351
|
Salgado H, Treviño M, Atzori M. Layer- and area-specific actions of norepinephrine on cortical synaptic transmission. Brain Res 2016; 1641:163-76. [PMID: 26820639 DOI: 10.1016/j.brainres.2016.01.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 12/20/2022]
Abstract
The cerebral cortex is a critical target of the central noradrenergic system. The importance of norepinephrine (NE) in the regulation of cortical activity is underscored by clinical findings that involve this catecholamine and its receptor subtypes in the regulation of a large number of emotional and cognitive functions and illnesses. In this review, we highlight diverse effects of the LC/NE system in the mammalian cortex. Indeed, electrophysiological, pharmacological, and behavioral studies in the last few decades reveal that NE elicits a mixed repertoire of excitatory, inhibitory, and biphasic effects on the firing activity and transmitter release of cortical neurons. At the intrinsic cellular level, NE can produce a series of effects similar to those elicited by other monoamines or acetylcholine, associated with systemic arousal. At the synaptic level, NE induces numerous acute changes in synaptic function, and ׳gates' the induction of long-term plasticity of glutamatergic synapses, consisting in an enhancement of engaged and relevant cortical synapses and/or depression of unengaged synapses. Equally important in shaping cortical function, in many cortical areas NE promotes a characteristic, most often reversible, increase in the gain of local inhibitory synapses, whose extent and temporal properties vary between different areas and sometimes even between cortical layers of the same area. While we are still a long way from a comprehensive theory of the function of the LC/NE system, its cellular, synaptic, and plastic effects are consistent with the hypothesis that noradrenergic modulation is critical in coordinating the activity of cortical and subcortical circuits for the integration of sensory activity and working memory. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
| | | | - Marco Atzori
- Universidad Autónoma de San Luis Potosí, México.
| |
Collapse
|
352
|
Zhang-Hooks Y, Agarwal A, Mishina M, Bergles DE. NMDA Receptors Enhance Spontaneous Activity and Promote Neuronal Survival in the Developing Cochlea. Neuron 2016; 89:337-50. [PMID: 26774161 PMCID: PMC4724245 DOI: 10.1016/j.neuron.2015.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 10/08/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022]
Abstract
Spontaneous bursts of activity in developing sensory pathways promote maturation of neurons, refinement of neuronal connections, and assembly of appropriate functional networks. In the developing auditory system, inner hair cells (IHCs) spontaneously fire Ca(2+) spikes, each of which is transformed into a mini-burst of action potentials in spiral ganglion neurons (SGNs). Here we show that NMDARs are expressed in SGN dendritic terminals and play a critical role during transmission of activity from IHCs to SGNs before hearing onset. NMDAR activation enhances glutamate-mediated Ca(2+) influx at dendritic terminals, promotes repetitive firing of individual SGNs in response to each synaptic event, and enhances coincident activity of neighboring SGNs that will eventually encode similar frequencies of sound. Loss of NMDAR signaling from SGNs reduced their survival both in vivo and in vitro, revealing that spontaneous activity in the prehearing cochlea promotes maturation of auditory circuitry through periodic activation of NMDARs in SGNs.
Collapse
Affiliation(s)
- YingXin Zhang-Hooks
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amit Agarwal
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Masayoshi Mishina
- Brain Science Laboratory, the Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
353
|
Horvat A, Zorec R, Vardjan N. Adrenergic stimulation of single rat astrocytes results in distinct temporal changes in intracellular Ca(2+) and cAMP-dependent PKA responses. Cell Calcium 2016; 59:156-63. [PMID: 26794933 DOI: 10.1016/j.ceca.2016.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/24/2023]
Abstract
During the arousal and startle response, locus coeruleus neurons, innervating practically all brain regions, release catecholamine noradrenaline, which reaches neural brain cells, including astrocytes. These glial cells respond to noradrenergic stimulation by simultaneous activation of the α- and β-adrenergic receptors (ARs) in the plasma membrane with increasing cytosolic levels of Ca(2+) and cAMP, respectively. AR-activation controls a myriad of processes in astrocytes including glucose metabolism, gliosignal vesicle homeostasis, gene transcription, cell morphology and antigen-presenting functions, all of which have distinct temporal characteristics. It is known from biochemical studies that Ca(2+) and cAMP signals in astrocytes can interact, however it is presently unclear whether the temporal properties of the two second messengers are time associated upon AR-activation. We used confocal microscopy to study AR agonist-induced intracellular changes in Ca(2+) and cAMP in single cultured cortical rat astrocytes by real-time monitoring of the Ca(2+) indicator Fluo4-AM and the fluorescence resonance energy transfer-based nanosensor A-kinase activity reporter 2 (AKAR2), which reports the activity of cAMP via its downstream effector protein kinase A (PKA). The results revealed that the activation of α1-ARs by phenylephrine triggers periodic (phasic) Ca(2+) oscillations within 10s, while the activation of β-ARs by isoprenaline leads to a ∼10-fold slower tonic rise to a plateau in cAMP/PKA activity devoid of oscillations. Thus the concomitant activation of α- and β-ARs triggers the Ca(2+) and cAMP second messenger systems in astrocytes with distinct temporal properties, which appears to be tailored to regulate downstream effectors in different time domains.
Collapse
Affiliation(s)
- Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia.
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
354
|
del Zoppo GJ, Moskowitz M, Nedergaard M. The Neurovascular Unit and Responses to Ischemia. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
355
|
Tonic Local Brain Blood Flow Control by Astrocytes Independent of Phasic Neurovascular Coupling. J Neurosci 2015; 35:13463-74. [PMID: 26424891 DOI: 10.1523/jneurosci.1780-15.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
According to the current model of neurovascular coupling, blood flow is controlled regionally through phasic changes in the activity of neurons and astrocytes that signal to alter arteriole diameter. Absent in this model, however, is how brain blood flow is tonically regulated independent of regional changes in activity. This is important because a large fraction of brain blood flow is required to maintain basal metabolic needs. Using two-photon fluorescence imaging combined with patch-clamp in acute rat brain slices of sensory-motor cortex, we demonstrate that reducing resting Ca(2+) in astrocytes with intracellular BAPTA causes vasoconstriction in adjacent arterioles. BAPTA-induced vasoconstriction was eliminated by a general COX blocker and the effect is mimicked by a COX-1, but not COX-2, antagonist, suggesting that astrocytes provide tonic, steady-state vasodilation by releasing prostaglandin messengers. Tonic vasodilation was insensitive to TTX, as well as a variety of synaptic and extrasynaptic receptor antagonists, indicating that the phenomenon operates largely independent of neural activity. Using in vivo two-photon fluorescence imaging of the barrel cortex in fully awake mice, we reveal that acute COX-1 inhibition reduces resting arteriole diameter but fails to affect vasodilation in response to vibrissae stimulation. Our findings demonstrate that astrocytes provide tonic regulation of arterioles using resting intracellular Ca(2+) in a manner that is independent of phasic, neuronal-evoked vasodilation. Significance statement: The brain requires both phasic and tonic regulation of its blood supply to service energy needs over various temporal windows. While many mechanisms have been described for phasic blood flow regulation, how the brain accomplishes tonic control is largely unknown. Here we describe a way in which astrocytes contribute to the management of basal brain blood flow by providing steady-state vasodilation to arterioles via resting astrocyte Ca(2+) and the continuous release of prostaglandin messengers. This phenomenon may be important for understanding the declines in basal brain blood flow that occur in aging and dementia, as well as for the interpretation of fMRI data.
Collapse
|
356
|
Joshi S, Li Y, Kalwani RM, Gold JI. Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 2015; 89:221-34. [PMID: 26711118 DOI: 10.1016/j.neuron.2015.11.028] [Citation(s) in RCA: 854] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/25/2015] [Accepted: 11/11/2015] [Indexed: 11/25/2022]
Abstract
Changes in pupil diameter that reflect effort and other cognitive factors are often interpreted in terms of the activity of norepinephrine-containing neurons in the brainstem nucleus locus coeruleus (LC), but there is little direct evidence for such a relationship. Here, we show that LC activation reliably anticipates changes in pupil diameter that either fluctuate naturally or are driven by external events during near fixation, as in many psychophysical tasks. This relationship occurs on as fine a temporal and spatial scale as single spikes from single units. However, this relationship is not specific to the LC. Similar relationships, albeit with delayed timing and different reliabilities across sites, are evident in the inferior and superior colliculus and anterior and posterior cingulate cortex. Because these regions are interconnected with the LC, the results suggest that non-luminance-mediated changes in pupil diameter might reflect LC-mediated coordination of neuronal activity throughout some parts of the brain.
Collapse
Affiliation(s)
- Siddhartha Joshi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yin Li
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rishi M Kalwani
- Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
357
|
Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MSB, Li G, Duncan JA, Cheshier SH, Shuer LM, Chang EF, Grant GA, Gephart MGH, Barres BA. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 2015; 89:37-53. [PMID: 26687838 DOI: 10.1016/j.neuron.2015.11.013] [Citation(s) in RCA: 1610] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/05/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022]
Abstract
The functional and molecular similarities and distinctions between human and murine astrocytes are poorly understood. Here, we report the development of an immunopanning method to acutely purify astrocytes from fetal, juvenile, and adult human brains and to maintain these cells in serum-free cultures. We found that human astrocytes have abilities similar to those of murine astrocytes in promoting neuronal survival, inducing functional synapse formation, and engulfing synaptosomes. In contrast to existing observations in mice, we found that mature human astrocytes respond robustly to glutamate. Next, we performed RNA sequencing of healthy human astrocytes along with astrocytes from epileptic and tumor foci and compared these to human neurons, oligodendrocytes, microglia, and endothelial cells (available at http://www.brainrnaseq.org). With these profiles, we identified novel human-specific astrocyte genes and discovered a transcriptome-wide transformation between astrocyte precursor cells and mature post-mitotic astrocytes. These data represent some of the first cell-type-specific molecular profiles of the healthy and diseased human brain.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Steven A Sloan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura E Clarke
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christine Caneda
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Colton A Plaza
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul D Blumenthal
- Department of Obstetrics and Gynecology, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Lucile Packard Children's Hospital and Stanford University Medical Center, Stanford, CA 94305, USA
| | - Michael S B Edwards
- Department of Neurosurgery, Lucile Packard Children's Hospital and Stanford University Medical Center, Stanford, CA 94305, USA
| | - Gordon Li
- Department of Neurosurgery, Lucile Packard Children's Hospital and Stanford University Medical Center, Stanford, CA 94305, USA
| | - John A Duncan
- Department of Pediatric Neurosciences, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA 95051, USA
| | - Samuel H Cheshier
- Department of Neurosurgery, Lucile Packard Children's Hospital and Stanford University Medical Center, Stanford, CA 94305, USA
| | - Lawrence M Shuer
- Department of Neurosurgery, Lucile Packard Children's Hospital and Stanford University Medical Center, Stanford, CA 94305, USA
| | - Edward F Chang
- UCSF Epilepsy Center, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Gerald A Grant
- Department of Neurosurgery, Lucile Packard Children's Hospital and Stanford University Medical Center, Stanford, CA 94305, USA
| | - Melanie G Hayden Gephart
- Department of Neurosurgery, Lucile Packard Children's Hospital and Stanford University Medical Center, Stanford, CA 94305, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
358
|
Croft W, Reusch K, Tilunaite A, Russell NA, Thul R, Bellamy TC. Probabilistic encoding of stimulus strength in astrocyte global calcium signals. Glia 2015; 64:537-52. [PMID: 26651126 DOI: 10.1002/glia.22947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022]
Abstract
Astrocyte calcium signals can range in size from subcellular microdomains to waves that spread through the whole cell (and into connected cells). The differential roles of such local or global calcium signaling are under intense investigation, but the mechanisms by which local signals evolve into global signals in astrocytes are not well understood, nor are the computational rules by which physiological stimuli are transduced into a global signal. To investigate these questions, we transiently applied receptor agonists linked to calcium signaling to primary cultures of cerebellar astrocytes. Astrocytes repetitively tested with the same stimulus responded with global signals intermittently, indicating that each stimulus had a defined probability for triggering a response. The response probability varied between agonists, increased with agonist concentration, and could be positively and negatively modulated by crosstalk with other signaling pathways. To better understand the processes determining the evolution of a global signal, we recorded subcellular calcium "puffs" throughout the whole cell during stimulation. The key requirement for puffs to trigger a global calcium wave following receptor activation appeared to be the synchronous release of calcium from three or more sites, rather than an increasing calcium load accumulating in the cytosol due to increased puff size, amplitude, or frequency. These results suggest that the concentration of transient stimuli will be encoded into a probability of generating a global calcium response, determined by the likelihood of synchronous release from multiple subcellular sites.
Collapse
Affiliation(s)
- Wayne Croft
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Katharina Reusch
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Agne Tilunaite
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Noah A Russell
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Rüdiger Thul
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Tomas C Bellamy
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
359
|
Wang HC, Lin CC, Chong R, Zhang-Hooks Y, Agarwal A, Ellis-Davies G, Rock J, Bergles DE. Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells. Cell 2015; 163:1348-59. [PMID: 26627734 PMCID: PMC4671825 DOI: 10.1016/j.cell.2015.10.070] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022]
Abstract
Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl(-) efflux and osmotic cell shrinkage by opening TMEM16A Ca(2+)-activated Cl(-) channels. Release of Cl(-) from ISCs also forces K(+) efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea and prevents ATP-dependent shrinkage of supporting cells. These results indicate that supporting cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells.
Collapse
Affiliation(s)
- Han Chin Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA
| | - Chun-Chieh Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA
| | - Rockie Chong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA
| | - YingXin Zhang-Hooks
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA
| | - Amit Agarwal
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA
| | - Graham Ellis-Davies
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave Levy Place Box 1065, New York, NY 10029, USA
| | - Jason Rock
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Ave, Box 0452, San Francisco, CA 94143, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
360
|
Tang Q, Tsytsarev V, Liang CP, Akkentli F, Erzurumlu RS, Chen Y. In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function. Sci Rep 2015; 5:17325. [PMID: 26612326 PMCID: PMC4661443 DOI: 10.1038/srep17325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 10/28/2015] [Indexed: 12/29/2022] Open
Abstract
The whisker system of rodents is an excellent model to study peripherally evoked neural activity in the brain. Discrete neural modules represent each whisker in the somatosensory cortex (“barrels”), thalamus (“barreloids”), and brain stem (“barrelettes”). Stimulation of a single whisker evokes neural activity sequentially in its corresponding barrelette, barreloid, and barrel. Conventional optical imaging of functional activation in the brain is limited to surface structures such as the cerebral cortex. To access subcortical structures and image sensory-evoked neural activity, we designed a needle-based optical system using gradient-index (GRIN) rod lens. We performed voltage-sensitive dye imaging (VSDi) with GRIN rod lens to visualize neural activity evoked in the thalamic barreloids by deflection of whiskers in vivo. We stimulated several whiskers together to determine the sensitivity of our approach in differentiating between different barreloid responses. We also carried out stimulation of different whiskers at different times. Finally, we used muscimol in the barrel cortex to silence the corticothalamic inputs while imaging in the thalamus. Our results show that it is possible to obtain functional maps of the sensory periphery in deep brain structures such as the thalamic barreloids. Our approach can be broadly applicable to functional imaging of other core brain structures.
Collapse
Affiliation(s)
- Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Vassiliy Tsytsarev
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Chia-Pin Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Fatih Akkentli
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
361
|
Norepinephrine-induced calcium signaling in astrocytes in the respiratory network of the ventrolateral medulla. Respir Physiol Neurobiol 2015; 226:18-23. [PMID: 26514085 DOI: 10.1016/j.resp.2015.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 11/22/2022]
Abstract
The neuronal activity in the respiratory network of the ventrolateral medulla strongly depends on a variety of different neuromodulators. Since the respiratory activity generated by neurons in the pre-Bötzinger complex (preBötC) is stabilized by astrocytes, we investigated potential effects of the neuromodulator norepinephrine (NE) on the astrocytic calcium signaling in the ventral respiratory group. In acutely isolated brainstem slices from wild type mice (postnatal day 1-10) we performed calcium imaging experiments using Oregon Green 488 BAPTA-1 AM as a calcium indicator dye. Astrocytes in the preBötC, which were identified by their unique intracellular calcium rise after the reduction of the extracellular K(+) concentration, showed calcium rises in response to norepinephrine. These calcium signals persisted after blockade of neuronal activity by tetrodotoxin (TTX) indicating that they were independent of neuronal activity. Furthermore, application of the endoplasmic reticulum calcium pump blocker cyclopiazonic acid (CPA) diminished norepinephrine-induced calcium signals. This results could be confirmed using transgenic mice with astrocyte specific expression of GCaMP3. Thus, norepinephrine might, apart from acting directly on neurons, influence and modulate respiratory network activity via the modulation of astroglial calcium signaling.
Collapse
|
362
|
Radford RA, Morsch M, Rayner SL, Cole NJ, Pountney DL, Chung RS. The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia. Front Cell Neurosci 2015; 9:414. [PMID: 26578880 PMCID: PMC4621294 DOI: 10.3389/fncel.2015.00414] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two progressive, fatal neurodegenerative syndromes with considerable clinical, genetic and pathological overlap. Clinical symptoms of FTD can be seen in ALS patients and vice versa. Recent genetic discoveries conclusively link the two diseases, and several common molecular players have been identified (TDP-43, FUS, C9ORF72). The definitive etiologies of ALS and FTD are currently unknown and both disorders lack a cure. Glia, specifically astrocytes and microglia are heavily implicated in the onset and progression of neurodegeneration witnessed in ALS and FTD. In this review, we summarize the current understanding of the role of microglia and astrocytes involved in ALS and FTD, highlighting their recent implications in neuroinflammation, alterations in waste clearance involving phagocytosis and the newly described glymphatic system, and vascular abnormalities. Elucidating the precise mechanisms of how astrocytes and microglia are involved in ALS and FTD will be crucial in characterizing these two disorders and may represent more effective interventions for disease progression and treatment options in the future.
Collapse
Affiliation(s)
- Rowan A Radford
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Stephanie L Rayner
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Nicholas J Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Dean L Pountney
- Menzies Health Institute Queensland, Griffith University Gold Coast, QLD, Australia
| | - Roger S Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
363
|
Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: A dimensional perspective. Prog Neurobiol 2015; 136:1-27. [PMID: 26510407 DOI: 10.1016/j.pneurobio.2015.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Schizophrenia has long been considered as a disorder with multifactorial origins. Recent discoveries have advanced our understanding of the genetic architecture of the disease. However, even with the increase of identified risk variants, heritability estimates suggest an important contribution of non-genetic factors. Various environmental risk factors have been proposed to play a role in the etiopathogenesis of schizophrenia. These include season of birth, maternal infections, obstetric complications, adverse events at early childhood, and drug abuse. Despite the progress in identification of genetic and environmental risk factors, we still have a limited understanding of the mechanisms whereby gene-environment interactions (G × E) operate in schizophrenia and psychoses at large. In this review we provide a critical analysis of current animal models of G × E relevant to psychotic disorders and propose that dimensional perspective will advance our understanding of the complex mechanisms of these disorders.
Collapse
Affiliation(s)
- Yavuz Ayhan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Hacettepe University Faculty of Medicine, Department of Psychiatry, Turkey
| | - Ross McFarland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA.
| |
Collapse
|
364
|
Seibt F, Schlichter R. Noradrenaline-mediated facilitation of inhibitory synaptic transmission in the dorsal horn of the rat spinal cord involves interlaminar communications. Eur J Neurosci 2015; 42:2654-65. [PMID: 26370319 DOI: 10.1111/ejn.13077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022]
Abstract
In the dorsal horn of the spinal cord (DH), noradrenaline (NA) is released by axons originating from the locus coeruleus and induces spinal analgesia, the mechanisms of which are poorly understood. Here, the effects of NA on synaptic transmission in the deep laminae (III-V) of the DH were characterized. It was shown that exogenously applied, as well as endogenously released, NA facilitated inhibitory [γ-aminobutyric acid (GABA)ergic and glycinergic] synaptic transmission in laminae III-IV of the DH by activating α1-, α2- and β-adrenoceptors (ARs). In contrast, NA had no effect on excitatory (glutamatergic) synaptic transmission. Physical interruption of communications between deep and more superficial laminae (by a mechanical transection between laminae IV and V) totally blocked the effects of α2-AR agonists and strongly reduced the effects of α1-AR agonists on inhibitory synaptic transmission in laminae III-IV without directly impairing synaptic release of GABA or glycine from neurons. Short-term pretreatment of intact spinal cord slices with the glial cell metabolism inhibitor fluorocitrate or pharmacological blockade of ionotropic glutamate and ATP receptors mimicked the consequences of a mechanical transection between laminae IV and V. Taken together, the current results indicate that the facilitation of inhibitory synaptic transmission in laminae III-IV of the DH by NA requires functional interlaminar connections between deep and more superficial laminae, and might strongly depend on glia to neuron interactions. These interlaminar connections and glia to neuron interactions could represent interesting targets for analgesic strategies.
Collapse
Affiliation(s)
- Frederik Seibt
- Centre National de la Recherche Scientifique (CNRS UPR 3212), Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Rémy Schlichter
- Centre National de la Recherche Scientifique (CNRS UPR 3212), Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
365
|
Asada A, Ujita S, Nakayama R, Oba S, Ishii S, Matsuki N, Ikegaya Y. Subtle modulation of ongoing calcium dynamics in astrocytic microdomains by sensory inputs. Physiol Rep 2015; 3:3/10/e12454. [PMID: 26438730 PMCID: PMC4632942 DOI: 10.14814/phy2.12454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Astrocytes communicate with neurons through their processes. In vitro experiments have demonstrated that astrocytic processes exhibit calcium activity both spontaneously and in response to external stimuli; however, it has not been fully determined whether and how astrocytic subcellular domains respond to sensory input in vivo. We visualized the calcium signals in astrocytes in the primary visual cortex of awake, head-fixed mice. Bias-free analyses of two-photon imaging data revealed that calcium activity prevailed in astrocytic subcellular domains, was coordinated with variable spot-like patterns, and was dominantly spontaneous. Indeed, visual stimuli did not affect the frequency of calcium domain activity, but it increased the domain size, whereas tetrodotoxin reduced the sizes of spontaneous calcium domains and abolished their visual responses. The “evoked” domain activity exhibited no apparent orientation tuning and was distributed unevenly within the cell, constituting multiple active hotspots that were often also recruited in spontaneous activity. The hotspots existed dominantly in the somata and endfeet of astrocytes. Thus, the patterns of astrocytic calcium dynamics are intrinsically constrained and are subject to minor but significant modulation by sensory input.
Collapse
Affiliation(s)
- Akiko Asada
- Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| | - Sakiko Ujita
- Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| | - Ryota Nakayama
- Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| | - Shigeyuki Oba
- Graduate School of Informatics Kyoto University, Kyoto, Japan
| | - Shin Ishii
- Graduate School of Informatics Kyoto University, Kyoto, Japan
| | - Norio Matsuki
- Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences University of Tokyo, Tokyo, Japan Center for Information and Neural Networks, Suita City Osaka, Japan
| |
Collapse
|
366
|
Guo Q, Zhou J, Feng Q, Lin R, Gong H, Luo Q, Zeng S, Luo M, Fu L. Multi-channel fiber photometry for population neuronal activity recording. BIOMEDICAL OPTICS EXPRESS 2015; 6:3919-31. [PMID: 26504642 PMCID: PMC4605051 DOI: 10.1364/boe.6.003919] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 05/05/2023]
Abstract
Fiber photometry has become increasingly popular among neuroscientists as a convenient tool for the recording of genetically defined neuronal population in behaving animals. Here, we report the development of the multi-channel fiber photometry system to simultaneously monitor neural activities in several brain areas of an animal or in different animals. In this system, a galvano-mirror modulates and cyclically couples the excitation light to individual multimode optical fiber bundles. A single photodetector collects excited light and the configuration of fiber bundle assembly and the scanner determines the total channel number. We demonstrated that the system exhibited negligible crosstalk between channels and optical signals could be sampled simultaneously with a sample rate of at least 100 Hz for each channel, which is sufficient for recording calcium signals. Using this system, we successfully recorded GCaMP6 fluorescent signals from the bilateral barrel cortices of a head-restrained mouse in a dual-channel mode, and the orbitofrontal cortices of multiple freely moving mice in a triple-channel mode. The multi-channel fiber photometry system would be a valuable tool for simultaneous recordings of population activities in different brain areas of a given animal and different interacting individuals.
Collapse
Affiliation(s)
- Qingchun Guo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contributed equally to this work
| | - Jingfeng Zhou
- PTN Graduate Program, School of Life Sciences, Peking University, Beijing 100081, China
- National Institute of Biological Sciences, Beijing 102206, China
- These authors contributed equally to this work
| | - Qiru Feng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
367
|
Tonic Local Brain Blood Flow Control by Astrocytes Independent of Phasic Neurovascular Coupling. J Neurosci 2015. [PMID: 26424891 DOI: 10.1523/jneurosci.1780‐15.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
According to the current model of neurovascular coupling, blood flow is controlled regionally through phasic changes in the activity of neurons and astrocytes that signal to alter arteriole diameter. Absent in this model, however, is how brain blood flow is tonically regulated independent of regional changes in activity. This is important because a large fraction of brain blood flow is required to maintain basal metabolic needs. Using two-photon fluorescence imaging combined with patch-clamp in acute rat brain slices of sensory-motor cortex, we demonstrate that reducing resting Ca(2+) in astrocytes with intracellular BAPTA causes vasoconstriction in adjacent arterioles. BAPTA-induced vasoconstriction was eliminated by a general COX blocker and the effect is mimicked by a COX-1, but not COX-2, antagonist, suggesting that astrocytes provide tonic, steady-state vasodilation by releasing prostaglandin messengers. Tonic vasodilation was insensitive to TTX, as well as a variety of synaptic and extrasynaptic receptor antagonists, indicating that the phenomenon operates largely independent of neural activity. Using in vivo two-photon fluorescence imaging of the barrel cortex in fully awake mice, we reveal that acute COX-1 inhibition reduces resting arteriole diameter but fails to affect vasodilation in response to vibrissae stimulation. Our findings demonstrate that astrocytes provide tonic regulation of arterioles using resting intracellular Ca(2+) in a manner that is independent of phasic, neuronal-evoked vasodilation. Significance statement: The brain requires both phasic and tonic regulation of its blood supply to service energy needs over various temporal windows. While many mechanisms have been described for phasic blood flow regulation, how the brain accomplishes tonic control is largely unknown. Here we describe a way in which astrocytes contribute to the management of basal brain blood flow by providing steady-state vasodilation to arterioles via resting astrocyte Ca(2+) and the continuous release of prostaglandin messengers. This phenomenon may be important for understanding the declines in basal brain blood flow that occur in aging and dementia, as well as for the interpretation of fMRI data.
Collapse
|
368
|
Candlish M, Angelis RD, Götz V, Boehm U. Gene Targeting in Neuroendocrinology. Compr Physiol 2015; 5:1645-76. [DOI: 10.1002/cphy.c140079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
369
|
Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 2015; 18:942-52. [PMID: 26108722 DOI: 10.1038/nn.4043] [Citation(s) in RCA: 834] [Impact Index Per Article: 83.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/04/2015] [Indexed: 12/11/2022]
Abstract
Astrocytes tile the entire CNS. They are vital for neural circuit function, but have traditionally been viewed as simple, homogenous cells that serve the same essential supportive roles everywhere. Here, we summarize breakthroughs that instead indicate that astrocytes represent a population of complex and functionally diverse cells. Physiological diversity of astrocytes is apparent between different brain circuits and microcircuits, and individual astrocytes display diverse signaling in subcellular compartments. With respect to injury and disease, astrocytes undergo diverse phenotypic changes that may be protective or causative with regard to pathology in a context-dependent manner. These new insights herald the concept that astrocytes represent a diverse population of genetically tractable cells that mediate neural circuit-specific roles in health and disease.
Collapse
|
370
|
Hoogland TM, Parpura V. Editorial: The role of glia in plasticity and behavior. Front Cell Neurosci 2015; 9:356. [PMID: 26441527 PMCID: PMC4563082 DOI: 10.3389/fncel.2015.00356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/24/2015] [Indexed: 11/20/2022] Open
Affiliation(s)
- Tycho M Hoogland
- Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neuroscience, Erasmus MC Rotterdam, Netherlands
| | - Vladimir Parpura
- Atomic Force Microscopy and Nanotechnology Laboratories, Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
371
|
Do stars govern our actions? Astrocyte involvement in rodent behavior. Trends Neurosci 2015; 38:535-49. [DOI: 10.1016/j.tins.2015.07.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022]
|
372
|
Bellesi M, de Vivo L, Tononi G, Cirelli C. Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 2015; 13:66. [PMID: 26303010 PMCID: PMC4548305 DOI: 10.1186/s12915-015-0176-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
Background Astrocytes can mediate neurovascular coupling, modulate neuronal excitability, and promote synaptic maturation and remodeling. All these functions are likely to be modulated by the sleep/wake cycle, because brain metabolism, neuronal activity and synaptic turnover change as a function of behavioral state. Yet, little is known about the effects of sleep and wake on astrocytes. Results Here we show that sleep and wake strongly affect both astrocytic gene expression and ultrastructure in the mouse brain. Using translating ribosome affinity purification technology and microarrays, we find that 1.4 % of all astrocytic transcripts in the forebrain are dependent on state (three groups, sleep, wake, short sleep deprivation; six mice per group). Sleep upregulates a few select genes, like Cirp and Uba1, whereas wake upregulates many genes related to metabolism, the extracellular matrix and cytoskeleton, including Trio, Synj2 and Gem, which are involved in the elongation of peripheral astrocytic processes. Using serial block face scanning electron microscopy (three groups, sleep, short sleep deprivation, chronic sleep restriction; three mice per group, >100 spines per mouse, 3D), we find that a few hours of wake are sufficient to bring astrocytic processes closer to the synaptic cleft, while chronic sleep restriction also extends the overall astrocytic coverage of the synapse, including at the axon–spine interface, and increases the available astrocytic surface in the neuropil. Conclusions Wake-related changes likely reflect an increased need for glutamate clearance, and are consistent with an overall increase in synaptic strength when sleep is prevented. The reduced astrocytic coverage during sleep, instead, may favor glutamate spillover, thus promoting neuronal synchronization during non-rapid eye movement sleep. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0176-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI, 53719, USA.
| |
Collapse
|
373
|
Abstract
Neuroglia, the "glue" that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter. When stimulated by neurons or other cells, neuroglial cells release gliotransmitters by exocytosis, similar to neurotransmitter release from nerve endings, or by carrier-mediated transport or channel flux through the plasma membrane. Gliotransmitters include the common neurotransmitters glutamate and GABA, the nonstandard amino acid d-serine, the high-energy phosphate ATP, and l-lactate. The latter molecule is a "buffer" between glycolytic and oxidative metabolism as well as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies.
Collapse
Affiliation(s)
- Vidar Gundersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Jon Storm-Mathisen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Linda Hildegard Bergersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
374
|
Rosa JM, Bos R, Sack GS, Fortuny C, Agarwal A, Bergles DE, Flannery JG, Feller MB. Neuron-glia signaling in developing retina mediated by neurotransmitter spillover. eLife 2015; 4. [PMID: 26274565 PMCID: PMC4566075 DOI: 10.7554/elife.09590] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022] Open
Abstract
Neuron-glia interactions play a critical role in the maturation of neural circuits; however, little is known about the pathways that mediate their communication in the developing CNS. We investigated neuron-glia signaling in the developing retina, where we demonstrate that retinal waves reliably induce calcium transients in Müller glial cells (MCs). During cholinergic waves, MC calcium transients were blocked by muscarinic acetylcholine receptor antagonists, whereas during glutamatergic waves, MC calcium transients were inhibited by ionotropic glutamate receptor antagonists, indicating that the responsiveness of MCs changes to match the neurotransmitter used to support retinal waves. Using an optical glutamate sensor we show that the decline in MC calcium transients is caused by a reduction in the amount of glutamate reaching MCs. Together, these studies indicate that neurons and MCs exhibit correlated activity during a critical period of retinal maturation that is enabled by neurotransmitter spillover from retinal synapses.
Collapse
Affiliation(s)
- Juliana M Rosa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Rémi Bos
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Georgeann S Sack
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Cécile Fortuny
- Vision Science Graduate Program, University of California, Berkeley, Berkeley, United States
| | - Amit Agarwal
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - John G Flannery
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
375
|
Motor-Skill Learning Is Dependent on Astrocytic Activity. Neural Plast 2015; 2015:938023. [PMID: 26346977 PMCID: PMC4539503 DOI: 10.1155/2015/938023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022] Open
Abstract
Motor-skill learning induces changes in synaptic structure and function in the primary motor cortex through the involvement of a long-term potentiation- (LTP-) like mechanism. Although there is evidence that calcium-dependent release of gliotransmitters by astrocytes plays an important role in synaptic transmission and plasticity, the role of astrocytes in motor-skill learning is not known. To test the hypothesis that astrocytic activity is necessary for motor-skill learning, we perturbed astrocytic function using pharmacological and genetic approaches. We find that perturbation of astrocytes either by selectively attenuating IP3R2 mediated astrocyte Ca2+ signaling or using an astrocyte specific metabolic inhibitor fluorocitrate (FC) results in impaired motor-skill learning of a forelimb reaching-task in mice. Moreover, the learning impairment caused by blocking astrocytic activity using FC was rescued by administration of the gliotransmitter D-serine. The learning impairments are likely caused by impaired LTP as FC blocked LTP in slices and prevented motor-skill training-induced increases in synaptic AMPA-type glutamate receptor in vivo. These results support the conclusion that normal astrocytic Ca2+ signaling during a reaching task is necessary for motor-skill learning.
Collapse
|
376
|
Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity. Neural Plast 2015; 2015:765792. [PMID: 26339509 PMCID: PMC4539116 DOI: 10.1155/2015/765792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023] Open
Abstract
The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes) have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours) rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology.
Collapse
|
377
|
De Zeeuw CI, Hoogland TM. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function. Front Cell Neurosci 2015; 9:246. [PMID: 26190972 PMCID: PMC4488625 DOI: 10.3389/fncel.2015.00246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 11/13/2022] Open
Abstract
Just as there is a huge morphological and functional diversity of neuron types specialized for specific aspects of information processing in the brain, astrocytes have equally distinct morphologies and functions that aid optimal functioning of the circuits in which they are embedded. One type of astrocyte, the Bergmann glial cell (BG) of the cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of which is adapted to the cerebellar circuit and facilitates an impressive range of functions that optimize information processing in the adult brain. In this review we expand on the function of the BG in the cerebellum to highlight the importance of astrocytes not only in housekeeping functions, but also in contributing to plasticity and information processing in the cerebellum.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neuroscience, Erasmus MC Rotterdam, Netherlands
| | - Tycho M Hoogland
- Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neuroscience, Erasmus MC Rotterdam, Netherlands
| |
Collapse
|
378
|
Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci 2015; 39:e200. [PMID: 26126507 DOI: 10.1017/s0140525x15000667] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.
Collapse
|
379
|
Pankratov Y, Lalo U. Role for astroglial α1-adrenoreceptors in gliotransmission and control of synaptic plasticity in the neocortex. Front Cell Neurosci 2015; 9:230. [PMID: 26136663 PMCID: PMC4468378 DOI: 10.3389/fncel.2015.00230] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/02/2015] [Indexed: 01/14/2023] Open
Abstract
Communication between neuronal and glial cells is thought to be very important for many brain functions. Acting via release of gliotransmitters, astrocytes can modulate synaptic strength. The mechanisms underlying gliotransmission remain uncertain with exocytosis being the most intriguing and debated pathway. We demonstrate that astroglial α1-adrenoreceptors are very sensitive to noradrenaline (NA) and make a significant contribution to intracellular Ca2+-signaling in layer 2/3 neocortical astrocytes. We also show that astroglial α1-adrenoreceptors are prone to desensitization upon prolonged exposure to NA. We show that within neocortical slices, α-1adrenoreceptors can activate vesicular release of ATP and D-serine from cortical astrocytes which initiate a burst of ATP receptor-mediated currents in adjacent pyramidal neurons. These purinergic currents can be inhibited by intracellular perfusion of astrocytes with Tetanus Toxin light chain, verifying their origin via astroglial exocytosis. We show that α1 adrenoreceptor-activated release of gliotransmitters is important for the induction of synaptic plasticity in the neocortex:long-term potentiation (LTP) of neocortical excitatory synaptic potentials can be abolished by the selective α1-adrenoreceptor antagonist terazosin. We show that weak sub-threshold theta-burst stimulation (TBS) can induce LTP when astrocytes are additionally activated by 1 μM NA. This facilitation is dependent on the activation of neuronal ATP receptors and is abolished in neocortical slices from dn-SNARE mice which have impaired glial exocytosis. Importantly, facilitation of LTP by NA can be significantly reduced by perfusion of individual astrocytes with Tetanus Toxin. Our results strongly support the physiological importance of astroglial adrenergic signaling and exocytosis of gliotransmitters for modulation of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Yuriy Pankratov
- School of Life Sciences, Gibbet Hill Campus, University of Warwick Coventry, UK
| | - Ulyana Lalo
- School of Life Sciences, Gibbet Hill Campus, University of Warwick Coventry, UK
| |
Collapse
|
380
|
Murakami T, Yoshida T, Matsui T, Ohki K. Wide-field Ca(2+) imaging reveals visually evoked activity in the retrosplenial area. Front Mol Neurosci 2015; 8:20. [PMID: 26106292 PMCID: PMC4458613 DOI: 10.3389/fnmol.2015.00020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 12/02/2022] Open
Abstract
Due to recent advances of genetic manipulation, mouse brain has become a useful model for studying brain function, which demands whole brain functional mapping techniques in the mouse brain. In the present study, to finely map visual responsive areas in the mouse brain, we combined high-resolution wide-field optical imaging with transgenic mice containing the genetically encoded Ca2+ indicator, GCaMP3. With the high signal amplitude of GCaMP3 expressing in excitatory neurons, this system allowed neural activity to be observed with relatively fine spatial resolution and cell-type specificity. To evaluate this system, we examined whether non-visual areas exhibited a visual response over the entire surface of the mouse hemisphere. We found that two association areas, the retrosplenial area (RS) and secondary motor/anterior cingulate area (M2/AC), were significantly responsive to drifting gratings. Examination using gratings with distinct spatiotemporal frequency parameters revealed that the RS strongly responded to high-spatial and low-temporal frequency gratings. The M2/AC exhibited a response property similar to that of the RS, though it was not statistically significant. Finally, we performed cellular imaging using two-photon microscopy to examine orientation and direction selectivity of individual neurons, and found that a minority of neurons in the RS clearly showed visual responses sharply selective for orientation and direction. These results suggest that neurons in RS encode visual information of fine spatial details in images. Thus, the present study shows the usefulness of the functional mapping method using a combination of wide-field and two-photon Ca2+ imaging, which allows for whole brain mapping with high spatiotemporal resolution and cell-type specificity.
Collapse
Affiliation(s)
- Tomonari Murakami
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | - Takashi Yoshida
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan ; CREST, Japan Science and Technology Agency Tokyo, Japan
| | - Teppei Matsui
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | - Kenichi Ohki
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan ; CREST, Japan Science and Technology Agency Tokyo, Japan
| |
Collapse
|
381
|
Huo BX, Greene SE, Drew PJ. Venous cerebral blood volume increase during voluntary locomotion reflects cardiovascular changes. Neuroimage 2015; 118:301-12. [PMID: 26057593 DOI: 10.1016/j.neuroimage.2015.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/05/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023] Open
Abstract
Understanding how changes in the cardiovascular system contribute to cerebral blood flow (CBF) and volume (CBV) increases is critical for interpreting hemodynamic signals. Here we investigated how systemic cardiovascular changes affect the cortical hemodynamic response during voluntary locomotion. In the mouse, voluntary locomotion drives an increase in cortical CBF and arterial CBV that is localized to the forelimb/hindlimb representation in the somatosensory cortex, as well as a diffuse venous CBV increase. To determine if the heart rate increases that accompany locomotion contribute to locomotion-induced CBV and CBF increases, we occluded heart rate increases with the muscarinic cholinergic receptor antagonist glycopyrrolate, and reduced heart rate with the β1-adrenergic receptor antagonist atenolol. We quantified the effects of these cardiovascular manipulations on CBV and CBF dynamics by comparing the hemodynamic response functions (HRF) to locomotion across these conditions. Neither the CBF HRF nor the arterial component of the CBV HRF was significantly affected by pharmacological disruption of the heart rate. In contrast, the amplitude and spatial extent of the venous component of the CBV HRF were decreased by atenolol. These results suggest that the increase in venous CBV during locomotion was partially driven by peripheral cardiovascular changes, whereas CBF and arterial CBV increases associated with locomotion reflect central processes.
Collapse
Affiliation(s)
- Bing-Xing Huo
- Center for Neural Engineering Department of Engineering Science and Mechanics
| | - Stephanie E Greene
- Center for Neural Engineering Department of Engineering Science and Mechanics
| | - Patrick J Drew
- Center for Neural Engineering Department of Engineering Science and Mechanics; Department of Neurosurgery Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
382
|
Choudhury GR, Ding S. Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis 2015; 85:234-244. [PMID: 25982835 DOI: 10.1016/j.nbd.2015.05.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/26/2015] [Accepted: 05/08/2015] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are specialized and the most abundant cell type in the central nervous system (CNS). They play important roles in the physiology of the brain. Astrocytes are also critically involved in many CNS disorders including focal ischemic stroke, the leading cause of brain injury and death in patients. One of the prominent pathological features of a focal ischemic stroke is reactive astrogliosis and glial scar formation. Reactive astrogliosis is accompanied with changes in morphology, proliferation, and gene expression in the reactive astrocytes. This study provides an overview of the most recent advances in astrocytic Ca(2+) signaling, spatial, and temporal dynamics of the morphology and proliferation of reactive astrocytes as well as signaling pathways involved in the reactive astrogliosis after ischemic stroke based on results from experimental studies performed in various animal models. This review also discusses the therapeutic potential of reactive astrocytes in focal ischemic stroke. As reactive astrocytes exhibit high plasticity, we suggest that modulation of local reactive astrocytes is a promising strategy for cell-based stroke therapy.
Collapse
Affiliation(s)
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, Columbia, MO, USA; Department of Bioengineering, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
383
|
Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 2015; 130:86-120. [PMID: 25930681 DOI: 10.1016/j.pneurobio.2015.04.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Recent breakthroughs in neuroscience have led to the awareness that we should revise our traditional mode of thinking and studying the CNS, i.e. by isolating the privileged network of "intelligent" synaptic contacts. We may instead need to contemplate all the variegate communications occurring between the different neural cell types, and centrally involving the astrocytes. Basically, it appears that a single astrocyte should be considered as a core that receives and integrates information from thousands of synapses, other glial cells and the blood vessels. In turn, it generates complex outputs that control the neural circuitry and coordinate it with the local microcirculation. Astrocytes thus emerge as the possible fulcrum of the functional homeostasis of the healthy CNS. Yet, evidence indicates that the bridging properties of the astrocytes can change in parallel with, or as a result of, the morphological, biochemical and functional alterations these cells undergo upon injury or disease. As a consequence, they have the potential to transform from supportive friends and interactive partners for neurons into noxious foes. In this review, we summarize the currently available knowledge on the contribution of astrocytes to the functioning of the CNS and what goes wrong in various pathological conditions, with a particular focus on Amyotrophic Lateral Sclerosis, Alzheimer's Disease and ischemia. The observations described convincingly demonstrate that the development and progression of several neurological disorders involve the de-regulation of a finely tuned interplay between multiple cell populations. Thus, it seems that a better understanding of the mechanisms governing the integrated communication and detrimental responses of the astrocytes as well as their impact towards the homeostasis and performance of the CNS is fundamental to open novel therapeutic perspectives.
Collapse
|
384
|
Srinivasan R, Huang BS, Venugopal S, Johnston AD, Chai H, Zeng H, Golshani P, Khakh BS. Ca(2+) signaling in astrocytes from Ip3r2(-/-) mice in brain slices and during startle responses in vivo. Nat Neurosci 2015; 18:708-17. [PMID: 25894291 PMCID: PMC4429056 DOI: 10.1038/nn.4001] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/15/2015] [Indexed: 12/11/2022]
Abstract
Intracellular Ca2+ signaling is considered important for multiple astrocyte functions in neural circuits. However, mice devoid of inositol triphosphate type 2 receptors (IP3R2) reportedly lack all astrocyte Ca2+ signaling, but display no neuronal or neurovascular deficits, implying that astrocyte Ca2+ fluctuations play no role(s) in these functions. An assumption has been that loss of somatic Ca2+ fluctuations also reflects similar loss within astrocyte processes. Here, we tested this assumption and found diverse types of Ca2+ fluctuations within astrocytes, with most occurring within processes rather than in somata. These fluctuations were preserved in IP3R2−/− mice in brain slices and in vivo, occurred in endfeet, were increased by G-protein coupled receptor activation and by startle-induced neuromodulatory responses. Our data reveal novel Ca2+ fluctuations within astrocytes and highlight limitations of studies that used IP3R2−/− mice to evaluate astrocyte contributions to neural circuit function and mouse behavior.
Collapse
Affiliation(s)
- Rahul Srinivasan
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ben S Huang
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Sharmila Venugopal
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - April D Johnston
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Hua Chai
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington, USA
| | - Peyman Golshani
- 1] Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA. [2] Integrative Center for Learning and Memory, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA. [3] West Los Angeles VA Medical Center, Los Angeles, California, USA
| | - Baljit S Khakh
- 1] Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA. [2] Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
385
|
Morland C, Lauritzen KH, Puchades M, Holm-Hansen S, Andersson K, Gjedde A, Attramadal H, Storm-Mathisen J, Bergersen LH. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J Neurosci Res 2015; 93:1045-55. [DOI: 10.1002/jnr.23593] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Cecilie Morland
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
- The Brain and Muscle Energy Group; Department of Oral Biology; University of Oslo; Oslo Norway
| | - Knut Husø Lauritzen
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
| | - Maja Puchades
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
| | - Signe Holm-Hansen
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
| | - Krister Andersson
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
| | - Albert Gjedde
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital; Oslo Norway
- Center for Heart Failure Research, University of Oslo; Oslo Norway
| | - Jon Storm-Mathisen
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
| | - Linda Hildegard Bergersen
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Center for Healthy Aging; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
386
|
Tran CHT, Gordon GR. Astrocyte and Microvascular Imaging in Awake Animals Using Two-Photon Microscopy. Microcirculation 2015; 22:219-27. [DOI: 10.1111/micc.12188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/06/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Cam Ha T. Tran
- Hotchkiss Brain Institute; Department of Physiology and Pharmacology; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| | - Grant R. Gordon
- Hotchkiss Brain Institute; Department of Physiology and Pharmacology; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
387
|
Astrocytes: Orchestrating synaptic plasticity? Neuroscience 2015; 323:43-61. [PMID: 25862587 DOI: 10.1016/j.neuroscience.2015.04.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 01/09/2023]
Abstract
Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes.
Collapse
|
388
|
MacVicar BA, Newman EA. Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a020388. [PMID: 25818565 DOI: 10.1101/cshperspect.a020388] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuronal activity results in increased blood flow in the brain, a response named functional hyperemia. Astrocytes play an important role in mediating this response. Neurotransmitters released from active neurons evoke Ca(2+) increases in astrocytes, leading to the release of vasoactive metabolites of arachidonic acid from astrocyte endfeet onto blood vessels. Synthesis of prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs) dilate blood vessels, whereas 20-hydroxyeicosatetraenoic acid (20-HETE) constricts vessels. The release of K(+) from astrocyte endfeet may also contribute to vasodilation. Oxygen modulates astrocyte regulation of blood flow. Under normoxic conditions, astrocytic Ca(2+) signaling results in vasodilation, whereas under hyperoxic conditions, vasoconstriction is favored. Astrocytes also contribute to the generation of vascular tone. Tonic release of both 20-HETE and ATP from astrocytes constricts vascular smooth muscle cells, generating vessel tone. Under pathological conditions, including Alzheimer's disease and diabetic retinopathy, disruption of normal astrocyte physiology can compromise the regulation of blood flow.
Collapse
Affiliation(s)
- Brian A MacVicar
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Eric A Newman
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
389
|
The functional role of astrocyte calcium signaling in cortical blood flow regulation. J Neurosci 2015; 35:868-70. [PMID: 25609605 DOI: 10.1523/jneurosci.4422-14.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
390
|
Nimmerjahn A, Bergles DE. Large-scale recording of astrocyte activity. Curr Opin Neurobiol 2015; 32:95-106. [PMID: 25665733 DOI: 10.1016/j.conb.2015.01.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 12/17/2022]
Abstract
Astrocytes are highly ramified glial cells found throughout the central nervous system (CNS). They express a variety of neurotransmitter receptors that can induce widespread chemical excitation, placing these cells in an optimal position to exert global effects on brain physiology. However, the activity patterns of only a small fraction of astrocytes have been examined and techniques to manipulate their behavior are limited. As a result, little is known about how astrocytes modulate CNS function on synaptic, microcircuit, or systems levels. Here, we review current and emerging approaches for visualizing and manipulating astrocyte activity in vivo. Deciphering how astrocyte network activity is controlled in different physiological and pathological contexts is crucial for defining their roles in the healthy and diseased CNS.
Collapse
Affiliation(s)
- Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, WBSB 1001, Baltimore, MD 21205, USA.
| |
Collapse
|
391
|
Otsu Y, Couchman K, Lyons DG, Collot M, Agarwal A, Mallet JM, Pfrieger FW, Bergles DE, Charpak S. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci 2015; 18:210-8. [PMID: 25531572 PMCID: PMC4651918 DOI: 10.1038/nn.3906] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/24/2014] [Indexed: 12/18/2022]
Abstract
Enhanced neuronal activity in the brain triggers a local increase in blood flow, termed functional hyperemia, via several mechanisms, including calcium (Ca(2+)) signaling in astrocytes. However, recent in vivo studies have questioned the role of astrocytes in functional hyperemia because of the slow and sparse dynamics of their somatic Ca(2+) signals and the absence of glutamate metabotropic receptor 5 in adults. Here, we reexamined their role in neurovascular coupling by selectively expressing a genetically encoded Ca(2+) sensor in astrocytes of the olfactory bulb. We show that in anesthetized mice, the physiological activation of olfactory sensory neuron (OSN) terminals reliably triggers Ca(2+) increases in astrocyte processes but not in somata. These Ca(2+) increases systematically precede the onset of functional hyperemia by 1-2 s, reestablishing astrocytes as potential regulators of neurovascular coupling.
Collapse
Affiliation(s)
- Yo Otsu
- 1] Institut National de la Santé et de la Recherche Médicale (INSERM), U1128, Paris, France. [2] Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Kiri Couchman
- 1] Institut National de la Santé et de la Recherche Médicale (INSERM), U1128, Paris, France. [2] Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Declan G Lyons
- 1] Institut National de la Santé et de la Recherche Médicale (INSERM), U1128, Paris, France. [2] Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| | - Mayeul Collot
- 1] Centre National de la Recherche Scientifique (CNRS), UMR 7203, Paris, France. [2] Laboratory of Biomolecules, Université Pierre et Marie Curie, Paris, France
| | - Amit Agarwal
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean-Maurice Mallet
- 1] Centre National de la Recherche Scientifique (CNRS), UMR 7203, Paris, France. [2] Laboratory of Biomolecules, Université Pierre et Marie Curie, Paris, France
| | - Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Serge Charpak
- 1] Institut National de la Santé et de la Recherche Médicale (INSERM), U1128, Paris, France. [2] Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris, France
| |
Collapse
|
392
|
O'Donnell J, Ding F, Nedergaard M. Distinct functional states of astrocytes during sleep and wakefulness: Is norepinephrine the master regulator? CURRENT SLEEP MEDICINE REPORTS 2015; 1:1-8. [PMID: 26618103 DOI: 10.1007/s40675-014-0004-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Astrocytes are the chief supportive cells in the central nervous system, but work over the past 20 years have documented that astrocytes also contribute to complex neural processes, such as working memory. Recent discoveries of norepinephrine-mediated astrocytic Ca2+ responses have raised the possibility that astrocytic activity in the adult brain is driven by global responses to changes in behavioral state. Moreover, analysis of the interstitial space volume suggests that astrocytes may undergo changes in cell volume in response to activation of norepinephrine receptors. This review will focus on what is known about astrocytic functions within the nervous system, and how these functions interrelate with rapid changes in behavioral state mediated by norepinephrine signaling.
Collapse
Affiliation(s)
- John O'Donnell
- Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14642, USA
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14642, USA
| |
Collapse
|
393
|
Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci 2015; 6:48-67. [PMID: 25546652 PMCID: PMC4304489 DOI: 10.1021/cn500256e] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
![]()
Implantable biosensors are valuable
scientific tools for basic
neuroscience research and clinical applications. Neurotechnologies
provide direct readouts of neurological signal and neurochemical processes.
These tools are generally most valuable when performance capacities
extend over months and years to facilitate the study of memory, plasticity,
and behavior or to monitor patients’ conditions. These needs
have generated a variety of device designs from microelectrodes for
fast scan cyclic voltammetry (FSCV) and electrophysiology to microdialysis
probes for sampling and detecting various neurochemicals. Regardless
of the technology used, the breaching of the blood–brain barrier
(BBB) to insert devices triggers a cascade of biochemical pathways
resulting in complex molecular and cellular responses to implanted
devices. Molecular and cellular changes in the microenvironment surrounding
an implant include the introduction of mechanical strain, activation
of glial cells, loss of perfusion, secondary metabolic injury, and
neuronal degeneration. Changes to the tissue microenvironment surrounding
the device can dramatically impact electrochemical and electrophysiological
signal sensitivity and stability over time. This review summarizes
the magnitude, variability, and time course of the dynamic molecular
and cellular level neural tissue responses induced by state-of-the-art
implantable devices. Studies show that insertion injuries and foreign
body response can impact signal quality across all implanted central
nervous system (CNS) sensors to varying degrees over both acute (seconds
to minutes) and chronic periods (weeks to months). Understanding the
underlying biological processes behind the brain tissue response to
the devices at the cellular and molecular level leads to a variety
of intervention strategies for improving signal sensitivity and longevity.
Collapse
Affiliation(s)
- Takashi D. Y. Kozai
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrea S. Jaquins-Gerstl
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alberto L. Vazquez
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Adrian C. Michael
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - X. Tracy Cui
- Department
of Bioengineering, ‡Center for the Neural Basis of Cognition, §McGowan Institute
for Regenerative Medicine, ∥Department of Chemistry, and ⊥Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
394
|
Khakh BS, McCarthy KD. Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb Perspect Biol 2015; 7:a020404. [PMID: 25605709 PMCID: PMC4382738 DOI: 10.1101/cshperspect.a020404] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We provide an overview of recent progress on the study of astrocyte intracellular Ca(2+) signaling. We consider the methods that have been used to monitor astrocyte Ca(2+) signals, the various types of Ca(2+) signals that have been discovered (waves, microdomains, and intrinsic fluctuations), the approaches used to broadly trigger and block Ca(2+) signals, and, where possible, the proposed and demonstrated physiological roles for astrocyte Ca(2+) signals within neuronal microcircuits. Although important progress has been made, we suggest that further detailed work is needed to explore the biophysics and molecular mechanisms of Ca(2+) signaling within entire astrocytes, including their fine distal extensions, such as processes that interact spatially with neurons and blood vessels. Improved methods are also needed to mimic and block molecularly defined types of Ca(2+) signals within genetically specified populations of astrocytes. Moreover, it will be essential to study astrocyte Ca(2+) activity in vivo to distinguish between pharmacological and physiological activity, and to study Ca(2+) activity in situ to rigorously explore mechanisms. Once methods to reliably measure, mimic, and block specific astrocyte Ca(2+) signals with high temporal and spatial precision are available, researchers will be able to carefully explore the correlative and causative roles that Ca(2+) signals may play in the functions of astrocytes, blood vessels, neurons, and microcircuits in the healthy and diseased brain.
Collapse
Affiliation(s)
- Baljit S Khakh
- Departments of Physiology and Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Ken D McCarthy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365
| |
Collapse
|
395
|
Haydon PG, Nedergaard M. How do astrocytes participate in neural plasticity? Cold Spring Harb Perspect Biol 2014; 7:a020438. [PMID: 25502516 DOI: 10.1101/cshperspect.a020438] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Work over the past 20 years has implicated electrically nonexcitable astrocytes in complex neural functions. Despite controversies, it is increasingly clear that many, if not all, neural processes involve astrocytes. This review critically examines past work to identify the commonalities among the many published studies of neuroglia signaling. Although several studies have shown that astrocytes can impact short-term and long-term synaptic plasticity, further work is required to determine the requirement for astrocytic Ca(2+) and other second messengers in these processes. One of the roadblocks to the field advancing at a rapid pace has been technical. We predict that the novel experimental tools that have emerged in recent years will accelerate the field and likely disclose an entirely novel path of neuroglia signaling within the near future.
Collapse
Affiliation(s)
- Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
396
|
Effects of locomotion extend throughout the mouse early visual system. Curr Biol 2014; 24:2899-907. [PMID: 25484299 DOI: 10.1016/j.cub.2014.10.045] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/15/2014] [Accepted: 10/15/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Neural responses in visual cortex depend not only on sensory input but also on behavioral context. One such context is locomotion, which modulates single-neuron activity in primary visual cortex (V1). How locomotion affects neuronal populations across cortical layers and in precortical structures is not well understood. RESULTS We performed extracellular multielectrode recordings in the visual system of mice during locomotion and stationary periods. We found that locomotion influenced activity of V1 neurons with a characteristic laminar profile and shaped the population response by reducing pairwise correlations. Although the reduction of pairwise correlations was restricted to cortex, locomotion slightly but consistently increased firing rates and controlled tuning selectivity already in the dorsolateral geniculate nucleus (dLGN) of the thalamus. At the level of the eye, increases in locomotion speed were associated with pupil dilation. CONCLUSIONS These findings document further, nonmultiplicative effects of locomotion, reaching earlier processing stages than cortex.
Collapse
|
397
|
Astrocytic Gq-GPCR-linked IP3R-dependent Ca2+ signaling does not mediate neurovascular coupling in mouse visual cortex in vivo. J Neurosci 2014; 34:13139-50. [PMID: 25253859 DOI: 10.1523/jneurosci.2591-14.2014] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Local blood flow is modulated in response to changing patterns of neuronal activity (Roy and Sherrington, 1890), a process termed neurovascular coupling. It has been proposed that the central cellular pathway driving this process is astrocytic Gq-GPCR-linked IP3R-dependent Ca(2+) signaling, though in vivo tests of this hypothesis are largely lacking. We examined the impact of astrocytic Gq-GPCR and IP3R-dependent Ca(2+) signaling on cortical blood flow in awake, lightly sedated, responsive mice using multiphoton laser-scanning microscopy and novel genetic tools that enable the selective manipulation of astrocytic signaling pathways in vivo. Selective stimulation of astrocytic Gq-GPCR cascades and downstream Ca(2+) signaling with the hM3Dq DREADD (designer receptors exclusively activated by designer drugs) designer receptor system was insufficient to modulate basal cortical blood flow. We found no evidence of observable astrocyte endfeet Ca(2+) elevations following physiological visual stimulation despite robust dilations of adjacent arterioles using cyto-GCaMP3 and Lck-GCaMP6s, the most sensitive Ca(2+) indicator available. Astrocytic Ca(2+) elevations could be evoked when inducing the startle response with unexpected air puffs. However, startle-induced astrocytic Ca(2+) signals did not precede corresponding startle-induced hemodynamic changes. Further, neurovascular coupling was intact in lightly sedated, responsive mice genetically lacking astrocytic IP3R-dependent Ca(2+) signaling (IP3R2 KO). These data demonstrate that astrocytic Gq-GPCR-linked IP3R-dependent Ca(2+) signaling does not mediate neurovascular coupling in visual cortex of awake, lightly sedated, responsive mice.
Collapse
|
398
|
Petravicz J, Boyt KM, McCarthy KD. Astrocyte IP3R2-dependent Ca(2+) signaling is not a major modulator of neuronal pathways governing behavior. Front Behav Neurosci 2014; 8:384. [PMID: 25429263 PMCID: PMC4228853 DOI: 10.3389/fnbeh.2014.00384] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022] Open
Abstract
Calcium-dependent release of gliotransmitters by astrocytes is reported to play a critical role in synaptic transmission and be necessary for long-term potentiation (LTP), long-term depression (LTD) and other forms of synaptic modulation that are correlates of learning and memory. Further, physiological processes reported to be dependent on Ca2+ fluxes in astrocytes include functional hyperemia, sleep, and regulation of breathing. The preponderance of findings indicate that most, if not all, receptor dependent Ca2+ fluxes within astrocytes are due to release of Ca2+ through IP3 receptor/channels in the endoplasmic reticulum. Findings from several laboratories indicate that astrocytes only express IP3 receptor type 2 (IP3R2) and that a knockout of IP3R2 obliterates the GPCR-dependent astrocytic Ca2+ responses. Assuming that astrocytic Ca2+ fluxes play a critical role in synaptic physiology, it would be predicted that elimination of astrocytic Ca2+ fluxes would lead to marked changes in behavioral tests. Here, we tested this hypothesis by conducting a broad series of behavioral tests that recruited multiple brain regions, on an IP3R2 conditional knockout mouse model. We present the novel finding that behavioral processes are unaffected by lack of astrocyte IP3R-mediated Ca2+ signals. IP3R2 cKO animals display no change in anxiety or depressive behaviors, and no alteration to motor and sensory function. Morris water maze testing, a behavioral correlate of learning and memory, was unaffected by lack of astrocyte IP3R2-mediated Ca2+-signaling. Therefore, in contrast to the prevailing literature, we find that neither receptor-driven astrocyte Ca2+ fluxes nor, by extension, gliotransmission is likely to be a major modulating force on the physiological processes underlying behavior.
Collapse
Affiliation(s)
- Jeremy Petravicz
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Kristen M Boyt
- Department of Pharmacology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Ken D McCarthy
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
399
|
Abstract
ATP-gated P2X receptors are widely expressed in the nervous system, but their physiological roles are not fully understood. New insights from Pougnet et al. (2014) in this issue of Neuron show that postsynaptic P2X receptors may be activated by ATP released from astrocytes and function to downregulate synaptic AMPA receptors in hippocampal neurons.
Collapse
|
400
|
Welberg L. Glia: noradrenaline arouses astrocytes. Nat Rev Neurosci 2014; 15:494. [PMID: 25005483 DOI: 10.1038/nrn3788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|