351
|
EmrE, a model for studying evolution and mechanism of ion-coupled transporters. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:748-62. [DOI: 10.1016/j.bbapap.2008.12.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/23/2022]
|
352
|
Shapiro BJ, David LA, Friedman J, Alm EJ. Looking for Darwin's footprints in the microbial world. Trends Microbiol 2009; 17:196-204. [PMID: 19375326 DOI: 10.1016/j.tim.2009.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/26/2009] [Accepted: 02/09/2009] [Indexed: 10/20/2022]
Abstract
As we observe the 200th anniversary of Charles Darwin's birth, microbiologists interested in the application of Darwin's ideas to the microscopic world have a lot to celebrate: an emerging picture of the (mostly microbial) Tree of Life at ever-increasing resolution, an understanding of horizontal gene transfer as a driving force in the evolution of microbes, and thousands of complete genome sequences to help formulate and refine our theories. At the same time, quantitative models of the microevolutionary processes shaping microbial populations remain just out of reach, a point that is perhaps most dramatically illustrated by the lack of consensus on how (or even whether) to define bacterial species. Here, we summarize progress and prospects in bacterial population genetics, with an emphasis on detecting the footprint of positive Darwinian selection in microbial genomes.
Collapse
Affiliation(s)
- B Jesse Shapiro
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
353
|
Abstract
Uropathogenic Escherichia coli (UPEC) strain CFT073 contains 13 large genomic islands ranging in size from 32 kb to 123 kb. Eleven of these genomic islands were individually deleted from the genome, and nine isogenic mutants were tested for their ability to colonize the CBA/J mouse model of ascending urinary tract infection. Three genomic island mutants (Delta PAI-aspV, Delta PAI-metV, and Delta PAI-asnT) were significantly outcompeted by wild-type CFT073 in the bladders and/or kidneys following transurethral cochallenge (P <or= 0.0139). The PAI-metV mutant also showed significant attenuation in the ability to independently colonize the kidneys (P = 0.0011). Specific genes within these islands contributed to the observed phenotype, including a previously uncharacterized iron acquisition cluster, fbpABCD (c0294 to c0297 [c0294-97]), autotransporter, picU (c0350), and RTX family exoprotein, tosA (c0363) in the PAI-aspV island. The double deletion mutant with deletions in both copies of the fbp iron acquisition operon (Deltac0294-97 Delta c2518-15) was significantly outcompeted by wild-type CFT073 in cochallenge. Strains with mutations in a type VI secretion system within the PAI-metV island did not show attenuation. The attenuation of the PAI-metV island was localized to genes c3405-10, encoding a putative phosphotransferase transport system, which is common to UPEC and avian pathogenic E. coli strains but absent from E. coli K-12. We have shown that, in addition to encoding virulence genes, genomic islands contribute to the overall fitness of UPEC strain CFT073 in vivo.
Collapse
|
354
|
Genomic regions conserved in lineage II Escherichia coli O157:H7 strains. Appl Environ Microbiol 2009; 75:3271-80. [PMID: 19329668 DOI: 10.1128/aem.02123-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Populations of the food- and waterborne pathogen Escherichia coli O157:H7 are comprised of two major lineages. Recent studies have shown that specific genotypes within these lineages differ substantially in the frequencies with which they are associated with human clinical disease. While the nucleotide sequences of the genomes of lineage I strains E. coli O157 Sakai and EDL9333 have been determined, much less is known about the genomes of lineage II strains. In this study, suppression subtractive hybridization (SSH) was used to identify genomic features that define lineage II populations. Three SSH experiments were performed, yielding 1,085 genomic fragments consisting of 811 contigs. Bacteriophage sequences were identified in 11.3% of the contigs, 9% showed insertions and 2.3% deletions with respect to E. coli O157:H7 Sakai, and 23.2% did not have significant identity to annotated sequences in GenBank. In order to test for the presence of these novel loci in lineage I and II strains, 27 PCR primer sets were designed based on sequences from these contigs. All but two of these PCR targets were found in the majority (51.9% to 100%) of 27 lineage II strains but in no more than one (<6%) of the 17 lineage I strains. Several of these lineage II-related fragments contain insertions/deletions that may play an important role in virulence. These lineage II-related loci were also shown to be useful markers for genotyping of E. coli O157:H7 strains isolated from human and animal sources.
Collapse
|
355
|
Kulkarni R, Dhakal BK, Slechta ES, Kurtz Z, Mulvey MA, Thanassi DG. Roles of putative type II secretion and type IV pilus systems in the virulence of uropathogenic Escherichia coli. PLoS One 2009; 4:e4752. [PMID: 19270734 PMCID: PMC2649431 DOI: 10.1371/journal.pone.0004752] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 02/05/2009] [Indexed: 01/17/2023] Open
Abstract
Background Type II secretion systems (T2SS) and the evolutionarily related type IV pili (T4P) are important virulence determinants in many Gram-negative bacterial pathogens. However, the roles of T2SS and T4P in the virulence of extraintestinal pathogenic Escherichia coli have not been determined. Methodology/Principal Findings To investigate the functions of putative T2SS and T4P gene clusters present in the model uropathogenic E. coli (UPEC) strains UTI89 and CFT073, we deleted the secretin gene present in each cluster. The secretin forms a channel in the outer membrane that is essential for the function of T2S and T4P systems. We compared the secretin deletion mutants with their wild type counterparts using tissue culture assays and the CBA/J mouse model of ascending urinary tract infection. No deficiencies were observed with any of the mutants in adherence, invasion or replication in human bladder or kidney cell lines, but UTI89 ΔhofQ and UTI89 ΔgspD exhibited approximately 2-fold defects in fluxing out of bladder epithelial cells. In the mouse infection model, each of the knockout mutants was able to establish successful infections in the bladder and kidneys by day one post-infection. However, UTI89 ΔhofQ and a CFT073 ΔhofQ ΔyheF double mutant both exhibited defects in colonizing the kidneys by day seven post-infection. Conclusions/Significance Based on our results, we propose that the putative T4P and T2S systems are virulence determinants of UPEC important for persistence in the urinary tract, particularly in renal tissues.
Collapse
Affiliation(s)
- Ritwij Kulkarni
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Bijaya K. Dhakal
- Department of Pathology, Division of Cell Biology and Immunology, University of Utah, Salt Lake City, Utah, United States of America
| | - E. Susan Slechta
- Department of Pathology, Division of Cell Biology and Immunology, University of Utah, Salt Lake City, Utah, United States of America
| | - Zachary Kurtz
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Matthew A. Mulvey
- Department of Pathology, Division of Cell Biology and Immunology, University of Utah, Salt Lake City, Utah, United States of America
| | - David G. Thanassi
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
356
|
Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. Infect Immun 2009; 77:2104-12. [PMID: 19255192 DOI: 10.1128/iai.01200-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While in transit within and between hosts, uropathogenic Escherichia coli (UPEC) encounters multiple stresses, including substantial levels of nitric oxide and reactive nitrogen intermediates. Here we show that UPEC, the primary cause of urinary tract infections, can be conditioned to grow at higher rates in the presence of acidified sodium nitrite (ASN), a model system used to generate nitrosative stress. When inoculated into the bladder of a mouse, ASN-conditioned UPEC bacteria are far more likely to establish an infection than nonconditioned bacteria. Microarray analysis of ASN-conditioned bacteria suggests that several NsrR-regulated genes and other stress- and polyamine-responsive factors may be partially responsible for this effect. Compared to K-12 reference strains, most UPEC isolates have increased resistance to ASN, and this resistance can be substantially enhanced by addition of the polyamine cadaverine. Nitrosative stress, as generated by ASN, can stimulate cadaverine synthesis by UPEC, and growth of UPEC in cadaverine-supplemented broth in the absence of ASN can also promote UPEC colonization of the bladder. These results suggest that UPEC interactions with polyamines or stresses such as reactive nitrogen intermediates can in effect reprogram the bacteria, enabling them to better colonize the host.
Collapse
|
357
|
Gao B, Mohan R, Gupta RS. Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. Int J Syst Evol Microbiol 2009; 59:234-47. [DOI: 10.1099/ijs.0.002741-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
358
|
Henderson JP, Crowley JR, Pinkner JS, Walker JN, Tsukayama P, Stamm WE, Hooton TM, Hultgren SJ. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog 2009; 5:e1000305. [PMID: 19229321 PMCID: PMC2637984 DOI: 10.1371/journal.ppat.1000305] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 01/20/2009] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogens are frequently distinguished by the presence of acquired genes associated with iron acquisition. The presence of specific siderophore receptor genes, however, does not reliably predict activity of the complex protein assemblies involved in synthesis and transport of these secondary metabolites. Here, we have developed a novel quantitative metabolomic approach based on stable isotope dilution to compare the complement of siderophores produced by Escherichia coli strains associated with intestinal colonization or urinary tract disease. Because uropathogenic E. coli are believed to reside in the gut microbiome prior to infection, we compared siderophore production between urinary and rectal isolates within individual patients with recurrent UTI. While all strains produced enterobactin, strong preferential expression of the siderophores yersiniabactin and salmochelin was observed among urinary strains. Conventional PCR genotyping of siderophore receptors was often insensitive to these differences. A linearized enterobactin siderophore was also identified as a product of strains with an active salmochelin gene cluster. These findings argue that qualitative and quantitative epi-genetic optimization occurs in the E. coli secondary metabolome among human uropathogens. Because the virulence-associated biosynthetic pathways are distinct from those associated with rectal colonization, these results suggest strategies for virulence-targeted therapies.
Collapse
Affiliation(s)
- Jeffrey P. Henderson
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jan R. Crowley
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jerome S. Pinkner
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jennifer N. Walker
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Pablo Tsukayama
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Walter E. Stamm
- Department of Internal Medicine, University of Washington, Seattle, Washington, United States of America
| | - Thomas M. Hooton
- Department of Internal Medicine, University of Miami, Miami, Florida, United States of America
| | - Scott J. Hultgren
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
359
|
Didelot X, Darling A, Falush D. Inferring genomic flux in bacteria. Genes Dev 2009; 19:306-17. [PMID: 19015321 PMCID: PMC2652212 DOI: 10.1101/gr.082263.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 10/29/2008] [Indexed: 11/24/2022]
Abstract
Acquisition and loss of genetic material are essential forces in bacterial microevolution. They have been repeatedly linked with adaptation of lineages to new lifestyles, and in particular, pathogenicity. Comparative genomics has the potential to elucidate this genetic flux, but there are many methodological challenges involved in inferring evolutionary events from collections of genome sequences. Here we describe a model-based method for using whole-genome sequences to infer the patterns of genome content evolution. A fundamental property of our model is that it allows the rates at which genetic elements are gained or lost to vary in time and from one lineage to another. Our approach is purely sequence based, and does not rely on gene identification. We show how inference can be performed under our model and illustrate its use on three datasets from Francisella tularensis, Streptococcus pyogenes, and Escherichia coli. In all three examples, we found interesting variations in the rates of genetic material gain and loss, which strongly correlate with their lifestyle. The algorithms we describe are implemented in a computer software named GenoPlast.
Collapse
Affiliation(s)
- Xavier Didelot
- Department of Statistics, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | |
Collapse
|
360
|
Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguénec C, Lescat M, Mangenot S, Martinez-Jéhanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Médigue C, Rocha EPC, Denamur E. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 2009; 5:e1000344. [PMID: 19165319 PMCID: PMC2617782 DOI: 10.1371/journal.pgen.1000344] [Citation(s) in RCA: 798] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 12/16/2008] [Indexed: 01/01/2023] Open
Abstract
The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the ∼18,000 families of orthologous genes, we found ∼2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome. Although abundant knowledge has been accumulated regarding the E. coli laboratory strain K-12, little is known about the evolutionary trajectories that have driven the high diversity observed among natural isolates of the species, which encompass both commensal and highly virulent intestinal and extraintestinal pathogenic strains. We have annotated or re-annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Although recombination rates are much higher than mutation rates, we were able to reconstruct a robust phylogeny based on the ∼2,000 genes common to all strains. Based on this phylogeny, we established the evolutionary scenario of gains and losses of thousands of specific genes, identifying functional classes under opposite selection pressures. This genome flux is confined to very few positions in the chromosome, which are the same for every genome. Notably, we identified few or no extraintestinal virulence-specific genes. We also defined a long-scale structure of recombination in the genome with lower recombination rates at the terminus of replication. These findings demonstrate that, despite a very high gene flow, genes can co-exist in an organised genome.
Collapse
Affiliation(s)
- Marie Touchon
- Atelier de BioInformatique, Université Pierre et Marie Curie - Paris 6 (UPMC), Paris, France
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS URA2171, Paris, France
| | - Claire Hoede
- Faculté de Médecine, Université Paris 7 Denis Diderot, INSERM U722, Site Xavier Bichat, Paris, France
| | - Olivier Tenaillon
- Faculté de Médecine, Université Paris 7 Denis Diderot, INSERM U722, Site Xavier Bichat, Paris, France
| | | | - Simon Baeriswyl
- Faculté de Médecine, Université Paris 5 René Descartes, INSERM U571, Paris, France
| | - Philippe Bidet
- Université Paris 7 Denis Diderot, Hôpital Robert Debré (APHP), EA 3105, Paris, France
| | - Edouard Bingen
- Université Paris 7 Denis Diderot, Hôpital Robert Debré (APHP), EA 3105, Paris, France
| | - Stéphane Bonacorsi
- Université Paris 7 Denis Diderot, Hôpital Robert Debré (APHP), EA 3105, Paris, France
| | | | - Odile Bouvet
- Faculté de Médecine, Université Paris 7 Denis Diderot, INSERM U722, Site Xavier Bichat, Paris, France
| | - Alexandra Calteau
- Laboratoire de Génomique Comparative, CNRS UMR8030, Institut de Génomique, CEA, Génoscope, Evry, France
| | - Hélène Chiapello
- UR1077 Mathématique, Informatique, et Génome, INRA, Jouy en Josas, France
| | - Olivier Clermont
- Faculté de Médecine, Université Paris 7 Denis Diderot, INSERM U722, Site Xavier Bichat, Paris, France
| | - Stéphane Cruveiller
- Laboratoire de Génomique Comparative, CNRS UMR8030, Institut de Génomique, CEA, Génoscope, Evry, France
| | - Antoine Danchin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, CNRS URA2171, Paris, France
| | - Médéric Diard
- Faculté de Médecine, Université Paris 5 René Descartes, INSERM U571, Paris, France
| | | | - Meriem El Karoui
- UR888 Unité des Bactéries Lactiques et Pathogènes Opportunistes, INRA, Jouy en Josas, France
| | - Eric Frapy
- Faculté de Médecine, Université Paris 5 René Descartes, INSERM U570, Paris, France
| | - Louis Garry
- Faculté de Médecine, Université Paris 7 Denis Diderot, INSERM U722, Site Xavier Bichat, Paris, France
| | - Jean Marc Ghigo
- Unité de Génétique des Biofilms, Institut Pasteur, CNRS URA2172, Paris, France
| | - Anne Marie Gilles
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, CNRS URA2171, Paris, France
| | - James Johnson
- Veterans Affairs Medical Center, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Mathilde Lescat
- Faculté de Médecine, Université Paris 7 Denis Diderot, INSERM U722, Site Xavier Bichat, Paris, France
| | | | | | - Ivan Matic
- Faculté de Médecine, Université Paris 5 René Descartes, INSERM U571, Paris, France
| | - Xavier Nassif
- Faculté de Médecine, Université Paris 5 René Descartes, INSERM U570, Paris, France
| | - Sophie Oztas
- Génoscope, Institut de Génomique, CEA, Evry, France
| | - Marie Agnès Petit
- UR888 Unité des Bactéries Lactiques et Pathogènes Opportunistes, INRA, Jouy en Josas, France
| | - Christophe Pichon
- Pathogénie Bactérienne des Muqueuses, Institut Pasteur, Paris, France
| | - Zoé Rouy
- Laboratoire de Génomique Comparative, CNRS UMR8030, Institut de Génomique, CEA, Génoscope, Evry, France
| | - Claude Saint Ruf
- Faculté de Médecine, Université Paris 5 René Descartes, INSERM U571, Paris, France
| | | | - Jérôme Tourret
- Faculté de Médecine, Université Paris 7 Denis Diderot, INSERM U722, Site Xavier Bichat, Paris, France
| | | | - David Vallenet
- Laboratoire de Génomique Comparative, CNRS UMR8030, Institut de Génomique, CEA, Génoscope, Evry, France
| | - Claudine Médigue
- Laboratoire de Génomique Comparative, CNRS UMR8030, Institut de Génomique, CEA, Génoscope, Evry, France
- * E-mail: (CM); (EPCR); (ED)
| | - Eduardo P. C. Rocha
- Atelier de BioInformatique, Université Pierre et Marie Curie - Paris 6 (UPMC), Paris, France
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS URA2171, Paris, France
- * E-mail: (CM); (EPCR); (ED)
| | - Erick Denamur
- Faculté de Médecine, Université Paris 7 Denis Diderot, INSERM U722, Site Xavier Bichat, Paris, France
- * E-mail: (CM); (EPCR); (ED)
| |
Collapse
|
361
|
Role of deoxyribose catabolism in colonization of the murine intestine by pathogenic Escherichia coli strains. Infect Immun 2009; 77:1442-50. [PMID: 19168744 DOI: 10.1128/iai.01039-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously suggested that the ability to metabolize deoxyribose, a phenotype encoded by the deoK operon, is associated with the pathogenic potential of Escherichia coli strains. Carbohydrate metabolism is thought to provide the nutritional support required for E. coli to colonize the intestine. We therefore investigated the role of deoxyribose catabolism in the colonization of the gut, which acts as a reservoir, by pathogenic E. coli strains. Molecular and biochemical characterization of 1,221 E. coli clones from various collections showed this biochemical trait to be common in the E. coli species (33.6%). However, multivariate analysis evidenced a higher prevalence of sugar-metabolizing E. coli clones in the stools of patients from countries in which intestinal diseases are endemic. Diarrhea processes frequently involve the destruction of intestinal epithelia, so it is plausible that such clones may be positively selected for in intestines containing abundant DNA, and consequently deoxyribose. Statistical analysis also indicated that symptomatic clinical disorders and the presence of virulence factors specific to extraintestinal pathogenic E. coli were significantly associated with an increased risk of biological samples and clones testing positive for deoxyribose. Using the streptomycin-treated-mouse model of intestinal colonization, we demonstrated the involvement of the deoK operon in gut colonization by two pathogenic isolates (one enteroaggregative and one uropathogenic strain). These results, indicating that deoxyribose availability promotes pathogenic E. coli growth during host colonization, suggest that the acquisition of this trait may be an evolutionary step enabling these pathogens to colonize and persist in the mammalian intestine.
Collapse
|
362
|
Pichon C, Héchard C, du Merle L, Chaudray C, Bonne I, Guadagnini S, Vandewalle A, Le Bouguénec C. Uropathogenic Escherichia coli AL511 requires flagellum to enter renal collecting duct cells. Cell Microbiol 2009; 11:616-28. [PMID: 19134121 DOI: 10.1111/j.1462-5822.2008.01278.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Escherichia coli is the leading cause of urinary tract infections, but the mechanisms governing renal colonization by this bacterium remain poorly understood. We investigated the ability of 13 E. coli strains isolated from the urine of patients with pyelonephritis and cystitis and normal stools to invade collecting duct cells, which constitute the first epithelium encountered by bacteria ascending from the bladder. The AL511 clinical isolate adhered to mouse collecting duct mpkCCD(cl4) cells, used as a model of renal cell invasion, and was able to enter and persist within these cells. Previous studies have shown that bacterial flagella play an important role in host urinary tract colonization, but the role of flagella in the interaction of E. coli with renal epithelial cells remains unclear. An analysis of the ability of E. coli AL511 mutants to invade renal cells showed that flagellin played a key role in bacterial entry. Both flagellum filament assembly and the motor proteins MotA and MotB appeared to be required for E. coli AL511 uptake into collecting duct cells. These findings indicate that pyelonephritis-associated E. coli strains may invade renal collecting duct cells and that flagellin may act as an invasin in this process.
Collapse
Affiliation(s)
- Christophe Pichon
- Institut Pasteur, Unité Pathogénie Bactérienne des Muqueuses, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
363
|
Villafane R, Zayas M, Gilcrease EB, Kropinski AM, Casjens SR. Genomic analysis of bacteriophage epsilon 34 of Salmonella enterica serovar Anatum (15+). BMC Microbiol 2008; 8:227. [PMID: 19091116 PMCID: PMC2629481 DOI: 10.1186/1471-2180-8-227] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 12/17/2008] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The presence of prophages has been an important variable in genetic exchange and divergence in most bacteria. This study reports the determination of the genomic sequence of Salmonella phage epsilon 34, a temperate bacteriophage that was important in the early study of prophages that modify their hosts' cell surface and is of a type (P22-like) that is common in Salmonella genomes. RESULTS The sequence shows that epsilon 34 is a mosaically related member of the P22 branch of the lambdoid phages. Its sequence is compared with the known P22-like phages and several related but previously unanalyzed prophage sequences in reported bacterial genome sequences. CONCLUSION These comparisons indicate that there has been little if any genetic exchange within the procapsid assembly gene cluster with P22-like E. coli/Shigella phages that are have orthologous but divergent genes in this region. Presumably this observation reflects the fact that virion assembly proteins interact intimately and divergent proteins can no longer interact. On the other hand, non-assembly genes in the "ant moron" appear to be in a state of rapid flux, and regulatory genes outside the assembly gene cluster have clearly enjoyed numerous and recent horizontal exchanges with phages outside the P22-like group. The present analysis also shows that epsilon 34 harbors a gtrABC gene cluster which should encode the enzymatic machinery to chemically modify the host O antigen polysaccharide, thus explaining its ability to alter its host's serotype. A comprehensive comparative analysis of the known phage gtrABC gene clusters shows that they are highly mobile, having been exchanged even between phage types, and that most "bacterial" gtrABC genes lie in prophages that vary from being largely intact to highly degraded. Clearly, temperate phages are very major contributors to the O-antigen serotype of their Salmonella hosts.
Collapse
Affiliation(s)
- Robert Villafane
- Ponce School of Medicine, Department of Microbiology, Ponce, Puerto Rico 00732
- Ponce School of Medicine, Department of Biochemistry, Ponce, Puerto Rico 00732
- Current address : Alabama State University, Program in Microbiology, Department of Biological Sciences, 915 S. Jackson Street, Montgomery, AL 36101
| | - Milka Zayas
- Ponce School of Medicine, Department of Microbiology, Ponce, Puerto Rico 00732
- Ponce School of Medicine, Department of Biochemistry, Ponce, Puerto Rico 00732
| | - Eddie B Gilcrease
- Department of Pathology, 5200 Emma Eccles Jones Research Building, U. of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112, USA
| | - Andrew M Kropinski
- Department of Microbiology and Immunology, Queens University, Kingston, Ontario, Canada, K7L 3N6
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada, N1G 3W4
| | - Sherwood R Casjens
- Department of Pathology, 5200 Emma Eccles Jones Research Building, U. of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112, USA
| |
Collapse
|
364
|
Eto DS, Gordon HB, Dhakal BK, Jones TA, Mulvey MA. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell Microbiol 2008; 10:2553-67. [PMID: 18754852 DOI: 10.1111/j.1462-5822.2008.01229.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The FimH adhesin, localized at the distal tips of type 1 pili, binds mannose-containing glycoprotein receptors like alpha3beta1 integrins and stimulates bacterial entry into target host cells. Strains of uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections, utilize FimH to invade bladder epithelial cells. Here we set out to define the mechanism by which UPEC enters host cells by investigating four of the major entry routes known to be exploited by invasive pathogens: caveolae, clathrin, macropinocytosis and secretory lysosomes. Using pharmacological inhibitors in combination with RNA interference against specific endocytic pathway components, mutant host cell lines and a mouse infection model system, we found that type 1 pili-dependent bacterial invasion of host cells occurs via a cholesterol- and dynamin-dependent phagocytosis-like mechanism. This process did not require caveolae or secretory lysosomes, but was modulated by calcium levels, clathrin, and cooperative input from the primary clathrin adaptor AP-2 and a subset of alternate adaptors comprised of Numb, ARH and Dab2. These alternate clathrin adaptors recognize NPXY motifs, as found within the cytosolic tail of beta1 integrin, suggesting a functional link between the engagement of integrin receptors by FimH and the clathrin-dependent uptake of type 1-piliated bacteria.
Collapse
Affiliation(s)
- Danelle S Eto
- Division of Cell Biology and Immunology, Pathology Department, University of Utah, Salt Lake City, UT 84112-0565, USA
| | | | | | | | | |
Collapse
|
365
|
Dhakal BK, Mulvey MA. Uropathogenic Escherichia coli invades host cells via an HDAC6-modulated microtubule-dependent pathway. J Biol Chem 2008; 284:446-454. [PMID: 18996840 DOI: 10.1074/jbc.m805010200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Strains of uropathogenic Escherichia coli (UPEC) encode filamentous adhesive organelles called type 1 pili that promote bacterial colonization and invasion of the bladder epithelium. Type 1 pilus-mediated interactions with host receptors, including alpha3beta1 integrin, trigger localized actin rearrangements that lead to internalization of adherent bacteria via a zipper-like mechanism. Here we report that type 1 pilus-mediated bacterial invasion of bladder cells also requires input from host microtubules and histone deacetylase 6 (HDAC6), a cytosolic enzyme that, by deacetylating alpha-tubulin, can alter the stability of microtubules along with the recruitment and directional trafficking of the kinesin-1 motor complex. We found that disruption of microtubules by nocodazole or vinblastine treatment, as well as microtubule stabilization by taxol, inhibited host cell invasion by UPEC, as did silencing of HDAC6 expression or pharmacological inhibition of HDAC6 activity. Invasion did not require two alternate HDAC6 substrates, Hsp90 and cortactin, but was dependent upon the kinesin-1 light chain KLC2 and an upstream activator of HDAC6, aurora A kinase. These results indicate that HDAC6 and microtubules act as vital regulatory elements during the invasion process, possibly via indirect effects on kinesin-1 and associated cargos.
Collapse
Affiliation(s)
- Bijaya K Dhakal
- Division of Cell Biology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah 84112-0565
| | - Matthew A Mulvey
- Division of Cell Biology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah 84112-0565.
| |
Collapse
|
366
|
Oshima K, Toh H, Ogura Y, Sasamoto H, Morita H, Park SH, Ooka T, Iyoda S, Taylor TD, Hayashi T, Itoh K, Hattori M. Complete genome sequence and comparative analysis of the wild-type commensal Escherichia coli strain SE11 isolated from a healthy adult. DNA Res 2008; 15:375-86. [PMID: 18931093 PMCID: PMC2608844 DOI: 10.1093/dnares/dsn026] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We sequenced and analyzed the genome of a commensal Escherichia coli (E. coli) strain SE11 (O152:H28) recently isolated from feces of a healthy adult and classified into E. coli phylogenetic group B1. SE11 harbored a 4.8 Mb chromosome encoding 4679 protein-coding genes and six plasmids encoding 323 protein-coding genes. None of the SE11 genes had sequence similarity to known genes encoding phage- and plasmid-borne virulence factors found in pathogenic E. coli strains. The comparative genome analysis with the laboratory strain K-12 MG1655 identified 62 poorly conserved genes between these two non-pathogenic strains and 1186 genes absent in MG1655. These genes in SE11 were mostly encoded in large insertion regions on the chromosome or in the plasmids, and were notably abundant in genes of fimbriae and autotransporters, which are cell surface appendages that largely contribute to the adherence ability of bacteria to host cells and bacterial conjugation. These data suggest that SE11 may have evolved to acquire and accumulate the functions advantageous for stable colonization of intestinal cells, and that the adhesion-associated functions are important for the commensality of E. coli in human gut habitat.
Collapse
Affiliation(s)
- Kenshiro Oshima
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Characterization of pUO-StVR2, a virulence-resistance plasmid evolved from the pSLT virulence plasmid of Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2008; 52:4514-7. [PMID: 18852276 DOI: 10.1128/aac.00563-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
pUO-StVR2 is a virulence-resistance plasmid which originated from pSLT of Salmonella enterica serovar Typhimurium through acquisition of a complex resistance island, flanked by regions that provide a toxin-antitoxin system and an iron uptake system. The presence of resistance and virulence determinants on the same plasmid allows coselection of both properties, potentially increasing health risks.
Collapse
|
368
|
Watts KM, Hunstad DA. Components of SurA required for outer membrane biogenesis in uropathogenic Escherichia coli. PLoS One 2008; 3:e3359. [PMID: 18836534 PMCID: PMC2556385 DOI: 10.1371/journal.pone.0003359] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 09/16/2008] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND SurA is a periplasmic peptidyl-prolyl isomerase (PPIase) and chaperone of Escherichia coli and other Gram-negative bacteria. In contrast to other PPIases, SurA appears to have a distinct role in chaperoning newly synthesized porins destined for insertion into the outer membrane. Previous studies have indicated that the chaperone activity of SurA rests in its "core module" (the N- plus C-terminal domains), based on in vivo envelope phenotypes and in vitro binding and protection of non-native substrates. METHODOLOGY/PRINCIPAL FINDINGS In this study, we determined the components of SurA required for chaperone activity using in vivo phenotypes relevant to disease causation by uropathogenic E. coli (UPEC), namely membrane resistance to permeation by antimicrobials and maturation of the type 1 pilus usher FimD. FimD is a SurA-dependent, integral outer membrane protein through which heteropolymeric type 1 pili, which confer bladder epithelial binding and invasion capacity upon uropathogenic E. coli, are assembled and extruded. Consistent with prior results, the in vivo chaperone activity of SurA in UPEC rested primarily in the core module. However, the PPIase domains I and II were not expendable for wild-type resistance to novobiocin in broth culture. Steady-state levels of FimD were substantially restored in the UPEC surA mutant complemented with the SurA N- plus C-terminal domains. The addition of PPIase domain I augmented FimD maturation into the outer membrane, consistent with a model in which domain I enhances stability of and/or substrate binding by the core module. CONCLUSIONS/SIGNIFICANCE Our results confirm the core module of E. coli SurA as a potential target for novel anti-infective development.
Collapse
Affiliation(s)
- Kristin M. Watts
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David A. Hunstad
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
369
|
Targeting virulence traits: potential strategies to combat extraintestinal pathogenic E. coli infections. Curr Opin Microbiol 2008; 11:409-13. [DOI: 10.1016/j.mib.2008.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 09/02/2008] [Indexed: 01/22/2023]
|
370
|
Fricke WF, Wright MS, Lindell AH, Harkins DM, Baker-Austin C, Ravel J, Stepanauskas R. Insights into the environmental resistance gene pool from the genome sequence of the multidrug-resistant environmental isolate Escherichia coli SMS-3-5. J Bacteriol 2008; 190:6779-94. [PMID: 18708504 PMCID: PMC2566207 DOI: 10.1128/jb.00661-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 08/02/2008] [Indexed: 11/20/2022] Open
Abstract
The increasing occurrence of multidrug-resistant pathogens of clinical and agricultural importance is a global public health concern. While antimicrobial use in human and veterinary medicine is known to contribute to the dissemination of antimicrobial resistance, the impact of microbial communities and mobile resistance genes from the environment in this process is not well understood. Isolated from an industrially polluted aquatic environment, Escherichia coli SMS-3-5 is resistant to a record number of antimicrobial compounds from all major classes, including two front-line fluoroquinolones (ciprofloxacin and moxifloxacin), and in many cases at record-high concentrations. To gain insights into antimicrobial resistance in environmental bacterial populations, the genome of E. coli SMS-3-5 was sequenced and compared to the genome sequences of other E. coli strains. In addition, selected genetic loci from E. coli SMS-3-5 predicted to be involved in antimicrobial resistance were phenotypically characterized. Using recombinant vector clones from shotgun sequencing libraries, resistance to tetracycline, streptomycin, and sulfonamide/trimethoprim was assigned to a single mosaic region on a 130-kb plasmid (pSMS35_130). The remaining plasmid backbone showed similarity to virulence plasmids from avian-pathogenic E. coli (APEC) strains. Individual resistance gene cassettes from pSMS35_130 are conserved among resistant bacterial isolates from multiple phylogenetic and geographic sources. Resistance to quinolones was assigned to several chromosomal loci, mostly encoding transport systems that are also present in susceptible E. coli isolates. Antimicrobial resistance in E. coli SMS-3-5 is therefore dependent both on determinants acquired from a mobile gene pool that is likely available to clinical and agricultural pathogens, as well, and on specifically adapted multidrug efflux systems. The association of antimicrobial resistance with APEC virulence genes on pSMS35_130 highlights the risk of promoting the spread of virulence through the extensive use of antibiotics.
Collapse
Affiliation(s)
- W Florian Fricke
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
371
|
Rasko DA, Rosovitz MJ, Myers GSA, Mongodin EF, Fricke WF, Gajer P, Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R, Henderson IR, Sperandio V, Ravel J. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 2008; 190:6881-93. [PMID: 18676672 PMCID: PMC2566221 DOI: 10.1128/jb.00619-08] [Citation(s) in RCA: 589] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 07/21/2008] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing has been skewed toward bacterial pathogens as a consequence of the prioritization of medical and veterinary diseases. However, it is becoming clear that in order to accurately measure genetic variation within and between pathogenic groups, multiple isolates, as well as commensal species, must be sequenced. This study examined the pangenomic content of Escherichia coli. Six distinct E. coli pathovars can be distinguished using molecular or phenotypic markers, but only two of the six pathovars have been subjected to any genome sequencing previously. Thus, this report provides a seminal description of the genomic contents and unique features of three unsequenced pathovars, enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. We also determined the first genome sequence of a human commensal E. coli isolate, E. coli HS, which will undoubtedly provide a new baseline from which workers can examine the evolution of pathogenic E. coli. Comparison of 17 E. coli genomes, 8 of which are new, resulted in identification of approximately 2,200 genes conserved in all isolates. We were also able to identify genes that were isolate and pathovar specific. Fewer pathovar-specific genes were identified than anticipated, suggesting that each isolate may have independently developed virulence capabilities. Pangenome calculations indicate that E. coli genomic diversity represents an open pangenome model containing a reservoir of more than 13,000 genes, many of which may be uncharacterized but important virulence factors. This comparative study of the species E. coli, while descriptive, should provide the basis for future functional work on this important group of pathogens.
Collapse
Affiliation(s)
- David A Rasko
- Institute for Genome Sciences, Department of Microbiology & Immunology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl Environ Microbiol 2008; 74:7043-50. [PMID: 18820066 DOI: 10.1128/aem.01395-08] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since extraintestinal pathogenic Escherichia coli (ExPEC) strains from human and avian hosts encounter similar challenges in establishing infection in extraintestinal locations, they may share similar contents of virulence genes and capacities to cause disease. In the present study, 1,074 ExPEC isolates were classified by phylogenetic group and possession of 67 other traits, including virulence-associated genes and plasmid replicon types. These ExPEC isolates included 452 avian pathogenic E. coli strains from avian colibacillosis, 91 neonatal meningitis E. coli (NMEC) strains causing human neonatal meningitis, and 531 uropathogenic E. coli strains from human urinary tract infections. Cluster analysis of the data revealed that most members of each subpathotype represent a genetically distinct group and have distinguishing characteristics. However, a genotyping cluster containing 108 ExPEC isolates was identified, heavily mixed with regard to subpathotype, in which there was substantial trait overlap. Many of the isolates within this cluster belonged to the O1, O2, or O18 serogroup. Also, 58% belonged to the ST95 multilocus sequence typing group, and over 90% of them were assigned to the B2 phylogenetic group typical of human ExPEC strains. This cluster contained strains with a high number of both chromosome- and plasmid-associated ExPEC genes. Further characterization of this ExPEC subset with zoonotic potential urges future studies exploring the potential for the transmission of certain ExPEC strains between humans and animals. Also, the widespread occurrence of plasmids among NMEC strains and members of the mixed cluster suggests that plasmid-mediated virulence in these pathotypes warrants further attention.
Collapse
|
373
|
Evidence for positive selection in putative virulence factors within the Paracoccidioides brasiliensis species complex. PLoS Negl Trop Dis 2008; 2:e296. [PMID: 18820744 PMCID: PMC2553485 DOI: 10.1371/journal.pntd.0000296] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 08/20/2008] [Indexed: 11/19/2022] Open
Abstract
Paracoccidioides brasiliensis is a dimorphic fungus that is the causative agent of paracoccidioidomycosis, the most important prevalent systemic mycosis in Latin America. Recently, the existence of three genetically isolated groups in P. brasiliensis was demonstrated, enabling comparative studies of molecular evolution among P. brasiliensis lineages. Thirty-two gene sequences coding for putative virulence factors were analyzed to determine whether they were under positive selection. Our maximum likelihood–based approach yielded evidence for selection in 12 genes that are involved in different cellular processes. An in-depth analysis of four of these genes showed them to be either antigenic or involved in pathogenesis. Here, we present evidence indicating that several replacement mutations in gp43 are under positive balancing selection. The other three genes (fks, cdc42 and p27) show very little variation among the P. brasiliensis lineages and appear to be under positive directional selection. Our results are consistent with the more general observations that selective constraints are variable across the genome, and that even in the genes under positive selection, only a few sites are altered. We present our results within an evolutionary framework that may be applicable for studying adaptation and pathogenesis in P. brasiliensis and other pathogenic fungi. The fungus Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, a severe pulmonary mycosis that is endemic to Latin America, where an estimated 10 million people are infected with the fungus. Despite the importance of this disease, we know little about the ecological and evolutionary history of this fungus. Here, we present a survey of genetic variation in putative virulence genes in P. brasiliensis in what constitutes the first systematic approach to understand the molecular evolution of the fungus. We used a population genetics approach to determine the role has natural selection played in the coding genes for proteins involved in pathogenesis. We found that nonsynonymous mutations are more common in genes that code for virulence factors than in housekeeping genes. Our results suggest that positive selection has played an important role in the evolution of virulence factors of P. brasiliensis and is therefore an important factor in the host–pathogen dynamics. Our results also have implications for the possible development of a vaccine against paracoccidioidomycosis, since gp43—the main vaccine candidate—has a high level of polymorphism maintained by natural selection.
Collapse
|
374
|
Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: A multidrug transporter family that continues to grow. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1814-38. [DOI: 10.1016/j.bbamem.2007.08.015] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 08/07/2007] [Accepted: 08/14/2007] [Indexed: 11/17/2022]
|
375
|
Systematic identification and sequence analysis of the genomic islands of the enteropathogenic Escherichia coli strain B171-8 by the combined use of whole-genome PCR scanning and fosmid mapping. J Bacteriol 2008; 190:6948-60. [PMID: 18757547 DOI: 10.1128/jb.00625-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are diarrheagenic pathogens that colonize the intestinal tract through the formation of attaching and effacing lesions, induced by effectors translocated via a type III secretion system (T3SS) encoded on the locus of enterocyte effacement (LEE). In EHEC O157, numerous virulence factors, including around 40 T3SS effectors, have been identified. Most of them are encoded on genomic islands (GEIs) such as prophages and integrative elements. For EPEC, however, no systematic search of GEIs and virulence-related genes carried therein has been done, and only a limited number of virulence factors have been identified so far. In this study, we performed a systemic and genome-wide survey of the GEIs in strain B171-8, one of the prototype strains of EPEC, by the combined use of whole-genome PCR scanning and fosmid mapping and identified 22 large GEIs, including nine lambda-like prophages, three P2-like prophages, the LEE, and three additional integrative elements. On these prophages and integrative elements, we found genes for a set of T3SS proteins, a total of 33 T3SS effectors or effector homologues, and 12 other virulence factors which include five nonfimbrial adhesins. Most of the T3SS effector families identified are also present in EHEC O157, but B171-8 possesses a significantly smaller number of effectors. Not only the presence or absence of Shiga toxin genes but also the difference in the T3SS effector repertoire should be considered in analyzing the pathogenicity of EPEC and EHEC strains.
Collapse
|
376
|
Transcriptomics and adaptive genomics of the asymptomatic bacteriuria Escherichia coli strain 83972. Mol Genet Genomics 2008; 279:523-34. [PMID: 18317809 PMCID: PMC2329726 DOI: 10.1007/s00438-008-0330-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 01/31/2008] [Indexed: 11/17/2022]
Abstract
Escherichia coli strains are the major cause of urinary tract infections in humans. Such strains can be divided into virulent, UPEC strains causing symptomatic infections, and asymptomatic, commensal-like strains causing asymptomatic bacteriuria, ABU. The best-characterized ABU strain is strain 83972. Global gene expression profiling of strain 83972 has been carried out under seven different sets of environmental conditions ranging from laboratory minimal medium to human bladders. The data reveal highly specific gene expression responses to different conditions. A number of potential fitness factors for the human urinary tract could be identified. Also, presence/absence data of the gene expression was used as an adaptive genomics tool to model the gene pool of 83972 using primarily UPEC strain CFT073 as a scaffold. In our analysis, 96% of the transcripts filtered present in strain 83972 can be found in CFT073, and genes on six of the seven pathogenicity islands were expressed in 83972. Despite the very different patient symptom profiles, the two strains seem to be very similar. Genes expressed in CFT073 but not in 83972 were identified and can be considered as virulence factor candidates. Strain 83972 is a deconstructed pathogen rather than a commensal strain that has acquired fitness properties.
Collapse
|
377
|
Orsi RH, Sun Q, Wiedmann M. Genome-wide analyses reveal lineage specific contributions of positive selection and recombination to the evolution of Listeria monocytogenes. BMC Evol Biol 2008; 8:233. [PMID: 18700032 PMCID: PMC2532693 DOI: 10.1186/1471-2148-8-233] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 08/12/2008] [Indexed: 12/30/2022] Open
Abstract
Background The genus Listeria includes two closely related pathogenic and non-pathogenic species, L. monocytogenes and L. innocua. L. monocytogenes is an opportunistic human foodborne and animal pathogen that includes two common lineages. While lineage I is more commonly found among human listeriosis cases, lineage II appears to be overrepresented among isolates from foods and environmental sources. This study used the genome sequences for one L. innocua strain and four L. monocytogenes strains representing lineages I and II, to characterize the contributions of positive selection and recombination to the evolution of the L. innocua/L. monocytogenes core genome. Results Among the 2267 genes in the L. monocytogenes/L. innocua core genome, 1097 genes showed evidence for recombination and 36 genes showed evidence for positive selection. Positive selection was strongly associated with recombination. Specifically, 29 of the 36 genes under positive selection also showed evidence for recombination. Recombination was more common among isolates in lineage II than lineage I; this trend was confirmed by sequencing five genes in a larger isolate set. Positive selection was more abundant in the ancestral branch of lineage II (20 genes) as compared to the ancestral branch of lineage I (9 genes). Additional genes under positive selection were identified in the branch separating the two species; for this branch, genes in the role category "Cell wall and membrane biogenesis" were significantly more likely to have evidence for positive selection. Positive selection of three genes was confirmed in a larger isolate set, which also revealed occurrence of multiple premature stop codons in one positively selected gene involved in flagellar motility (flaR). Conclusion While recombination and positive selection both contribute to evolution of L. monocytogenes, the relative contributions of these evolutionary forces seem to differ by L. monocytogenes lineages and appear to be more important in the evolution of lineage II, which seems to be found in a broader range of environments, as compared to the apparently more host adapted lineage I. Diversification of cell wall and membrane biogenesis and motility-related genes may play a particularly important role in the evolution of L. monocytogenes.
Collapse
Affiliation(s)
- Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| | | | | |
Collapse
|
378
|
Abstract
A comparison of genome sequences and of encoded proteins with the database of existing annotated sequences is a useful approach to understand the information at the genome level. Here we demonstrate the utility of several DNA and protein sequence comparison tools to interpret the information obtained from several genome projects. Comparisons are presented between closely related strains of Escherichia coli commensal isolates, different isolates of O157:H7, and Shigella spp. It is expected that comparative genome analysis will generate a wealth of data to compare pathogenic isolates with varying levels of pathogenicity, which in turn may reveal mechanisms by which the pathogen may adapt to a particular nutrient supply in certain foods. These genome sequence analysis tools will strengthen foodborne pathogen surveillance and subsequent risk assessment to enhance the safety of the food supply.
Collapse
Affiliation(s)
- Arvind A Bhagwat
- Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland 20705-2350, USA.
| | | |
Collapse
|
379
|
Wiles TJ, Kulesus RR, Mulvey MA. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol 2008; 85:11-9. [PMID: 18482721 PMCID: PMC2595135 DOI: 10.1016/j.yexmp.2008.03.007] [Citation(s) in RCA: 386] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 03/02/2008] [Indexed: 11/23/2022]
Abstract
Strains of uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections, including both cystitis and pyelonephritis. These bacteria have evolved a multitude of virulence factors and strategies that facilitate bacterial growth and persistence within the adverse settings of the host urinary tract. Expression of adhesive organelles like type 1 and P pili allow UPEC to bind and invade host cells and tissues within the urinary tract while expression of iron-chelating factors (siderophores) enable UPEC to pilfer host iron stores. Deployment of an array of toxins, including hemolysin and cytotoxic necrotizing factor 1, provide UPEC with the means to inflict extensive tissue damage, facilitating bacterial dissemination as well as releasing host nutrients and disabling immune effector cells. These toxins also have the capacity to modulate, in more subtle ways, host signaling pathways affecting myriad processes, including inflammatory responses, host cell survival, and cytoskeletal dynamics. Here, we discuss the mechanisms by which these and other virulence factors promote UPEC survival and growth within the urinary tract. Comparisons are also made between UPEC and other strains of extraintestinal pathogenic E. coli that, although closely related to UPEC, are distinct in their abilities to colonize the host and cause disease.
Collapse
Affiliation(s)
- Travis J. Wiles
- Division of Cell Biology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah 84112-0565, USA
| | - Richard R. Kulesus
- Division of Cell Biology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah 84112-0565, USA
| | - Matthew A. Mulvey
- Division of Cell Biology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah 84112-0565, USA
| |
Collapse
|
380
|
Amundsen SK, Fero J, Hansen LM, Cromie GA, Solnick JV, Smith GR, Salama NR. Helicobacter pylori AddAB helicase-nuclease and RecA promote recombination-related DNA repair and survival during stomach colonization. Mol Microbiol 2008; 69:994-1007. [PMID: 18573180 PMCID: PMC2680919 DOI: 10.1111/j.1365-2958.2008.06336.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori colonization of the human stomach is characterized by profound disease-causing inflammation. Bacterial proteins that detoxify reactive oxygen species or recognize damaged DNA adducts promote infection, suggesting that H. pylori requires DNA damage repair for successful in vivo colonization. The molecular mechanisms of repair remain unknown. We identified homologues of the AddAB class of helicase-nuclease enzymes, related to the Escherichia coli RecBCD enzyme, which, with RecA, is required for repair of DNA breaks and homologous recombination. H. pylori mutants lacking addA or addB genes lack detectable ATP-dependent nuclease activity, and the cloned H. pylori addAB genes restore both nuclease and helicase activities to an E. coli recBCD deletion mutant. H. pylori addAB and recA mutants have a reduced capacity for stomach colonization. These mutants are sensitive to DNA damaging agents and have reduced frequencies of apparent gene conversion between homologous genes encoding outer membrane proteins. Our results reveal requirements for double-strand break repair and recombination during both acute and chronic phases of H. pylori stomach infection.
Collapse
Affiliation(s)
- Susan K. Amundsen
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle WA, 98109
| | - Jutta Fero
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle WA, 98109
| | - Lori M. Hansen
- Departments of Internal Medicine and Medical Microbiology & Immunology, and Center for Comparative Medicine, University of California, Davis CA, 95616, USA
| | - Gareth A. Cromie
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle WA, 98109
| | - Jay V. Solnick
- Departments of Internal Medicine and Medical Microbiology & Immunology, and Center for Comparative Medicine, University of California, Davis CA, 95616, USA
| | - Gerald R. Smith
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle WA, 98109
| | - Nina R. Salama
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle WA, 98109
| |
Collapse
|
381
|
Kulesus RR, Diaz-Perez K, Slechta ES, Eto DS, Mulvey MA. Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli. Infect Immun 2008; 76:3019-26. [PMID: 18458066 PMCID: PMC2446724 DOI: 10.1128/iai.00022-08] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/07/2008] [Accepted: 04/28/2008] [Indexed: 01/12/2023] Open
Abstract
Hfq is a bacterial RNA chaperone involved in the posttranscriptional regulation of many stress-inducible genes via small noncoding RNAs. Here, we show that Hfq is critical for the uropathogenic Escherichia coli (UPEC) isolate UTI89 to effectively colonize the bladder and kidneys in a murine urinary tract infection model system. The disruption of hfq did not affect bacterial adherence to or invasion of host cells but did limit the development of intracellular microcolonies by UTI89 within the terminally differentiated epithelial cells that line the lumen of the bladder. In vitro, the hfq mutant was significantly impaired in its abilities to handle the antibacterial cationic peptide polymyxin B and reactive nitrogen and oxygen radicals and to grow in acidic medium (pH 5.0). Relative to the wild-type strain, the hfq mutant also had a substantially reduced migration rate on motility agar and was less prone to form biofilms. Hfq activities are known to impact the regulation of both the stationary-phase sigma factor RpoS (sigma(S)) and the envelope stress response sigma factor RpoE (sigma(E)). Although we saw similarities among hfq, rpoS, and rpoE deletion mutants in our assays, the rpoE and hfq mutants were phenotypically the most alike. Cumulatively, our data indicate that Hfq likely affects UPEC virulence-related phenotypes primarily by modulating membrane homeostasis and envelope stress response pathways.
Collapse
Affiliation(s)
- Richard R Kulesus
- Division of Cell Biology and Immunology, Pathology Department, University of Utah, Salt Lake City, UT 84112-0565, USA
| | | | | | | | | |
Collapse
|
382
|
Specific roles of the iroBCDEN genes in virulence of an avian pathogenic Escherichia coli O78 strain and in production of salmochelins. Infect Immun 2008; 76:3539-49. [PMID: 18541653 DOI: 10.1128/iai.00455-08] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) strains are a subset of extraintestinal pathogenic E. coli (ExPEC) strains associated with respiratory infections and septicemia in poultry. The iroBCDEN genes encode the salmochelin siderophore system present in Salmonella enterica and some ExPEC strains. Roles of the iro genes for virulence in chickens and production of salmochelins were assessed by introducing plasmids carrying different combinations of iro genes into an attenuated salmochelin- and aerobactin-negative mutant of O78 strain chi7122. Complementation with the iroBCDEN genes resulted in a regaining of virulence, whereas the absence of iroC, iroDE, or iroN abrogated restoration of virulence. The iroE gene was not required for virulence, since introduction of iroBCDN restored the capacity to cause lesions and colonize extraintestinal tissues. Prevalence studies indicated that iro sequences were associated with virulent APEC strains. Liquid chromatography-mass spectrometry analysis of supernatants of APEC chi7122 and the complemented mutants indicated that (i) for chi7122, salmochelins comprised 14 to 27% of the siderophores present in iron-limited medium or infected tissues; (ii) complementation of the mutant with the iro locus increased levels of glucosylated dimers (S1 and S5) and monomer (SX) compared to APEC strain chi7122; (iii) the iroDE genes were important for generation of S1, S5, and SX; (iv) iroC was required for export of salmochelin trimers and dimers; and (v) iroB was required for generation of salmochelins. Overall, efficient glucosylation (IroB), transport (IroC and IroN), and processing (IroD and IroE) of salmochelins are required for APEC virulence, although IroE appears to serve an ancillary role.
Collapse
|
383
|
Leevy WM, Lambert TN, Johnson JR, Morris J, Smith BD. Quantum dot probes for bacteria distinguish Escherichia coli mutants and permit in vivo imaging. Chem Commun (Camb) 2008:2331-3. [PMID: 18473060 PMCID: PMC2847773 DOI: 10.1039/b803590c] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescent quantum dots coated with zinc(ii)-dipicolylamine coordination complexes can selectively stain a rough Escherichia coli mutant that lacks an O-antigen element and permit optical detection in a living mouse leg infection model.
Collapse
Affiliation(s)
- W Matthew Leevy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
384
|
van Passel MWJ, Marri PR, Ochman H. The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput Biol 2008; 4:e1000059. [PMID: 18404206 PMCID: PMC2275313 DOI: 10.1371/journal.pcbi.1000059] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 03/14/2008] [Indexed: 11/18/2022] Open
Abstract
Bacterial species, and even strains within species, can vary greatly in their gene contents and metabolic capabilities. We examine the evolution of this diversity by assessing the distribution and ancestry of each gene in 13 sequenced isolates of Escherichia coli and Shigella. We focus on the emergence and demise of two specific classes of genes, ORFans (genes with no homologs in present databases) and HOPs (genes with distant homologs), since these genes, in contrast to most conserved ancestral sequences, are known to be a major source of the novel features in each strain. We find that the rates of gain and loss of these genes vary greatly among strains as well as through time, and that ORFans and HOPs show very different behavior with respect to their emergence and demise. Although HOPs, which mostly represent gene acquisitions from other bacteria, originate more frequently, ORFans are much more likely to persist. This difference suggests that many adaptive traits are conferred by completely novel genes that do not originate in other bacterial genomes. With respect to the demise of these acquired genes, we find that strains of Shigella lose genes, both by disruption events and by complete removal, at accelerated rates.
Collapse
Affiliation(s)
- Mark W J van Passel
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
385
|
Characterization of probiotic Escherichia coli isolates with a novel pan-genome microarray. Genome Biol 2008; 8:R267. [PMID: 18088402 PMCID: PMC2246269 DOI: 10.1186/gb-2007-8-12-r267] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/04/2007] [Accepted: 12/18/2007] [Indexed: 11/26/2022] Open
Abstract
A high-density microarray has been designed that covers the genomes of 24 Escherichia coli and 8 Shigella strains. As a proof-of-principle the genomes of four probiotic E. coli strains were analyzed and their phylogenetic relationship to other E.coli strains investigated. Background Microarrays have recently emerged as a novel procedure to evaluate the genetic content of bacterial species. So far, microarrays have mostly covered single or few strains from the same species. However, with cheaper high-throughput sequencing techniques emerging, multiple strains of the same species are rapidly becoming available, allowing for the definition and characterization of a whole species as a population of genomes - the 'pan-genome'. Results Using 32 Escherichia coli and Shigella genome sequences we estimate the pan- and core genome of the species. We designed a high-density microarray in order to provide a tool for characterization of the E. coli pan-genome. Technical performance of this pan-genome microarray based on control strain samples (E. coli K-12 and O157:H7) demonstrated a high sensitivity and relatively low false positive rate. A single-channel analysis approach is robust while allowing the possibility for deriving presence/absence predictions for any gene included on our pan-genome microarray. Moreover, the array was highly sufficient to investigate the gene content of non-pathogenic isolates, despite the strong bias towards pathogenic E. coli strains that have been sequenced so far. Conclusion This high-density microarray provides an excellent tool for characterizing the genetic makeup of unknown E. coli strains and can also deliver insights into phylogenetic relationships. Its design poses a considerably larger challenge and involves different considerations than the design of single strain microarrays. Here, lessons learned and future directions will be discussed in order to optimize design of microarrays targeting entire pan-genomes.
Collapse
|
386
|
Totsika M, Beatson SA, Holden N, Gally DL. Regulatory interplay between pap operons in uropathogenic Escherichia coli. Mol Microbiol 2008; 67:996-1011. [DOI: 10.1111/j.1365-2958.2007.06098.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
387
|
Abstract
The increased serum survival gene iss has long been recognized for its role in extraintestinal pathogenic Escherichia coli (ExPEC) virulence. iss has been identified as a distinguishing trait of avian ExPEC but not of human ExPEC. This gene has been localized to large virulence plasmids and shares strong similarities with the bor gene from bacteriophage lambda. Here, we demonstrate that three alleles of iss occur among E. coli isolates that appear to have evolved from a common lambda bor precursor. In addition to the occurrence of iss on the ColV/BM virulence plasmids, at least two iss alleles occur within the E. coli chromosome. One of these alleles (designated type 3) was found to occur in the genomes of all currently sequenced ExPEC strains on a similar prophage element that also harbors the Sit iron and manganese transport system. When the prevalence of the three iss types was examined among 487 E. coli isolates, the iss type 3 gene was found to occur at a high frequency among ExPEC isolates, irrespective of the host source. The plasmid-borne iss allele (designated type 1) was highly prevalent among avian pathogenic E. coli and neonatal meningitis-associated E. coli isolates but not among uropathogenic E. coli isolates. This study demonstrates the evolution of iss in E. coli and provides an additional tool for discriminating among E. coli pathotypes through the differentiation of the three iss allele types and bor.
Collapse
|
388
|
Bronowski C, Smith SL, Yokota K, Corkill JE, Martin HM, Campbell BJ, Rhodes JM, Hart CA, Winstanley C. A subset of mucosa-associated Escherichia coli isolates from patients with colon cancer, but not Crohn's disease, share pathogenicity islands with urinary pathogenic E. coli. MICROBIOLOGY (READING, ENGLAND) 2008; 154:571-583. [PMID: 18227261 DOI: 10.1099/mic.0.2007/013086-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adherent and invasive mucosa-associated Escherichia coli have been implicated in the pathogenesis of colon cancer and inflammatory bowel diseases. It has been reported that such isolates share features of extraintestinal E. coli (ExPEC) and particularly uropathogenic E. coli (UPEC). We used suppression subtractive hybridization (SSH) to subtract the genome of E. coli K-12 from that of a colon cancer mucosal E. coli isolate. Of the subtracted sequences, 53 % were present in the genomes of one or more of three sequenced UPEC strains but absent from the genome of an enterohaemorrhagic E. coli (EHEC) strain. Of the subtracted sequences, 80 % matched at least one UPEC genome, whereas only 4 % were absent from the UPEC genomes but present in the genome of the EHEC strain. A further genomic subtraction against the UPEC strain 536 enriched for sequences matching mobile genetic elements, other ExPEC strains, and other UPEC strains or commensals, rather than strains associated with gastrointestinal disease. We analysed the distribution of selected subtracted sequences and UPEC-associated pathogenicity islands (PAIs) amongst a panel of mucosa-associated E. coli isolated from colonoscopic biopsies of patients with colon cancer, patients with Crohn's disease and controls. This enabled us to identify a group of isolates from colon cancer (30-40 %) carrying multiple genes previously categorized as UPEC-specific and implicated in virulence.
Collapse
Affiliation(s)
- Christina Bronowski
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK
| | - Shirley L Smith
- Division of Gastroenterology, School of Clinical Science, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK
| | - Kyoko Yokota
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK
| | - John E Corkill
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK
| | - Helen M Martin
- Division of Gastroenterology, School of Clinical Science, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Barry J Campbell
- Division of Gastroenterology, School of Clinical Science, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Jonathan M Rhodes
- Division of Gastroenterology, School of Clinical Science, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - C Anthony Hart
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK
| | - Craig Winstanley
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK
| |
Collapse
|
389
|
Rifat D, Wright NT, Varney KM, Weber DJ, Black LW. Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target. J Mol Biol 2008; 375:720-34. [PMID: 18037438 PMCID: PMC2255585 DOI: 10.1016/j.jmb.2007.10.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/04/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
Phage T4 protects its DNA from the two-gene-encoded gmrS/gmrD (glucose-modified hydroxymethylcytosine restriction endonuclease) CT of pathogenic Escherichia coli, CT596, by injecting several hundred copies of the 76-amino-acid-residue nuclease inhibitor, IPI*, into the infected host. Here, the three-dimensional solution structure of mature IPI* is reported as determined by nuclear magnetic resonance techniques using 1290 experimental nuclear Overhauser effect and dipolar coupling constraints ( approximately 17 constraints per residue). Close examination of this oblate-shaped protein structure reveals a novel fold consisting of two small beta-sheets (beta1: B1 and B2; beta2: B3-B5) flanked at the N- and C-termini by alpha-helices (H1 and H2). Such a fold is very compact in shape and allows ejection of IPI* through the narrow 30-A portal and tail tube apertures of the virion without unfolding. Structural and dynamic measurements identify an exposed hydrophobic knob that is a putative gmrS/gmrD-binding site. A single gene from the uropathogenic E. coli UT189, which codes for a gmrS/gmrD-like UT fusion enzyme (with approximately 90% identity to the heterodimeric CT enzyme), has evolved IPI* inhibitor immunity. Analysis of the gmrS/gmrD restriction endonuclease enzyme family and its IPI* family phage antagonists reveals an evolutionary pathway that has elaborated a surprisingly diverse and specifically fitted set of coevolving attack and defense structures.
Collapse
Affiliation(s)
- Dalin Rifat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201-1503, USA
| | | | | | | | | |
Collapse
|
390
|
Shoaf-Sweeney KD, Hutkins RW. Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host. ADVANCES IN FOOD AND NUTRITION RESEARCH 2008; 55:101-61. [PMID: 18772103 DOI: 10.1016/s1043-4526(08)00402-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For many pathogenic bacteria, infections are initiated only after the organism has first adhered to the host cell surface. If adherence can be inhibited, then the subsequent infection can also be inhibited. This approach forms the basis of anti-adherence strategies, which have been devised to prevent a variety of bacterial infections. In this chapter, the molecular basis by which respiratory, urinary, and gastrointestinal tract pathogens adhere to host cells will be described. The five general types of anti-adherence agents will also be reviewed. The most well-studied are the receptor analogs, which include oligosaccharides produced synthetically or derived from natural sources, including milk, berries, and other plants. Their ability to inhibit pathogen adherence may lead to development of novel, food-grade anti-infective agents that are inexpensive and safe.
Collapse
Affiliation(s)
- Kari D Shoaf-Sweeney
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|
391
|
Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 2008; 6:17-27. [PMID: 18079741 PMCID: PMC2211378 DOI: 10.1038/nrmicro1818] [Citation(s) in RCA: 593] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence and increasing prevalence of bacterial strains that are resistant to available antibiotics demand the discovery of new therapeutic approaches. Targeting bacterial virulence is an alternative approach to antimicrobial therapy that offers promising opportunities to inhibit pathogenesis and its consequences without placing immediate life-or-death pressure on the target bacterium. Certain virulence factors have been shown to be potential targets for drug design and therapeutic intervention, whereas new insights are crucial for exploiting others. Targeting virulence represents a new paradigm to empower the clinician to prevent and treat infectious diseases.
Collapse
Affiliation(s)
- Lynette Cegelski
- Department of Molecular Microbiology, Washington University, Saint Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
392
|
Abstract
Fast-sequencing throughput methods have increased the number of completely sequenced bacterial genomes to about 400 by December 2006, with the number increasing rapidly. These include several strains. In silico methods of comparative genomics are of use in categorizing and phylogenetically sorting these bacteria. Various word-based tools have been used for quantifying the similarities and differences between entire genomes. The simple di-nucleotide frequency comparison, codon specificity and k-mer repeat detection are among some of the well-known methods. In this paper, we show that the Mutual Information function, which is a measure of correlations and a concept from Information Theory, is very effective in determining the similarities and differences among genome sequences of various strains of bacteria such as the plant pathogen Xylella fastidiosa, marine Cyanobacteria Prochlorococcus marinus or animal and human pathogens such as species of Ehrlichia and Legionella. The short-range three-base periodicity, small sequence repeats and long-range correlations taken together constitute a genome signature that can be used as a technique for identifying new bacterial strains with the help of strains already catalogued in the database. There have been several applications of using the Mutual Information function as a measure of correlations in genomics but this is the first whole genome analysis done to detect strain similarities and differences.
Collapse
Affiliation(s)
- D Swati
- Department of Physics, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
393
|
Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 2007; 4:e329. [PMID: 18092884 PMCID: PMC2140087 DOI: 10.1371/journal.pmed.0040329] [Citation(s) in RCA: 426] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/05/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC). While UTIs are typically considered extracellular infections, it has been recently demonstrated that UPEC bind to, invade, and replicate within the murine bladder urothelium to form intracellular bacterial communities (IBCs). These IBCs dissociate and bacteria flux out of bladder facet cells, some with filamentous morphology, and ultimately establish quiescent intracellular reservoirs that can seed recurrent infection. This IBC pathogenic cycle has not yet been investigated in humans. In this study we sought to determine whether evidence of an IBC pathway could be found in urine specimens from women with acute UTI. METHODS AND FINDINGS We collected midstream, clean-catch urine specimens from 80 young healthy women with acute uncomplicated cystitis and 20 asymptomatic women with a history of UTI. Investigators were blinded to culture results and clinical history. Samples were analyzed by light microscopy, immunofluorescence, and electron microscopy for evidence of exfoliated IBCs and filamentous bacteria. Evidence of IBCs was found in 14 of 80 (18%) urines from women with UTI. Filamentous bacteria were found in 33 of 80 (41%) urines from women with UTI. None of the 20 urines from the asymptomatic comparative group showed evidence of IBCs or filaments. Filamentous bacteria were present in all 14 of the urines with IBCs compared to 19 (29%) of 66 samples with no evidence of IBCs (p < 0.001). Of 65 urines from patients with E. coli infections, 14 (22%) had evidence of IBCs and 29 (45%) had filamentous bacteria, while none of the gram-positive infections had IBCs or filamentous bacteria. CONCLUSIONS The presence of exfoliated IBCs and filamentous bacteria in the urines of women with acute cystitis suggests that the IBC pathogenic pathway characterized in the murine model may occur in humans. The findings support the occurrence of an intracellular bacterial niche in some women with cystitis that may have important implications for UTI recurrence and treatment.
Collapse
Affiliation(s)
- David A Rosen
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | | | | |
Collapse
|
394
|
Nuccio SP, Bäumler AJ. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 2007; 71:551-75. [PMID: 18063717 PMCID: PMC2168650 DOI: 10.1128/mmbr.00014-07] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many Proteobacteria use the chaperone/usher pathway to assemble proteinaceous filaments on the bacterial surface. These filaments can curl into fimbrial or nonfimbrial surface structures (e.g., a capsule or spore coat). This article reviews the phylogeny of operons belonging to the chaperone/usher assembly class to explore the utility of establishing a scheme for subdividing them into clades of phylogenetically related gene clusters. Based on usher amino acid sequence comparisons, our analysis shows that the chaperone/usher assembly class is subdivided into six major phylogenetic clades, which we have termed alpha-, beta-, gamma-, kappa-, pi-, and sigma-fimbriae. Members of each clade share related operon structures and encode fimbrial subunits with similar protein domains. The proposed classification system offers a simple and convenient method for assigning newly discovered chaperone/usher systems to one of the six major phylogenetic groups.
Collapse
Affiliation(s)
- Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645, USA
| | | |
Collapse
|
395
|
Annotation, comparison and databases for hundreds of bacterial genomes. Res Microbiol 2007; 158:724-36. [DOI: 10.1016/j.resmic.2007.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 09/21/2007] [Accepted: 09/26/2007] [Indexed: 11/20/2022]
|
396
|
Garcia E, Chain P, Elliott JM, Bobrov AG, Motin VL, Kirillina O, Lao V, Calendar R, Filippov AA. Molecular characterization of L-413C, a P2-related plague diagnostic bacteriophage. Virology 2007; 372:85-96. [PMID: 18045639 DOI: 10.1016/j.virol.2007.10.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 08/28/2007] [Accepted: 10/26/2007] [Indexed: 11/19/2022]
Abstract
Our analysis of the plague diagnostic phage L-413C genome sequence and structure reveals that L-413C is highly similar and collinear with enterobacteriophage P2, though important differences were found. Of special interest was the mosaic nature of the tail fiber protein H in L-413C, given the differentiating specificity of this phage for Yersinia pestis vs. Yersinia pseudotuberculosis. While the N-terminal 207 and C-terminal 137 amino acids of L-413C display significant homology with the P2 H protein, a large (465 amino acid) middle section appears to be derived from a T4-related H protein, with highest similarity to the T6 and RB32 distal tail fibers. This finding along with appropriate preadsorption experiments suggest that the unique H protein of L-413C may be responsible for the specificity of this phage for Y. pestis, and that the Y. pestis receptors that are recognized and bound by L-413C either do not exist in Y. pseudotuberculosis or have a different structure.
Collapse
Affiliation(s)
- Emilio Garcia
- Chemistry, Materials and Life Sciences Directorates Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
397
|
Hannan TJ, Mysorekar IU, Chen SL, Walker JN, Jones JM, Pinkner JS, Hultgren SJ, Seed PC. LeuX tRNA-dependent and -independent mechanisms of Escherichia coli pathogenesis in acute cystitis. Mol Microbiol 2007; 67:116-28. [PMID: 18036139 DOI: 10.1111/j.1365-2958.2007.06025.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) contain multiple horizontally acquired pathogenicity-associated islands (PAI) implicated in the pathogenesis of urinary tract infection. In a murine model of cystitis, type 1 pili-mediated bladder epithelial invasion and intracellular proliferation are key events associated with UPEC virulence. In this study, we examined the mechanisms by which a conserved PAI contributes to UPEC pathogenesis in acute cystitis. In the human UPEC strain UTI89, spontaneous excision of PAI II(UTI89) disrupts the adjacent leuX tRNA locus. Loss of wild-type leuX-encoded tRNA(5)(Leu) significantly delayed, but did not eliminate, FimB recombinase-mediated phase variation of type 1 pili. FimX, an additional FimB-like, leuX-independent recombinase, was also found to mediate type 1 pili phase variation. However, whereas FimX activity is relatively slow in vitro, it is rapid in vivo as a non-piliated strain lacking the other fim recombinases rapidly expressed type 1 pili upon experimental infection. Finally, we found that disruption of leuX, but not loss of PAI II(UTI89) genes, reduced bladder epithelial invasion and intracellular proliferation, independent of type 1 piliation. These findings indicate that the predominant mechanism for preservation of PAI II(UTI89) during the establishment of acute cystitis is maintenance of wild-type leuX, and not PAI II(UTI89) gene content.
Collapse
Affiliation(s)
- Thomas J Hannan
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
398
|
Contribution of the SitABCD, MntH, and FeoB metal transporters to the virulence of avian pathogenic Escherichia coli O78 strain chi7122. Infect Immun 2007; 76:601-11. [PMID: 18025097 DOI: 10.1128/iai.00789-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of SitABCD, MntH, and FeoB metal transporters in the virulence of avian pathogenic Escherichia coli (APEC) O78 strain chi7122 were assessed using isogenic mutants in chicken infection models. In a single-strain infection model, compared to chi7122, the Deltasit strain demonstrated reduced colonization of the lungs, liver, and spleen. Complementation of the Deltasit strain restored virulence. In a coinfection model, compared to the virulent APEC strain, the Deltasit strain demonstrated mean 50-fold, 126-fold, and 25-fold decreases in colonization of the lungs, liver, and spleen, respectively. A DeltamntH Deltasit strain was further attenuated, demonstrating reduced persistence in blood and mean 1,400-fold, 954-fold, and 83-fold reduced colonization in the lungs, liver, and spleen, respectively. In coinfections, the DeltafeoB Deltasit strain demonstrated reduced persistence in blood but increased colonization of the liver. The DeltamntH, DeltafeoB, and DeltafeoB DeltamntH strains were as virulent as the wild type in either of the infection models. Strains were also tested for sensitivity to oxidative stress-generating agents. The DeltamntH Deltasit strain was the most sensitive strain and was significantly more sensitive than the other strains to hydrogen peroxide, plumbagin, and paraquat. sit sequences were highly associated with APEC and human extraintestinal pathogenic E. coli compared to commensal isolates and diarrheagenic E. coli. Comparative genomic analyses also demonstrated that sit sequences are carried on conjugative plasmids or associated with phage elements and were likely acquired by distinct genetic events among pathogenic E. coli and Shigella sp. strains. Overall, the results demonstrate that SitABCD contributes to virulence and, together with MntH, to increased resistance to oxidative stress.
Collapse
|
399
|
Extensive genomic diversity and selective conservation of virulence-determinants in enterohemorrhagic Escherichia coli strains of O157 and non-O157 serotypes. Genome Biol 2007; 8:R138. [PMID: 17711596 PMCID: PMC2323221 DOI: 10.1186/gb-2007-8-7-r138] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/06/2007] [Accepted: 07/10/2007] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) O157 causes severe food-borne illness in humans. The chromosome of O157 consists of 4.1 Mb backbone sequences shared by benign E. coli K-12, and 1.4 Mb O157-specific sequences encoding many virulence determinants, such as Shiga toxin genes (stx genes) and the locus of enterocyte effacement (LEE). Non-O157 EHECs belonging to distinct clonal lineages from O157 also cause similar illness in humans. According to the 'parallel' evolution model, they have independently acquired the major virulence determinants, the stx genes and LEE. However, the genomic differences between O157 and non-O157 EHECs have not yet been systematically analyzed. RESULTS Using microarray and whole genome PCR scanning analyses, we performed a whole genome comparison of 20 EHEC strains of O26, O111, and O103 serotypes with O157. In non-O157 EHEC strains, although genome sizes were similar with or rather larger than O157 and the backbone regions were well conserved, O157-specific regions were very poorly conserved. Around only 20% of the O157-specific genes were fully conserved in each non-O157 serotype. However, the non-O157 EHECs contained a significant number of virulence genes that are found on prophages and plasmids in O157, and also multiple prophages similar to, but significantly divergent from, those in O157. CONCLUSION Although O157 and non-O157 EHECs have independently acquired a huge amount of serotype- or strain-specific genes by lateral gene transfer, they share an unexpectedly large number of virulence genes. Independent infections of similar but distinct bacteriophages carrying these virulence determinants are deeply involved in the evolution of O157 and non-O157 EHECs.
Collapse
|
400
|
Asakura M, Hinenoya A, Alam MS, Shima K, Zahid SH, Shi L, Sugimoto N, Ghosh AN, Ramamurthy T, Faruque SM, Nair GB, Yamasaki S. An inducible lambdoid prophage encoding cytolethal distending toxin (Cdt-I) and a type III effector protein in enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2007; 104:14483-8. [PMID: 17726095 PMCID: PMC1964815 DOI: 10.1073/pnas.0706695104] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Indexed: 01/01/2023] Open
Abstract
Cytolethal distending toxins (CDTs) are inhibitory cyclomodulins, which block eukaryotic cell proliferation and are produced by a diverse group of Gram-negative bacteria, including Escherichia coli strains associated with intestinal and extraintestinal infections. However, the mode of transmission of the toxin gene clusters among diverse bacterial pathogens is unclear. We found that Cdt-I produced by enteropathogenic E. coli strains associated with diarrhea is encoded by a lambdoid prophage, which is inducible and infectious. The genome of Cdt-I converting phage (CDT-1Phi) comprises 47,021 nucleotides with 60 predicted ORFs organized into six genomic regions encoding the head and tail, virulence, integrase, unknown functions, regulation, and lysis. The genomic organization of CDT-1Phi is similar to those of SfV, a serotype-converting phage of Shigella flexneri, and UTI89, a prophage identified in uropathogenic E. coli. Besides the cdtI gene cluster, the virulence region of CDT-1Phi genome contains sequences homologous to a truncated cycle inhibiting factor and a type 3 effector protein. Mutation analysis of susceptible E. coli strain C600 suggested that the outer membrane protein OmpC is a putative receptor for CDT-1Phi. CDT-1Phi genome was also found to integrate into the host bacterial chromosome forming lysogens, which produced biologically active Cdt-I. Furthermore, phage induction appeared to cause enhanced toxigenicity of the E. coli strains carrying lysogenic CDT-1Phi. Our results suggest that CDT-1Phi is the latest member of a growing family of lambdoid phages encoding bacterial cyclomodulins and that the phage may have a role in horizontal transfer of these virulence genes.
Collapse
Affiliation(s)
- Masahiro Asakura
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Hinenoya
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mohammad S. Alam
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kensuke Shima
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shamim Hasan Zahid
- Molecular Genetics Laboratory, International Center for Diarrhoeal Disease Research, Dhaka-1212, Bangladesh
| | - Lei Shi
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- College of Light Industry and Food Technology, South China University of Technology, Guangzou 510640, Peoples Republic of China
| | - Norihiko Sugimoto
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - A. N. Ghosh
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India; and
| | - T. Ramamurthy
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India; and
| | - Shah M. Faruque
- Molecular Genetics Laboratory, International Center for Diarrhoeal Disease Research, Dhaka-1212, Bangladesh
| | - G. Balakrish Nair
- Molecular Genetics Laboratory, International Center for Diarrhoeal Disease Research, Dhaka-1212, Bangladesh
| | - Shinji Yamasaki
- *Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- College of Light Industry and Food Technology, South China University of Technology, Guangzou 510640, Peoples Republic of China
| |
Collapse
|