351
|
Acevedo SF, Froudarakis EI, Tsiorva AA, Skoulakis EMC. Distinct neuronal circuits mediate experience-dependent, non-associative osmotactic responses in Drosophila. Mol Cell Neurosci 2007; 34:378-89. [PMID: 17197197 DOI: 10.1016/j.mcn.2006.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/09/2006] [Accepted: 11/14/2006] [Indexed: 11/26/2022] Open
Abstract
Osmotactic responses can be modified in an experience-dependent manner and have been used to condition animals in negative or positive associative paradigms. Experience-dependent non-associative defects in avoidance of aversive odors were reported in Drosophila learning mutants. This prompted an examination of the contribution of the mushroom bodies and inner antenoglomerular tract, the two neuronal populations implicated in processing olfactory information to experience-dependent non-associative osmotactic responses. Silencing inner antenoglomerular tract synapses results in defective osmotaxis after experiencing a different odor, but not electric shock. Conversely, structural or functional perturbation of the mushroom bodies precipitates osmotactic deficits after prior experience of electric shock but not odors. These effects on osmotaxis are specific, long lasting and independent of the aversive or attractive properties of the odors. Deficient osmotactic responses only after electric shock stimulation were exhibited by mutants with altered cAMP levels, but all other mutants in genes preferentially expressed in the mushroom bodies responded normally. Our results suggest that the mushroom bodies and inner antenoglomerular tract are essential for normal osmotactic responses after prior stimulation with electric shock or another odor respectively. Finally, these experience-dependent non-associative paradigms are excellent methods of functionally ascertaining normal activity of the mushroom bodies and inner antenoglomerular tract in putative leaning and memory mutants.
Collapse
Affiliation(s)
- Summer F Acevedo
- Institute of Molecular Biology and Genetics, Biomedical Sciences Research Centre Alexander Fleming, Vari, 16672, Greece
| | | | | | | |
Collapse
|
352
|
Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M. Design of fluorescent materials for chemical sensing. Chem Soc Rev 2007; 36:993-1017. [PMID: 17534482 DOI: 10.1039/b609548h] [Citation(s) in RCA: 623] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is an enormous demand for chemical sensors for many areas and disciplines. High sensitivity and ease of operation are two main issues for sensor development. Fluorescence techniques can easily fulfill these requirements and therefore fluorescent-based sensors appear as one of the most promising candidates for chemical sensing. However, the development of sensors is not trivial; material science, molecular recognition and device implementation are some of the aspects that play a role in the design of sensors. The development of fluorescent sensing materials is increasingly captivating the attention of the scientists because its implementation as a truly sensory system is straightforward. This critical review shows the use of polymers, sol-gels, mesoporous materials, surfactant aggregates, quantum dots, and glass or gold surfaces, combined with different chemical approaches for the development of fluorescent sensing materials. Representative examples have been selected and they are commented here.
Collapse
Affiliation(s)
- Lourdes Basabe-Desmonts
- Department of Supramolecular Chemistry and Technology, MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | |
Collapse
|
353
|
Abstract
Insects and vertebrates separately evolved remarkably similar mechanisms to process olfactory information. Odors are sampled by huge numbers of receptor neurons, which converge type-wise upon a much smaller number of principal neurons within glomeruli. There, odor information is transformed by inhibitory interneuron-mediated, cross-glomerular circuit interactions that impose slow temporal structures and fast oscillations onto the firing patterns of principal neurons. The transformations appear to improve signal-to-noise characteristics, define odor categories, achieve precise odor identification, extract invariant features, and begin the process of sparsening the neural representations of odors for efficient discrimination, memorization, and recognition.
Collapse
Affiliation(s)
- Leslie M Kay
- Department of Psychology, The University of Chicago, 940 E 57th St., Chicago, IL 60637, USA
| | | |
Collapse
|
354
|
Kapoor V, Urban NN. Glomerulus-specific, long-latency activity in the olfactory bulb granule cell network. J Neurosci 2006; 26:11709-19. [PMID: 17093092 PMCID: PMC6674772 DOI: 10.1523/jneurosci.3371-06.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reliable, stimulus-specific temporal patterns of action potentials have been proposed to encode information in many brain areas, perhaps most notably in the olfactory system. Analysis of such temporal coding has focused almost exclusively on excitatory neurons. Thus, the role of networks of inhibitory interneurons in establishing and maintaining this reliability is unclear. Here we use imaging of population activity in vitro to investigate the mechanisms of temporal pattern generation in mouse olfactory bulb inhibitory interneurons. We show that activity of these interneurons evolves slowly in time but that individual neurons fire at reliable times, with a timescale similar to the slow changes in the patterns of odor-evoked activity and to odor discrimination. Most strikingly, the latency of a single granule cell is highly reliable from trial to trial during repeated stimulation of the same glomerulus, whereas this same cell will have a markedly different latency when a different glomerulus is activated. These data suggest that the timing of granule cell-mediated inhibition in the olfactory bulb is tightly regulated by the source of input and that inhibition may contribute to the generation of reliable temporal patterns of mitral cell activity.
Collapse
Affiliation(s)
- Vikrant Kapoor
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Nathaniel N. Urban
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
355
|
Broome BM, Jayaraman V, Laurent G. Encoding and decoding of overlapping odor sequences. Neuron 2006; 51:467-82. [PMID: 16908412 DOI: 10.1016/j.neuron.2006.07.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 06/15/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
Odors evoke complex responses in locust antennal lobe projection neurons (PNs)-the mitral cell analogs. These patterns evolve over hundreds of milliseconds and contain information about odor identity and concentration. In nature, animals often encounter many odorants in short temporal succession. We explored the effects of such conditions by presenting two different odors with variable intervening delays. PN ensemble representations tracked stimulus changes and, in some delay conditions, reached states that corresponded neither to the representation of either odor alone nor to the static mixture of the two. We then recorded from Kenyon cells (KCs), the PNs' targets. Their responses were consistent with the PN population's behavior: in some conditions, KCs were recruited that did not fire during single-odor or mixture stimuli. Thus, PN population dynamics are history dependent, and responses of individual KCs are consistent with piecewise temporal decoding of PN output over large sections of the PN population.
Collapse
Affiliation(s)
- Bede M Broome
- Computation and Neural Systems Program, Division of Biology, California Institute of Technology, Pasadena, 91125, USA
| | | | | |
Collapse
|
356
|
Abstract
Olfactory space has a higher dimensionality than does any other class of sensory stimuli, and the olfactory system receives input from an unusually large number of unique information channels. This suggests that aspects of olfactory processing may differ fundamentally from processing in other sensory modalities. This review summarizes current understanding of early events in olfactory processing. We focus on how odors are encoded by the activity of primary olfactory receptor neurons, how odor codes may be transformed in the olfactory bulb, and what relevance these codes may have for downstream neurons in higher brain centers. Recent findings in synaptic physiology, neural coding, and psychophysics are discussed, with reference to both vertebrate and insect model systems.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
357
|
Uchida N, Kepecs A, Mainen ZF. Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nat Rev Neurosci 2006; 7:485-91. [PMID: 16715056 DOI: 10.1038/nrn1933] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intuitively, decisions should always improve with more time for the accumulation of evidence, yet psychophysical data show a limit of 200-300 ms for many perceptual tasks. Here, we consider mechanisms that favour such rapid information processing in vision and olfaction. We suggest that the brain limits some types of perceptual processing to short, discrete chunks (for example, eye fixations and sniffs) in order to facilitate the construction of global sensory images.
Collapse
Affiliation(s)
- Naoshige Uchida
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
358
|
Mainen ZF. Behavioral analysis of olfactory coding and computation in rodents. Curr Opin Neurobiol 2006; 16:429-34. [PMID: 16822662 DOI: 10.1016/j.conb.2006.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Behavioral analysis is essential to understand how the olfactory system transforms chemosensory signals into information that can be used to guide actions. Recent studies in rodents have begun to address the behavioral relevance of putative olfactory codes and computations including spatial maps, oscillatory synchrony, and evolving temporal codes. To date, these studies have failed to find support for a role of any of these mechanisms in odor discrimination. Progress calls for experiments using precise psychophysical methods in conjunction with neural recording or perturbation, in addition to ethologically minded exploration of more complex forms of odor-guided behavior.
Collapse
Affiliation(s)
- Zachary F Mainen
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
359
|
Lin DY, Shea SD, Katz LC. Representation of Natural Stimuli in the Rodent Main Olfactory Bulb. Neuron 2006; 50:937-49. [PMID: 16772174 DOI: 10.1016/j.neuron.2006.03.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/09/2006] [Accepted: 03/16/2006] [Indexed: 11/22/2022]
Abstract
Natural odorants are complex mixtures of diverse chemical compounds. Monomolecular odorants are represented in the main olfactory bulb by distinct spatial patterns of activated glomeruli. However, it remains unclear how individual compounds contribute to population representations of natural stimuli, which appear to be unexpectedly sparse. We combined gas chromatography and intrinsic signal imaging to visualize glomerular responses to natural stimuli and their fractionated components. While whole stimuli activated up to 20 visible glomeruli, each fractionated component activated only one or few glomeruli, and most glomeruli were activated by only one component. Thus, responses to complex mixtures reflected activation by multiple components, with each contributing only a small part of the overall representation. We conclude that the population response to a complex stimulus is largely the sum of the responses to its individual components, and activation of an individual glomerulus independently signals the presence of a specific component.
Collapse
Affiliation(s)
- Da Yu Lin
- Howard Hughes Medical Institute and Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
360
|
Baker TC, Quero C, Ochieng' SA, Vickers NJ. Inheritance of olfactory preferences II. Olfactory receptor neuron responses from Heliothis subflexa x Heliothis virescens hybrid male moths. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:75-89. [PMID: 16707861 DOI: 10.1159/000093375] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 09/01/2005] [Indexed: 11/19/2022]
Abstract
Single-cell electrophysiological recordings were obtained from olfactory receptor neurons (ORNs) in sensilla trichodea on male antennae of hybrids formed mainly by crossing female Heliothis subflexa with male Heliothis virescens ('SV hybrids'). We recorded from the A-, B-, and C-type sensilla trichodea, with the latter two types housing ORNs exhibiting response profiles to different pheromone components that we had previously found to be characteristic for each species. For both the B- and the C-type SV hybrid sensilla, most of the ORNs exhibited a spike amplitude and ORN co-compartmentalization within sensilla that more strongly resembled the ORNs of parental H. subflexa rather than those of H. virescens. The overall mean dose-response profiles of the ORNs in hybrid C- and B-type sensilla were intermediate between those of the H. virescens and H. subflexa parental type ORNs. However, not all hybrid ORNs were intermediate in their tuning spectra, but rather ranged from those that closely resembled H. subflexa or H. virescens parental types to those that were intermediate, even on the same antenna. The most noteworthy shift in ORN responsiveness in hybrid males was an overall increase in sensitivity to Z9-14:Ald exhibited by Z9-16:Ald-responsive ORNs. Heightened cross-responsiveness to Z9-14:Ald by hybrid ORNs correlates well with observed behavioral cross-responsiveness of hybrids in which Z9-14:Ald could substitute for Z9-16:Ald in the pheromone blend, a behavior not observed in parental types. The hybrid ORN shifts involving greater sensitivity to Z9- 14:Ald also correlate well with studies of hybrid male antennal lobe interneurons that exhibited a shift toward greater cross-responsiveness to Z9-14:Ald and Z9- 16:Ald. We propose that the differences between parental H. virescens, H. subflexa, and SV hybrid male pheromone ORN responsiveness to Z9-16:Ald and Z9-14:Ald are most logically explained by an increased or decreased co-expression of two different odorant receptors for each of these compounds on the same ORN.
Collapse
Affiliation(s)
- T C Baker
- Department of Entomology, Chemical Ecology Lab, Penn State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
361
|
Wagenaar DA, Nadasdy Z, Potter SM. Persistent dynamic attractors in activity patterns of cultured neuronal networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:051907. [PMID: 16802967 PMCID: PMC2570189 DOI: 10.1103/physreve.73.051907] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Indexed: 05/10/2023]
Abstract
Three remarkable features of the nervous system--complex spatiotemporal patterns, oscillations, and persistent activity--are fundamental to such diverse functions as stereotypical motor behavior, working memory, and awareness. Here we report that cultured cortical networks spontaneously generate a hierarchical structure of periodic activity with a strongly stereotyped population-wide spatiotemporal structure demonstrating all three fundamental properties in a recurring pattern. During these "superbursts," the firing sequence of the culture periodically converges to a dynamic attractor orbit. Precursors of oscillations and persistent activity have previously been reported as intrinsic properties of the neurons. However, complex spatiotemporal patterns that are coordinated in a large population of neurons and persist over several hours--and thus are capable of representing and preserving information--cannot be explained by known oscillatory properties of isolated neurons. Instead, the complexity of the observed spatiotemporal patterns implies large-scale self-organization of neurons interacting in a precise temporal order even in vitro, in cultures usually considered to have random connectivity.
Collapse
Affiliation(s)
- Daniel A Wagenaar
- Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
362
|
Kim S, Singer BH, Zochowski M. Changing Roles for Temporal Representation of Odorant During the Oscillatory Response of the Olfactory Bulb. Neural Comput 2006. [DOI: 10.1162/neco.2006.18.4.794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It has been hypothesized that the brain uses combinatorial as well as temporal coding strategies to represent stimulus properties. The mechanisms and properties of the temporal coding remain undetermined, although it has been postulated that oscillations can mediate formation of this type of code. Here we use a generic model of the vertebrate olfactory bulb to explore the possible role of oscillatory behavior in temporal coding. We show that three mechanisms—synaptic inhibition, slow self-inhibition and input properties—mediate formation of a temporal sequence of simultaneous activations of glomerular modules associated with specific odorants within the oscillatory response. The sequence formed depends on the relative properties of odorant features and thus may mediate discrimination of odorants activating overlapping sets of glomeruli. We suggest that period-doubling transitions may be driven through excitatory feedback from a portion of the olfactory network acting as a coincidence modulator. Furthermore, we hypothesize that the period-doubling transition transforms the temporal code from a roster of odorant components to a signal of odorant identity and facilitates discrimination of individual odorants within mixtures.
Collapse
Affiliation(s)
| | | | - Michal Zochowski
- Department of Physics and Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109, U.S.A.,
| |
Collapse
|
363
|
Hallem EA, Carlson JR. Coding of Odors by a Receptor Repertoire. Cell 2006; 125:143-60. [PMID: 16615896 DOI: 10.1016/j.cell.2006.01.050] [Citation(s) in RCA: 867] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 12/05/2005] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
We provide a systematic analysis of how odor quality, quantity, and duration are encoded by the odorant receptor repertoire of the Drosophila antenna. We test the receptors with a panel of over 100 odors and find that strong responses are sparse, with response density dependent on chemical class. Individual receptors range along a continuum from narrowly tuned to broadly tuned. Broadly tuned receptors are most sensitive to structurally similar odorants. Strikingly, inhibitory responses are widespread among receptors. The temporal dynamics of the receptor repertoire provide a rich representation of odor quality, quantity, and duration. Receptors with similar odor sensitivity often map to widely dispersed glomeruli in the antennal lobe. We construct a multidimensional "odor space" based on the responses of each individual receptor and find that the positions of odors depend on their chemical class, concentration, and molecular complexity. The space provides a basis for predicting behavioral responses to odors.
Collapse
Affiliation(s)
- Elissa A Hallem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
364
|
Franks KM, Isaacson JS. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron 2006; 49:357-63. [PMID: 16446140 DOI: 10.1016/j.neuron.2005.12.026] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 11/30/2005] [Accepted: 12/27/2005] [Indexed: 11/30/2022]
Abstract
Olfactory information is first encoded in a combinatorial fashion by olfactory bulb glomeruli, which individually represent distinct chemical features of odors. This information is then transmitted to piriform (olfactory) cortex, via axons of olfactory bulb mitral and tufted (M/T) cells, where it is presumed to form the odor percept. However, mechanisms governing the integration of sensory information in mammalian olfactory cortex are unclear. Here we show that single M/T cells can make powerful connections with cortical pyramidal cells, and coincident input from few M/T cells is sufficient to elicit spike output. These findings suggest that odor coding is broad and distributed in olfactory cortex.
Collapse
Affiliation(s)
- Kevin M Franks
- Department of Neuroscience, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA.
| | | |
Collapse
|
365
|
Briggman KL, Abarbanel HDI, Kristan WB. From crawling to cognition: analyzing the dynamical interactions among populations of neurons. Curr Opin Neurobiol 2006; 16:135-44. [PMID: 16564165 DOI: 10.1016/j.conb.2006.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
By using multi-electrode arrays or optical imaging, investigators can now record from many individual neurons in various parts of nervous systems simultaneously while an animal performs sensory, motor or cognitive tasks. Given the large multidimensional datasets that are now routinely generated, it is often not obvious how to find meaningful results within the data. The analysis of neuronal-population recordings typically involves two steps: the extraction of relevant dynamics from neural data, and then use of the dynamics to classify and discriminate features of a stimulus or behavior. We focus on the application of techniques that emphasize interactions among the recorded neurons rather than using just the correlations between individual neurons and a perception or a behavior. An understanding of modern analysis techniques is crucially important for researchers interested in the co-varying activity among populations of neurons or even brain regions.
Collapse
Affiliation(s)
- Kevin L Briggman
- Max Planck Institute for Medical Research, Department of Biomedical Optics, Jahnstrasse 29, Heidelberg 69120, Germany
| | | | | |
Collapse
|
366
|
Sivan E, Kopell N. Oscillations and slow patterning in the antennal lobe. J Comput Neurosci 2006; 20:85-96. [PMID: 16511657 DOI: 10.1007/s10827-006-4087-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/05/2005] [Accepted: 08/08/2005] [Indexed: 11/27/2022]
Abstract
Odor presentation generates both fast oscillations and slow patterning in the spiking activity of the projection neurons (PNs) in the antennal lobe (AL) of locusts, moths and bees. Experimental results indicate that the oscillations are the result of the interaction between the PNs and the inhibitory local neurons (LNs) in the AL; e.g., blocking inhibition by application of GABA-receptor antagonists abolishes these oscillations. The slow patterning, on the other hand, was shown to be somewhat resistant to such blockage. In a H-H model, we reproduce both the oscillations and the slow patterning. As previously suggested, the oscillations are the result of the interaction between the PNs and LNs. We suggest that calcium and calcium-dependent potassium channels (found in PNs of bees and moths) are sufficient to account for the slow patterning resistant to the application of GABA-receptor antagonists. The intrinsic bursting property of the PNs, resulting from these additional modeled currents, give rise to another network feature that was seen experimentally in locusts: A relatively small increase in the number of additional generated PN action potentials when LN input is blocked. Consequently, the major effect of network inhibition is to redistribute the action potentials of the PNs from bursting to one action potential per cycle of the oscillations.
Collapse
Affiliation(s)
- Ehud Sivan
- Center for Biodynamic, Boston University, 111 Cummington Street, MA, 02215, USA.
| | | |
Collapse
|
367
|
Miller JP. A rose by any other code. Neuron 2006; 48:527-9. [PMID: 16301167 DOI: 10.1016/j.neuron.2005.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this issue of Neuron, Mazor and Laurent demonstrate that the internal representation of an odor in the antennal lobe of locusts is broadly distributed across the population of projection neurons and is formatted in a manner that requires deciphering of response transients rather than steady-state activity patterns.
Collapse
Affiliation(s)
- John P Miller
- Center for Computational Biology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
368
|
Abstract
The fact that most types of sensory stimuli occur naturally over a large range of intensities is a challenge to early sensory processing. Sensory mechanisms appear to be optimized to extract perceptually significant stimulus fluctuations that can be analysed in a manner largely independent of the absolute stimulus intensity. This general principle may not, however, extend to olfaction; many studies have suggested that olfactory stimuli are not perceptually invariant with respect to odour intensity. For many animals, absolute odour intensity may be a feature in itself, such that it forms a part of odour identity and thus plays an important role in discrimination alongside other odour properties such as the molecular identity of the odorant. The experiments with honeybees reported here show a departure from odour-concentration invariance and are consistent with a lower-concentration regime in which odour concentration contributes to overall odour identity and a higher-concentration regime in which it may not. We argue that this could be a natural consequence of odour coding and suggest how an 'intensity feature' might be useful to the honeybee in natural odour detection and discrimination.
Collapse
Affiliation(s)
- Geraldine A Wright
- Ohio State University, Mathematical Biosciences Institute, 231 W. 18th Avenue, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
369
|
Nowotny T, Huerta R, Abarbanel HDI, Rabinovich MI. Self-organization in the olfactory system: one shot odor recognition in insects. BIOLOGICAL CYBERNETICS 2005; 93:436-46. [PMID: 16320081 DOI: 10.1007/s00422-005-0019-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 09/09/2005] [Indexed: 05/05/2023]
Abstract
We show in a model of spiking neurons that synaptic plasticity in the mushroom bodies in combination with the general fan-in, fan-out properties of the early processing layers of the olfactory system might be sufficient to account for its efficient recognition of odors. For a large variety of initial conditions the model system consistently finds a working solution without any fine-tuning, and is, therefore, inherently robust. We demonstrate that gain control through the known feedforward inhibition of lateral horn interneurons increases the capacity of the system but is not essential for its general function. We also predict an upper limit for the number of odor classes Drosophila can discriminate based on the number and connectivity of its olfactory neurons.
Collapse
Affiliation(s)
- Thomas Nowotny
- Institute for Nonlinear Science, UCSD, 9500 Gilman Dr., La Jolla, CA 92093-0402, USA.
| | | | | | | |
Collapse
|
370
|
Abstract
Olfactory information is dramatically restructured as it makes its way through the brain. Recent work using a remarkable experimental preparation has revealed how this transformation is achieved.
Collapse
Affiliation(s)
- Mark Stopfer
- Laboratory of Cellular and Synaptic Neurophysiology, NICHD, Porter Neuroscience Research Center, Building 35, Room 3A-102, 35 Convent Drive, MSC 3712, Bethesda, Maryland, USA
| |
Collapse
|
371
|
Martinez D. Oscillatory Synchronization Requires Precise and Balanced Feedback Inhibition in a Model of the Insect Antennal Lobe. Neural Comput 2005; 17:2548-70. [PMID: 16212762 DOI: 10.1162/089976605774320566] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In the insect olfactory system, odor-evoked transient synchronization of antennal lobe (AL) projection neurons (PNs) is phase-locked to the oscillations of the local field potential. Sensory information is contained in the spatiotemporal synchronization pattern formed by the identities of the phase-locked PNs. This article investigates the role of feedback inhibition from the local neurons (LNs) in this coding. First, experimental biological results are reproduced with a reduced computational spiking neural network model of the AL. Second, the low complexity of the model leads to a mathematical analysis from which a lower bound on the phase-locking probability is derived. Parameters involved in the bound indicate that PN phase locking depends not only on the number of LN-evoked inhibitory postsynaptic potentials (IPSPs) previously received, but also on their temporal jitter. If the inhibition received by a PN at the current oscillatory cycle is both perfectly balanced (i.e., equal to the mean inhibitory drive) and precise (without any jitter), then the PN will be phase-locked at the next oscillatory cycle with probability one.
Collapse
|
372
|
Lehmkuhle MJ, Normann RA, Maynard EM. Trial-by-trial discrimination of three enantiomer pairs by neural ensembles in mammalian olfactory bulb. J Neurophysiol 2005; 95:1369-79. [PMID: 16306170 DOI: 10.1152/jn.01334.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Populations of output neurons in the mammalian olfactory bulb (OB) exhibit distinct, widespread spatial and temporal activation patterns when stimulated with odorants. However, questions remain as to how ensembles of mitral/tufted (M/T) neurons in the mammalian OB represent odorant information. In this report, the single-trial encoding limits of random ensembles of putative single- and multiunit M/T cells in the anesthetized rat OB during presentations of enantiomers of limonene, carvone, and 2-butanol are investigated using simultaneous multielectrode recording techniques. The results of these experiments are: the individual constituents of our recorded ensembles broadly represent information about the presented odorants, the ensemble single-trial response of small spatially distributed populations of M/T neurons can readily discriminate between six different odorants, and the most consistent odorant discrimination is attained when the ensemble consists of all available units and their responses are integrated over an entire breathing cycle. These results suggest that small differences in spike counts among the ensemble members become significant when taken within the context of the entire ensemble. This may explain how ensembles of broadly tuned OB neurons contribute to olfactory perception and may explain how small numbers of individual units receiving input from distinct olfactory receptor neurons can be combined to form a robust representation of odorants.
Collapse
Affiliation(s)
- M J Lehmkuhle
- Neural Engineering Lab, Biomedical Engineering Department, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI 48109-2099, USA.
| | | | | |
Collapse
|
373
|
Wilson RI, Laurent G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 2005; 25:9069-79. [PMID: 16207866 PMCID: PMC6725763 DOI: 10.1523/jneurosci.2070-05.2005] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drosophila olfactory receptor neurons project to the antennal lobe, the insect analog of the mammalian olfactory bulb. GABAergic synaptic inhibition is thought to play a critical role in olfactory processing in the antennal lobe and olfactory bulb. However, the properties of GABAergic neurons and the cellular effects of GABA have not been described in Drosophila, an important model organism for olfaction research. We have used whole-cell patch-clamp recording, pharmacology, immunohistochemistry, and genetic markers to investigate how GABAergic inhibition affects olfactory processing in the Drosophila antennal lobe. We show that many axonless local neurons (LNs) in the adult antennal lobe are GABAergic. GABA hyperpolarizes antennal lobe projection neurons (PNs) via two distinct conductances, blocked by a GABAA- and GABAB-type antagonist, respectively. Whereas GABAA receptors shape PN odor responses during the early phase of odor responses, GABAB receptors mediate odor-evoked inhibition on longer time scales. The patterns of odor-evoked GABAB-mediated inhibition differ across glomeruli and across odors. Finally, we show that LNs display broad but diverse morphologies and odor preferences, suggesting a cellular basis for odor- and glomerulus-dependent patterns of inhibition. Together, these results are consistent with a model in which odors elicit stimulus-specific spatial patterns of GABA release, and as a result, GABAergic inhibition increases the degree of difference between the neural representations of different odors.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
374
|
Friedrich RW. Mechanisms of odor discrimination: neurophysiological and behavioral approaches. Trends Neurosci 2005; 29:40-7. [PMID: 16290274 DOI: 10.1016/j.tins.2005.10.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/21/2005] [Accepted: 10/26/2005] [Indexed: 11/29/2022]
Abstract
Understanding how complex neuronal circuits in the brain perform advanced computations is a central question in neuroscience that can only be addressed using a combination of approaches, including neurophysiology and behavioral analyses. In the olfactory bulb, neurophysiological studies have revealed that neuronal interactions reorganize odor-evoked activity patterns so that their discriminability is enhanced. Recent behavioral studies have examined the role of this computation in odor discrimination tasks and generated working models of behavioral odor discrimination strategies. The results appear consistent with a role of pattern reorganization in odor discrimination behavior but further studies are necessary to resolve this issue. These studies advance the understanding of neuronal circuit function in the olfactory bulb and illustrate benefits and caveats of comparing behavioral and neurophysiological results.
Collapse
Affiliation(s)
- Rainer W Friedrich
- Max-Planck-Institute for Medical Research, Department of Biomedical Optics, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
375
|
Mazor O, Laurent G. Transient Dynamics versus Fixed Points in Odor Representations by Locust Antennal Lobe Projection Neurons. Neuron 2005; 48:661-73. [PMID: 16301181 DOI: 10.1016/j.neuron.2005.09.032] [Citation(s) in RCA: 332] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/20/2005] [Accepted: 09/28/2005] [Indexed: 11/21/2022]
Abstract
Projection neurons (PNs) in the locust antennal lobe exhibit odor-specific dynamic responses. We studied a PN population, stimulated with five odorants and pulse durations between 0.3 and 10 s. Odor representations were characterized as time series of vectors of PN activity, constructed from the firing rates of all PNs in successive 50 ms time bins. Odor representations by the PN population can be described as trajectories in PN state space with three main phases: an on transient, lasting 1-2 s; a fixed point, stable for at least 8 s; and an off transient, lasting a few seconds as activity returns to baseline. Whereas all three phases are odor specific, optimal stimulus separation occurred during the transients rather than the fixed points. In addition, the PNs' own target neurons respond least when their PN-population input stabilized at a fixed point. Steady-state measures of activity thus seem inappropriate to understand the neural code in this system.
Collapse
Affiliation(s)
- Ofer Mazor
- Computation and Neural Systems Program, Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
376
|
Martinez D. Detailed and abstract phase-locked attractor network models of early olfactory systems. BIOLOGICAL CYBERNETICS 2005; 93:355-65. [PMID: 16151842 DOI: 10.1007/s00422-005-0010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 07/18/2005] [Indexed: 05/04/2023]
Abstract
Across species, primary olfactory centers show similarities both in their cellular organization and their types of olfactory information coding. In this article, we consider an excitatory-inhibitory spiking neural network as a model of early olfactory systems (antennal lobe for insects, olfactory bulb for vertebrates). In line with experimental results, we show that, in our network, odor-like stimuli evoke synchronization of excitatory cells, phase-locked to the oscillations of the local field potential. As revealed by a mathematical analysis, the phase-locking probability of excitatory cells is given by an inverted-U function and the firing probability of inhibitory cells is well described by a sigmoid function. These neural response functions are used to reduce the spiking model to a more abstract model with discrete-time dynamics (oscillatory cycles) and binary-state neurons (phase-locked or not). An iterative map, built for explaining the dynamics of the binary model, reveals that it converges to fixed point attractors similar to those obtained with the spiking model. This result is consistent with odor-specific attractors found in recent experimental studies. It also provides insights for designing bio-inspired olfactory associative memories applicable for data analysis in electronic noses.
Collapse
|
377
|
Leonardo A. Degenerate coding in neural systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:995-1010. [PMID: 16252121 DOI: 10.1007/s00359-005-0026-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/10/2005] [Accepted: 06/12/2005] [Indexed: 10/25/2022]
Abstract
When the dimensionality of a neural circuit is substantially larger than the dimensionality of the variable it encodes, many different degenerate network states can produce the same output. In this review I will discuss three different neural systems that are linked by this theme. The pyloric network of the lobster, the song control system of the zebra finch, and the odor encoding system of the locust, while different in design, all contain degeneracies between their internal parameters and the outputs they encode. Indeed, although the dynamics of song generation and odor identification are quite different, computationally, odor recognition can be thought of as running the song generation circuitry backwards. In both of these systems, degeneracy plays a vital role in mapping a sparse neural representation devoid of correlations onto external stimuli (odors or song structure) that are strongly correlated. I argue that degeneracy between input and output states is an inherent feature of many neural systems, which can be exploited as a fault-tolerant method of reliably learning, generating, and discriminating closely related patterns.
Collapse
Affiliation(s)
- Anthony Leonardo
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
378
|
Carlsson MA, Knüsel P, Verschure PFMJ, Hansson BS. Spatio-temporal Ca2+ dynamics of moth olfactory projection neurones. Eur J Neurosci 2005; 22:647-57. [PMID: 16101746 DOI: 10.1111/j.1460-9568.2005.04239.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the Ca2+ dynamics of odour-evoked glomerular patterns in the antennal lobe of the moth Spodoptera littoralis using optical imaging. Here we selectively stained a large population of antennal lobe output neurones, projection neurones, by retrograde filling with FURA-dextran from the inner antennocerebral tract in the protocerebrum. Different plant-associated odorants evoked distributed patterns of activated glomeruli that were odour dependent and repeatable. These patterns were, however, dynamic during the period of odour exposure. Temporal responses differed across glomeruli and were stimulus dependent. Next we examined how the correlations between patterns evoked by different odorants changed with time. Initially, responses to structurally similar compounds were highly correlated, whereas responses to structurally different compounds differed. Within the period of odour exposure (1 s) we found a significant reduction in similarity of responses evoked by different odours, irrespective of initial similarity, whereas trial-to-trial correlations remained high. Our results suggested an ability for coarse classification at the initial encounter with an odour source. With time, however, the discrimination ability increases and structurally similar odours can be distinguished.
Collapse
Affiliation(s)
- Mikael A Carlsson
- Division of Chemical Ecology, Department of Crop Science, Swedish University of Agricultural Sciences, PO Box 44, SE-230 53 Alnarp, Sweden.
| | | | | | | |
Collapse
|
379
|
Brown SL, Joseph J, Stopfer M. Encoding a temporally structured stimulus with a temporally structured neural representation. Nat Neurosci 2005; 8:1568-76. [PMID: 16222230 DOI: 10.1038/nn1559] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 09/19/2005] [Indexed: 11/08/2022]
Abstract
Sensory neural systems use spatiotemporal coding mechanisms to represent stimuli. These time-varying response patterns sometimes outlast the stimulus. Can the temporal structure of a stimulus interfere with, or even disrupt, the spatiotemporal structure of the neural representation? We investigated this potential confound in the locust olfactory system. When odors were presented in trains of nearly overlapping pulses, responses of first-order interneurons (projection neurons) changed reliably, and often markedly, with pulse position as responses to one pulse interfered with subsequent responses. However, using the responses of an ensemble of projection neurons, we could accurately classify the odorants as well as characterize the temporal properties of the stimulus. Further, we found that second-order follower neurons showed firing patterns consistent with the information in the projection-neuron ensemble. Thus, ensemble-based spatiotemporal coding could disambiguate complex and potentially confounding temporally structured sensory stimuli and thereby provide an invariant response to a stimulus presented in various ways.
Collapse
Affiliation(s)
- Stacey L Brown
- National Institute of Child Health and Human Development, US National Institutes of Health, Building 35, Room 3A-102, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
380
|
Bazhenov M, Stopfer M, Sejnowski TJ, Laurent G. Fast odor learning improves reliability of odor responses in the locust antennal lobe. Neuron 2005; 46:483-92. [PMID: 15882647 PMCID: PMC2905210 DOI: 10.1016/j.neuron.2005.03.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 01/31/2005] [Accepted: 03/19/2005] [Indexed: 11/26/2022]
Abstract
Recordings in the locust antennal lobe (AL) reveal activity-dependent, stimulus-specific changes in projection neuron (PN) and local neuron response patterns over repeated odor trials. During the first few trials, PN response intensity decreases, while spike time precision increases, and coherent oscillations, absent at first, quickly emerge. We examined this "fast odor learning" with a realistic computational model of the AL. Activity-dependent facilitation of AL inhibitory synapses was sufficient to simulate physiological recordings of fast learning. In addition, in experiments with noisy inputs, a network including synaptic facilitation of both inhibition and excitation responded with reliable spatiotemporal patterns from trial to trial despite the noise. A network lacking fast plasticity, however, responded with patterns that varied across trials, reflecting the input variability. Thus, our study suggests that fast olfactory learning results from stimulus-specific, activity-dependent synaptic facilitation and may improve the signal-to-noise ratio for repeatedly encountered odor stimuli.
Collapse
Affiliation(s)
- Maxim Bazhenov
- The Salk Institute for Biological Studies, Computational Neurobiology Laboratory, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
381
|
Szyszka P, Ditzen M, Galkin A, Galizia CG, Menzel R. Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. J Neurophysiol 2005; 94:3303-13. [PMID: 16014792 DOI: 10.1152/jn.00397.2005] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We explored the transformations accompanying the transmission of odor information from the first-order processing area, the antennal lobe, to the mushroom body, a higher-order integration center in the insect brain. Using Ca2+ imaging, we recorded activity in the dendrites of the projection neurons that connect the antennal lobe with the mushroom body. Next, we recorded the presynaptic terminals of these projection neurons. Finally, we characterized their postsynaptic partners, the intrinsic neurons of the mushroom body, the clawed Kenyon cells. We found fundamental differences in odor coding between the antennal lobe and the mushroom body. Odors evoked combinatorial activity patterns at all three processing stages, but the spatial patterns became progressively sparser along this path. Projection neuron dendrites and boutons showed similar response profiles, but the boutons were more narrowly tuned to odors. The transmission from projection neuron boutons to Kenyon cells was accompanied by a further sparsening of the population code. Activated Kenyon cells were highly odor specific. Furthermore, the onset of Kenyon cell responses to projection neurons occurred within the first 200 ms and complex temporal patterns were transformed into brief phasic responses. Thus two types of transformations occurred within the MB: sparsening of a combinatorial code, mediated by pre- and postsynaptic processing within the mushroom body microcircuits, and temporal sharpening of postsynaptic Kenyon cell responses, probably involving a broader loop of inhibitory recurrent neurons.
Collapse
Affiliation(s)
- Paul Szyszka
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
382
|
Lei H, Christensen TA, Hildebrand JG. Spatial and temporal organization of ensemble representations for different odor classes in the moth antennal lobe. J Neurosci 2005; 24:11108-19. [PMID: 15590927 PMCID: PMC6730268 DOI: 10.1523/jneurosci.3677-04.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the insect antennal lobe, odor discrimination depends on the ability of the brain to read neural activity patterns across arrays of uniquely identifiable olfactory glomeruli. Less is understood about the complex temporal dynamics and interglomerular interactions that underlie these spatial patterns. Using neural-ensemble recording, we show that the evoked firing patterns within and between groups of glomeruli are odor dependent and organized in both space and time. Simultaneous recordings from up to 15 units per ensemble were obtained from four zones of glomerular neuropil in response to four classes of odorants: pheromones, monoterpenoids, aromatics, and aliphatics. Each odor class evoked a different pattern of excitation and inhibition across recording zones. The excitatory response field for each class was spatially defined, but inhibitory activity was spread across the antennal lobe, reflecting a center-surround organization. Some chemically related odorants were not easily distinguished by their spatial patterns, but each odorant evoked transient synchronous firing across a uniquely different subset of ensemble units. Examination of 535 cell pairs revealed a strong relationship between their recording positions, temporal correlations, and similarity of odor response profiles. These findings provide the first definitive support for a nested architecture in the insect olfactory system that uses both spatial and temporal coordination of firing to encode chemosensory signals. The spatial extent of the representation is defined by a stereotyped focus of glomerular activity for each odorant class, whereas the transient temporal correlations embedded within the ensemble provide a second coding dimension that can facilitate discrimination between chemically similar volatiles.
Collapse
Affiliation(s)
- Hong Lei
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
383
|
Abstract
Analysis of data from neurophysiological investigations can be challenging. Particularly when experiments involve dynamics of neuronal response, scientific inference can become subtle and some statistical methods may make much more efficient use of the data than others. This article reviews well-established statistical principles, which provide useful guidance, and argues that good statistical practice can substantially enhance results. Recent work on estimation of firing rate, population coding, and time-varying correlation provides improvements in experimental sensitivity equivalent to large increases in the number of neurons examined. Modern nonparametric methods are applicable to data from repeated trials. Many within-trial analyses based on a Poisson assumption can be extended to non-Poisson data. New methods have made it possible to track changes in receptive fields, and to study trial-to-trial variation, with modest amounts of data.
Collapse
Affiliation(s)
- Robert E Kass
- Department of Statistics and Center for the Neural Basis of Cognition, 5000 Forbes Ave., Baker Hall 132 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
384
|
|
385
|
Kliper O, Horn D, Quenet B. The inertial-DNF model: spatiotemporal coding on two time scales. Neurocomputing 2005. [DOI: 10.1016/j.neucom.2004.10.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
386
|
Abstract
Cortical neurons show irregular but structured spike trains. This has been interpreted as evidence for 'temporal coding', whereby stimuli are represented by precise spike-timing patterns. Here, we suggest an alternative interpretation based on the older concept of the cell assembly. The dynamic evolution of assembly sequences, which are steered but not deterministically controlled by sensory input, is the proposed substrate of psychological processes beyond simple stimulus-response associations. Accordingly, spike trains show a temporal structure that is stimulus-dependent and more variable than would be predicted by strict sensory control. We propose four signatures of assembly organization that can be experimentally tested. We argue that many observations that have been interpreted as evidence for temporal coding might instead reflect an underlying assembly structure.
Collapse
Affiliation(s)
- Kenneth D Harris
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, New Jersey 07102, USA.
| |
Collapse
|
387
|
Mizunami M, Yokohari F, Takahata M. Further exploration into the adaptive design of the arthropod "microbrain": I. Sensory and memory-processing systems. Zoolog Sci 2005; 21:1141-51. [PMID: 15613794 DOI: 10.2108/zsj.21.1141] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arthropods have small but sophisticated brains that have enabled them to adapt their behavior to a diverse range of environments. In this review, we first discuss some of general characteristics of the arthropod "microbrain" in comparison with the mammalian "megalobrain". Then we discuss about recent progress in the study of sensory and memory-processing systems of the arthropod "microbrain". Results of recent studies have shown that (1) insects have excellent capability for elemental and context-dependent forms of olfactory learning, (2) mushroom bodies, higher olfactory and associative centers of arthropods, have much more elaborated internal structures than previously thought, (3) many genes involved in the formation of basic brain structures are common among arthropods and vertebrates, suggesting that common ancestors of arthropods and vertebrates already had organized head ganglia, and (4) the basic organization of sensori-motor pathways of the insect brain has features common to that of the mammalian brain. These findings provide a starting point for the study of brain mechanisms of elaborated behaviors of arthropods, many of which remain unexplored.
Collapse
Affiliation(s)
- Makoto Mizunami
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | | | | |
Collapse
|
388
|
Wang Y, Guo HF, Pologruto TA, Hannan F, Hakker I, Svoboda K, Zhong Y. Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. J Neurosci 2005; 24:6507-14. [PMID: 15269261 PMCID: PMC6729867 DOI: 10.1523/jneurosci.3727-03.2004] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To study the representation of olfactory information in higher brain centers, we expressed a green fluorescent protein-based Ca2+ sensor, G-CaMP, in the Drosophila mushroom body (MB). Using two-photon microscopy, we imaged odor-evoked G-CaMP fluorescence transients in MB neurons [Kenyon cells (KCs)] with single-cell resolution. Odors produced large fluorescence transients in a subset of KC somata and in restricted regions of the calyx, the neuropil of the MB. In different KCs, odor-evoked fluorescence transients showed diverse changes with odor concentration: in some KCs, fluorescence transients were evoked by an odor at concentrations spanning several orders of magnitude, whereas in others only at a narrow concentration range. Different odors produced fluorescence transients in different subsets of KCs. The spatial distributions of KCs showing fluorescence transients evoked by a given odor were similar across individuals. For some odors, individual KCs with fluorescence transients evoked by a particular odor could be found in similar locations in different flies with spatial precisions on the order of the size of KC somata. These results indicate that odor-evoked activity can have remarkable spatial specificity in the MB.
Collapse
Affiliation(s)
- Yalin Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | |
Collapse
|
389
|
Vogel A, Hennig RM, Ronacher B. Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings. J Neurophysiol 2005; 93:3548-59. [PMID: 15716366 DOI: 10.1152/jn.01288.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A key problem for neuronal information processing is the variability of spike trains, something that is likely to constrain the encoding of sensory signals. We measured interspike-interval variability (coefficient of variation) as well as spike-count variability (Fano factor) in the metathoracic auditory system of locusts. We performed simultaneous intracellular recordings at the first three processing levels to establish identical physiological conditions. This allows us to assess whether variability is generated anew or is reduced during synaptic transmission and processing. Both the interspike-interval variability as well as the spike-count variability revealed similar trends and showed an increase from the periphery to higher processing levels. This result was confirmed by single-cell recordings. A comparison of ascending interneurons coding for sound direction and those encoding sound patterns showed that the latter respond more reliably to repeated stimulus presentations. In general, the variability of spiking responses was much lower than expected from a Poisson process. Furthermore, we observed a strong dependence of variability on the spike rate, which differed at the three levels investigated. The differences in spike rates account for most of the differences in variability observed between processing levels. For auditory receptors, we found a good agreement between the Fano factor and the squared coefficient of variation, suggesting similarities to a renewal process of spike generation at the periphery. At the level of interneurons, the Fano factor was lower than the squared coefficient of variation; this indicates a higher reliability than expected from the interspike-interval distribution.
Collapse
Affiliation(s)
- A Vogel
- Humboldt University Berlin, Institute of Behavioural Physiology, Dept. of Biology, Invalidenstr. 43, 10115 Berlin, Germany.
| | | | | |
Collapse
|
390
|
Wenning G, Hoch T, Obermayer K. Detection of pulses in a colored noise setting. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:021902. [PMID: 15783347 DOI: 10.1103/physreve.71.021902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Indexed: 05/24/2023]
Abstract
Cortical neurons are exposed to a considerable amount of synaptic background activity, which increases the neurons' conductance and which leads to a fluctuating membrane potential. Here we investigate how the presence and the properties of this background noise influence the ability of a neuron to detect transient inputs, a task that is important for coincidence detection as well as for the detection of synchronous spiking events in a neural system. Using a leaky integrate-and-fire neuron as well as a biologically more realistic Hodgkin-Huxley type point neuron we find that noise enhances the detection of subthreshold input pulses and that the phenomenon of stochastic resonance occurs. When the noise is colored, pulse detection becomes more robust, because the number of false positive events decreases with increasing temporal correlation while the number of correctly detected events is almost unaffected. Therefore, the optimal variance of the noise also changes with the degree of temporal correlations of the background activity. For the integrate-and-fire model these effects can be described using an ansatz by Brunel and Sergi [J. Theor. Biol. 195, 87 (1998)]. Numerical simulations show that the leaky integrate-and-fire model and the Hodgkin-Huxley type point neuron behave qualitatively similarly.
Collapse
Affiliation(s)
- Gregor Wenning
- Department of Electrical Engineering and Computer Science, Technical University of Berlin, Franklinstrasse 28/29, 10587 Berlin, Germany
| | | | | |
Collapse
|
391
|
Pet'ka J, Ferreira V, Cacho J. Posterior evaluation of odour intensity in gas chromatography-olfactometry: comparison of methods for calculation of panel intensity and their consequences. FLAVOUR FRAG J 2005. [DOI: 10.1002/ffj.1581] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
392
|
Perez-Orive J, Bazhenov M, Laurent G. Intrinsic and circuit properties favor coincidence detection for decoding oscillatory input. J Neurosci 2004; 24:6037-47. [PMID: 15229251 PMCID: PMC6729236 DOI: 10.1523/jneurosci.1084-04.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the insect olfactory system the antennal lobe generates oscillatory synchronization of its output as a framework for coincidence detection by its target, the mushroom body (MB). The intrinsic neurons of the MB (Kenyon cells, KCs) are thus a good model system in which to investigate the functional relevance of oscillations and neural synchronization. We combine electrophysiological and modeling approaches to examine how intrinsic and circuit properties might contribute to the preference of KCs for coincident input and how their decoding of olfactory information is affected by the absence of oscillatory synchronization in their input. We show that voltage-dependent subthreshold properties of KCs bring about a supralinear summation of their inputs, favoring responses to coincident EPSPs. Abolishing oscillatory synchronization weakens the preference of KCs for coincident input and causes a large reduction in their odor specificity. Finally, we find that a decoding strategy that is based on coincidence detection enhances both noise tolerance and input discriminability by KCs.
Collapse
Affiliation(s)
- Javier Perez-Orive
- Computation and Neural Systems, Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
393
|
Sivan E, Kopell N. Mechanism and circuitry for clustering and fine discrimination of odors in insects. Proc Natl Acad Sci U S A 2004; 101:17861-6. [PMID: 15590772 PMCID: PMC539765 DOI: 10.1073/pnas.0407858101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Odor recognition encompasses both clustering and fine discrimination. Clustering joins together sets of odors, and fine discrimination distinguishes between odors belonging to the same cluster. We hypothesize that these two aspects of odor recognition are encoded in parallel by two brain areas of the insect olfactory system. Population activity of neurons in the lateral horn encodes the odor cluster, and population activity of neurons in the mushroom body encodes the fine identity of the odor. Our mechanism is based on the hypothesis that the underlying network of the insect olfactory system consists of a repetitive, hard-wired substructure whose anatomy we describe. We show that these suggested mechanisms and circuitry explain not only the observed numbers and connections of neurons in the system, but also the observed activity of these neurons, and why oscillations are critical for fine discrimination but not for clustering of odors.
Collapse
Affiliation(s)
- Ehud Sivan
- Center for BioDynamics, Boston University, 111 Cummington Street, Boston, MA 02215, USA.
| | | |
Collapse
|
394
|
Representation of binary pheromone blends by glomerulus-specific olfactory projection neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004. [PMID: 15378331 DOI: 10.1007/s00359-004-0559-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An outstanding challenge in olfactory neurobiology is to explain how glomerular networks encode information about stimulus mixtures, which are typical of natural olfactory stimuli. In the moth Manduca sexta, a species-specific blend of two sex-pheromone components is required for reproductive signaling. Each component stimulates a different population of olfactory receptor cells that in turn target two identified glomeruli in the macroglomerular complex of the male's antennal lobe. Using intracellular recording and staining, we examined how responses of projection neurons innervating these glomeruli are modulated by changes in the level and ratio of the two essential components in stimulus blends. Compared to projection neurons specific for one component, projection neurons that integrated information about the blend (received excitatory input from one component and inhibitory input from the other) showed enhanced ability to track a train of stimulus pulses. The precision of stimulus-pulse tracking was furthermore optimized at a synthetic blend ratio that mimics the physiological response to an extract of the female's pheromone gland. Optimal responsiveness of a projection neuron to repetitive stimulus pulses therefore appears to depend not only on stimulus intensity but also on the relative strength of the two opposing synaptic inputs that are integrated by macroglomerular complex projection neurons.
Collapse
|
395
|
Heinbockel T, Christensen TA, Hildebrand JG. Representation of binary pheromone blends by glomerulus-specific olfactory projection neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:1023-37. [PMID: 15378331 DOI: 10.1007/s00359-004-0559-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 07/20/2004] [Accepted: 08/02/2004] [Indexed: 11/25/2022]
Abstract
An outstanding challenge in olfactory neurobiology is to explain how glomerular networks encode information about stimulus mixtures, which are typical of natural olfactory stimuli. In the moth Manduca sexta, a species-specific blend of two sex-pheromone components is required for reproductive signaling. Each component stimulates a different population of olfactory receptor cells that in turn target two identified glomeruli in the macroglomerular complex of the male's antennal lobe. Using intracellular recording and staining, we examined how responses of projection neurons innervating these glomeruli are modulated by changes in the level and ratio of the two essential components in stimulus blends. Compared to projection neurons specific for one component, projection neurons that integrated information about the blend (received excitatory input from one component and inhibitory input from the other) showed enhanced ability to track a train of stimulus pulses. The precision of stimulus-pulse tracking was furthermore optimized at a synthetic blend ratio that mimics the physiological response to an extract of the female's pheromone gland. Optimal responsiveness of a projection neuron to repetitive stimulus pulses therefore appears to depend not only on stimulus intensity but also on the relative strength of the two opposing synaptic inputs that are integrated by macroglomerular complex projection neurons.
Collapse
Affiliation(s)
- T Heinbockel
- Department of Physiology and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201-1509, USA.
| | | | | |
Collapse
|
396
|
Huerta R, Nowotny T, García-Sanchez M, Abarbanel HDI, Rabinovich MI. Learning Classification in the Olfactory System of Insects. Neural Comput 2004; 16:1601-40. [PMID: 15228747 DOI: 10.1162/089976604774201613] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We propose a theoretical framework for odor classification in the olfactory system of insects. The classification task is accomplished in two steps. The first is a transformation from the antennal lobe to the intrinsic Kenyon cells in the mushroom body. This transformation into a higher-dimensional space is an injective function and can be implemented without any type of learning at the synaptic connections. In the second step, the encoded odors in the intrinsic Kenyon cells are linearly classified in the mushroom body lobes. The neurons that perform this linear classification are equivalent to hyperplanes whose connections are tuned by local Hebbian learning and by competition due to mutual inhibition. We calculate the range of values of activity and size fo the network required to achieve efficient classification within this scheme in insect olfaction. We are able to demonstrate that biologically plausible control mechanisms can accomplish efficient classification of odors.
Collapse
Affiliation(s)
- Ramón Huerta
- Institute for Nonlinear Science, University of California San Diego, La Jolla CA 92093-0402, U.S.A.
| | | | | | | | | |
Collapse
|
397
|
Friedrich RW, Habermann CJ, Laurent G. Multiplexing using synchrony in the zebrafish olfactory bulb. Nat Neurosci 2004; 7:862-71. [PMID: 15273692 DOI: 10.1038/nn1292] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 06/11/2004] [Indexed: 11/09/2022]
Abstract
In the olfactory bulb (OB) of zebrafish and other species, odors evoke fast oscillatory population activity and specific firing rate patterns across mitral cells (MCs). This activity evolves over a few hundred milliseconds from the onset of the odor stimulus. Action potentials of odor-specific MC subsets phase-lock to the oscillation, defining small and distributed ensembles within the MC population output. We found that oscillatory field potentials in the zebrafish OB propagate across the OB in waves. Phase-locked MC action potentials, however, were synchronized without a time lag. Firing rate patterns across MCs analyzed with low temporal resolution were informative about odor identity. When the sensitivity for phase-locked spiking was increased, activity patterns became progressively more informative about odor category. Hence, information about complementary stimulus features is conveyed simultaneously by the same population of neurons and can be retrieved selectively by biologically plausible mechanisms, indicating that seemingly alternative coding strategies operating on different time scales may coexist.
Collapse
Affiliation(s)
- Rainer W Friedrich
- Max-Planck-Institute for Medical Research, Department of Biomedical Optics, Jahnstr. 29, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
398
|
Daly KC, Wright GA, Smith BH. Molecular Features of Odorants Systematically Influence Slow Temporal Responses Across Clusters of Coordinated Antennal Lobe Units in the MothManduca sexta. J Neurophysiol 2004; 92:236-54. [PMID: 14985411 DOI: 10.1152/jn.01132.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Behavioral studies of olfactory discrimination and stimulus generalization in many species indicate that the molecular features of monomolecular odorants are important for odor discrimination. Here we evaluate how features, such as carbon chain length and functional group, are represented in the first level of synaptic processing. We recorded antennal lobe ensemble responses in the moth Manduca sexta to repeated 100-ms pulses of monomolecular alcohols and ketones. Most units exhibited a significant change in spike rate in response to most odorants that outlasted the duration of the stimulus. Peristimulus data were then sampled over 780 ms for each pulse of all odorants. Factor analysis was used to assess whether there were groups of units with common response patterns. We found that factors identified and represented activity for clusters of units with common temporal response characteristics. These temporally patterned responses typically spanned 780 ms and were often dependent on carbon chain length and functional group. Furthermore, cross-correlation analysis frequently indicated significant coincident spiking even during spontaneous activity. However, this synchrony occurred mainly between units recorded on the same tetrode. In a final analysis, the Euclidean distance between odor responses was calculated for each pair of odorants using factors as dimensions. The distance between responses for any two odorants was maximized by ∼240 ms. This time course corresponded to the brief sequence of coordinated bursts across the recorded population. The distance during this period was also a function of systematic differences in molecular features. Results of this Euclidian analysis thus directly correlate to previous behavioral studies of stimulus generalization in M. sexta.
Collapse
Affiliation(s)
- Kevin C Daly
- Department of Entomology, The Ohio State University, 400 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH 43210, USA.
| | | | | |
Collapse
|
399
|
Murphy GJ, Glickfeld LL, Balsen Z, Isaacson JS. Sensory neuron signaling to the brain: properties of transmitter release from olfactory nerve terminals. J Neurosci 2004; 24:3023-30. [PMID: 15044541 PMCID: PMC6729835 DOI: 10.1523/jneurosci.5745-03.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Olfactory receptor neurons (ORNs) convey sensory information directly to the CNS via conventional glutamatergic synaptic contacts in olfactory bulb glomeruli. To better understand the process by which information contained in the odorant-evoked firing of ORNs is transmitted to the brain, we examined the properties of glutamate release from olfactory nerve (ON) terminals in slices of the rat olfactory bulb. We show that marked paired pulse depression is the same in simultaneously recorded periglomerular and tufted neurons, and that this form of short-term plasticity is attributable to a reduction of glutamate release from ON terminals. We used the progressive blockade of NMDA receptor (NMDAR) EPSCs by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-10-imine hydrogen maleate] and stationary fluctuation analysis of AMPA receptor (AMPAR) EPSCs to determine the probability of release (P(r)) of ON terminals; both approaches indicated that P(r) is unusually high (>/=0.8). The low-affinity glutamate receptor antagonists gamma-d-glutamylglycine and l-amino-5-phosphonovaleric acid blocked ON-evoked AMPAR- and NMDAR-mediated EPSCs, respectively, to the same extent under conditions of low and high P(r), suggesting that multivesicular release is not a feature of ON terminals. Although release from most synapses exhibits a highly nonlinear dependence on extracellular Ca(2+), we find that the relationship between glutamate release and extracellular Ca(2+) at ON terminals is nearly linear. Our results suggest that ON terminals have specialized features that may contribute to the reliable transmission of sensory information from nose to brain.
Collapse
Affiliation(s)
- Gabe J Murphy
- Neuroscience Graduate Program and Department of Neuroscience, University of California, San Diego School of Medicine, La Jolla, California 92093-0608, USA
| | | | | | | |
Collapse
|
400
|
|