 31090971 DOI: 10.1002/chem.201902223] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Complexes of the element Re have recently been shown to possess promising anticancer activity through mechanisms of action that are distinct from the conventional metal-based drug cisplatin. In this study, we report our investigations on the anticancer activity of the complex [Re(CO)3 (dmphen)(p-tol-ICN)]+ (TRIP) in which dmphen=2,9-dimethyl-1,10-phenanthroline and p-tol-ICN=para-tolyl isonitrile. TRIP was synthesized by literature methods and exhaustively characterized. This compound exhibited potent in vitro anticancer activity in a wide variety of cell lines. Flow cytometry and immunostaining experiments indicated that TRIP induces intrinsic apoptosis. Comprehensive biological mechanistic studies demonstrated that this compound triggers the accumulation of misfolded proteins, which causes endoplasmic reticulum (ER) stress, the unfolded protein response, and apoptotic cell death. Furthermore, TRIP induced hyperphosphorylation of eIF2α, translation inhibition, mitochondrial fission, and expression of proapoptotic ATF4 and CHOP. These results establish TRIP as a promising anticancer agent based on its potent cytotoxic activity and ability to induce ER stress.
Collapse
Affiliation(s)
- A Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Sierra C Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Robert V Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
372
|
Yucel N, Wang YX, Mai T, Porpiglia E, Lund PJ, Markov G, Garcia BA, Bendall SC, Angelo M, Blau HM. Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Rep 2019; 27:3939-3955.e6. [PMID: 31242425 PMCID: PMC6788807 DOI: 10.1016/j.celrep.2019.05.092] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/25/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
The impact of glucose metabolism on muscle regeneration remains unresolved. We identify glucose metabolism as a crucial driver of histone acetylation and myogenic cell fate. We use single-cell mass cytometry (CyTOF) and flow cytometry to characterize the histone acetylation and metabolic states of quiescent, activated, and differentiating muscle stem cells (MuSCs). We find glucose is dispensable for mitochondrial respiration in proliferating MuSCs, so that glucose becomes available for maintaining high histone acetylation via acetyl-CoA. Conversely, quiescent and differentiating MuSCs increase glucose utilization for respiration and have consequently reduced acetylation. Pyruvate dehydrogenase (PDH) activity serves as a rheostat for histone acetylation and must be controlled for muscle regeneration. Increased PDH activity in proliferation increases histone acetylation and chromatin accessibility at genes that must be silenced for differentiation to proceed, and thus promotes self-renewal. These results highlight metabolism as a determinant of MuSC histone acetylation, fate, and function during muscle regeneration.
Collapse
Affiliation(s)
- Nora Yucel
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thach Mai
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ermelinda Porpiglia
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peder J Lund
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Glenn Markov
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Benjamin A Garcia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
373
|
Abstract
Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.
Collapse
Affiliation(s)
- Elianne P. Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel J.W. Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter H.G.M. Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J.H. Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Address correspondence to: Dr. Werner J.H. Koopman, Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, Nijmegen NL-6500 HB, The Netherlands
| |
Collapse
|
374
|
Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion 2019; 49:269-283. [PMID: 31228566 DOI: 10.1016/j.mito.2019.06.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/02/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial dynamics shape the mitochondrial network and contribute to mitochondrial function and quality control. Mitochondrial fusion and division are integrated into diverse cellular functions and respond to changes in cell physiology. Imbalanced mitochondrial dynamics are associated with a range of diseases that are broadly characterized by impaired mitochondrial function and increased cell death. In various disease models, modulating mitochondrial fusion and division with either small molecules or genetic approaches has improved function. Although additional mechanistic understanding of mitochondrial fusion and division will be critical to inform further therapeutic approaches, mitochondrial dynamics represent a powerful therapeutic target in a wide range of human diseases.
Collapse
|
375
|
Simula L, Campanella M, Campello S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation. Pharmacol Res 2019; 146:104317. [PMID: 31220561 DOI: 10.1016/j.phrs.2019.104317] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/05/2023]
Abstract
Mitochondria are dynamic organelles whose processes of fusion and fission are tightly regulated by specialized proteins, known as mitochondria-shaping proteins. Among them, Drp1 is the main pro-fission protein and its activity is tightly regulated to ensure a strict control over mitochondria shape according to the cell needs. In the recent years, mitochondrial dynamics emerged as a new player in the regulation of fundamental processes during T cell life. Indeed, the morphology of mitochondria directly regulates T cell differentiation, this by affecting the engagment of alternative metabolic routes upon activation. Further, Drp1-dependent mitochondrial fission sustains both T cell clonal expansion and T cell migration and invasivness. By this review, we aim at discussing the most recent findings about the roles played by the Drp1-dependent mitochondrial fission in T cells, and at highlighting how its pharmacological modulation could open the way to future therapeutic approaches to modulate T cell response.
Collapse
Affiliation(s)
- Luca Simula
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy; Dept. of Paediatric Haemato-Oncology, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, London, United Kingdom; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | - Silvia Campello
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
376
|
Mitochondrial Dysfunction in Alzheimer’s Disease and Progress in Mitochondria-Targeted Therapeutics. Curr Behav Neurosci Rep 2019. [DOI: 10.1007/s40473-019-00179-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
377
|
Manczak M, Kandimalla R, Yin X, Reddy PH. Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum Mol Genet 2019; 28:177-199. [PMID: 30239719 PMCID: PMC6322070 DOI: 10.1093/hmg/ddy335] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
The purpose of our study was to better understand the effects of mitochondrial-division inhibitor 1 (Mdivi-1) on mitochondrial fission, mitochondrial biogenesis, electron transport activities and cellular protection. In recent years, researchers have found excessive mitochondrial fragmentation and reduced fusion in a large number of diseases with mitochondrial dysfunction. Therefore, several groups have developed mitochondrial division inhibitors. Among these, Mdivi-1 was extensively studied and was found to reduce dynamin-related protein 1 (Drp1) levels and excessive mitochondrial fission, enhance mitochondrial fusion activity and protect cells. However, a recent study by Bordt et al. (1) questioned earlier findings of the beneficial, inhibiting effects of Mdivi-1. In the current study, we studied the protective effects of Mdivi-1 by studying the following: mRNA and protein levels of electron transport chain (ETC) genes; mitochondrial dynamics and biogenesis genes; enzymatic activities of ETC complexes I, II, III and IV; the mitochondrial network; mitochondrial size & number; Drp1 GTPase enzymatic activity and mitochondrial respiration (1) in N2a cells treated with Mdivi-1, (2) overexpressed with full-length Drp1 + Mdivi-1-treated N2a cells and (3) Drp1 RNA silenced+Mdivi-1-treated N2a cells. We found reduced levels of the fission genes Drp1 and Fis1 levels; increased levels of the fusion genes Mfn1, Mfn2 and Opa1; and the biogenesis genes PGC1α, nuclear respiration factor 1, nuclear respiratory factor 2 and transcription factor A, mitochondrial. Increased levels mRNA and protein levels were found in ETC genes of complexes I, II and IV genes. Immunoblotting data agreed with mRNA changes. Transmission electron microscopy analysis revealed reduced numbers of mitochondria and increased length of mitochondria (1) in N2a cells treated with Mdivi-1, (2) cells overexpressed with full-length Drp1 + Mdivi-1-treated N2a cells and (3) Drp1 RNA silenced+Mdivi-1-treated N2a cells. Immunofluorescence analysis revealed that mitochondrial network was increased. Increased levels of complex I, II and IV enzymatic activities were found in all three groups of cells treated with low concentration of Mdivi-1. Mitochondrial function was increased and GTPase Drp1 activity was decreased in all three groups of N2a cells. These observations strongly suggest that Mdivi-1 is a Drp1 inhibitor and directly reduces mitochondrial fragmentation and further, Mdivi-1 is a promising molecule to treat human diseases with ETC complexes, I, II and IV.
Collapse
Affiliation(s)
- Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Neurology Department, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, S. Quaker Suite E, MS, Lubbock, TX, USA.,Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Neurology Department, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| |
Collapse
|
378
|
Webb M, Sideris DP, Biddle M. Modulation of mitochondrial dysfunction for treatment of disease. Bioorg Med Chem Lett 2019; 29:1270-1277. [DOI: 10.1016/j.bmcl.2019.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
|
379
|
Reddy PH, Manczak M, Yin X, Reddy AP. Synergistic Protective Effects of Mitochondrial Division Inhibitor 1 and Mitochondria-Targeted Small Peptide SS31 in Alzheimer's Disease. J Alzheimers Dis 2019; 62:1549-1565. [PMID: 29400667 DOI: 10.3233/jad-170988] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of our study was to determine the synergistic protective effects of mitochondria-targeted antioxidant SS31 and mitochondria division inhibitor 1 (Mdivi1) in Alzheimer's disease (AD). Using biochemical methods, we assessed mitochondrial function by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity, mitochondrial ATP, and GTPase Drp1 enzymatic activity in mutant AβPP cells. Using biochemical methods, we also measured cell survival and apoptotic cell death. Amyloid-β (Aβ) levels were measured using sandwich ELISA, and using real-time quantitative RT-PCR, we assessed mtDNA (mtDNA) copy number in relation to nuclear DNA (nDNA) in all groups of cells. We found significantly reduced levels of Aβ40 and Aβ42 in mutant AβPP cells treated with SS31, Mdivi1, and SS31+Mdivi1, and the reduction of Aβ42 levels were much higher in SS31+Mdivi1 treated cells than individual treatments of SS31 and Mdivi1. The levels of mtDNA copy number and cell survival were significantly increased in SS31, Mdivi1, and SS31+Mdivi1 treated mutant AβPP cells; however, the increased levels of mtDNA copy number and cell survival were much higher in SS31+Mdivi1 treated cells than individual treatments of SS31 and Mdivi1. Mitochondrial dysfunction is significantly reduced in SS31, Mdivi1, and SS31+Mdivi1 treated mutant AβPP cells; however, the reduction is much higher in cells treated with both SS31+Mdvi1. Similarly, GTPase Drp1 activity is reduced in all treatments, but reduced much higher in SS31+Mdivi1 treated cells. These observations strongly suggest that combined treatment of SS31+Mdivi1 is effective than individual treatments of SS31 and Mdivi1. Therefore, we propose that combined treatment of SS31+Mdivi1 is a better therapeutic strategy for AD. Ours is the first study to investigate combined treatment of mitochondria-targeted antioxidant SS31 and mitochondrial division inhibitor 1 in AD neurons.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Lubbock, TX, USA
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - XiangLing Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
380
|
Mitochondrial Transfer of Wharton's Jelly Mesenchymal Stem Cells Eliminates Mutation Burden and Rescues Mitochondrial Bioenergetics in Rotenone-Stressed MELAS Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9537504. [PMID: 31249652 PMCID: PMC6556302 DOI: 10.1155/2019/9537504] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022]
Abstract
Wharton's jelly mesenchymal stem cells (WJMSCs) transfer healthy mitochondria to cells harboring a mitochondrial DNA (mtDNA) defect. Mitochondrial myopathy, encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the major subgroups of mitochondrial diseases, caused by the mt.3243A>G point mutation in the mitochondrial tRNALeu(UUR) gene. The specific aim of the study is to investigate whether WJMSCs exert therapeutic effect for mitochondrial dysfunction in cells of MELAS patient through donating healthy mitochondria. We herein demonstrate that WJMSCs transfer healthy mitochondria into rotenone-stressed fibroblasts of a MELAS patient, thereby eliminating mutation burden and rescuing mitochondrial functions. In the coculture system in vitro study, WJMSCs transferred healthy mitochondria to rotenone-stressed MELAS fibroblasts. By inhibiting actin polymerization to block tunneling nanotubes (TNTs), the WJMSC-conducted mitochondrial transfer was abrogated. After mitochondrial transfer, the mt.3243A>G mutation burden of MELAS fibroblasts was reduced to an undetectable level, with long-term retention. Sequencing results confirmed that the transferred mitochondria were donated from WJMSCs. Furthermore, mitochondrial transfer of WJMSCs to MELAS fibroblasts improves mitochondrial functions and cellular performance, including protein translation of respiratory complexes, ROS overexpression, mitochondrial membrane potential, mitochondrial morphology and bioenergetics, cell proliferation, mitochondrion-dependent viability, and apoptotic resistance. This study demonstrates that WJMSCs exert bioenergetic therapeutic effects through mitochondrial transfer. This finding paves the way for the development of innovative treatments for MELAS and other mitochondrial diseases.
Collapse
|
381
|
Liu Z, Li H, Su J, Xu S, Zhu F, Ai J, Hu Z, Zhou M, Tian J, Su Z, Yang P, Nie J. Numb Depletion Promotes Drp1-Mediated Mitochondrial Fission and Exacerbates Mitochondrial Fragmentation and Dysfunction in Acute Kidney Injury. Antioxid Redox Signal 2019; 30:1797-1816. [PMID: 29890853 DOI: 10.1089/ars.2017.7432] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Mitochondrial fragmentation is a crucial mechanism contributing to tubular cell apoptosis during acute kidney injury (AKI). However, the mechanism of modulating mitochondrial dynamics during AKI remains unclear. Numb is a multifunction adaptor protein that is expressed in renal tubules. The aim of the present study was to evaluate the role of Numb in mitochondrial dysfunction during AKI. RESULTS The expression of Numb was upregulated in both ischemia-reperfusion- and cisplatin-induced AKI. Depletion of Numb from proximal tubules (PT-Nb-KO) exacerbated AKI shown as more severe renal tubular damage and higher serum creatinine than wild-type mice. Numb depletion alone significantly increased mitochondrial fragmentation without altering mitochondrial mass and function, including adenosine triphosphate production, mitochondrial membrane potential, oxygen consumption, and reactive oxygen species production. However, mitochondrial fragmentation and dysfunction were significantly aggravated after cisplatin exposure in PT-Nb-KO mice. Mechanistically, Numb depletion triggered dynamin-related protein 1 (Drp1) recruitment to mitochondria by increasing the phosphorylation of Drp1 at serine 656 residue (human Drp1 ser637). Inhibiting the activity of Rho-associated coiled-coil containing protein kinase (ROCK) by Y-27632 attenuated phosphorylation of Drp1 ser656 and mitochondrial fragmentation in Numb-deficient cells. Administration of mdivi-1, a pharmacological inhibitor of Drp1, restored mitochondrial morphology, attenuated cisplatin-induced tubular injury, and renal dysfunction in PT-Nb-KO mice. Innovation and Conclusion: Our data suggest that Numb depletion promotes mitochondrial fragmentation by promoting the phosphorylation of Drp1 Ser637 and thus exacerbates cisplatin-induced mitochondrial dysfunction and tubular cell apoptosis. These findings add a novel insight into modulating mechanism of mitochondrial dynamics during AKI.
Collapse
Affiliation(s)
- Ze Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hao Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianqun Su
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shihui Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jun Ai
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zheng Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Miaomiao Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianwei Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhiyuan Su
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Peiliang Yang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
382
|
Mdivi-1 Protects CD4 + T Cells against Apoptosis via Balancing Mitochondrial Fusion-Fission and Preventing the Induction of Endoplasmic Reticulum Stress in Sepsis. Mediators Inflamm 2019; 2019:7329131. [PMID: 31263382 PMCID: PMC6541989 DOI: 10.1155/2019/7329131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/23/2019] [Accepted: 04/08/2019] [Indexed: 01/02/2023] Open
Abstract
Apoptosis of CD4+ T cells plays a central role in the progression of sepsis because it is associated with subsequent immunosuppression and the lack of specific treatment. Thus, developing therapeutic strategies to attenuate the apoptosis of CD4+ T cells in sepsis is critical. Several studies have demonstrated that Mdivi-1, which is a selective inhibitor of the dynamin-related protein 1 (Drp1), attenuates apoptosis of myocardial cells and neurons during various pathologic states. The present study revealed the impact of Mdivi-1 on the apoptosis of CD4+ T cells in sepsis and the potential underlying mechanisms. We used lipopolysaccharide (LPS) stimulation and cecal ligation and puncture (CLP) surgery as sepsis models in vitro and in vivo, respectively. Our results showed that Mdivi-1 attenuated the apoptosis of CD4+ T cells both in vitro and in vivo. The potential mechanism underlying the protective effect of Mdivi-1 involved Mdivi-1 reestablishing mitochondrial fusion-fission balance in sepsis, as reflected by the expression of the mitofusin 2 (MFN2) and optic atrophy 1 (OPA1) , Drp1 translocation, and mitochondrial morphology, as observed by electron microscopy. Moreover, Mdivi-1 treatment reduced reactive oxygen species (ROS) production and prevented the induction of endoplasmic reticulum stress (ERS) and associated apoptosis. After using tunicamycin to activate ER stress, the protective effect of Mdivi-1 on CD4+ T cells was reversed. Our results suggested that Mdivi-1 ameliorated apoptosis in CD4+ T cells by reestablishing mitochondrial fusion-fission balance and preventing the induction of endoplasmic reticulum stress in experimental sepsis.
Collapse
|
383
|
Sugahara S, Kume S, Chin-Kanasaki M, Tomita I, Yasuda-Yamahara M, Yamahara K, Takeda N, Osawa N, Yanagita M, Araki SI, Maegawa H. Protein O-GlcNAcylation Is Essential for the Maintenance of Renal Energy Homeostasis and Function via Lipolysis during Fasting and Diabetes. J Am Soc Nephrol 2019; 30:962-978. [PMID: 31043434 DOI: 10.1681/asn.2018090950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Energy metabolism in proximal tubular epithelial cells (PTECs) is unique, because ATP production largely depends on lipolysis in both the fed and fasting states. Furthermore, disruption of renal lipolysis is involved in the pathogenesis of diabetic tubulopathy. Emerging evidence suggests that protein O-GlcNAcylation, an intracellular nutrient-sensing system, may regulate a number of metabolic pathways according to changes in nutritional status. Although O-GlcNAcylation in PTECs has been demonstrated experimentally, its precise role in lipolysis in PTECs is unclear. METHODS To investigate the mechanism of renal lipolysis in PTECs-specifically, the role played by protein O-GlcNAcylation-we generated mice with PTECs deficient in O-GlcNAc transferase (Ogt). We analyzed their renal phenotypes during ad libitum feeding, after prolonged fasting, and after mice were fed a high-fat diet for 16 weeks to induce obesity and diabetes. RESULTS Although PTEC-specific Ogt-deficient mice lacked a marked renal phenotype during ad libitum feeding, after fasting 48 hours, they developed Fanconi syndrome-like abnormalities, PTEC apoptosis, and lower rates of renal lipolysis and ATP production. Proteomic analysis suggested that farnesoid X receptor-dependent upregulation of carboxylesterase-1 is involved in O-GlcNAcylation's regulation of lipolysis in fasted PTECs. PTEC-specific Ogt-deficient mice with diabetes induced by a high-fat diet developed severe tubular cell damage and enhanced lipotoxicity. CONCLUSIONS Protein O-GlcNAcylation is essential for renal lipolysis during prolonged fasting and offers PTECs significant protection against lipotoxicity in diabetes.
Collapse
Affiliation(s)
- Sho Sugahara
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan;
| | - Masami Chin-Kanasaki
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.,Division of Blood Purification, Shiga University of Medical Science Hospital, Otsu, Shiga, Japan; and
| | - Issei Tomita
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Naoko Takeda
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Norihisa Osawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin-Ichi Araki
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.,Division of Blood Purification, Shiga University of Medical Science Hospital, Otsu, Shiga, Japan; and
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan;
| |
Collapse
|
384
|
Inhibition of Drp1 after traumatic brain injury provides brain protection and improves behavioral performance in rats. Chem Biol Interact 2019; 304:173-185. [DOI: 10.1016/j.cbi.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
|
385
|
Glucose Restriction Promotes Osteocyte Specification by Activating a PGC-1α-Dependent Transcriptional Program. iScience 2019; 15:79-94. [PMID: 31039455 PMCID: PMC6488568 DOI: 10.1016/j.isci.2019.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/16/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Osteocytes, the most abundant of bone cells, differentiate while they remain buried within the bone matrix. This encasement limits their access to nutrients and likely affects their differentiation, a process that remains poorly defined. Here, we show that restriction in glucose supply promotes the osteocyte transcriptional program while also being associated with increased mitochondrial DNA levels. Glucose deprivation triggered the activation of the AMPK/PGC-1 pathway. AMPK and SIRT1 activators or PGC-1α overexpression are sufficient to enhance osteocyte gene expression in IDG-SW3 cells, murine primary osteoblasts, osteocytes, and organotypic/ex vivo bone cultures. Conversely, osteoblasts and osteocytes deficient in Ppargc1a and b were refractory to the effects of glucose restriction. Finally, conditional ablation of both genes in osteoblasts and osteocytes generate osteopenia and reduce osteocytic gene expression in mice. Altogether, we uncovered a role for PGC-1 in the regulation of osteocyte gene expression.
Collapse
|
386
|
Bok regulates mitochondrial fusion and morphology. Cell Death Differ 2019; 26:2682-2694. [PMID: 30976095 DOI: 10.1038/s41418-019-0327-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Bok (Bcl-2-related ovarian killer) is a member of the Bcl-2 protein family that governs the intrinsic apoptosis pathway, but the cellular role that Bok plays is controversial. Remarkably, endogenous Bok is constitutively bound to inositol 1,4,5-trisphosphate receptors (IP3Rs) and is stabilized by this interaction. Here we report that despite the strong association with IP3Rs, deletion of Bok expression by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease)-mediated gene editing does not alter calcium mobilization via IP3Rs or calcium influx into the mitochondria. Rather, Bok deletion significantly reduces mitochondrial fusion rate, resulting in mitochondrial fragmentation. This phenotype is reversed by exogenous wild-type Bok and by an IP3R binding-deficient Bok mutant, and may result from a decrease in mitochondrial motility. Bok deletion also enhances mitochondrial spare respiratory capacity and membrane potential. Finally, Bok does not play a major role in apoptotic signaling, since Bok deletion does not alter responsiveness to various apoptotic stimuli. Overall, despite binding to IP3Rs, Bok does not alter IP3R-mediated Ca2+ signaling, but is required to maintain normal mitochondrial fusion, morphology, and bioenergetics.
Collapse
|
387
|
Mitochondrial Dynamics: Biogenesis, Fission, Fusion, and Mitophagy in the Regulation of Stem Cell Behaviors. Stem Cells Int 2019; 2019:9757201. [PMID: 31089338 PMCID: PMC6476046 DOI: 10.1155/2019/9757201] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
Stem cells have the unique capacity to differentiate into many cell types during embryonic development and postnatal growth. Through coordinated cellular behaviors (self-renewal, proliferation, and differentiation), stem cells are also pivotal to the homeostasis, repair, and regeneration of many adult tissues/organs and thus of great importance in regenerative medicine. Emerging evidence indicates that mitochondria are actively involved in the regulation of stem cell behaviors. Mitochondria undergo specific dynamics (biogenesis, fission, fusion, and mitophagy) during stem cell self-renewal, proliferation, and differentiation. The alteration of mitochondrial dynamics, fine-tuned by stem cell niche factors and stress signaling, has considerable impacts on stem cell behaviors. Here, we summarize the recent research progress on (1) how mitochondrial dynamics controls stem cell behaviors, (2) intrinsic and extrinsic factors that regulate mitochondrial dynamics, and (3) pharmacological regulators of mitochondrial dynamics and their therapeutic potential. This review emphasizes the metabolic control of stemness and differentiation and may shed light on potential new applications in stem cell-based therapy.
Collapse
|
388
|
Xie KF, Guo DD, Luo XJ. SMDT1-driven change in mitochondrial dynamics mediate cell apoptosis in PDAC. Biochem Biophys Res Commun 2019; 511:323-329. [DOI: 10.1016/j.bbrc.2019.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/08/2019] [Indexed: 12/19/2022]
|
389
|
Xian H, Liou YC. Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy. Autophagy 2019; 15:2107-2125. [PMID: 30894073 DOI: 10.1080/15548627.2019.1596494] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial dynamics is highly implicated in a plethora of cellular processes including apoptosis and mitophagy. However, little is known about the scope and precise functions of mitochondrial dynamics proteins for mitochondrial quality control and cellular homeostasis. Whether mitochondrial dynamics proteins serve in cellular processes reliant on mitochondrial fission-fusion is still not fully explored. MIEF1/MiD51 (mitochondrial elongation factor 1) is known to promote mitochondrial fission via the recruitment of GTPase protein DNM1L/DRP1 (dynamin 1 like), but the fundamental understandings of MIEF1 for mitochondrial-dependent cellular processes are largely elusive. Here, we report novel roles of MIEF1 in responding to apoptotic stimuli and mitochondrial damage. Given our result that staurosporine (STS) treatment induced the degradation of MIEF1 via the ubiquitin-proteasome system (UPS), we are motivated to explore the role of MIEF1 in apoptosis. MIEF1 loss triggered the imbalance of BCL2 family members on the mitochondria, consequently initiating the translocation of BAX onto the mitochondria, catalyzing the decrease of mitochondrial membrane potential and promoting the release of DIABLO/SMAC (diablo IAP-binding mitochondrial protein) and CYCS (cytochrome c, somatic). We further demonstrate that MIEF1 deficiency impaired mitochondrial respiration and induced mitochondrial oxidative stress, sensitizing cells to PINK1-PRKN-mediated mitophagy. The recruitment of PRKN to depolarized mitochondria modulated the UPS-dependent degradation of MFN2 (mitofusin 2) and FIS1 (fission, mitochondrial 1) specifically, to further promote mitophagy. Our findings uncover a bridging role of MIEF1 integrating cell death and mitophagy, unlikely dependent on mitochondrial dynamics, implying new insights to mechanisms determining cellular fate.Abbreviations: ActD: actinomycin D; BAX: BCL2 associated X, apoptosis regulator; BAK1: BCL2 antagonist/killer 1; BCL2L1: BCL2 like 1; BMH: 1,6-bismaleimidohexane; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CHX: cycloheximide; CQ: chloroquine; CYCS: cytochrome c, somatic; DIABLO: diablo IAP-binding mitochondrial protein; DKO: double knockout; DNM1L/DRP1: dynamin 1 like; FIS1: fission, mitochondrial 1; GFP: green fluorescent protein; IP: immunoprecipitation; MFN1: mitofusin 1; MFN2: mitofusin 2; MG132: carbobenzoxy-Leu-Leu-leucinal; MIEF1/MiD51: mitochondrial elongation factor 1; MIEF2/MiD49: mitochondrial elongation factor 2; MOMP: mitochondrial outer membrane permeabilization; MTR: MitoTracker Red; OA: oligomycin plus antimycin A; OCR: oxygen consumption rate; OMM: outer mitochondrial membrane; PARP: poly(ADP-ribose) polymerase; PI: propidium iodide; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SD: standard deviation; STS: staurosporine; TNF: tumor necrosis factor; UPS: ubiquitin-proteasome system; VDAC1: voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Hongxu Xian
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
390
|
Denton K, Mou Y, Xu CC, Shah D, Chang J, Blackstone C, Li XJ. Impaired mitochondrial dynamics underlie axonal defects in hereditary spastic paraplegias. Hum Mol Genet 2019; 27:2517-2530. [PMID: 29726929 DOI: 10.1093/hmg/ddy156] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
Mechanisms by which long corticospinal axons degenerate in hereditary spastic paraplegia (HSP) are largely unknown. Here, we have generated induced pluripotent stem cells (iPSCs) from patients with two autosomal recessive forms of HSP, SPG15 and SPG48, which are caused by mutations in the ZFYVE26 and AP5Z1 genes encoding proteins in the same complex, the spastizin and AP5Z1 proteins, respectively. In patient iPSC-derived telencephalic glutamatergic and midbrain dopaminergic neurons, neurite number, length and branching are significantly reduced, recapitulating disease-specific phenotypes. We analyzed mitochondrial morphology and noted a significant reduction in both mitochondrial length and their densities within axons of these HSP neurons. Mitochondrial membrane potential was also decreased, confirming functional mitochondrial defects. Notably, mdivi-1, an inhibitor of the mitochondrial fission GTPase DRP1, rescues mitochondrial morphology defects and suppresses the impairment in neurite outgrowth and late-onset apoptosis in HSP neurons. Furthermore, knockdown of these HSP genes causes similar axonal defects, also mitigated by treatment with mdivi-1. Finally, neurite outgrowth defects in SPG15 and SPG48 cortical neurons can be rescued by knocking down DRP1 directly. Thus, abnormal mitochondrial morphology caused by an imbalance of mitochondrial fission and fusion underlies specific axonal defects and serves as a potential therapeutic target for SPG15 and SPG48.
Collapse
Affiliation(s)
- Kyle Denton
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Chong-Chong Xu
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Dhruvi Shah
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Jaerak Chang
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Departments of Biomedical Science, Brain Science, and Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
391
|
Water-soluble CoQ10 as A Promising Anti-aging Agent for Neurological Dysfunction in Brain Mitochondria. Antioxidants (Basel) 2019; 8:antiox8030061. [PMID: 30862106 PMCID: PMC6466529 DOI: 10.3390/antiox8030061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 03/08/2019] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial function has been closely associated with normal aging and age-related diseases. Age-associated declines in mitochondrial function, such as changes in oxygen consumption rate, cytochrome c oxidase activity of complex IV, and mitochondrial coenzyme Q (CoQ) levels, begin as early as 12 to 15 months of age in male mouse brains. Brain mitochondrial dysfunction is accompanied by increased accumulation of phosphorylated α-synuclein in the motor cortex and impairment of motor activities, which are similar characteristics of Parkinson's disease. However, these age-associated defects are completely rescued by the administration of exogenous CoQ10 to middle-aged mice via its water solubilization by emulsification in drinking water. Further efforts to develop strategies to enhance the biological availability of CoQ10 to successfully ameliorate age-related brain mitochondrial dysfunction or neurodegenerative disorders may provide a promising anti-aging agent.
Collapse
|
392
|
Axonal Degeneration Is Mediated by Necroptosis Activation. J Neurosci 2019; 39:3832-3844. [PMID: 30850513 DOI: 10.1523/jneurosci.0881-18.2019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 01/22/2023] Open
Abstract
Axonal degeneration, which contributes to functional impairment in several disorders of the nervous system, is an important target for neuroprotection. Several individual factors and subcellular events have been implicated in axonal degeneration, but researchers have so far been unable to identify an integrative signaling pathway activating this self-destructive process. Through pharmacological and genetic approaches, we tested whether necroptosis, a regulated cell-death mechanism implicated in the pathogenesis of several neurodegenerative diseases, is involved in axonal degeneration. Pharmacological inhibition of the necroptotic kinase RIPK1 using necrostatin-1 strongly delayed axonal degeneration in the peripheral nervous system and CNS of wild-type mice of either sex and protected in vitro sensory axons from degeneration after mechanical and toxic insults. These effects were also observed after genetic knock-down of RIPK3, a second key regulator of necroptosis, and the downstream effector MLKL (Mixed Lineage Kinase Domain-Like). RIPK1 inhibition prevented mitochondrial fragmentation in vitro and in vivo, a typical feature of necrotic death, and inhibition of mitochondrial fission by Mdivi also resulted in reduced axonal loss in damaged nerves. Furthermore, electrophysiological analysis demonstrated that inhibition of necroptosis delays not only the morphological degeneration of axons, but also the loss of their electrophysiological function after nerve injury. Activation of the necroptotic pathway early during injury-induced axonal degeneration was made evident by increased phosphorylation of the downstream effector MLKL. Our results demonstrate that axonal degeneration proceeds by necroptosis, thus defining a novel mechanistic framework in the axonal degenerative cascade for therapeutic interventions in a wide variety of conditions that lead to neuronal loss and functional impairment.SIGNIFICANCE STATEMENT We show that axonal degeneration triggered by diverse stimuli is mediated by the activation of the necroptotic programmed cell-death program by a cell-autonomous mechanism. This work represents a critical advance for the field since it identifies a defined degenerative pathway involved in axonal degeneration in both the peripheral nervous system and the CNS, a process that has been proposed as an early event in several neurodegenerative conditions and a major contributor to neuronal death. The identification of necroptosis as a key mechanism for axonal degeneration is an important step toward the development of novel therapeutic strategies for nervous-system disorders, particularly those related to chemotherapy-induced peripheral neuropathies or CNS diseases in which axonal degeneration is a common factor.
Collapse
|
393
|
Tusskorn O, Khunluck T, Prawan A, Senggunprai L, Kukongviriyapan V. Mitochondrial division inhibitor-1 potentiates cisplatin-induced apoptosis via the mitochondrial death pathway in cholangiocarcinoma cells. Biomed Pharmacother 2019; 111:109-118. [PMID: 30579250 DOI: 10.1016/j.biopha.2018.12.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
Abstract
AIMS Mdivi-1, a selective Drp-1 inhibitor, impedes mitochondrial dynamics and suppresses cancer proliferation and progression. Cholangiocarcinoma (CCA) is a very aggressive malignancy which is refractory to chemotherapy. The study investigated the mechanism of the chemosensitizing effect of mdivi-1 in cholangiocarcinoma. MAIN METHODS CCA cells and HEK293 T cells were employed in the study. Cell viability and induction of apoptotic cell death were determined by the MTT and acridine orange-ethidium bromide methods. Cellular glutathione content and reactive oxygen species (ROS) formation were assessed using thiol green and 2',7'-dichlorofluorescin diacetate fluorescent probes, respectively. Mitochondrial transmembrane potential and autophagy were detected by JC-1 dye and autophagy assay. Cell cycle progression was analyzed by flow cytometry. Cell migration was measured using the wound healing assay. Proteins involved in cell proliferation and cell cycle were analyzed by western immunoblotting. KEY FINDINGS Mdivi-1 enhanced cisplatin-induced cytotoxicity in CCA cells but not in HEK293 T cells. Mdivi-1 enhanced cisplatin induced glutathione redox stress, ROS formation, and loss of mitochondrial transmembrane potential. Moreover, mdivi-1 also inhibited autophagic flux and suppressed CCA cell migration. SIGNIFICANCE Mdivi-1 sensitized CCA cells to cytotoxicity of cisplatin in association with increases of oxidative stress and autophagosomes, and induced cell death via the mitochondrial pathway. Disruption of mitochondrial dynamics may be a novel strategy to improve the efficacy of chemotherapy to treat CCA.
Collapse
Affiliation(s)
- Ornanong Tusskorn
- Chulabhorn International College of Medicine, Thammasat University, 12120, Thailand.
| | - Tueanjai Khunluck
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| |
Collapse
|
394
|
Palma E, Ma X, Riva A, Iansante V, Dhawan A, Wang S, Ni HM, Sesaki H, Williams R, Ding WX, Chokshi S. Dynamin-1-Like Protein Inhibition Drives Megamitochondria Formation as an Adaptive Response in Alcohol-Induced Hepatotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:580-589. [PMID: 30553835 PMCID: PMC6436109 DOI: 10.1016/j.ajpath.2018.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 10/18/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
Despite the growing global burden of alcoholic liver diseases, therapeutic options are limited, and novel targets are urgently needed. Accumulating evidence suggests that mitochondria adapt in response to ethanol and formation of megamitochondria in the livers of patients is recognized as a hallmark of alcoholic liver diseases. The processes involved in ethanol-induced hepatic mitochondrial changes, the impact on mitochondria-shaping proteins, and the significance of megamitochondria formation remain unknown. In this study, we investigated the mitochondrial and cellular response to alcohol in hepatoma cell line VL-17A. The mitochondrial architecture rapidly changed after 3 or 14 days of ethanol exposure with double-pronged presentation of hyperfragmentation and megamitochondria, and cell growth was inhibited. Dynamin-1-like protein (Drp1) was identified as the main mediator driving these mitochondrial alterations, and its genetic inactivation was determined to foster megamitochondria development, preserving the capacity of the cells to grow despite alcohol toxicity. The role of Drp1 in mediating megamitochondria formation in mice with liver-specific inactivation of Drp1 was further confirmed. Finally, when these mice were fed with ethanol, the presentation of hepatic megamitochondria was exacerbated compared with wild type fed with the same diet. Ethanol-induced toxicity was also reduced. Our study demonstrates that megamitochondria formation is mediated by Drp1, and this phenomenon is a beneficial adaptive response during alcohol-induced hepatotoxicity.
Collapse
Affiliation(s)
- Elena Palma
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Antonio Riva
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Valeria Iansante
- Institute of Liver Studies, King's College London, London, United Kingdom
| | - Anil Dhawan
- Institute of Liver Studies, King's College London, London, United Kingdom
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roger Williams
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Shilpa Chokshi
- The Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
395
|
Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. Blood 2019; 133:1943-1952. [PMID: 30808633 DOI: 10.1182/blood-2018-10-808873] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
The hematopoietic system produces new blood cells throughout life. Mature blood cells all derived from a pool of rare long-lived hematopoietic stem cells (HSCs) that are mostly quiescent but occasionally divide and self-renew to maintain the stem cell pool and to insure the continuous replenishment of blood cells. Mitochondria have recently emerged as critical not only for HSC differentiation and commitment but also for HSC homeostasis. Mitochondria are dynamic organelles that orchestrate a number of fundamental metabolic and signaling processes, producing most of the cellular energy via oxidative phosphorylation. HSCs have a relatively high amount of mitochondria that are mostly inactive. Here, we review recent advances in our understanding of the role of mitochondria in HSC homeostasis and discuss, among other topics, how mitochondrial dynamism and quality control might be implicated in HSC fate, self-renewal, and regenerative potential.
Collapse
|
396
|
Alavi MV. Targeted OMA1 therapies for cancer. Int J Cancer 2019; 145:2330-2341. [PMID: 30714136 DOI: 10.1002/ijc.32177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
The mitochondrial inner membrane proteins OMA1 and OPA1 belong to the BAX/BAK1-dependent apoptotic signaling pathway, which can be regulated by tumor protein p53 and the prohibitins PHB and PHB2 in the context of neoplastic disease. For the most part these proteins have been studied separate from each other. Here, I argue that the OMA1 mechanism of action represents the missing link between p53 and cytochrome c release. The mitochondrial fusion protein OPA1 is cleaved by OMA1 in a stress-dependent manner generating S-OPA1. Excessive S-OPA1 can facilitate outer membrane permeabilization upon BAX/BAK1 activation through its membrane shaping properties. p53 helps outer membrane permeabilization in a 2-step process. First, cytosolic p53 activates BAX/BAK1 at the mitochondrial surface. Then, in a second step, p53 binds to prohibitin thereby releasing the restraint on OMA1. This activates OMA1, which cleaves OPA1 and promotes cytochrome c release. Clearly, OMA1 and OPA1 are not root causes for cancer. Yet many cancer cells rely on this pathway for survival, which can explain why loss of p53 function promotes tumor growth and confers resistance to chemotherapies.
Collapse
|
397
|
Koch B, Traven A. Mdivi-1 and mitochondrial fission: recent insights from fungal pathogens. Curr Genet 2019; 65:837-845. [PMID: 30783741 PMCID: PMC6620241 DOI: 10.1007/s00294-019-00942-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial fission shows potential as a therapeutic target in non-infectious human diseases. The compound mdivi-1 was identified as a mitochondrial fission inhibitor that acts against the evolutionarily conserved mitochondrial fission GTPase Dnm1/Drp1, and shows promising data in pre-clinical models of human pathologies. Two recent studies, however, found no evidence that mdivi-1 acts as a mitochondrial fission inhibitor and proposed other mechanisms. In mammalian cells, Bordt et al. showed that mdivi-1 inhibits complex I in mitochondria (Dev Cell 40:583, 2017). In a second study, we have recently demonstrated that mdivi-1 does not trigger a mitochondrial morphology change in the human yeast pathogen Candida albicans, but impacts on endogenous nitric oxide (NO) levels and inhibits the key virulence property of hyphal formation (Koch et al., Cell Rep 25:2244, 2018). Here we discuss recent insights into mdivi-1’s action in pathogenic fungi and the potential and challenges for repurposing it as an anti-infective. We also outline recent findings on the roles of mitochondrial fission in human and plant fungal pathogens, with the goal of starting the conversation on whether the research field of fungal pathogenesis can benefit from efforts in other disease areas aimed at developing therapeutic inhibitors of mitochondrial division.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.,Protein, Science and Engineering, Callaghan Innovation, Christchurch, 8140, New Zealand
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
398
|
Kumar R, Bhat TA, Walsh EM, Chaudhary AK, O'Malley J, Rhim JS, Wang J, Morrison CD, Attwood K, Bshara W, Mohler JL, Yadav N, Chandra D. Cytochrome c Deficiency Confers Apoptosome and Mitochondrial Dysfunction in African-American Men with Prostate Cancer. Cancer Res 2019; 79:1353-1368. [PMID: 30765600 DOI: 10.1158/0008-5472.can-18-2383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/16/2018] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
Abstract
Although African-American (AA) patients with prostate cancer tend to develop greater therapeutic resistance and faster prostate cancer recurrence compared with Caucasian-American (CA) men, the molecular mechanisms of this racial prostate cancer disparity remain undefined. In this study, we provide the first comprehensive evidence that cytochrome c deficiency in AA primary tumors and cancer cells abrogates apoptosome-mediated caspase activation and contributes to mitochondrial dysfunction, thereby promoting therapeutic resistance and prostate cancer aggressiveness in AA men. In AA prostate cancer cells, decreased nuclear accumulation of nuclear respiration factor 1 (Nrf1) and its subsequent loss of binding to the cytochrome c promoter mediated cytochrome c deficiency. The activation of cellular Myc (c-Myc) and NF-κB or inhibition of AKT prevented nuclear translocation of Nrf1. Genetic and pharmacologic inhibition of c-Myc and NF-κB or activation of AKT promoted Nrf1 binding to cytochrome c promoter, cytochrome c expression, caspase activation, and cell death. The lack of p-Drp1S616 in AA prostate cancer cells contributed to defective cytochrome c release and increased resistance to apoptosis, indicating that restoration of cytochrome c alone may be insufficient to induce effective apoptosis. Cytochrome c deficiency promoted the acquisition of glycolytic phenotypes and mitochondrial dysfunction, whereas cytochrome c restoration via inhibition of c-Myc and NF-κB or activation of AKT attenuated glycolysis in AA prostate cancer cells. Inhibition of c-Myc and NF-κB enhanced the efficacy of docetaxel in tumor xenografts. Therefore, restoring cytochrome c may overcome therapeutic resistance and prostate cancer aggressiveness in AA men. Overall, this study provides the first comprehensive experimental, mechanistic, and clinical evidence for apoptosome and mitochondrial dysfunction in prostate cancer racial disparity. SIGNIFICANCE: Mechanistic insights on prostate cancer health disparity among American men provide novel approaches to restore mitochondrial function, which can address therapeutic resistance and aggressiveness in African-American men with prostate cancer.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elise M Walsh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jordan O'Malley
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Johng S Rhim
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Carl D Morrison
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kristopher Attwood
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Wiam Bshara
- Pathology Resource Network, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
399
|
Abstract
The concept that mitochondria are highly dynamic is as widely accepted as it is untrue for a number of important contexts. Healthy mitochondria of the most energy-dependent and mitochondrial-rich mammalian organ, the heart, only rarely undergo fusion or fission and are seemingly static within cardiac myocytes. Here, we revisit mitochondrial dynamism with a fresh perspective developed from the recently discovered multifunctionality of mitochondrial fusion proteins and newly defined mechanisms for direct cross talk between mitochondrial dynamics, biogenesis, quality control, and trafficking pathways. Insights gained from comparing static mitochondrial biology in cardiac myocytes and dynamic mitochondrial biology in neurons are reviewed with the goal of understanding contextual fallacies of overly generalized characterizations of these essential and intriguing organelles.
Collapse
Affiliation(s)
- Gerald W. Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
400
|
Delerue T, Tribouillard-Tanvier D, Daloyau M, Khosrobakhsh F, Emorine LJ, Friocourt G, Belenguer P, Blondel M, Arnauné-Pelloquin L. A yeast-based screening assay identifies repurposed drugs that suppress mitochondrial fusion and mtDNA maintenance defects. Dis Model Mech 2019; 12:dmm.036558. [PMID: 30658998 PMCID: PMC6398489 DOI: 10.1242/dmm.036558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondria continually move, fuse and divide, and these dynamics are essential for the proper function of the organelles. Indeed, the dynamic balance of fusion and fission of mitochondria determines their morphology and allows their immediate adaptation to energetic needs as well as preserving their integrity. As a consequence, mitochondrial fusion and fission dynamics and the proteins that control these processes, which are conserved from yeast to human, are essential, and their disturbances are associated with severe human disorders, including neurodegenerative diseases. For example, mutations in OPA1, which encodes a conserved factor essential for mitochondrial fusion, lead to optic atrophy 1, a neurodegeneration that affects the optic nerve, eventually leading to blindness. Here, by screening a collection of ∼1600 repurposed drugs on a fission yeast model, we identified five compounds able to efficiently prevent the lethality associated with the loss of Msp1p, the fission yeast ortholog of OPA1. One compound, hexestrol, was able to rescue both the mitochondrial fragmentation and mitochondrial DNA (mtDNA) depletion induced by the loss of Msp1p, whereas the second, clomifene, only suppressed the mtDNA defect. Yeast has already been successfully used to identify candidate drugs to treat inherited mitochondrial diseases; this work may therefore provide useful leads for the treatment of optic atrophies such as optic atrophy 1 or Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- Thomas Delerue
- Research Center on Animal Cognition (CRCA) and Center of Developmental Biology (CBD), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Déborah Tribouillard-Tanvier
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Etablissement Français du Sang Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France.,Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Marlène Daloyau
- Research Center on Animal Cognition (CRCA) and Center of Developmental Biology (CBD), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Farnoosh Khosrobakhsh
- Research Center on Animal Cognition (CRCA) and Center of Developmental Biology (CBD), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Laurent Jean Emorine
- Research Center on Animal Cognition (CRCA) and Center of Developmental Biology (CBD), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Gaëlle Friocourt
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Etablissement Français du Sang Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | - Pascale Belenguer
- Research Center on Animal Cognition (CRCA) and Center of Developmental Biology (CBD), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Etablissement Français du Sang Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | - Laetitia Arnauné-Pelloquin
- Research Center on Animal Cognition (CRCA) and Center of Developmental Biology (CBD), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|