351
|
Ma W, Song J, Wang H, Shi F, Zhou N, Jiang J, Xu Y, Zhang L, Yang L, Zhou M. Chronic paradoxical sleep deprivation-induced depression-like behavior, energy metabolism and microbial changes in rats. Life Sci 2019; 225:88-97. [PMID: 30953642 DOI: 10.1016/j.lfs.2019.04.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
AIMS Given the lasting impact of chronic paradoxical sleep deprivation (PSD) on behavior and organism metabolic alternations, along with the role of the microbiome in neurobehavioral development and metabolism, we sought to examine the relationship between the microbiota and chronic PSD-induced behavioral and metabolic changes. MATERIALS AND METHODS Psychological status of 7-day PSD (7d-PSD) male rats was tested by behavioral method, serum inflammatory cytokines and hypothalamic-pituitary-adrenal (HPA) axis-related hormones. In addition, GC-MS based urine metabolomics and 16S rRNA gene sequencing approaches were applied to estimate the influences of chronic PSD on host metabolism and gut-microbiota. Furtherly, microbial functional prediction and Spearman's correlation analysis were implemented to manifest the relations between the differential urinary metabolites and gut microbiota. KEY FINDINGS 7d-PSD rats displayed depression-like behavior, metabolic and microbial changes. By integrating differential gut bacteria with indicators of depression and differential metabolites, we found that the alterations of Akkermansia, Oscillospira, Ruminococcus, Parabacteroides, Aggregatibacter and Phascolarctobacterium were closely related to abnormalities of depression symptoms and inflammatory cytokines. These bacteria also had close connections with host energy metabolism concerning arginine and proline metabolism, glycine, serine and threonine metabolism, and glyoxylate and dicarboxylate metabolism, pyruvate metabolism, which overlapped with the results of 16S rRNA gene function annotation. SIGNIFICANCE These data suggest that a specific situation of circadian disturbance, chronic PSD-induced alterations in gut microbiota and related host changes in metabolism may be the pathogenesis of depression.
Collapse
Affiliation(s)
- Weini Ma
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Song
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Heran Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fangyu Shi
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nian Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaye Jiang
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
352
|
Tandon D, Haque MM, Gote M, Jain M, Bhaduri A, Dubey AK, Mande SS. A prospective randomized, double-blind, placebo-controlled, dose-response relationship study to investigate efficacy of fructo-oligosaccharides (FOS) on human gut microflora. Sci Rep 2019; 9:5473. [PMID: 30940833 PMCID: PMC6445088 DOI: 10.1038/s41598-019-41837-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Fructo-oligosaccharides (FOS), a prebiotic supplement, is known for its Bifidogenic capabilities. However, aspects such as effect of variable quantities of FOS intake on gut microbiota, and temporal dynamics of gut microbiota (transitioning through basal, dosage, and follow-up phases) has not been studied in detail. This study investigated these aspects through a randomized, double-blind, placebo-controlled, dose-response relationship study. The study involved 80 participants being administered FOS at three dose levels (2.5, 5, and 10 g/day) or placebo (Maltodextrin 10 g/day) during dosage phase. Microbial DNA extracted from fecal samples collected at 9 intervening time-points was sequenced and analysed. Results indicate that FOS consumption increased the relative abundance of OTUs belonging to Bifidobacterium and Lactobacillus. Interestingly, higher FOS dosage appears to promote, in contrast to Maltodextrin, the selective proliferation of OTUs belonging to Lactobacillus. While consumption of prebiotics increased bacterial diversity, withdrawal led to its reduction. Apart from probiotic bacteria, a significant change was also observed in certain butyrate-producing microbes like Faecalibacterium, Ruminococcus and Oscillospira. The positive impact of FOS on butyrate-producing bacteria and FOS-mediated increased bacterial diversity reinforces the role of prebiotics in conferring beneficial functions to the host.
Collapse
Affiliation(s)
- Disha Tandon
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., 54-B, Hadapsar Industrial Estate, Pune, 411 013, Maharashtra, India
| | - Mohammed Monzoorul Haque
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., 54-B, Hadapsar Industrial Estate, Pune, 411 013, Maharashtra, India
| | - Manoj Gote
- Tata Chemicals Ltd. Innovation Centre, Survey Number 315, Hissa Number 1-14, Ambedveth, Mulshi, Pune, 412 111, Maharashtra, India
| | - Manish Jain
- Tata Chemicals Ltd. Innovation Centre, Survey Number 315, Hissa Number 1-14, Ambedveth, Mulshi, Pune, 412 111, Maharashtra, India
| | - Anirban Bhaduri
- Tata Chemicals Ltd. Innovation Centre, Survey Number 315, Hissa Number 1-14, Ambedveth, Mulshi, Pune, 412 111, Maharashtra, India
| | - Ashok Kumar Dubey
- Tata Chemicals Ltd. Innovation Centre, Survey Number 315, Hissa Number 1-14, Ambedveth, Mulshi, Pune, 412 111, Maharashtra, India.
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., 54-B, Hadapsar Industrial Estate, Pune, 411 013, Maharashtra, India.
| |
Collapse
|
353
|
Reddel S, Del Chierico F, Quagliariello A, Giancristoforo S, Vernocchi P, Russo A, Fiocchi A, Rossi P, Putignani L, El Hachem M. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Sci Rep 2019; 9:4996. [PMID: 30899033 PMCID: PMC6428866 DOI: 10.1038/s41598-019-41149-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Atopic dermatitis (AD) has been hypothesised to be associated with gut microbiota (GM) composition. We performed a comparative study of the GM profile of 19 AD children and 18 healthy individuals aimed at identifying bacterial biomarkers associated with the disease. The effect of probiotic intake (Bifidobacterium breve plus Lactobacillus salivarius) on the modulation of GM and the probiotic persistence in the GM were also evaluated. Faecal samples were analysed by real-time PCR and 16S rRNA targeted metagenomics. Although the probiotics, chosen for this study, did not shape the entire GM profile, we observed the ability of these species to pass through the gastrointestinal tract and to persist (only B. breve) in the GM. Moreover, the GM of patients compared to CTRLs showed a dysbiotic status characterised by an increase of Faecalibacterium, Oscillospira, Bacteroides, Parabacteroides and Sutterella and a reduction of short-chain fatty acid (SCFA)-producing bacteria (i.e., Bifidobacterium, Blautia, Coprococcus, Eubacterium and Propionibacterium). Taken togheter these results show an alteration in AD microbiota composition with the depletion or absence of some species, opening the way to future probiotic intervention studies.
Collapse
Affiliation(s)
- Sofia Reddel
- Human Microbiome Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | | | | | - Pamela Vernocchi
- Human Microbiome Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandra Russo
- Human Microbiome Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandro Fiocchi
- Unit of Allergology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paolo Rossi
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit and Parasitology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | - May El Hachem
- Dermatology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
354
|
Changes in Mouse Gut Microbial Community in Response to the Different Types of Commonly Consumed Meat. Microorganisms 2019; 7:microorganisms7030076. [PMID: 30862107 PMCID: PMC6462912 DOI: 10.3390/microorganisms7030076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
The consumption of various meats prevalent throughout the world affects host health probably by associating with compositional shifts of gut microbiota. However, the responses of gut microbiota to different types of meat are not well understood. In this study, we explored the effects of cooked fish (white meat), and pork and beef (red meat) on gut microbiota and blood lipid metabolism in male C57BL/6 mice by comparing to those fed laboratory chow. Significant differences in microbial communities were observed among meat- and chow-fed mice. Compared with the chow group, the red and white meat groups obviously increased in abundance of Clostridium, and decreased in Prevotella abundance. The richness and diversity of gut microbiota were markedly decreased in the two red meat groups, with lower abundance of Oscillospira and higher abundance of Escherichia. Meanwhile, there were significant meat-related differences in blood lipid metabolites, with lower levels of high-density lipoprotein, low-density lipoprotein, cholesterol, and in mice fed white, compared with red, meat. Lipopolysaccharide-binding protein was significantly lower in fish-fed mice. Our results indicate that different types of meat potentially influence gut microbial compositions and blood metabolic profiles, suggesting a need to focus on clinically relevant bacteria in gut microbiota associated with increasing meat consumption.
Collapse
|
355
|
Abstract
Liver cancer is the sixth most common cancer worldwide, and the third most common cause of cancer-related death. Hepatocellular carcinoma (HCC), which accounts for more than 90% of primary liver cancers, is an important public health problem. In addition to cirrhosis caused by hepatitis B viral (HBV) or hepatitis C viral (HCV) infection, non-alcoholic fatty liver disease (NAFLD) is becoming a major risk factor for liver cancer because of the prevalence of obesity. Non-alcoholic steatohepatitis (NASH) will likely become the leading indication for liver transplantation in the future. It is well recognized that gut microbiota is a key environmental factor in the pathogenesis of liver disease and cancer. The interplay between gut microbiota and liver disease has been investigated in animal and clinical studies. In this article, we summarize the roles of gut microbiota in the development of liver disease as well as gut microbiota-targeted therapies.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA,The College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA,Corresponding author. Department of medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
356
|
Wu F, Yang L, Islam MT, Jasmine F, Kibriya MG, Nahar J, Barmon B, Parvez F, Sarwar G, Ahmed A, Eunus M, Islam T, Slavkovich V, Hu J, Li H, Graziano JH, Pei Z, Ahsan H, Chen Y. The role of gut microbiome and its interaction with arsenic exposure in carotid intima-media thickness in a Bangladesh population. ENVIRONMENT INTERNATIONAL 2019; 123:104-113. [PMID: 30503971 PMCID: PMC6371773 DOI: 10.1016/j.envint.2018.11.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Emerging data suggest that inorganic arsenic exposure and gut microbiome are associated with the risk of cardiovascular disease. The gut microbiome may modify disease risk associated with arsenic exposure. Our aim was to examine the inter-relationships between arsenic exposure, the gut microbiome, and carotid intima-media thickness (IMT)-a surrogate marker for atherosclerosis. METHODS We recruited 250 participants from the Health Effects of Arsenic Longitudinal Study in Bangladesh, measured IMT and collected fecal samples in year 2015-2016. 16S rRNA gene sequencing was conducted on microbial DNA extracted from the fecal samples. Arsenic exposure was measured using data on arsenic concentration in drinking water wells over time to derive a time-weighted water arsenic index. Multivariable linear regression models were used to test the inter-relationships between arsenic exposure, relative abundance of selected bacterial taxa from phylum to genus levels, and IMT. RESULTS We identified nominally significant associations between arsenic exposure, measured using either time-weighted water arsenic or urinary arsenic, and the relative abundances of several bacterial taxa from the phylum Tenericutes, Proteobacteria, and Firmicutes. However, none of the associations retained significance after correction for multiple testing. The relative abundances of the family Aeromonadaceae and genus Citrobacter were significantly associated with IMT after correction for multiple testing (P-value = 0.02 and 0.03, respectively). Every 1% increase in the relative abundance of Aeromonadaceae and Citrobacter was related to an 18.2-μm (95% CI: 7.8, 28.5) and 97.3-μm (95% CI: 42.3, 152.3) difference in IMT, respectively. These two taxa were also the only selected family and genus using the LASSO variable selection method. There was a significant interaction between Citrobacter and time-weighted water arsenic in IMT (P for interaction = 0.04). CONCLUSIONS Our findings suggest a role of Citrobacter in the development of atherosclerosis, especially among individuals with higher levels of arsenic exposure.
Collapse
Affiliation(s)
- Fen Wu
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Liying Yang
- Departments of Pathology and Medicine, New York University School of Medicine, New York, NY, USA; The Department of Veterans Affairs New York Harbor Healthcare System, New York, NY, USA
| | | | - Farzana Jasmine
- Department of Health Studies, Center for Cancer Epidemiology and Prevention, The University of Chicago, Chicago, IL, USA
| | - Muhammad G Kibriya
- Department of Health Studies, Center for Cancer Epidemiology and Prevention, The University of Chicago, Chicago, IL, USA
| | - Jebun Nahar
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | | | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Golam Sarwar
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | | | - Mahbub Eunus
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Tariqul Islam
- U-Chicago Research Bangladesh, Ltd., Dhaka, Bangladesh
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jiyuan Hu
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Huilin Li
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Zhiheng Pei
- Departments of Pathology and Medicine, New York University School of Medicine, New York, NY, USA; The Department of Veterans Affairs New York Harbor Healthcare System, New York, NY, USA
| | - Habibul Ahsan
- Department of Health Studies, Center for Cancer Epidemiology and Prevention, The University of Chicago, Chicago, IL, USA.
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
357
|
Preventive Effect of Spontaneous Physical Activity on the Gut-Adipose Tissue in a Mouse Model That Mimics Crohn's Disease Susceptibility. Cells 2019; 8:cells8010033. [PMID: 30634469 PMCID: PMC6356941 DOI: 10.3390/cells8010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Crohn’s disease is characterized by abnormal ileal colonization by adherent-invasive E. coli (AIEC) and expansion of mesenteric adipose tissue. This study assessed the preventive effect of spontaneous physical activity (PA) on the gut-adipose tissue in a mouse model that mimics Crohn’s disease susceptibility. Thirty-five CEABAC10 male mice performed spontaneous PA (wheel group; n = 24) or not (controls; n = 11) for 12 weeks. At week 12, mice were orally challenged with the AIEC LF82 strain for 6 days. Body composition, glycaemic control, intestinal permeability, gut microbiota composition, and fecal short-chain fatty acids were assessed in both groups. Animals were fed a high fat/high sugar diet throughout the study. After exposure to AIEC, mesenteric adipose tissue weight was lower in the wheel group. Tight junction proteins expression increased with spontaneous PA, whereas systemic lipopolysaccharides were negatively correlated with the covered distance. Bifidobacterium and Lactobacillus decreased in controls, whereas Oscillospira and Ruminococcus increased in the wheel group. Fecal propionate and butyrate were also higher in the wheel group. In conclusion, spontaneous physical activity promotes healthy gut microbiota composition changes and increases short-chain fatty acids in CEABAC10 mice fed a Western diet and exposed to AIEC to mimic Crohn’s disease.
Collapse
|
358
|
Li X, Wang H, Wang T, Zheng F, Wang H, Wang C. Dietary wood pulp-derived sterols modulation of cholesterol metabolism and gut microbiota in high-fat-diet-fed hamsters. Food Funct 2019; 10:775-785. [DOI: 10.1039/c8fo02271b] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wood pulp-derived sterols (WS) supplementation ameliorated HFD-associated metabolic disorder; WS supplementation increased the amounts of fecal sterols excretion and SCFAs content; WS supplementation modulated gut microbiota composition.
Collapse
Affiliation(s)
- Xiang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
- Beijing Laboratory of Food Quality and Safety
| | - Huali Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology (TUST)
- Tianjin 300457
- China
| | - Tianxin Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology (TUST)
- Tianjin 300457
- China
| | - Fuping Zheng
- Beijing Laboratory of Food Quality and Safety
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Hao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
- State Key Laboratory of Food Nutrition and Safety
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| |
Collapse
|
359
|
Chen WL, Tang SGH, Jahromi MF, Candyrine SCL, Idrus Z, Abdullah N, Liang JB. Metagenomics analysis reveals significant modulation of cecal microbiota of broilers fed palm kernel expeller diets. Poult Sci 2019; 98:56-68. [DOI: 10.3382/ps/pey366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
|
360
|
Lieber AD, Beier UH, Xiao H, Wilkins BJ, Jiao J, Li XS, Schugar RC, Strauch CM, Wang Z, Brown JM, Hazen SL, Bokulich NA, Ruggles KV, Akimova T, Hancock WW, Blaser MJ. Loss of HDAC6 alters gut microbiota and worsens obesity. FASEB J 2019; 33:1098-1109. [PMID: 30102568 PMCID: PMC6355060 DOI: 10.1096/fj.201701586r] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 07/23/2018] [Indexed: 01/09/2023]
Abstract
Alterations in gut microbiota are known to affect intestinal inflammation and obesity. Antibiotic treatment can affect weight gain by elimination of histone deacetylase (HDAC) inhibitor-producing microbes, which are anti-inflammatory by augmenting regulatory T (Treg) cells. We asked whether mice that lack HDAC6 and have potent suppressive Treg cells are protected from microbiota-induced accelerated weight gain. We crossed wild-type and HDAC6-deficient mice and subjected the offspring to perinatal penicillin, inducing weight gain via microbiota disturbance. We observed that male HDAC6-deficient mice were not protected and developed profoundly accelerated weight gain. The antibiotic-exposed HDAC6-deficient mice showed a mixed immune phenotype with increased CD4+ and CD8+ T-cell activation yet maintained the enhanced Treg cell-suppressive function phenotype characteristic of HDAC6-deficient mice. 16S rRNA sequencing of mouse fecal samples reveals that their microbiota diverged with time, with HDAC6 deletion altering microbiome composition. On a high-fat diet, HDAC6-deficient mice were depleted in representatives of the S24-7 family and Lactobacillus but enriched with Bacteroides and Parabacteroides; these changes are associated with obesity. Our findings further our understanding of the influence of HDACs on microbiome composition and are important for the development of HDAC6 inhibitors in the treatment of human diseases.-Lieber, A. D., Beier, U. H., Xiao, H., Wilkins, B. J., Jiao, J., Li, X. S., Schugar, R. C., Strauch, C. M., Wang, Z., Brown, J. M., Hazen, S. L., Bokulich, N. A., Ruggles, K. V., Akimova, T., Hancock, W. W., Blaser, M. J. Loss of HDAC6 alters gut microbiota and worsens obesity.
Collapse
Affiliation(s)
- Arnon D. Lieber
- Department of Medicine New York University School of Medicine (NYUSM), New York, New York, USA
- Department of Microbiology, New York University School of Medicine (NYUSM), New York, New York, USA
| | - Ulf H. Beier
- Division of Nephrology, Department of Pediatrics University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Haiyan Xiao
- Division of Nephrology, Department of Pediatrics University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin J. Wilkins
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Jiao
- Division of Nephrology, Department of Pediatrics University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinmin S. Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rebecca C. Schugar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher M. Strauch
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - J. Mark Brown
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stanley L. Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas A. Bokulich
- Department of Medicine New York University School of Medicine (NYUSM), New York, New York, USA
- Department of Microbiology, New York University School of Medicine (NYUSM), New York, New York, USA
| | - Kelly V. Ruggles
- Applied Bioinformatics Laboratories, New York University School of Medicine (NYUSM), New York, New York, USA
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine (NYUSM), New York, New York, USA
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Biesecker Center for Pediatric Liver Disease, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Biesecker Center for Pediatric Liver Disease, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Martin J. Blaser
- Department of Medicine New York University School of Medicine (NYUSM), New York, New York, USA
- Department of Microbiology, New York University School of Medicine (NYUSM), New York, New York, USA
- New York Harbor Department of Veterans Affairs Medical Center, New York, New York, USA
| |
Collapse
|
361
|
de la Cuesta-Zuluaga J, Mueller NT, Álvarez-Quintero R, Velásquez-Mejía EP, Sierra JA, Corrales-Agudelo V, Carmona JA, Abad JM, Escobar JS. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients 2018; 11:E51. [PMID: 30591685 PMCID: PMC6356834 DOI: 10.3390/nu11010051] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
Fiber fermentation by gut microbiota yields short-chain fatty acids (SCFAs) that are either absorbed by the gut or excreted in feces. Studies are conflicting as to whether SCFAs are beneficial or detrimental to cardiometabolic health, and how gut microbiota associated with SCFAs is unclear. In this study of 441 community-dwelling adults, we examined associations of fecal SCFAs, gut microbiota diversity and composition, gut permeability, and cardiometabolic outcomes, including obesity and hypertension. We assessed fecal microbiota by 16S rRNA gene sequencing, and SCFA concentrations by gas chromatography/mass spectrometry. Fecal SCFA concentrations were inversely associated with microbiota diversity, and 70 unique microbial taxa were differentially associated with at least one SCFA (acetate, butyrate or propionate). Higher SCFA concentrations were associated with a measure of gut permeability, markers of metabolic dysregulation, obesity and hypertension. Microbial diversity showed association with these outcomes in the opposite direction. Associations were significant after adjusting for measured confounders. In conclusion, higher SCFA excretion was associated with evidence of gut dysbiosis, gut permeability, excess adiposity, and cardiometabolic risk factors. Studies assessing both fecal and circulating SCFAs are needed to test the hypothesis that the association of higher fecal SCFAs with obesity and cardiometabolic dysregulation is due to less efficient SCFA absorption.
Collapse
Affiliation(s)
- Jacobo de la Cuesta-Zuluaga
- Vidarium⁻Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur #50-67, 050023 Medellin, Colombia.
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
- Welch Center for Epidemiology, Prevention and Clinical Research, Johns Hopkins Medical Institutions, 2024 E. Monument Street, Baltimore, MD 21205, USA.
| | - Rafael Álvarez-Quintero
- Grupo de Investigación en Sustancias Bioactivas, Sede de Investigación Universitaria (SIU), Universidad de Antioquia, Calle 62 #52-59, 050010 Medellin, Colombia.
| | - Eliana P Velásquez-Mejía
- Vidarium⁻Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur #50-67, 050023 Medellin, Colombia.
| | - Jelver A Sierra
- Vidarium⁻Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur #50-67, 050023 Medellin, Colombia.
| | - Vanessa Corrales-Agudelo
- Vidarium⁻Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur #50-67, 050023 Medellin, Colombia.
| | - Jenny A Carmona
- Dinámica IPS, Especialista en Ayudas Diagnósticas, Calle 27 #45-109, 050021 Medellin, Colombia.
| | - José M Abad
- EPS SURA, Calle 49A #63-55, 050034 Medellin, Colombia.
| | - Juan S Escobar
- Vidarium⁻Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur #50-67, 050023 Medellin, Colombia.
| |
Collapse
|
362
|
Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets. Sci Rep 2018; 8:18068. [PMID: 30584255 PMCID: PMC6305375 DOI: 10.1038/s41598-018-33649-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
Weaned piglets are vulnerable to nutritional, physiological, and psychological stressors, leading to abrupt taxonomic and functional shifts in the intestinal microbiome. In this study, an integrated approach combination of 16S rDNA gene sequencing and the mass spectrometry-based metabolomics techniques was used to investigate the effects of weaning stress on intestinal microbial composition and its metabolic profiles of piglets. Three litters of suckling piglets with same parity were chosen. The samples of colonic contents were collected from each selected piglets (weaned day, 3 days after weaned) for microbial and metabolomics analysis. The results showed that Lachnospiraceae, Negativicutes, Selenomonadales, Campylobacterales and other 15 species increased after weaning, while Porphyromonadaceace, Alloprevotella, Barnesiella and Oscillibacter decreased. Based on the function profiles prediction and metabolomic analysis, five key metabolic pathways including Phenylalanine metabolism, Citrate cycle (TCA cycle), Glycolysis or Gluconeogenesis, Propanoate metabolism, Nicotinate and nicotinamide metabolism might be the relevant pathways involved in weaning stress-induced gut microbiota dysbiosis. Taken together, these results indicated that weaning stress not only changed microbial composition and function but altered the microbial metabolic profiles in the intestine, which might provide a new insight in alleviating weaning stress and facilitating disease prevention during the period of weaning in piglets.
Collapse
|
363
|
Chen R, Wu P, Cai Z, Fang Y, Zhou H, Lasanajak Y, Tang L, Ye L, Hou C, Zhao J. Puerariae Lobatae Radix with chuanxiong Rhizoma for treatment of cerebral ischemic stroke by remodeling gut microbiota to regulate the brain-gut barriers. J Nutr Biochem 2018; 65:101-114. [PMID: 30710886 DOI: 10.1016/j.jnutbio.2018.12.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
The combination of Puerariae Lobatae Radix (PLR) and Chuanxiong Rhizoma (CXR) is commonly used to treat cerebrovascular diseases. This work aimed to clarify the mechanisms of their action in treating cerebral ischemic stroke from the perspective of gut microecology. The PLR and CXR combination effectively improved the neurological function, reduced the cerebral infarction and relieved the complications of cerebral ischemic stroke, including dyslipidemia, increased blood viscosity and thrombotic risk. Cerebral ischemic stroke triggered gut microbial disturbances by enriching pathogens and opportunistic microorganisms, including Bacteroides, Escherichia_Shigella, Haemophilus, Eubacterium_nodatum_group, Collinsella, Enterococcus, Proteus, Alistipes, Klebsiella, Shuttleworthia and Faecalibacterium. Cerebral ischemic stroke also increased the intestinal permeability, disrupted the gut barrier and caused intestinal microbial translocation. Occludin, claudin-5 and ZO-1 levels in the brain-gut barriers showed a high positive correlation. However, the combination remodeled the gut microecology by modulating endogenous bacteria whose effects may mitigate cerebral damage, such as Alloprevotella, Ruminococcaceae, Oscillospira, Lachnospiraceae_NK4B4_group, Akkermansia and Megasphaera, protected the brain-gut barriers by increasing claudin-5 and ZO-1 levels; and weakened the gut microbiota translocation by decreasing diamine oxidase, lipopolysaccharide and d-lactate. Although nimodipine effectively reduced the cerebral infarction, it did not relieve the gut microbiota dysbiosis and instead aggravated the gut barrier disruption and microbiota translocation. In conclusion, cerebral ischemic stroke caused gut microbiota dysbiosis, increased intestinal permeability, disrupted the gut barrier and triggered gut microbiota translocation. The PLR and CXR combination was an effective treatment for cerebral ischemic stroke that relieved the gut microbiota dysbiosis and brain-gut barriers disruption.
Collapse
Affiliation(s)
- Runzhi Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheng Cai
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yingying Fang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao Zhou
- Department of Hospital Infection Management of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Lasanajak
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lan Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chuqi Hou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
364
|
Barone F, Laghi L, Gianotti A, Ventrella D, Saa DLT, Bordoni A, Forni M, Brigidi P, Bacci ML, Turroni S. In Vivo Effects of Einkorn Wheat (Triticum monococcum) Bread on the Intestinal Microbiota, Metabolome, and on the Glycemic and Insulinemic Response in the Pig Model. Nutrients 2018; 11:16. [PMID: 30577558 PMCID: PMC6356388 DOI: 10.3390/nu11010016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023] Open
Abstract
Einkorn wheat (Triticum monococcum) is characterized by high content of proteins, bioactive compounds, such as polyunsaturated fatty acids, fructans, tocols, carotenoids, alkylresorcinols, and phytosterols, and lower α-, β-amylase and lipoxygenase activities compared to polyploid wheat. These features make einkorn flour a good candidate to provide healthier foods. In the present study, we investigated the effects of einkorn bread (EB) on the intestinal physiology and metabolism of the pig model by characterizing the glycemic and insulinemic response, and the microbiota and metabolome profiles. Sixteen commercial hybrid pigs were enrolled in the study; four pigs were used to characterize postprandial glycemic and insulinemic responses and twelve pigs underwent a 30-day dietary intervention to assess microbiota and metabolome changes after EB or standard wheat bread (WB) consumption. The postprandial insulin rise after an EB meal was characterized by a lower absolute level, and, as also observed for glucose, by a biphasic shape in contrast to that in response to a WB meal. The consumption of EB led to enrichment in short-chain fatty acid producers (e.g., Blautia, Faecalibacterium, and Oscillospira) in the gut microbiota and to higher metabolic diversity with lower content of succinate, probably related to improved absorption and therefore promoting intestinal gluconeogenesis. The observed changes, at both a compositional and metabolic scale, strongly suggest that EB consumption may support a health-promoting configuration of the intestinal ecosystem.
Collapse
Affiliation(s)
- Francesca Barone
- Department of Veterinary Medical Science, University of Bologna, 40064 Ozzano dell'Emilia, Italy.
| | - Luca Laghi
- Department of Agro-Food Science and Technology, University of Bologna, 47521 Cesena, Italy.
| | - Andrea Gianotti
- Department of Agro-Food Science and Technology, University of Bologna, 47521 Cesena, Italy.
| | - Domenico Ventrella
- Department of Veterinary Medical Science, University of Bologna, 40064 Ozzano dell'Emilia, Italy.
| | | | - Alessandra Bordoni
- Department of Agro-Food Science and Technology, University of Bologna, 47521 Cesena, Italy.
| | - Monica Forni
- Department of Veterinary Medical Science, University of Bologna, 40064 Ozzano dell'Emilia, Italy.
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Maria Laura Bacci
- Department of Veterinary Medical Science, University of Bologna, 40064 Ozzano dell'Emilia, Italy.
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
365
|
Taniguchi H, Tanisawa K, Sun X, Kubo T, Hoshino Y, Hosokawa M, Takeyama H, Higuchi M. Effects of short-term endurance exercise on gut microbiota in elderly men. Physiol Rep 2018; 6:e13935. [PMID: 30536648 PMCID: PMC6286434 DOI: 10.14814/phy2.13935] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Regular exercise reduces the risks for cardiovascular diseases. Although the gut microbiota has been associated with fitness level and cardiometabolic risk factors, the effects of exercise-induced gut microbiota changes in elderly individuals are unclear. This study evaluated whether endurance exercise modulates the gut microbiota in elderly subjects, and whether these changes are associated with host cardiometabolic phenotypes. In a randomized crossover trial, 33 elderly Japanese men participated in a 5-week endurance exercise program. 16S rRNA gene-based metagenomic analyses revealed that the effect of endurance exercise on gut microbiota diversity was not greater than interindividual differences, whereas changes in α-diversity indices during intervention were negatively correlated with changes in systolic and diastolic blood pressure, especially during exercise. Microbial composition analyses showed that the relative abundance of Clostridium difficile significantly decreased, whereas that of Oscillospira significantly increased during exercise as compared to the control period. The changes in these taxa were correlated with the changes in several cardiometabolic risk factors. The findings indicate that short-term endurance exercise has little effect on gut microbiota in elderly individuals, and that the changes in gut microbiota were associated with cardiometabolic risk factors, such as systolic and diastolic blood pressure, providing preliminary insight into the associations between the gut microbiota and cardiometabolic phenotypes.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Kumpei Tanisawa
- Department of Physical Activity ResearchNational Institutes of Biomedical InnovationHealth and NutritionTokyoJapan
- Research Fellow of Japan Society for the Promotion of ScienceTokyoJapan
- Institute of Advanced Active Aging ResearchTokorozawaJapan
| | - Xiaomin Sun
- Department of Nutrition and Food SafetySchool of Public HealthXi’ an Jiaotong UniversityXi'anChina
- Global Health InstituteXi'an Jiaotong University Health Science CenterXi'anChina
- Faculty of Sport SciencesWaseda UniversityTokorozawaJapan
| | - Takafumi Kubo
- Graduate School of Sport SciencesWaseda UniversityTokorozawaJapan
| | - Yuri Hoshino
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Masahito Hosokawa
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Haruko Takeyama
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Mitsuru Higuchi
- Institute of Advanced Active Aging ResearchTokorozawaJapan
- Faculty of Sport SciencesWaseda UniversityTokorozawaJapan
| |
Collapse
|
366
|
Abstract
The objective of this study was to investigate the impact of the most commonly cited factors that may have influenced infants' gut microbiota profiles at one year of age: mode of delivery, breastfeeding duration and antibiotic exposure. Barcoded V3/V4 amplicons of bacterial 16S-rRNA gene were prepared from the stool samples of 52 healthy 1-year-old Australian children and sequenced using the Illumina MiSeq platform. Following the quality checks, the data were processed using the Quantitative Insights Into Microbial Ecology pipeline and analysed using the Calypso package for microbiome data analysis. The stool microbiota profiles of children still breastfed were significantly different from that of children weaned earlier (P<0.05), independent of the age of solid food introduction. Among children still breastfed, Veillonella spp. abundance was higher. Children no longer breastfed possessed a more 'mature' microbiota, with notable increases of Firmicutes. The microbiota profiles of the children could not be differentiated by delivery mode or antibiotic exposure. Further analysis based on children's feeding patterns found children who were breastfed alongside solid food had significantly different microbiota profiles compared to that of children who were receiving both breastmilk and formula milk alongside solid food. This study provided evidence that breastfeeding continues to influence gut microbial community even at late infancy when these children are also consuming table foods. At this age, any impacts from mode of delivery or antibiotic exposure did not appear to be discernible imprints on the microbial community profiles of these healthy children.
Collapse
|
367
|
Petriello MC, Hoffman JB, Vsevolozhskaya O, Morris AJ, Hennig B. Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1022-1032. [PMID: 30373033 PMCID: PMC6211811 DOI: 10.1016/j.envpol.2018.07.039] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 05/18/2023]
Abstract
The gut microbiome is sensitive to diet and environmental exposures and is involved in the regulation of host metabolism. Additionally, gut inflammation is an independent risk factor for the development of metabolic diseases, specifically atherosclerosis and diabetes. Exposures to dioxin-like pollutants occur primarily via ingestion of contaminated foods and are linked to increased risk of developing cardiometabolic diseases. We aimed to elucidate the detrimental impacts of dioxin-like pollutant exposure on gut microbiota and host gut health and metabolism in a mouse model of cardiometabolic disease. We utilized 16S rRNA sequencing, metabolomics, and regression modeling to examine the impact of PCB 126 on the microbiome and host metabolism and gut health. 16S rRNA sequencing showed that gut microbiota populations shifted at the phylum and genus levels in ways that mimic observations seen in chronic inflammatory diseases. PCB 126 reduced cecum alpha diversity (0.60 fold change; p = 0.001) and significantly increased the Firmicutes to Bacteroidetes ratio (1.63 fold change; p = 0.044). Toxicant exposed mice exhibited quantifiable concentrations of PCB 126 in the colon, upregulation of Cyp1a1 gene expression, and increased markers of intestinal inflammation. Also, a significant correlation between circulating Glucagon-like peptide-1 (GLP-1) and Bifidobacterium was evident and dependent on toxicant exposure. PCB 126 exposure disrupted the gut microbiota and host metabolism and increased intestinal and systemic inflammation. These data imply that the deleterious effects of dioxin-like pollutants may be initiated in the gut, and the modulation of gut microbiota may be a sensitive marker of pollutant exposures.
Collapse
Affiliation(s)
- Michael C Petriello
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Jessie B Hoffman
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, USA
| | - Olga Vsevolozhskaya
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Andrew J Morris
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
368
|
The critical role of dietary foliage in maintaining the gut microbiome and metabolome of folivorous sifakas. Sci Rep 2018; 8:14482. [PMID: 30262842 PMCID: PMC6160417 DOI: 10.1038/s41598-018-32759-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/13/2018] [Indexed: 12/22/2022] Open
Abstract
The gut microbiome (GMB) of folivores metabolizes dietary fiber into nutrients, including short-chain fatty acids (SCFAs); however, experiments probing the consequences of foliage quality on host GMBs are lacking. We therefore examined GMB structure and function via amplicon sequencing and Nuclear Magnetic Resonance spectroscopy in 31 captive sifakas (Propithecus coquereli) during dietary manipulations associated with husbandry. Supplementing standard diets with diverse foliage blends, versus with a single plant species, promoted more diverse GMBs, enriched for taxa implicated in plant-fiber metabolism, but depleted in taxa implicated in starch metabolism and bile tolerance. The consumption of diverse blends was associated with greater concentrations of colonic SCFAs. Abundant foliage, via forest access, promoted compositionally distinct and more stable GMBs, but reduced concentrations of SCFAs, possibly reflecting selection of high-quality leaves. In 11 subjects denied forest access, we examined the temporal pace of microbial shifts when supplemental foliage was abruptly switched between diverse blends and single species. The sifaka GMB responded within days, with community diversity and composition closely tracking foliage diversity. By providing experimental evidence that the folivore GMB is sensitive to minor changes in dietary foliage, we reveal the fragility of specialist GMBs, with implications for managing the wellbeing of endangered wildlife.
Collapse
|
369
|
Arrazuria R, Pérez V, Molina E, Juste RA, Khafipour E, Elguezabal N. Diet induced changes in the microbiota and cell composition of rabbit gut associated lymphoid tissue (GALT). Sci Rep 2018; 8:14103. [PMID: 30237566 PMCID: PMC6148544 DOI: 10.1038/s41598-018-32484-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
The gut associated lymphoid tissue (GALT) is the largest immune organ of the body. Although the gut transient and mucosa-associated microbiota have been largely studied, the microbiota that colonizes the GALT has received less attention. The gut microbiome plays an important role in competitive exclusion of pathogens and in development and maturation of immunity. Diet is a key factor affecting the microbiota composition in the digestive tract. To investigate the relation between diet, microbiota and GALT, microbial and cell composition of vermiform appendix (VA) and sacculus rotundus (SR) were studied in two groups of New Zealand white rabbits on different diets. Diet shifted the lymphoid tissue microbiota affecting the presence and/or absence of certain taxa and their abundances. Immunohistochemistry revealed that a higher fibre content diet resulted in M cell hyperplasia and an increase of recently recruited macrophages, whereas T-cell levels remained unaltered in animals on both high fibre and standard diets. These findings indicate that diet has an impact on the microbiota and cell composition of the GALT, which could act as an important microbial recognition site where interactions with beneficial bacteria can take place favouring microbiota replacement after digestive dysregulations.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Valentín Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, University of Leon, Leon, Spain
| | - Elena Molina
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Ramón A Juste
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.,SERIDA, Agri-food Research and Development Regional Service, Villaviciosa, Asturias, Spain
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Natalia Elguezabal
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.
| |
Collapse
|
370
|
Cheng C, Wei H, Yu H, Xu C, Jiang S, Peng J. Metabolic Syndrome During Perinatal Period in Sows and the Link With Gut Microbiota and Metabolites. Front Microbiol 2018; 9:1989. [PMID: 30197635 PMCID: PMC6117386 DOI: 10.3389/fmicb.2018.01989] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/07/2018] [Indexed: 01/18/2023] Open
Abstract
In humans, the metabolic and immune changes occurring during perinatal period also describe metabolic syndrome. Gut microbiota can cause symptoms of metabolic syndrome in pregnant women. Increased gut permeability is also involved in metabolic disorders in non-pregnant hosts. However, longitudinal studies investigating the changes in metabolic characteristics, gut microbiota, and gut permeability of sows throughout pregnancy and lactation are lacking. The correlation between gut microbiota and metabolic status of sows is also poorly known. The present study was conducted to investigate the temporal variations in sow metabolic characteristics, gut microbiota, gut permeability, and gut inflammation at days 30 (G30) and 109 (G109) of gestation and days 3 (L3) and 14 (L14) of lactation. Results showed that insulin sensitivity was decreased in L3. Circulating concentrations of pro-inflammatory cytokine IL-6 increased in G109 and L3. 16S rRNA gene sequencing of the V3-V4 region showed that gut microbiota changed dramatically across different reproductive stages. The bacterial abundance and alpha diversity in L3 were the lowest. The phyla Proteobacteria and Fusobacteria exhibited the highest relative abundance in L3. Among the genera, Bacteroides, Escherichia_Shigella, and Fusobacterium were highest, but Oscillospira the lowest, in relative abundance in L3. The fecal levels of acetate and total short-chain fatty acids were increased in G109, but fecal butyrate concentrations were markedly decreased in L3. The plasma zonulin concentrations, a biomarker for gut permeability, were increased in G109 and L3. The plasma endotoxin concentrations were increased in L3. Furthermore, levels of fecal lipocalin-2 and pro-inflammatory cytokines IL-6 and TNF-α were increased in G109 and L3. In contrast, fecal levels of anti-inflammatory cytokine IL-10 were significantly decreased in G109 and L3. Additionally, the increased relative abundances of Fusobacterium in L3 were positively correlated with plasma zonulin and fecal endotoxin but negatively correlated with fecal IL-10. These findings indicate that the mother sow exhibits a metabolic syndrome and dramatical changes in gut microbiota during perinatal period, especially in early lactation. Besides, increased gut permeability and plasma endotoxin concentrations caused by negative microbial changes would possibly be the potential mechanisms under which sow’s metabolic disorders and inflammatory status were exacerbated during early lactation.
Collapse
Affiliation(s)
- Chuanshang Cheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huichao Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chuanhui Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Siwen Jiang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
371
|
Zhou J, Tang L, Shen CL, Wang JS. Green tea polyphenols modify gut-microbiota dependent metabolisms of energy, bile constituents and micronutrients in female Sprague-Dawley rats. J Nutr Biochem 2018; 61:68-81. [PMID: 30189365 DOI: 10.1016/j.jnutbio.2018.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/09/2018] [Accepted: 07/25/2018] [Indexed: 12/26/2022]
Abstract
Our recent metagenomics analysis has uncovered remarkable modifying effects of green tea polyphenols (GTP) on gut-microbiota community structure and energy conversion related gene orthologs in rats. How these genomic changes could further influence host health is still unclear. In this work, the alterations of gut-microbiota dependent metabolites were studied in the GTP-treated rats. Six groups of female SD rats (n=12/group) were administered drinking water containing 0%, 0.5%, and 1.5% GTP (wt/vol). Their gut contents were collected at 3 and 6 months and were analyzed via high performance liquid chromatography (HPLC) and gas chromatography (GC)-mass spectrometry (MS). GC-MS based metabolomics analysis captured 2668 feature, and 57 metabolites were imputatively from top 200 differential features identified via NIST fragmentation database. A group of key metabolites were quantitated using standard calibration methods. Compared with control, the elevated components in the GTP-treated groups include niacin (8.61-fold), 3-phenyllactic acid (2.20-fold), galactose (3.13-fold), mannose (2.05-fold), pentadecanoic acid (2.15-fold), lactic acid (2.70-fold), and proline (2.15-fold); the reduced components include cholesterol (0.29-fold), cholic acid (0.62-fold), deoxycholic acid (0.41-fold), trehalose (0.14-fold), glucose (0.46-fold), fructose (0.12-fold), and alanine (0.61-fold). These results were in line with the genomic alterations of gut-microbiome previously discovered by metagenomics analysis. The alterations of these metabolites suggested the reduction of calorific carbohydrates, elevation of vitamin production, decreases of bile constituents, and modified metabolic pattern of amino acids in the GTP-treated animals. Changes in gut-microbiota associated metabolism may be a major contributor to the anti-obesity function of GTP.
Collapse
Affiliation(s)
- Jun Zhou
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602.
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602.
| | - Chwan-Li Shen
- Department of Pathology, Texas Technology University Health Sciences Center, Lubbock, TX 79430.
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
372
|
Ganoderma lucidum polysaccharide alleviating colorectal cancer by alteration of special gut bacteria and regulation of gene expression of colonic epithelial cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
373
|
Lu L, Wan Z, Luo T, Fu Z, Jin Y. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:449-458. [PMID: 29529433 DOI: 10.1016/j.scitotenv.2018.03.051] [Citation(s) in RCA: 594] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
Microplastic (MP) has become a concerning global environmental problem. It is toxic to aquatic organisms and can spread through the food chain to ultimately pose a threat to humans. In the environment, MP can interact with microbes and act as a microbial habitat. However, effects of polystyrene MP on the gut microbiota in mammals remain unclear. Here, male mice were exposed to two different sizes of polystyrene MP for 5 weeks to explore its effect. We observed that oral exposure to 1000 μg/L of 0.5 and 50 μm polystyrene MP decreased the body, liver and lipid weights in mice. Mucus secretion in the gut decreased in both sizes of polystyrene MP-treated groups. Regarding the gut microbiota, at the phylum level, polystyrene MP exposure decreased the relative abundances of Firmicutes and α-Proteobacteria in the feces. Furthermore, high throughput sequencing of the V3-V4 region of the 16S rRNA gene revealed significant changes in the richness and diversity of the gut microbiota in the cecums of polystyrene MP-treated mice. At the genus level, a total of 6 and 8 types of bacteria changed in the 0.5 and 50 μm polystyrene MP-treated groups, respectively. Furthermore, an operational taxonomic unit (OTU) analysis identified that 310 and 160 gut microbes were changed in the 0.5 and 50 μm polystyrene MP-treated groups, respectively. In addition, the hepatic triglyceride (TG) and total cholesterol (TCH) levels decreased in both 1000 μg/L 0.5 and 50 μm polystyrene MP-treated groups. Correspondingly, the relative mRNA levels of some key genes related to lipogenesis and TG synthesis decreased in the liver and epididymal fat. These results indicated that polystyrene MP could modify the gut microbiota composition and induce hepatic lipid disorder in mice; while the mouse is a common mammal model, consequently, the health risks of MP to animals should not be ignored.
Collapse
Affiliation(s)
- Liang Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhiqin Wan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
374
|
Stanislawski MA, Lozupone CA, Wagner BD, Eggesbø M, Sontag MK, Nusbacher N, Martinez M, Dabelea D. Gut microbiota in adolescents and the association with fatty liver: the EPOCH study. Pediatr Res 2018; 84. [PMID: 29538359 PMCID: PMC6185796 DOI: 10.1038/pr.2018.32] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent evidence supports that the gut microbiota may be involved in the pathophysiology of non-alcoholic fatty liver disease (NAFLD), and may also offer avenues for treatment or prevention. METHODS We investigated the associations among gut microbiota, diet, and hepatic fat fraction (HFF) in 107 adolescents. Magnetic resonance imaging (MRI) was used to assess HFF, and 16S rRNA gene sequencing was performed on collected fecal samples. Dietary intake was assessed using Food Frequency Questionnaires. We examined the association between gut microbiota alpha diversity and HFF, and assessed the predictive accuracy for HFF of (1) taxonomic composition, (2) dietary intake, (3) demographic and comorbid conditions, and (4) the combination of these. RESULTS Lower alpha diversity was associated with higher HFF (β=-0.19, 95% confidence interval (CI) -0.36, -0.02). The selected taxa explained 17.7% (95% CI: 16.0-19.4%) of the variation in HFF. The combination of two of these taxa, Bilophila and Paraprevotella, with dietary intake of monounsaturated fatty acids and BMI z-scores explained 32.0% (95% CI: 30.3-33.6%) of the variation in HFF. CONCLUSION The gut microbiota is associated with HFF in adolescents and may be useful to help identify youth who would be amenable to gut microbiota-based interventions.
Collapse
Affiliation(s)
| | | | | | - Merete Eggesbø
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA.
| |
Collapse
|
375
|
Wasimuddin, Brändel SD, Tschapka M, Page R, Rasche A, Corman VM, Drosten C, Sommer S. Astrovirus infections induce age-dependent dysbiosis in gut microbiomes of bats. ISME JOURNAL 2018; 12:2883-2893. [PMID: 30061706 DOI: 10.1038/s41396-018-0239-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/05/2018] [Accepted: 06/30/2018] [Indexed: 02/08/2023]
Abstract
Astroviruses (AstV) are a major cause of diarrhoea in children. Interestingly, some wildlife species, including bats, remain phenotypically asymptomatic after infection. Disease symptoms, however, may only be less visible in bats and enteric viruses may indeed perturb their gut microbial communities. Gut microbiomes represent an important driver of immune defence mechanisms but potential effects of enteric virus-host microbiome interactions are largely unexplored. Using bats as a natural model system, we show that AstV-infections affect the gut microbiome, with the strength of the effect depending on host age. The gut microbial α- and β-diversity and the predicted microbial functional orthologs decreased in young bats but surprisingly increased in adult AstV + bats. The abundance of bacterial taxa characteristic for healthy microbiomes was strongly reduced in young AstV+ bats, possibly attributable to their immature immune system. Regardless of age, pathogen-containing genera exhibited negative interactions with several commensal taxa and increased after AstV-infection, leading to pathobiont-like shifts in the gut microbiome of all infected bats. Thus, in apparently healthy bats, AstV-infections disturb gut bacterial homeostasis, possibly increasing previously suppressed health risks by promoting co-infections. If similar processes are present in humans, the effects of enteric virus infections might have longer-term impacts extending beyond the directly observed symptoms.
Collapse
Affiliation(s)
- Wasimuddin
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, Ulm, D-89069, Germany
| | - Stefan Dominik Brändel
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, Ulm, D-89069, Germany.,Smithsonian Tropical Research Institute, Ancon, Apartado, Balboa, Panama, 0843-03092, Republic of Panama
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, Ulm, D-89069, Germany.,Smithsonian Tropical Research Institute, Ancon, Apartado, Balboa, Panama, 0843-03092, Republic of Panama
| | - Rachel Page
- Smithsonian Tropical Research Institute, Ancon, Apartado, Balboa, Panama, 0843-03092, Republic of Panama
| | - Andrea Rasche
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate member of Free University, Humboldt-University and Berlin Institute of Health, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate member of Free University, Humboldt-University and Berlin Institute of Health, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate member of Free University, Humboldt-University and Berlin Institute of Health, Berlin, Germany.,German Centre for Infection Research (DZIF), Berlin, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, Ulm, D-89069, Germany.
| |
Collapse
|
376
|
de la Cuesta-Zuluaga J, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, Escobar JS. Gut microbiota is associated with obesity and cardiometabolic disease in a population in the midst of Westernization. Sci Rep 2018; 8:11356. [PMID: 30054529 PMCID: PMC6063892 DOI: 10.1038/s41598-018-29687-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Westernization and its accompanying epidemiological transitions are associated with changes in gut microbiota. While the extremes of this lifestyle spectrum have been compared (hunter-gatherers, industrialized countries), populations undergoing such shifts have received little attention. To fill the gap of knowledge about the microbiome evolution following broad lifestyle changes and the emergence of disease-associated dysbiosis, we performed a cross-sectional study in which we characterized the microbiota of 441 Colombian adults through 16S rRNA gene sequencing and determined its relationship with demographic, health-related and dietary parameters. We showed that in the gut microbiota of this cohort thrive taxa proper of both hunter-gatherers (Prevotella, Treponema) and citizens of industrialized countries (Bacteroides, Bifidobacterium, Barnesiella); the relative abundances of these taxa differed from those in Western and non-Western populations. We also showed that the Colombian gut microbiota is composed of five consortia of co-abundant microorganisms that are differentially associated with lifestyle, obesity and cardiometabolic disease, and highlighted metabolic pathways that might explain associations between microbiota and host health. Our results give insights into the evolution of the gut microbiota, and underscore the importance of this community to human health. Promoting the growth of specific microbial consortia could help ameliorating physiological conditions associated with Western lifestyles.
Collapse
Affiliation(s)
- Jacobo de la Cuesta-Zuluaga
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur 50-67, 050023, Medellin, Colombia.,Max Planck Institute for Developmental Biology-Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Vanessa Corrales-Agudelo
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur 50-67, 050023, Medellin, Colombia
| | - Eliana P Velásquez-Mejía
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur 50-67, 050023, Medellin, Colombia
| | - Jenny A Carmona
- Dinámica IPS-Especialista en Ayudas Diagnósticas, Calle 27 45-109, 050021, Medellin, Colombia.,SURA Colombia, Medellin, Colombia
| | - José M Abad
- EPS SURA, Calle 49A 63-55, 050034, Medellin, Colombia
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Calle 8 sur 50-67, 050023, Medellin, Colombia.
| |
Collapse
|
377
|
Makioka Y, Tsukahara T, Ijichi T, Inoue R. Oral supplementation of Bifidobacterium longum strain BR-108 alters cecal microbiota by stimulating gut immune system in mice irrespectively of viability. Biosci Biotechnol Biochem 2018; 82:1180-1187. [DOI: 10.1080/09168451.2018.1451738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Effect on cecal microbiota and gene expression of various cytokines in ileal Peyer’s patches and cecal tissues were compared between viable and heat-killed Bifidobacterium longum strain BR-108 (BR-108) using a mouse model. Irrespectively of viability, oral supplementation of BR-108 altered the cecal microbiota and stimulated gene expression of cytokines such as IL-6 and IL-10 in ileal Peyer’s patches and cecal tissue of mice. In addition, BR-108 supplementation significantly affected the relative abundance of bacterial genera and family, Oscillospira, Bacteroides and S24-7. The abundance of these bacterial genera and family strongly correlated with gene expression induced by BR-108. This study demonstrated that the effect of heat-killed BR-108 on the mouse cecal microbiota is similar to that of viable BR-108, most likely due to stimulation of the gut immune system by both heat-killed and viable BR-108 is also similar.
Collapse
Affiliation(s)
- Yuko Makioka
- Functional Foods, Combi Corporation , Saitama, Japan
| | | | - Tetsuo Ijichi
- Functional Foods, Combi Corporation , Saitama, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University , Kyoto, Japan
| |
Collapse
|
378
|
Peters BA, Shapiro JA, Church TR, Miller G, Trinh-Shevrin C, Yuen E, Friedlander C, Hayes RB, Ahn J. A taxonomic signature of obesity in a large study of American adults. Sci Rep 2018; 8:9749. [PMID: 29950689 PMCID: PMC6021409 DOI: 10.1038/s41598-018-28126-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Animal models suggest that gut microbiota contribute to obesity; however, a consistent taxonomic signature of obesity has yet to be identified in humans. We examined whether a taxonomic signature of obesity is present across two independent study populations. We assessed gut microbiome from stool for 599 adults, by 16S rRNA gene sequencing. We compared gut microbiome diversity, overall composition, and individual taxon abundance for obese (BMI ≥ 30 kg/m2), overweight (25 ≤ BMI < 30), and healthy-weight participants (18.5 ≤ BMI < 25). We found that gut species richness was reduced (p = 0.04), and overall composition altered (p = 0.04), in obese (but not overweight) compared to healthy-weight participants. Obesity was characterized by increased abundance of class Bacilli and its families Streptococcaceae and Lactobacillaceae, and decreased abundance of several groups within class Clostridia, including Christensenellaceae, Clostridiaceae, and Dehalobacteriaceae (q < 0.05). These findings were consistent across two independent study populations. When random forest models were trained on one population and tested on the other as well as a previously published dataset, accuracy of obesity prediction was good (~70%). Our large study identified a strong and consistent taxonomic signature of obesity. Though our study is cross-sectional and causality cannot be determined, identification of microbes associated with obesity can potentially provide targets for obesity prevention and treatment.
Collapse
Affiliation(s)
- Brandilyn A Peters
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Jean A Shapiro
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Timothy R Church
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - George Miller
- Department of Surgery, New York University School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Chau Trinh-Shevrin
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | | | | | - Richard B Hayes
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Jiyoung Ahn
- Department of Population Health, New York University School of Medicine, New York, NY, USA.
- NYU Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
379
|
Infant and Adult Gut Microbiome and Metabolome in Rural Bassa and Urban Settlers from Nigeria. Cell Rep 2018; 23:3056-3067. [DOI: 10.1016/j.celrep.2018.05.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/25/2018] [Accepted: 05/03/2018] [Indexed: 12/27/2022] Open
|
380
|
Wang J, Tang L, Zhou H, Zhou J, Glenn TC, Shen CL, Wang JS. Long-term treatment with green tea polyphenols modifies the gut microbiome of female sprague-dawley rats. J Nutr Biochem 2018; 56:55-64. [PMID: 29454999 PMCID: PMC6022747 DOI: 10.1016/j.jnutbio.2018.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/01/2017] [Accepted: 01/10/2018] [Indexed: 12/16/2022]
Abstract
Green tea polyphenols (GTP) have been shown to exert a spectrum of health benefits to animals and humans. It is plausible that the beneficial effects of GTP are a result of its interaction with the gut microbiota. This study evaluated the effect of long-term treatment with GTP on the gut microbiota of experimental rats and the potential linkage between changes of the gut microbiota with the beneficial effects of GTP. Six-month-old Sprague-Dawley rats were randomly allocated into three dosing regimens (0, 0.5%, and 1.5% of GTP) and followed for 6 months. At the end of month 3 or month 6, half of the animals from each group were sacrificed and their colon contents were collected for microbiome analysis using 16S ribosomal RNA and shotgun metagenomic community sequencing. GTP treatment significantly decreased the biodiversity and modified the microbial community in a dose-dependent manner; similar patterns were observed at both sampling times. Multiple operational taxonomic units and phylotypes were modified: the phylotypes Bacteroidetes and Oscillospira, previously linked to the lean phenotype in human and animal studies, were enriched; and Peptostreptococcaceae previously linked to colorectal cancer phenotype was depleted in GTP treated groups in a dose-dependent manner. Several microbial gene orthologs were modified, among which genes related to energy production and conversion were consistently enriched in samples from month 6 in a dose-dependent manner. This study showed that long-term treatment with GTP induced a dose-dependent modification of the gut microbiome in experimental rats, which might be linked to beneficial effects of GTP.
Collapse
Affiliation(s)
- Jincheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Hongyuan Zhou
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jun Zhou
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Travis C Glenn
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Chwan-Li Shen
- Department of Pathology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
381
|
Valenzuela MJ, Caruffo M, Herrera Y, Medina DA, Coronado M, Feijóo CG, Muñoz S, Garrido D, Troncoso M, Figueroa G, Toro M, Reyes-Jara A, Magne F, Navarrete P. Evaluating the Capacity of Human Gut Microorganisms to Colonize the Zebrafish Larvae ( Danio rerio). Front Microbiol 2018; 9:1032. [PMID: 29896165 PMCID: PMC5987363 DOI: 10.3389/fmicb.2018.01032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
In this study we evaluated if zebrafish larvae can be colonized by human gut microorganisms. We tested two strategies: (1) through transplantation of a human fecal microbiota and (2) by successively transplanting aerotolerant anaerobic microorganisms, similar to the colonization in the human intestine during early life. We used conventionally raised zebrafish larvae harboring their own aerobic microbiota to improve the colonization of anaerobic microorganisms. The results showed with the fecal transplant, that some members of the human gut microbiota were transferred to larvae. Bacillus, Roseburia, Prevotella, Oscillospira, one unclassified genus of the family Ruminococcaceae and Enterobacteriaceae were detected in 3 days post fertilization (dpf) larvae; however only Bacillus persisted to 7 dpf. Successive inoculation of Lactobacillus, Bifidobacterium and Clostridioides did not improve their colonization, compared to individual inoculation of each bacterial species. Interestingly, the sporulating bacteria Bacillus clausii and Clostridioides difficile were the most persistent microorganisms. Their endospores persisted at least 5 days after inoculating 3 dpf larvae. However, when 5 dpf larvae were inoculated, the proportion of vegetative cells in larvae increased, revealing proliferation of the inoculated bacteria and better colonization of the host. In conclusion, these results suggest that it is feasible to colonize zebrafish larvae with some human bacteria, such as C. difficile and Bacillus and open an interesting area to study interactions between these microorganisms and the host.
Collapse
Affiliation(s)
- Maria-Jose Valenzuela
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Mario Caruffo
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Yoani Herrera
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Daniel A Medina
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Maximo Coronado
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Carmen G Feijóo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Salomé Muñoz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Miriam Troncoso
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Guillermo Figueroa
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Magaly Toro
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Angelica Reyes-Jara
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Fabien Magne
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
382
|
Jin W, Li Y, Cheng Y, Mao S, Zhu W. The bacterial and archaeal community structures and methanogenic potential of the cecal microbiota of goats fed with hay and high-grain diets. Antonie van Leeuwenhoek 2018; 111:2037-2049. [PMID: 29774508 DOI: 10.1007/s10482-018-1096-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/08/2018] [Indexed: 11/26/2022]
Abstract
The cecum plays an important role in the feed fermentation of ruminants. However, information is very limited regarding the cecal microbiota and their methane production. In the present study, the cecal content from twelve local Chinese goats, fed with either a hay diet (0% grain) or a high-grain diet (71.5% grain), were used to investigate the bacterial and archaeal community and their methanogenic potential. Microbial community analysis was determined using high-throughput sequencing of 16S rRNA genes and real-time PCR, and the methanogenesis potential was assessed by in vitro fermentation with ground corn or hay as substrates. Compared with the hay group, the high-grain diet significantly increased the length and weight of the cecum, the proportions of starch and crude protein, the concentrations of volatile fatty acids and ammonia nitrogen, but decreased the pH values (P < 0.05). The high-grain diet significantly increased the abundances of bacteria and archaea (P < 0.05) and altered their community. For the bacterial community, the genera Bifidobacterium, Prevotella, and Treponema were significantly increased in the high-grain group (P < 0.05), while Akkermansia, Oscillospira, and Coprococcus were significantly decreased (P < 0.05). For the archaeal community, Methanosphaera stadtmanae was significantly increased in the high-grain group (P < 0.05), while Methanosphaera sp. ISO3-F5 was significantly decreased (P < 0.05). In the in vitro fermentation with grain as substrate, the cecal microorganisms from the high-grain group produced a significantly higher amount of methane and volatile fatty acids (P < 0.05), and produced significantly lower amount of lactate (P < 0.05). Conclusively, high-grain diet led to more fermentable substrates flowing into the hindgut of goats, resulting in an enhancement of microbial fermentation and methane production in the cecum.
Collapse
Affiliation(s)
- Wei Jin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yin Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
383
|
Microbiome Responses to an Uncontrolled Short-Term Diet Intervention in the Frame of the Citizen Science Project. Nutrients 2018; 10:nu10050576. [PMID: 29738477 PMCID: PMC5986456 DOI: 10.3390/nu10050576] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
Personalized nutrition is of increasing interest to individuals actively monitoring their health. The relations between the duration of diet intervention and the effects on gut microbiota have yet to be elucidated. Here we examined the associations of short-term dietary changes, long-term dietary habits and lifestyle with gut microbiota. Stool samples from 248 citizen-science volunteers were collected before and after a self-reported 2-week personalized diet intervention, then analyzed using 16S rRNA sequencing. Considerable correlations between long-term dietary habits and gut community structure were detected. A higher intake of vegetables and fruits was associated with increased levels of butyrate-producing Clostridiales and higher community richness. A paired comparison of the metagenomes before and after the 2-week intervention showed that even a brief, uncontrolled intervention produced profound changes in community structure: resulting in decreased levels of Bacteroidaceae, Porphyromonadaceae and Rikenellaceae families and decreased alpha-diversity coupled with an increase of Methanobrevibacter, Bifidobacterium, Clostridium and butyrate-producing Lachnospiraceae- as well as the prevalence of a permatype (a bootstrapping-based variation of enterotype) associated with a higher diversity of diet. The response of microbiota to the intervention was dependent on the initial microbiota state. These findings pave the way for the development of an individualized diet.
Collapse
|
384
|
Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC. Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population. Front Microbiol 2018; 9:890. [PMID: 29867803 PMCID: PMC5949328 DOI: 10.3389/fmicb.2018.00890] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence for the interaction between gut microbiome, diet, and health. It is known that dysbiosis is related to disease and that most of the times this imbalances in gut microbial populations can be promoted through diet. Western dietary habits, which are characterized by high intakes of calories, animal proteins, saturated fats, and simple sugars have been linked with higher risk of obesity, diabetes, cancer, and cardiovascular disease. However, little is known about the impact of dietary patterns, dietary components, and nutrients on gut microbiota in healthy people. The aim of our study is to determine the effect of nutrient compounds as well as adherence to a dietary pattern, as the Mediterranean diet (MD) on the gut microbiome of healthy adults. Consequently, gut microbiota composition in healthy individuals, may be used as a potential biomarker to identify nutritional habits as well as risk of disease related to these habits. Dietary information from healthy volunteers (n = 27) was recorded using the Food Frequency Questionnaire. Adherence to the MD was measured using the PREDIMED test. Microbiota composition and diversity were obtained by 16S rRNA gene sequencing and specific quantitative polymerase chain reaction. Microbial metabolic activity was determined by quantification of short chain fatty acids (SCFA) on high performance liquid chromatography (HPLC). The results indicated that a higher ratio of Firmicutes–Bacteroidetes was related to lower adherence to the MD, and greater presence of Bacteroidetes was associated with lower animal protein intake. High consumption of animal protein, saturated fats, and sugars affected gut microbiota diversity. A significant higher presence of Christensenellaceae was found in normal-weight individuals compared to those who were overweight. This was also the case in volunteers with greater adherence to the MD compared to those with lower adherence. Butyricimonas, Desulfovibrio, and Oscillospira genera were associated with a BMI <25 and the genus Catenibacterium with a higher PREDIMED score. Higher bifidobacterial counts, and higher total SCFA were related to greater consumption of plant-based nutrients, such as vegetable proteins and polysaccharides. Better adherence to the MD was associated with significantly higher levels of total SCFA. Consequently, diet and specific dietary components could affect microbiota composition, diversity, and activity, which may have an effect on host metabolism by increasing the risk of Western diseases.
Collapse
Affiliation(s)
- Izaskun Garcia-Mantrana
- Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain
| | - Cristina Alcantara
- Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain
| | - María C Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain
| |
Collapse
|
385
|
Quagliariello A, Del Chierico F, Russo A, Reddel S, Conte G, Lopetuso LR, Ianiro G, Dallapiccola B, Cardona F, Gasbarrini A, Putignani L. Gut Microbiota Profiling and Gut-Brain Crosstalk in Children Affected by Pediatric Acute-Onset Neuropsychiatric Syndrome and Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infections. Front Microbiol 2018; 9:675. [PMID: 29686658 PMCID: PMC5900790 DOI: 10.3389/fmicb.2018.00675] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
Pediatric acute-onset neuropsychiatric syndrome (PANS) and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections syndrome (PANDAS) are conditions that impair brain normal neurologic function, resulting in the sudden onset of tics, obsessive-compulsive disorder, and other behavioral symptoms. Recent studies have emphasized the crosstalk between gut and brain, highlighting how gut composition can influence behavior and brain functions. Thus, the present study investigates the relationship between PANS/PANDAS and gut microbiota ecology. The gut composition of a cohort of 30 patients with PANS/PANDAS was analyzed and compared to control subjects using 16S rRNA-based metagenomics. Data were analyzed for their α- and β-diversity; differences in bacterial distribution were detected by Wilcoxon and LEfSe tests, while metabolic profile was predicted via PICRUSt software. These analyses demonstrate the presence of an altered bacterial community structure in PANS/PANDAS patients with respect to controls. In particular, ecological analysis revealed the presence of two main clusters of subjects based on age range. Thus, to avoid age bias, data from patients and controls were split into two groups: 4-8 years old and >9 years old. The younger PANS/PANDAS group was characterized by a strong increase in Bacteroidetes; in particular, Bacteroides, Odoribacter, and Oscillospira were identified as potential microbial biomarkers of this composition type. Moreover, this group exhibited an increase of several pathways concerning the modulation of the antibody response to inflammation within the gut as well as a decrease in pathways involved in brain function (i.e., SCFA, D-alanine and tyrosine metabolism, and the dopamine pathway). The older group of patients displayed a less uniform bacterial profile, thus impairing the identification of distinct biomarkers. Finally, Pearson's analysis between bacteria and anti-streptolysin O titer reveled a negative correlation between genera belonging to Firmicutes phylum and anti-streptolysin O while a positive correlation was observed with Odoribacter. In conclusion, this study suggests that streptococcal infections alter gut bacterial communities leading to a pro-inflammatory status through the selection of specific bacterial strains associated with gut inflammation and immune response activation. These findings highlight the possibility of studying bacterial biomarkers associated with this disorder and might led to novel potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Alessandra Russo
- Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Loris R Lopetuso
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of the Sacred Heart, Agostino Gemelli Hospital, Rome, Italy
| | - Gianluca Ianiro
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of the Sacred Heart, Agostino Gemelli Hospital, Rome, Italy
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Cardona
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of the Sacred Heart, Agostino Gemelli Hospital, Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Unit of Parasitology Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
386
|
Mulders RJ, de Git KCG, Schéle E, Dickson SL, Sanz Y, Adan RAH. Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obes Rev 2018; 19:435-451. [PMID: 29363272 DOI: 10.1111/obr.12661] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Western diets, with high consumption of simple sugars and saturated fats, contribute to the rise in the prevalence of obesity. It now seems clear that high-fat diets cause obesity, at least in part, by modifying the composition and function of the microorganisms that colonize in the gastrointestinal tract, the microbiota. The exact pathways by which intestinal microbiota contribute to obesity remain largely unknown. High-fat diet-induced alterations in intestinal microbiota have been suggested to increase energy extraction, intestinal permeability and systemic inflammation while decreasing the capability to generate obesity-suppressing short-chain fatty acids. Moreover, by increasing systemic inflammation, microglial activation and affecting vagal nerve activity, 'obese microbiota' indirectly influence hypothalamic gene expression and promote overeating. Because the potential of intestinal microbiota to induce obesity has been recognized, multiple ways to modify its composition and function are being investigated to provide novel preventive and therapeutic strategies against diet-induced obesity.
Collapse
Affiliation(s)
- R J Mulders
- Master's Programme Science and Business Management, Utrecht University, Utrecht, The Netherlands
| | - K C G de Git
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - E Schéle
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - S L Dickson
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Y Sanz
- Microbial Ecology, Nutrition and Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - R A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
387
|
Borgo F, Garbossa S, Riva A, Severgnini M, Luigiano C, Benetti A, Pontiroli AE, Morace G, Borghi E. Body Mass Index and Sex Affect Diverse Microbial Niches within the Gut. Front Microbiol 2018; 9:213. [PMID: 29491857 PMCID: PMC5817072 DOI: 10.3389/fmicb.2018.00213] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/30/2018] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota is considered a separate organ with endocrine capabilities, actively contributing to tissue homeostasis. It consists of at least two separate microbial populations, the lumen-associated (LAM) and the mucosa-associated microbiota (MAM). In the present study, we compared LAM and MAM, by collecting stools and sigmoid brush samples of forty adults without large-bowel symptoms, and through a 16S rRNA gene next-generation sequencing (NGS) approach. MAM sample analysis revealed enrichment in aerotolerant Proteobacteria, probably selected by a gradient of oxygen that decreases from tissue to lumen, and in Streptococcus and Clostridium spp., highly fermenting bacteria. On the other hand, LAM microbiota showed an increased abundance in Bacteroides, Prevotella, and Oscillospira, genera able to digest and to degrade biopolymers in the large intestine. Predicted metagenomic analysis showed LAM to be enriched in genes encoding enzymes mostly involved in energy extraction from carbohydrates and lipids, whereas MAM in amino acid and vitamin metabolism. Moreover, LAM and MAM communities seemed to be influenced by different host factors, such as diet and sex. LAM is affected by body mass index (BMI) status. Indeed, BMI negatively correlates with Faecalibacterium prausnitzii and Flavonifractor plautii abundance, putative biomarkers of healthy status. In contrast, MAM microbial population showed a significant grouping according to sex. Female MAM was enriched in Actinobacteria (with an increased trend of the genus Bifidobacterium), and a significant depletion in Veillonellaceae. Interestingly, we found the species Gemmiger formicilis to be associated with male and Bifidobacterium adolescentis, with female MAM samples. In conclusion, our results suggest that gut harbors microbial niches that differ in both composition and host factor susceptibility, and their richness and diversity may be overlooked evaluating only fecal samples.
Collapse
Affiliation(s)
- Francesca Borgo
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Alessandra Riva
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology", University of Vienna, Vienna, Austria
| | - Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | | | | | - Antonio E Pontiroli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,ASST Santi Paolo e Carlo Hospital, Milan, Italy
| | - Giulia Morace
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
388
|
Van den Abbeele P, Taminiau B, Pinheiro I, Duysburgh C, Jacobs H, Pijls L, Marzorati M. Arabinoxylo-Oligosaccharides and Inulin Impact Inter-Individual Variation on Microbial Metabolism and Composition, Which Immunomodulates Human Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1121-1130. [PMID: 29363966 DOI: 10.1021/acs.jafc.7b04611] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fecal batch fermentations coupled to cocultures of epithelial cells and macrophages were used to compare how arabinoxylo-oligosaccharides (AXOS) and inulin modulate gut microbial activity and composition of three different human donors and subsequently the epithelial permeability and immune response. Both inulin and AXOS decreased the pH during incubation (-1.5 pH units), leading to increased productions of acetate, propionate, and butyrate. Differences in terms of metabolites production could be linked to specific microbial alterations at genus level upon inulin/AXOS supplementation (i.e., Bifidobacterium, Bacteroides, Prevotella and unclassified Erysipelotrichaceae), as shown by 16S-targeted Illumina sequencing. Both products stimulated gut barrier and immune function with increases in TEER, NF-KB, IL-10, and IL-6. Ingredients with different structures selectively modulate the microbiota of a specific donor leading to differential changes at metabolic level. The extent of this effect is donor specific and is linked to a final specific modulation of the host's immune system.
Collapse
Affiliation(s)
| | - Bernard Taminiau
- Department of Food Science, University of Liège (ULG) , Quartier Vallée 2, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Iris Pinheiro
- ProDigest bvba , Technologiepark 3, 9052 Ghent, Belgium
| | | | - Heidi Jacobs
- Cosucra-Groupe Warcoing S.A. , Rue de la Sucrerie 1, 7740 Pecq, Belgium
| | - Loek Pijls
- Cosucra-Groupe Warcoing S.A. , Rue de la Sucrerie 1, 7740 Pecq, Belgium
| | - Massimo Marzorati
- Center of Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
389
|
Jackson MA, Bonder MJ, Kuncheva Z, Zierer J, Fu J, Kurilshikov A, Wijmenga C, Zhernakova A, Bell JT, Spector TD, Steves CJ. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations. PeerJ 2018; 6:e4303. [PMID: 29441232 PMCID: PMC5807925 DOI: 10.7717/peerj.4303] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/10/2018] [Indexed: 12/20/2022] Open
Abstract
Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.
Collapse
Affiliation(s)
- Matthew A Jackson
- Department of Twin Research & Genetic Epidemiology, King's College London, London, United Kingdom
| | - Marc Jan Bonder
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, Netherlands
| | - Zhana Kuncheva
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Jonas Zierer
- Department of Twin Research & Genetic Epidemiology, King's College London, London, United Kingdom.,Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jingyuan Fu
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, Netherlands.,University Medical Center Groningen, Department of Pediatrics, University of Groningen, Groningen, Netherlands
| | - Alexander Kurilshikov
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, Netherlands
| | - Cisca Wijmenga
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, Netherlands.,K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway
| | - Alexandra Zhernakova
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, Netherlands
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, United Kingdom
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, United Kingdom
| | - Claire J Steves
- Department of Twin Research & Genetic Epidemiology, King's College London, London, United Kingdom
| |
Collapse
|
390
|
Khan TJ, Ahmed YM, Zamzami MA, Siddiqui AM, Khan I, Baothman OAS, Mehanna MG, Kuerban A, Kaleemuddin M, Yasir M. Atorvastatin Treatment Modulates the Gut Microbiota of the Hypercholesterolemic Patients. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:154-163. [PMID: 29432061 DOI: 10.1089/omi.2017.0130] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypercholesterolemia is one of the most important risk factors for development of cardiovascular diseases. The composition of gut microbiota (total microbes residing in the gut) impacts on cholesterol and lipid metabolism. On the contrary, alterations in gut microbiota in response to hypercholesterolemia or drug treatment with atorvastatin (a cholesterol-lowering agent) are rarely investigated. We performed 16S rDNA amplicon sequencing to evaluate the gut bacterial community of 15 untreated hypercholesterolemic patients (HP) and 27 atorvastatin-treated hypercholesterolemic patients (At-HP) and compared with 19 healthy subjects (HS). In total, 18 different phyla were identified in the study groups. An increase in relative abundance of Proteobacteria was observed in the HP group compared with At-HP and HS groups. The atherosclerosis-associated genus Collinsella was found at relatively higher abundance in the HP group. The anti-inflammation-associated bacteria (Faecalibacterium prausnitzii, Akkermansia muciniphila, and genus Oscillospira) were found in greater abundance, and proinflammatory species Desulfovibrio sp. was observed at decreased abundance in the drug-treated HP group compared with the untreated HP group. Relative abundances of the Bilophila wadsworthia and Bifidobacterium bifidum (bile acid-associated species) were decreased in the At-HP group. The At-HP and HS clustered separately from HP in the principal coordinate analysis. Decreased bacterial diversity was observed in the atorvastatin-treated group. In conclusion, these data suggest that atorvastatin treatment of patients with hypercholesterolemia may selectively restore the relative abundance of several dominant and functionally important taxa that were disrupted in the HP. Further studies are required to investigate the putative modifying effects of hypocholesterolemic drugs on functionality of gut microbiota, and the potential downstream effects on human health.
Collapse
Affiliation(s)
- Tariq Jamal Khan
- 1 Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Youssri M Ahmed
- 1 Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- 1 Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Aisha M Siddiqui
- 2 Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Imran Khan
- 3 State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, China
| | - Othman A S Baothman
- 1 Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Mohamed G Mehanna
- 1 Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Abudukadeer Kuerban
- 1 Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Mohammed Kaleemuddin
- 1 Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Muhammad Yasir
- 4 Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University , Jeddah, Saudi Arabia
| |
Collapse
|
391
|
Hu L, Geng S, Li Y, Cheng S, Fu X, Yue X, Han X. Exogenous Fecal Microbiota Transplantation from Local Adult Pigs to Crossbred Newborn Piglets. Front Microbiol 2018; 8:2663. [PMID: 29375527 PMCID: PMC5767267 DOI: 10.3389/fmicb.2017.02663] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
This study was conducted to investigate the effect of exogenous fecal microbiota transplantation on gut bacterial community structure, gut barrier and growth performance in recipient piglets. Twelve litters of Duroc × Landrace × Yorkshire piglets of the same birth and parity were weighed and divided into two groups. One group (recipient piglets) was inoculated orally with fecal microbiota suspension of healthy adult Jinhua pigs daily from day 1 to day 11. The other (control) was given orally the same volume of sterile physiological saline at the same time. The experiment lasted 27 days. The results showed that the relative abundance of Firmicutes, Prevotellaceae, Lachnospiraceae, Ruminococcus, Prevotella, and Oscillospira in the colon of recipient piglets was increased. Proteobacteria, Fusobacteriaceae, Clostridiaceae, Pasteuriaceae, Alcaligenaceae, Bacteroidaceae, Veillonellaceae, Sutterella, Escherichia, and Bacteroides in the colon of recipient piglets were decreased. An average daily weight gain of recipient piglets was increased, and diarrhea incidence of the recipient was decreased during the trial. Intestinal morphology and tight junction barrier of recipient piglets were improved. The optical density of sIgA+ cells, the number of goblet cells and relative expressions of MUC2 in the intestinal mucosa of recipient piglets were enhanced. Protein expressions of β-defensin 2 and mRNA expressions of TLR2 and TLR4 in the intestinal mucosa of recipient piglets were also increased. These findings supported that the exogenous fecal microbiota had significant effects on animal's growth performance, intestinal barrier function, and innate immune via modulating the composition of the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
392
|
Tang C, Sun J, Zhou B, Jin C, Liu J, Kan J, Qian C, Zhang N. Effects of polysaccharides from purple sweet potatoes on immune response and gut microbiota composition in normal and cyclophosphamide treated mice. Food Funct 2018; 9:937-950. [DOI: 10.1039/c7fo01302g] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Three polysaccharides were extracted from purple sweet potatoes and then administered to normal and cyclophosphamide treated mice by gavage.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jian Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
| | - Bo Zhou
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Changhai Jin
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jun Liu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Juan Kan
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Chunlu Qian
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Nianfeng Zhang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| |
Collapse
|
393
|
Kohl KD, Dearing MD, Bordenstein SR. Microbial communities exhibit host species distinguishability and phylosymbiosis along the length of the gastrointestinal tract. Mol Ecol 2017; 27:1874-1883. [PMID: 29230893 DOI: 10.1111/mec.14460] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023]
Abstract
Host-associated microbial communities consist of stable and transient members that can assemble through purely stochastic processes associated with the environment or by interactions with the host. Phylosymbiosis predicts that if host-microbiota interactions impact assembly patterns, then one conceivable outcome is concordance between host evolutionary histories (phylogeny) and the ecological similarities in microbial community structures (microbiota dendrogram). This assembly pattern has been demonstrated in several clades of animal hosts in laboratory and natural populations, but in vertebrates, it has only been investigated using samples from faeces or the distal colon. Here, we collected the contents of five gut regions from seven rodent species and inventoried the bacterial communities by sequencing the 16S rRNA gene. We investigated how community structures varied across gut regions and whether the pattern of phylosymbiosis was present along the length of the gut. Gut communities varied by host species and gut region, with Oscillospira and Ruminococcus being more abundant in the stomach and hindgut regions. Gut microbial communities were highly distinguishable by host species across all gut regions, with the strength of the discrimination increasing along the length of the gut. Last, the pattern of phylosymbiosis was found in all five gut regions, as well as faeces. Aspects of the gut environment, such as oxygen levels, production of antimicrobials or other factors, may shift microbial communities across gut regions. However, regardless of these differences, host species maintain distinguishable, phylosymbiotic assemblages of microbes that may have functional impacts for the host.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - M Denise Dearing
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
394
|
ALJahdali N, Gadonna-Widehem P, Delayre-Orthez C, Marier D, Garnier B, Carbonero F, Anton PM. Repeated Oral Exposure to N ε-Carboxymethyllysine, a Maillard Reaction Product, Alleviates Gut Microbiota Dysbiosis in Colitic Mice. Dig Dis Sci 2017; 62:3370-3384. [PMID: 28965192 DOI: 10.1007/s10620-017-4767-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/13/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Diet is suggested to participate in the etiology of inflammatory bowel diseases (IBD). Repeated exposure to Maillard reaction products (MRPs), molecules resulting from reduction reactions between amino acids and sugars during food heating, has been reported to be either potentially detrimental or beneficial to health. AIMS The aim of this study is to determine the effect of repeated oral ingestion of N ε-carboxymethyllysine (CML), an advanced MRP, on the onset of two models of experimental IBD and on the gut microbiota composition of mice. METHODS Mice received either saline (control) or N ε-carboxymethyllysine daily for 21 days. For the last week of treatment, each group was split into subgroups, receiving dextran sulfate sodium salt (DSS) or trinitrobenzenesulfonic acid (TNBS) to induce colitis. Intensity of inflammation was quantified, and cecal microbiota characterized by bacterial 16S ribosomal RNA (rRNA) amplicon sequencing. RESULTS Daily oral administration of N ε-carboxymethyllysine did not induce intestinal inflammation and had limited impact on gut microbiota composition (Bacteroidaceae increase, Lachnospiraceae decrease). DSS and TNBS administration resulted in expected moderate experimental colitis with a shift of Bacteroidetes/Firmicutes ratio and a significant Proteobacteria increase but with distinct profiles: different Proteobacteria taxa for DSS, but mainly Enterobacteriaceae for TNBS. While N ε-carboxymethyllysine exposure failed to prevent the inflammatory response, it allowed maintenance of healthy gut microbiota profiles in mice treated with DSS (but not TNBS). CONCLUSIONS Repeated oral exposure to CML limits dysbiosis in experimental colitis. IBD patients may modulate their microbiota profile by regulating the level and type of dietary MRP consumption.
Collapse
Affiliation(s)
- Nesreen ALJahdali
- Cell and Molecular Biology Program, University of Arkansas, 2650 Young Avenue, Fayetteville, AR, 72704, USA
| | - Pascale Gadonna-Widehem
- Expression des Gènes et Régulation Epigénétique par l'Aliment UP 2012.10.101., Institut Polytechnique UniLaSalle, 19 rue Pierre Waguet, 60000, Beauvais, France
| | - Carine Delayre-Orthez
- Expression des Gènes et Régulation Epigénétique par l'Aliment UP 2012.10.101., Institut Polytechnique UniLaSalle, 19 rue Pierre Waguet, 60000, Beauvais, France
| | - David Marier
- Expression des Gènes et Régulation Epigénétique par l'Aliment UP 2012.10.101., Institut Polytechnique UniLaSalle, 19 rue Pierre Waguet, 60000, Beauvais, France
| | - Benjamin Garnier
- Expression des Gènes et Régulation Epigénétique par l'Aliment UP 2012.10.101., Institut Polytechnique UniLaSalle, 19 rue Pierre Waguet, 60000, Beauvais, France
| | - Franck Carbonero
- Cell and Molecular Biology Program, University of Arkansas, 2650 Young Avenue, Fayetteville, AR, 72704, USA. .,Department of Food Science and Center for Human Nutrition, University of Arkansas, 2650 Young Avenue, Fayetteville, AR, 72704, USA.
| | - Pauline M Anton
- Expression des Gènes et Régulation Epigénétique par l'Aliment UP 2012.10.101., Institut Polytechnique UniLaSalle, 19 rue Pierre Waguet, 60000, Beauvais, France
| |
Collapse
|
395
|
Genes and Gut Bacteria Involved in Luminal Butyrate Reduction Caused by Diet and Loperamide. Genes (Basel) 2017; 8:genes8120350. [PMID: 29182580 PMCID: PMC5748668 DOI: 10.3390/genes8120350] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/16/2017] [Accepted: 11/23/2017] [Indexed: 02/07/2023] Open
Abstract
Unbalanced dietary habits and gut dysmotility are causative factors in metabolic and functional gut disorders, including obesity, diabetes, and constipation. Reduction in luminal butyrate synthesis is known to be associated with gut dysbioses, and studies have suggested that restoring butyrate formation in the colon may improve gut health. In contrast, shifts in different types of gut microbiota may inhibit luminal butyrate synthesis, requiring different treatments to restore colonic bacterial butyrate synthesis. We investigated the influence of high-fat diets (HFD) and low-fiber diets (LFD), and loperamide (LPM) administration, on key bacteria and genes involved in reduction of butyrate synthesis in mice. MiSeq-based microbiota analysis and HiSeq-based differential gene analysis indicated that different types of bacteria and genes were involved in butyrate metabolism in each treatment. Dietary modulation depleted butyrate kinase and phosphate butyryl transferase by decreasing members of the Bacteroidales and Parabacteroides. The HFD also depleted genes involved in succinate synthesis by decreasing Lactobacillus. The LFD and LPM treatments depleted genes involved in crotonoyl-CoA synthesis by decreasing Roseburia and Oscilllibacter. Taken together, our results suggest that different types of bacteria and genes were involved in gut dysbiosis, and that selected treatments may be needed depending on the cause of gut dysfunction.
Collapse
|
396
|
Borrelli L, Coretti L, Dipineto L, Bovera F, Menna F, Chiariotti L, Nizza A, Lembo F, Fioretti A. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci Rep 2017; 7:16269. [PMID: 29176587 PMCID: PMC5701250 DOI: 10.1038/s41598-017-16560-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/14/2017] [Indexed: 02/08/2023] Open
Abstract
Insects could be potential nutritional sources both for humans and animals. Among these, Hermetia illucens, with good amount of chitin and proteins, represents a suitable diet replacement for laying hens. Little is known about insect diet effects on the microbial ecology of the gastrointestinal tract and bacterial metabolites production. In this study we investigated the effect of H. illucens larvae meal administration on cecal microbiota and short chain fatty acids (SCFAs) production in laying hens. 16S rDNA sequencing showed strong differences between cecal microbiota of soybean (SD) and insect diet (ID) groups both in type and relative abundance (unweighted and weighted beta diversity) of microbial species. In particular, Bacteroides plebeius, Elusimicrobium minutum, Alkaliphilus transvaalensis, Christensenella minuta, Vallitalea guaymasensis and Flavonifractor plautii represented the principal contributors of changes in gut microbiota composition of ID group (FDR p-values < 0.05). Of these, F. plautii, C. minuta and A. transvaalensis have the potential to degrade the chitin’s insect meal and correlated with the observed high levels of gut SCFAs produced in ID group. These microorganisms may thus connect the chitin degradation with high SCFAs production. Our results suggest H. illucens as a potential prebiotic by well feeding gut microbiota.
Collapse
Affiliation(s)
- Luca Borrelli
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy. .,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Lorena Coretti
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" IEOS, National Research Council CNR, Naples, Italy.,Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Francesca Menna
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Lorenzo Chiariotti
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" IEOS, National Research Council CNR, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Antonio Nizza
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Alessandro Fioretti
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
397
|
Zhou P, Zhao Y, Zhang P, Li Y, Gui T, Wang J, Jin C, Che L, Li J, Lin Y, Xu S, Feng B, Fang Z, Wu D. Microbial Mechanistic Insight into the Role of Inulin in Improving Maternal Health in a Pregnant Sow Model. Front Microbiol 2017; 8:2242. [PMID: 29204137 PMCID: PMC5698696 DOI: 10.3389/fmicb.2017.02242] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023] Open
Abstract
General consumption of “western diet” characterized by high refined carbohydrates, fat and energy intake has resulted in a global obesity epidemics and related metabolic disturbance even for pregnant women. Pregnancy process is accompanied by substantial hormonal, metabolic and immunological changes during which gut microbiota is also remarkably remodeled. Dietary fiber has been demonstrated to have a striking role in shifting the microbial composition so as to improve host metabolism and health in non-pregnant individuals. The present study was conducted to investigate effects of adding a soluble dietary fiber inulin (0 or 1.5%) to low- or high- fat (0 or 5% fat addition) gestational diet on maternal and neonatal health and fecal microbial composition in a sow model. Results showed that inulin addition decreased the gestational body weight gain and fat accumulation induced by fat addition. Circulating concentrations of pro-inflammatory cytokine IL-6, adipokine leptin and chemerin were decreased by inulin supplementation. Inulin addition remarkably reduced the average BMI of newborn piglets and the within litter BMI distributions (%) ranging between 17 and 20 kg/m2, and increased the BMI distribution ranging between 14 and 17 kg/m2. 16S rRNA gene sequencing of the V3-V4 region showed that fecal microbial changes at different taxonomic levels triggered by inulin addition predisposed the pregnant sow to be thinner and lower inflammatory. Meanwhile, fecal microbial composition was also profoundly altered by gestation stage with distinct changes occurring at perinatal period. Most representative volatile fatty acid (VFA) producing-related genera changed dramatically when reaching the perinatal period and varied degrees of increases were detected with inulin addition. Fecal VFA concentrations failed to show any significant effect with dietary intervention, however, were markedly increased at perinatal period. Our findings indicate that positive microbial changes resulted by 1.5% soluble fiber inulin addition would possibly be the potential mechanisms under which maternal body weight, metabolic and inflammatory status and neonatal BMI were improved. Besides, distinct changes of microbial community at perinatal period indicated the mother sow is undergoing a catabolic state with increased energy loss and inflammation response at that period compared with other stages of gestation.
Collapse
Affiliation(s)
- Pan Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhao
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pan Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Taotao Gui
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Wang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Jin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, People's Republic of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
398
|
Body size phenotypes comprehensively assess cardiometabolic risk and refine the association between obesity and gut microbiota. Int J Obes (Lond) 2017; 42:424-432. [PMID: 29142244 DOI: 10.1038/ijo.2017.281] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The gut microbiota associates with obesity and related disorders, but recent meta-analyses have found that this association is, at best, of small effect. We argue that such analyses are flawed by the use of body mass index (BMI) as sole proxy for disease, and explore a classification method that distinguishes the cardiometabolic health status of individuals to look for more comprehensive associations between gut microbes and health. DESIGN We analyzed a 441 community-dwelling cohort on which we obtained demographic and health information, anthropometry and blood biochemistry data that served to categorize participants according to BMI, cardiometabolic health status and body size phenotypes. In addition, the participants donated fecal samples from which we performed 16S rRNA gene sequencing to analyze the gut microbiota. RESULTS We observed that health-related variables deteriorate with increased BMI, and that there are further discrepancies within a given BMI category when distinguishing cardiometabolically healthy and unhealthy individuals. Regarding the gut microbiota, both obesity and cardiovascular disease associate with reductions in α-diversity; having lean, healthy individuals the most diverse microbiotas. Moreover, the association between the gut microbiota and health stems from particular consortia of microbes; the prevalence of consortia involving pathobionts and Lachnospiraceae are increased in obese and cardiometabolically abnormal subjects, whereas consortia including Akkermansia muciniphila and Methanobrevibacter, Oscillospira and Dialister have higher prevalence in cardiometabolically healthy and normoweight participants. CONCLUSIONS The incorporation of cardiometabolic data allows a refined identification of dissimilarities in the gut microbiota; within a given BMI category, marker taxa associated with obesity and cardiometabolic disease are exacerbated in individuals with abnormal health status. Our results highlight the importance of the detailed assessment and classification of individuals that should be carried out prior to the evaluation of obesity treatments targeting the gut microbiota.
Collapse
|
399
|
Jin C, Xia J, Wu S, Tu W, Pan Z, Fu Z, Wang Y, Jin Y. Insights Into a Possible Influence on Gut Microbiota and Intestinal Barrier Function During Chronic Exposure of Mice to Imazalil. Toxicol Sci 2017; 162:113-123. [DOI: 10.1093/toxsci/kfx227] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Cuiyuan Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jizhou Xia
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sisheng Wu
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Zihong Pan
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yueyi Wang
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
400
|
Metagenomic insights into the effects of oligosaccharides on the microbial composition of cecal contents in constipated mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|