351
|
Soundy J, Day D. Delivery of antibacterial silver nanoclusters to Pseudomonas aeruginosa using species-specific DNA aptamers. J Med Microbiol 2020; 69:640-652. [PMID: 32125966 DOI: 10.1099/jmm.0.001174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Introduction. The use of silver as an antimicrobial therapeutic is limited by its toxicity to host cells compared with that required to kill bacterial pathogens.Aim. To use aptamer targeting of DNA scaffolded silver nanoclusters as an antimicrobial agent for treating Pseudomonas aeruginosa infections.Methodology. Antimicrobial activity was assessed in planktonic cultures and in vivo using an invertebrate model of infection.Results. The aptamer conjugates that we call aptabiotics have potent antimicrobial activity. Targeted silver nanoclusters were more effective at killing P. aeruginosa than the equivalent quantity of untargeted silver nanoclusters. The aptabiotics have an IC50 of 1.3-2.6 µM against planktonically grown bacteria. Propidium iodide staining showed that they rapidly depolarize bacterial cells to kill approximately 50 % of the population within 10 min following treatment. In vivo testing in the Galleria mellonella model of infection prolonged survival from an otherwise lethal infection.Conclusion. Using P. aeruginosa as a model, we show that targeting of DNA-scaffolded silver nanoclusters with an aptamer has effective fast-acting antimicrobial activity in vitro and in an in vivo animal model.
Collapse
Affiliation(s)
- Jennifer Soundy
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 600, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington 600, New Zealand
| | - Darren Day
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 600, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington 600, New Zealand
| |
Collapse
|
352
|
Montali A, Berini F, Brivio MF, Mastore M, Saviane A, Cappellozza S, Marinelli F, Tettamanti G. A Silkworm Infection Model for In Vivo Study of Glycopeptide Antibiotics. Antibiotics (Basel) 2020; 9:E300. [PMID: 32512807 PMCID: PMC7344559 DOI: 10.3390/antibiotics9060300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Glycopeptide antibiotics (GPAs) are drugs of last resort for treating infections by Gram-positive bacteria. They inhibit bacterial cell wall assembly by binding to the d-Ala-d-Ala terminus of peptidoglycan precursors, leading to cell lysis. Vancomycin and teicoplanin are first generation GPAs, while dalbavancin is one of the few, recently approved, second generation GPAs. In this paper, we developed an in vivo insect model to compare, for the first time, the efficacy of these three GPAs in curing Staphylococcus aureus infection. Differently from previous reports, Bombyx mori larvae were reared at 37 °C, and the course of infection was monitored, following not only larval survival, but also bacterial load in the insect body, hemocyte activity, phenoloxidase activity, and antimicrobial peptide expression. We demonstrated that the injection of S. aureus into the hemolymph of B. mori larvae led to a marked reduction of their survival rate within 24-48 hours. GPAs were not toxic to the larvae and cured S. aureus infection. Dalbavancin was more effective than first generation GPAs. Due to its great advantages (i.e., easy and safe handling, low rearing costs, low antibiotic amount needed for the tests, no restrictions imposed by ethical and regulatory issues), this silkworm infection model could be introduced in preclinical phases-prior to the use of mice-accelerating the discovery/development rate of novel GPAs.
Collapse
Affiliation(s)
- Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (G.T.)
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (G.T.)
| | - Maurizio Francesco Brivio
- Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy; (M.F.B.); (M.M.)
| | - Maristella Mastore
- Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy; (M.F.B.); (M.M.)
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy; (A.S.); (S.C.)
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy; (A.S.); (S.C.)
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (G.T.)
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.M.); (F.B.); (G.T.)
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| |
Collapse
|
353
|
Maslova E, Shi Y, Sjöberg F, Azevedo HS, Wareham DW, McCarthy RR. An Invertebrate Burn Wound Model That Recapitulates the Hallmarks of Burn Trauma and Infection Seen in Mammalian Models. Front Microbiol 2020; 11:998. [PMID: 32582051 PMCID: PMC7283582 DOI: 10.3389/fmicb.2020.00998] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
The primary reason for skin graft failure and the mortality of burn wound patients, particularly those in burn intensive care centers, is bacterial infection. Several animal models exist to study burn wound pathogens. The most commonly used model is the mouse, which can be used to study virulence determinants and pathogenicity of a wide range of clinically relevant burn wound pathogens. However, animal models of burn wound pathogenicity are governed by strict ethical guidelines and hindered by high levels of animal suffering and the high level of training that is required to achieve consistent reproducible results. In this study, we describe for the first time an invertebrate model of burn trauma and concomitant wound infection. We demonstrate that this model recapitulates many of the hallmarks of burn trauma and wound infection seen in mammalian models and in human patients. We outline how this model can be used to discriminate between high and low pathogenicity strains of two of the most common burn wound colonizers Pseudomonas aeruginosa and Staphylococcus aureus, and multi-drug resistant Acinetobacter baumannii. This model is less ethically challenging than traditional vertebrate burn wound models and has the capacity to enable experiments such as high throughput screening of both anti-infective compounds and genetic mutant libraries.
Collapse
Affiliation(s)
- Evgenia Maslova
- Division of Biosciences, Centre for Inflammation Research and Translational Medicine, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Yejiao Shi
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, London, United Kingdom
| | - Folke Sjöberg
- The Burn Centre, Department of Hand and Plastic Surgery, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, London, United Kingdom
| | - David W Wareham
- Antimicrobial Research Group, Blizard Institute, Queen Mary, University of London, London, United Kingdom
| | - Ronan R McCarthy
- Division of Biosciences, Centre for Inflammation Research and Translational Medicine, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
354
|
Fuentes-Castillo D, Esposito F, Cardoso B, Dalazen G, Moura Q, Fuga B, Fontana H, Cerdeira L, Dropa M, Rottmann J, González-Acuña D, Catão-Dias JL, Lincopan N. Genomic data reveal international lineages of critical priority Escherichia coli harbouring wide resistome in Andean condors (Vultur gryphus Linnaeus, 1758). Mol Ecol 2020; 29:1919-1935. [PMID: 32335957 DOI: 10.1111/mec.15455] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Critical priority pathogens have globally disseminated beyond clinical settings, thereby threatening wildlife. Andean Condors (Vultur gryphus) are essential for ecosystem health and functioning, but their populations are globally near threatened and declining due to anthropogenic activities. During a microbiological and genomic surveillance study of critical priority antibiotic-resistant pathogens, we identified pandemic lineages of multidrug-resistant extended-spectrum β-lactamase (ESBL)-producing Escherichia coli colonizing Andean Condors admitted at two wildlife rehabilitation centres in South America. Genomic analysis revealed the presence of genes encoding resistance to hospital and healthcare agents among international E. coli clones belonging to sequence types (STs) ST162, ST602, ST1196 and ST1485. In this regard, the resistome included genes conferring resistance to clinically important cephalosporins (i.e., CTX-M-14, CTX-M-55 and CTX-M-65 ESBL genes), heavy metals (arsenic, mercury, lead, cadmium, copper, silver), pesticides (glyphosate) and domestic/hospital disinfectants, suggesting a link with anthropogenic environmental pollution. On the other hand, the presence of virulence factors, including the astA gene associated with outbreak of childhood diarrhoea and extra-intestinal disease in animals, was identified, whereas virulent behaviour was confirmed using the Galleria mellonella infection model. E. coli ST162, ST602, ST1196 and ST1485 have been previously identified in humans and food-producing animals worldwide, indicating that a wide resistome could contribute to rapid adaptation and dissemination of these clones at the human-animal-environment interface. Therefore, these results highlight that Andean Condors have been colonized by critical priority pathogens, becoming potential environmental reservoirs and/or vectors for dissemination of virulent and antimicrobial-resistant bacteria and/or their genes, in associated ecosystems and wildlife.
Collapse
Affiliation(s)
- Danny Fuentes-Castillo
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, Sao Paulo, Brazil
| | - Brenda Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Gislaine Dalazen
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Quézia Moura
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Herrison Fontana
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Louise Cerdeira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Milena Dropa
- School of Public Health, University of São Paulo, Sao Paulo, Brazil
| | | | - Daniel González-Acuña
- Department of Animal Sciences, Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - José L Catão-Dias
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, Sao Paulo, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
355
|
Proteomic analysis reveals the damaging role of low redox laccase from Yersinia enterocolitica strain 8081 in the midgut of Helicoverpa armigera. Biotechnol Lett 2020; 42:2189-2210. [PMID: 32472187 DOI: 10.1007/s10529-020-02925-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/25/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Earlier, we have found that the enteropathogenic Yersinia enterocolitica have evolved the survival mechanisms that regulate the expression of laccase-encoding genes in the gut. The present study aims to characterize the purified recombinant laccase from Y. enterocolitica strain 8081 biovar 1B and understand its effect on the midgut of cotton bollworm, Helicoverpa armigera (Hübner) larvae. RESULTS The recombinant laccase protein showed high purity fold and low molecular mass (~ 43 kDa). H. armigera larvae fed with laccase protein showed a significant decrease in body weight and damage in the midgut. Further, transmission electron microscopy (TEM) studies revealed the negative effect of laccase protein on trachea, malpighian tubules, and villi of the insect. The proteome comparison between control and laccase-fed larvae of cotton bollworm showed significant expression of proteolytic enzymes, oxidoreductases, cytoskeletal proteins, ribosomal proteins; and proteins for citrate (TCA cycle) cycle, glycolysis, stress response, cell redox homeostasis, xenobiotic degradation, and insect defence. Moreover, it also resulted in the reduction of antioxidants, increased melanization (insect innate immune response), and enhanced free radical generation. CONCLUSIONS All these data collectively suggest that H. armigera (Hübner) larvae can be used to study the effect of microbes and their metabolites on the host physiology, anatomy, and survival.
Collapse
|
356
|
Wrobel A, Saragliadis A, Pérez-Ortega J, Sittman C, Göttig S, Liskiewicz K, Spence MH, Schneider K, Leo JC, Arenas J, Linke D. The inverse autotransporters of Yersinia ruckeri, YrInv and YrIlm, contribute to biofilm formation and virulence. Environ Microbiol 2020; 22:2939-2955. [PMID: 32372498 DOI: 10.1111/1462-2920.15051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
Abstract
Yersinia ruckeri causes enteric redmouth disease (ERM) that mainly affects salmonid fishes and leads to significant economic losses in the aquaculture industry. An increasing number of outbreaks and the lack of effective vaccines against some serotypes necessitates novel measures to control ERM. Importantly, Y. ruckeri survives in the environment for long periods, presumably by forming biofilms. How the pathogen forms biofilms and which molecular factors are involved in this process, remains unclear. Yersinia ruckeri produces two surface-exposed adhesins, belonging to the inverse autotransporters (IATs), called Y. ruckeri invasin (YrInv) and Y. ruckeri invasin-like molecule (YrIlm). Here, we investigated whether YrInv and YrIlm play a role in biofilm formation and virulence. Functional assays revealed that YrInv and YrIlm promote biofilm formation on different abiotic substrates. Confocal microscopy revealed that they are involved in microcolony interaction and formation, respectively. The effect of both IATs on biofilm formation correlated with the presence of different biopolymers in the biofilm matrix, including extracellular DNA, RNA and proteins. Moreover, YrInv and YrIlm contributed to virulence in the Galleria mellonella infection model. Taken together, we propose that both IATs are possible targets for the development of novel diagnostic and preventative strategies to control ERM.
Collapse
Affiliation(s)
- Agnieszka Wrobel
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | | | - Jesús Pérez-Ortega
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - Carolin Sittman
- Institute of Medical Microbiology and Infection Control, Hospital of Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, Hospital of Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | - Jack C Leo
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.,Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.,Unit of Microbiology of the Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
357
|
Ahad II, Hossain MM, Uddin MA, Bari ML, Hossain MS. Therapeutic Effect of Antibiotics Against Escherichia coli O157:H7 in Silk Moth Larvae Animal Model. Curr Microbiol 2020; 77:2172-2180. [PMID: 32417963 DOI: 10.1007/s00284-020-02023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
The increasing clinical incidence of antibiotic resistance in bacteria is a major global health care issue. Rampant use of antimicrobials is one of the major reasons of the dramatic rise in antibiotic-resistant bacterial strains. Suitable animal models are required to improve our understanding of bacterial pathogenicity, evolution and search for novel antibiotics. The larvae of the silk moth (commonly called silkworm), Bombyx mori, have been used as an animal model for testing the pathogenicity of a clinically isolated strain of enterohemorrhagic Escherichia coli O157:H7 upon injection through hemolymph. Here, we show that a foodborne E. coli O157:H7 strain can kill silkworm larvae upon injection through either hemolymph (blood) or midgut. Bacterial number in the hemolymph started to increase after 3 h of injection into hemolymph, while the number of viable circulating hemocytes decreased. Administration of four well-known antibiotics into the larval hemolymph up to 100 µg per larva showed therapeutic effect with varying efficacies against E. coli O157:H7 with ceftriaxone and imipenem showing better effect. Our findings indicate that silkworm larvae can be used as an animal model to screen for novel antibiotics that are effective against E. coli O157:H7.
Collapse
Affiliation(s)
- Inteshar Ibn Ahad
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - M Mahtab Hossain
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - M Aftab Uddin
- Bangladesh Sericulture Research and Training Institute, Rajshahi, Bangladesh
| | - M Latiful Bari
- Center for Advanced Research in Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Muktadir S Hossain
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
358
|
Torres M, Pinzón EN, Rey FM, Martinez H, Parra Giraldo CM, Celis Ramírez AM. Galleria mellonella as a Novelty in vivo Model of Host-Pathogen Interaction for Malassezia furfur CBS 1878 and Malassezia pachydermatis CBS 1879. Front Cell Infect Microbiol 2020; 10:199. [PMID: 32432057 PMCID: PMC7214729 DOI: 10.3389/fcimb.2020.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Malassezia furfur and Malassezia pachydermatis are lipophilic and lipid dependent yeasts, associated with the skin microbiota in humans and domestic animals, respectively. Although they are commensals, under specific conditions they become pathogens, causing skin conditions, such as pityriasis versicolor, dandruff/seborrheic dermatitis, folliculitis in humans, and dermatitis and otitis in dogs. Additionally, these species are associated with fungemia in immunocompromised patients and low-weight neonates in intensive care units with intravenous catheters or with parenteral nutrition and that are under-treatment of broad-spectrum antibiotics. The host-pathogen interaction mechanism in these yeasts is still unclear; for this reason, it is necessary to implement suitable new host systems, such as Galleria mellonella. This infection model has been widely used to assess virulence, host-pathogen interaction, and antimicrobial activity in bacteria and fungi. Some advantages of the G. mellonella model are: (1) the immune response has phagocytic cells and antimicrobial peptides that are similar to those in the innate immune response of human beings; (2) no ethical implications; (3) low cost; and (4) easy to handle and inoculate. This study aims to establish G. mellonella as an in vivo infection model for M. furfur and M. pachydermatis. To achieve this objective, first, G. mellonella larvae were first inoculated with different inoculum concentrations of these two Malassezia species, 1.5 × 106 CFU/mL, 1.5 × 107 CFU/mL, 1.5 × 108 CFU/mL, and 11.5 × 109 CFU/mL, and incubated at 33 and 37°C. Then, for 15 days, the mortality and melanization were evaluated daily. Finally, the characterization of hemocytes and fungal burden assessment were as carried out. It was found that at 33 and 37°C both M. furfur and M. pachydermatis successfully established a systemic infection in G. mellonella. M. pachydermatis proved to be slightly more virulent than M. furfur at a temperature of 37°C. The results suggest that larvae mortality and melanization is dependent on the specie of Malassezia, the inoculum concentration and the temperature. According to the findings, G. mellonella can be used as an in vivo model of infection to conduct easy and reliable approaches to boost our knowledge of the Malassezia genus.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Elkin Nicolás Pinzón
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Flor Maria Rey
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Heydys Martinez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Claudia Marcela Parra Giraldo
- Unidad de Investigación en Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
359
|
Rakic Martinez M, Ferguson M, Datta AR. Virulence assessment of Listeria monocytogenes grown in different foods using a Galleria mellonella model. PLoS One 2020; 15:e0232485. [PMID: 32357157 PMCID: PMC7194400 DOI: 10.1371/journal.pone.0232485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/15/2020] [Indexed: 11/18/2022] Open
Abstract
Various produce including cantaloupe, caramel-coated apples, and packaged salads, have been recognized in recent years as vehicles for listeriosis, a human foodborne disease caused by intracellular pathogen Listeria monocytogenes. Our knowledge regarding the role of these foods in L. monocytogenes virulence, however, is limited. Understanding their role in modulating L. monocytogenes virulence can be useful in risk assessments and for developing control measures. In this study, we employed the Galleria mellonella larvae model to evaluate virulence potential of fifteen clinical, environmental and food isolates of L. monocytogenes, related to three major outbreaks, after growth on different foods. The non-human pathogen Listeria innocua was also included in the panel. Strains were inoculated in parallel in 5ml of brain heart infusion (BHI) broth, and on the surfaces of cantaloupe and apple fragments (5g each) at about 105 colony forming units (CFU)/ml/fragment. One set of inoculated broth and food fragments was incubated at 10°C for 5 days while the second set was kept at 25°C for 3 days. L. monocytogenes cells were recovered from the fruits and BHI, washed twice, re-suspended in saline, and used to inoculate G. mellonella larvae at final concentrations of 106 and 105 CFU/larva. The larvae were incubated at 37°C and monitored for mortality (LT50—time taken to kill 50% of the larvae) and phenotypic changes over seven days. L. monocytogenes grown on cantaloupe and apple flesh surfaces resulted in higher virulence than when grown in BHI. L. monocytogenes infection at 106 CFU/larvae resulted in an average LT50 of ≤ 30, 36 and 47 hours on cantaloupe, apples and BHI, respectively. These results represent a 2.5–4-fold increased mortality compared with an LT50 ≥120 hours in larvae infected with the same doses of L. innocua grown in corresponding matrices. Similar trends were also recorded with doses of about 105 CFU /larvae.
Collapse
Affiliation(s)
- Mira Rakic Martinez
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States of America
- * E-mail:
| | - Martine Ferguson
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States of America
| | - Atin R. Datta
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States of America
| |
Collapse
|
360
|
González GM, Andrade A, Villanueva-Lozano H, Campos-Cortés CL, Becerril-García MA, Montoya AM, Sánchez-González A, Bonifaz A, Franco-Cendejas R, López-Jácome LE, Treviño-Rangel RDJ. Comparative Analysis of Virulence Profiles of Serratia marcescens Isolated from Diverse Clinical Origins in Mexican Patients. Surg Infect (Larchmt) 2020; 21:608-612. [PMID: 32326831 DOI: 10.1089/sur.2020.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Serratia marcescens is an enteric bacterium with increasing incidence in clinical settings, attributed mainly to the opportune expression of diverse virulence determinants plus a wide intrinsic and acquired antibiotic resistance. Methods: The aim of this study was to compare the virulence factor profiles of 185 Serratia marcescens isolates from different clinical origins. In vitro proteolytic and hemolytic activities, biofilm formation, and motility were assessed in each strain. Additionally, the pathogenicity of four hypervirulent strains was analyzed in vivo in Galleria mellonella. Results: We found that bacterial isolates from wound/abscess and respiratory tract specimens exhibited the highest protease activity along with a strong biofilm production, while uropathogenic isolates showed the highest hemolytic activity. Swarming and swimming motilities were similar among all the strains. However, respiratory tract isolates showed the most efficient motility. Two hyperhemolytic and two hyperproteolytic strains were detected; the latter were more efficient killing Galleria mellonella with a 50%-60% larval mortality 48 hours after challenge. Conclusion: A correlation was found between biofilm formation and proteolytic and hemolytic activities in biopsy specimens and bloodstream isolates, respectively. Overall, it becomes critical to evaluate and compare the clinical strains virulence diversity in order to understand the underlying mechanisms that allow the establishment and persistence of opportunistic bacterial infections in the host.
Collapse
Affiliation(s)
- Gloria M González
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Angel Andrade
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Hiram Villanueva-Lozano
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Christian L Campos-Cortés
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Miguel A Becerril-García
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Alexandra M Montoya
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Alejandro Sánchez-González
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Alexandro Bonifaz
- Servicio de Dermatología y Departamento de Micología, Hospital General de México "Dr. Eduardo Liceaga," Mexico City, Mexico
| | - Rafael Franco-Cendejas
- Laboratorio de Infectología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra," Mexico City, Mexico
| | - Luis E López-Jácome
- Laboratorio de Infectología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra," Mexico City, Mexico
| | | |
Collapse
|
361
|
García-Coca M, Aguilera-Correa JJ, Ibáñez-Apesteguía A, Rodríguez-Sevilla G, Romera-García D, Mahíllo-Fernández I, Reina G, Fernández-Alonso M, Leiva J, Muñoz-Egea MC, Del Pozo JL, Esteban J. Non-pigmented rapidly growing mycobacteria smooth and rough colony phenotypes pathogenicity evaluated using in vitro and experimental models. Pathog Dis 2020; 77:5568367. [PMID: 31583400 DOI: 10.1093/femspd/ftz051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Non-pigmented rapidly growing mycobacteria (NPRGM) are widely distributed in water, soil and animals. It has been observed an increasing importance of NPRGM related-infections, particularly due to the high antimicrobial resistance. NPRGM have rough and smooth colony phenotypes, and several studies have showed that rough colony variants are more virulent than smooth ones. However, other studies have failed to validate this observation. In this study, we have performed two models, invitro and in vivo, in order to assess the different pathogenicity of these two phenotypes. We used collection and clinical strains of Mycobacteriumabscessus, Mycobacterium fortuitum and Mycobacteriumchelonae. On the invitro model (macrophages), phagocytosis was higher for M. abscessus and M. fortuitum rough colony variant strains when compared to smooth colony variants. However, we did not find differences with colonial variants of M. chelonae. Survival of Galleriamellonella larvae in the experimental model was lower for M. abscessus and M. fortuitum rough colony variants when compared with larvae infected with smooth colony variants. We did not find differences in larvae infected with M. chelonae.Results of our in vivo study correlated well with the experimental model. This fact could have implications on the interpretation of the clinical significance of the NPRGM isolate colonial variants.
Collapse
Affiliation(s)
- Marta García-Coca
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, 28040, Madrid, Spain
| | | | | | | | - David Romera-García
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, 28040, Madrid, Spain
| | | | - Gabriel Reina
- Microbiology Service, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | | | - José Leiva
- Microbiology Service, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | | | - José Luis Del Pozo
- Microbiology Service and Infectious Diseases Area, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, 28040, Madrid, Spain
| |
Collapse
|
362
|
Identification of hypervirulent Klebsiella pneumoniae isolates using the string test in combination with Galleria mellonella infectivity. Eur J Clin Microbiol Infect Dis 2020; 39:1673-1679. [PMID: 32318968 DOI: 10.1007/s10096-020-03890-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/31/2020] [Indexed: 10/23/2022]
Abstract
Distinguishing between hypervirulent Klebsiella pneumoniae (hvKp) and classical Klebsiella pneumoniae (cKp) is a challenge to clinical laboratories. The aim of this study was to determine the practicability of combining the G. mellonella killing assay with a string test to differentiate hvKp from cKp. One hundred and three clinical K. pneumoniae isolates were collected. PCR amplification and wzi sequencing were used to determine the capsular serotype. Virulence genes allS, iro, iuc, and rmpA2, used frequently to identify hvKp, were detected by PCR. The virulence of K. pneumoniae isolates was evaluated using the following assays in parallel: molecular markers detection, G. mellonella killing assay alone, G. mellonella killing assay combined with the string test, and mouse infection. The results showed that the sensitivity, specificity, positive predictive value, and negative predictive value of combining the G. mellonella killing assay with a string test were 95.56%, 94.83%, 93.48%, and 96.49%, respectively, compared with mouse infection used as a positive reference. These values were significantly greater than those obtained using the G. mellonella killing assay only. The sensitivity, specificity, positive predictive value, and negative predictive value of allS, iro, iuc, and rmpA2 were greater than 77.78%, but less than combining the G. mellonella killing assay and string test. G. mellonella killing assay used in conjugation with the string test is a relatively simple and accurate method to assess K. pneumoniae virulence and differentiate between hvKp and cKp.
Collapse
|
363
|
Bezerra Filho CM, da Silva LCN, da Silva MV, Løbner-Olesen A, Struve C, Krogfelt KA, Correia MTDS, Vilela Oliva ML. Antimicrobial and Antivirulence Action of Eugenia brejoensis Essential Oil in vitro and in vivo Invertebrate Models. Front Microbiol 2020; 11:424. [PMID: 32265869 PMCID: PMC7096383 DOI: 10.3389/fmicb.2020.00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/27/2020] [Indexed: 01/18/2023] Open
Abstract
Eugenia brejoensis L. (Myrtaceae) is an endemic plant from caatinga ecosystem (brazilian semi-arid) which have an E. brejoensis essential oil (EbEO) with reported antimicrobial activity. In this work, in vitro and in vivo models were used to characterize the inhibitory effects of EbEO in relation to Staphylococcus aureus. EbEO inhibited the growth of all tested S. aureus strains (including multidrug resistance isolates) with values ranging from 8 to 516 μg/mL. EbEO also synergistically increased the action of ampicillim, chloramphenicol, and kanamycin. The treatment with subinhibitory concentrations (Sub-MIC) of EbEO decreased S. aureus hemolytic activity and its ability to survive in human blood. EbEO strongly reduced the levels of staphyloxanthin (STX), an effect related to increased susceptibility of S. aureus to hydrogen peroxide. The efficacy of EbEO against S. aureus was further demonstrated using Caenorhabditis elegans and Galleria mellonella. EbEO increased the lifespan of both organisms infected by S. aureus, reducing the bacterial load. In addition, EbEO reduced the severity of S. aureus infection in G. mellonella, as shown by lower levels of melanin production in those larvae. In summary, our data suggest that EbEO is a potential source of lead molecules for development of new therapeutic alternatives against S. aureus.
Collapse
Affiliation(s)
- Clovis Macêdo Bezerra Filho
- Biochemistry Department, Federal University of Pernambuco, Recife, Brazil.,Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - Carsten Struve
- Department of Bacteria, Parasites and Fungi, Staten Serum Institut, Copenhagen, Denmark
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Staten Serum Institut, Copenhagen, Denmark.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | |
Collapse
|
364
|
Moore GM, Gitai Z. Both clinical and environmental Caulobacter species are virulent in the Galleria mellonella infection model. PLoS One 2020; 15:e0230006. [PMID: 32163465 PMCID: PMC7067423 DOI: 10.1371/journal.pone.0230006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/18/2020] [Indexed: 01/18/2023] Open
Abstract
The Caulobacter genus, including the widely-studied model organism Caulobacter crescentus, has been thought to be non-pathogenic and thus proposed as a bioengineering vector for various environmental remediation and medical purposes. However, Caulobacter species have been implicated as the causative agents of several hospital-acquired infections, raising the question of whether these clinical isolates represent an emerging pathogenic species or whether Caulobacters on whole possess previously-unappreciated virulence capability. Given the proposed environmental and medical applications for C. crescentus, understanding the potential pathogenicity of this bacterium is crucial. Consequently, we sequenced a clinical Caulobacter isolate to determine if it has acquired novel virulence determinants. We found that the clinical isolate represents a new species, Caulobacter mirare that, unlike C. crescentus, grows well in standard clinical culture conditions. C. mirare phylogenetically resembles both C. crescentus and the related C. segnis, which was also thought to be non-pathogenic. The similarity to other Caulobacters and lack of obvious pathogenesis markers suggested that C. mirare is not unique amongst Caulobacters and that consequently other Caulobacters may also have the potential to be virulent. We tested this hypothesis by characterizing the ability of Caulobacters to infect the model animal host Galleria mellonella. In this context, two different lab strains of C. crescentus proved to be as pathogenic as C. mirare, while lab strains of E. coli were non-pathogenic. Further characterization showed that Caulobacter pathogenesis in the Galleria model is mediated by lipopolysaccharide (LPS), and that differences in LPS chemical composition across species could explain their differential toxicity. Taken together, our findings suggest that many Caulobacter species can be virulent in specific contexts and highlight the importance of broadening our methods for identifying and characterizing potential pathogens.
Collapse
Affiliation(s)
- Gabriel M. Moore
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| |
Collapse
|
365
|
Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020. [DOI: 10.3390/microorganisms8030390
expr 890942362 + 917555800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
|
366
|
Jemel S, Guillot J, Kallel K, Botterel F, Dannaoui E. Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020; 8:microorganisms8030390. [PMID: 32168839 PMCID: PMC7142887 DOI: 10.3390/microorganisms8030390] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/26/2022] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
Affiliation(s)
- Sana Jemel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Jacques Guillot
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Kalthoum Kallel
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Françoise Botterel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Eric Dannaoui
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Hôpital Européen Georges Pompidou, APHP, Unité de Parasitologie-Mycologie, Service de Microbiologie, 75015 Paris, France
- Université René Descartes, Faculté de médecine, 75006 Paris, France
- Correspondence: ; Tel.: +33-1-56-09-39-48; Fax: +33-1-56-09-24-46
| |
Collapse
|
367
|
Six A, Krajangwong S, Crumlish M, Zadoks RN, Walker D. Galleria mellonella as an infection model for the multi-host pathogen Streptococcus agalactiae reflects hypervirulence of strains associated with human invasive disease. Virulence 2020; 10:600-609. [PMID: 31230520 PMCID: PMC6592362 DOI: 10.1080/21505594.2019.1631660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus agalactiae, or group B Streptococcus (GBS), infects diverse hosts including humans and economically important species such as cattle and fishes. In the context of human health, GBS is a major cause of neonatal infections and an emerging cause of invasive disease in adults and of foodborne disease in Southeast Asia. Here we show that GBS is able to establish a systemic infection in Galleria mellonella larvae that is associated with extensive bacterial replication and dose-dependent larval survival. This infection model is suitable for use with GBS isolates from both homeothermic and poikilothermic hosts. Hypervirulent sequence types (ST) associated with invasive human disease in neonates (ST17) or adults (ST283) show increased virulence in this model, indicating it may be useful in studying GBS virulence determinants, albeit with limitations for some host-specific virulence factors. In addition, we demonstrate that larval survival can be afforded by antibiotic treatment and so the model may also be useful in the development of novel anti-GBS strategies. The use of G. mellonella in GBS research has the potential to provide a low-cost infection model that could reduce the number of vertebrates used in the study of GBS infection.
Collapse
Affiliation(s)
- Anne Six
- a Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , UK
| | - Sakranmanee Krajangwong
- a Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , UK
| | | | - Ruth N Zadoks
- c Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , UK
| | - Daniel Walker
- a Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , UK
| |
Collapse
|
368
|
Budell WC, Germain GA, Janisch N, McKie-Krisberg Z, Jayaprakash AD, Resnick AE, Quadri LEN. Transposon mutagenesis in Mycobacterium kansasii links a small RNA gene to colony morphology and biofilm formation and identifies 9,885 intragenic insertions that do not compromise colony outgrowth. Microbiologyopen 2020; 9:e988. [PMID: 32083796 PMCID: PMC7142372 DOI: 10.1002/mbo3.988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium kansasii (Mk) is a resilient opportunistic human pathogen that causes tuberculosis‐like chronic pulmonary disease and mortality stemming from comorbidities and treatment failure. The standard treatment of Mk infections requires costly, long‐term, multidrug courses with adverse side effects. The emergence of drug‐resistant isolates further complicates the already challenging drug therapy regimens and threatens to compromise the future control of Mk infections. Despite the increasingly recognized global burden of Mk infections, the biology of this opportunistic pathogen remains essentially unexplored. In particular, studies reporting gene function or generation of defined mutants are scarce. Moreover, no transposon (Tn) mutagenesis tool has been validated for use in Mk, a situation limiting the repertoire of genetic approaches available to accelerate the dissection of gene function and the generation of gene knockout mutants in this poorly characterized pathogen. In this study, we validated the functionality of a powerful Tn mutagenesis tool in Mk and used this tool in conjunction with a forward genetic screen to establish a previously unrecognized role of a conserved mycobacterial small RNA gene of unknown function in colony morphology features and biofilm formation. We also combined Tn mutagenesis with next‐generation sequencing to identify 12,071 Tn insertions that do not compromise viability in vitro. Finally, we demonstrated the susceptibility of the Galleria mellonella larva to Mk, setting the stage for further exploration of this simple and economical infection model system to the study of this pathogen.
Collapse
Affiliation(s)
- William C Budell
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Gabrielle A Germain
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Zaid McKie-Krisberg
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | | | - Andrew E Resnick
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | - Luis E N Quadri
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA.,Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA.,Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| |
Collapse
|
369
|
Sheehan G, Tully L, Kavanagh KA. Candida albicans increases the pathogenicity of Staphylococcus aureus during polymicrobial infection of Galleria mellonella larvae. MICROBIOLOGY-SGM 2020; 166:375-385. [PMID: 32068530 PMCID: PMC7377259 DOI: 10.1099/mic.0.000892] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study detailed the responses of Galleria mellonella larvae to disseminated infection caused by co-infection with Candida albicans and Staphylococcus aureus. Doses of C. albicans (1×105 larva-1) and S. aureus (1×104 larva-1) were non-lethal in mono-infection but when combined significantly (P<0.05) reduced larval survival at 24, 48 and 72 h relative to larvae receiving S. aureus (2×104 larva-1) alone. Co-infected larvae displayed a significantly higher density of S. aureus larva-1 compared to larvae infected solely with S. aureus. Co-infection resulted in dissemination throughout the host and the appearance of large nodules. Co-infection of larvae with C. albicans and S. aureus (2×104 larva-1) resulted in an increase in the density of circulating haemocytes compared to that in larvae infected with only S. aureus. Proteomic analysis of co-infected larval haemolymph revealed increased abundance of proteins associated with immune responses to bacterial and fungal infection such as cecropin-A (+45.4-fold), recognition proteins [e.g. peptidoglycan-recognition protein LB (+14-fold)] and proteins associated with nodule formation [e.g. Hdd11 (+33.3-fold)]. A range of proteins were also decreased in abundance following co-infection, including apolipophorin (-62.4-fold), alpha-esterase 45 (-7.7-fold) and serine proteinase (-6.2-fold). Co-infection of larvae resulted in enhanced proliferation of S. aureus compared to mono-infection and an immune response showing many similarities to the innate immune response of mammals to infection. The utility of G. mellonella larvae for studying polymicrobial infection is highlighted.
Collapse
Affiliation(s)
- Gerard Sheehan
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Tully
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin A Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
370
|
Szymczak M, Grygorcewicz B, Karczewska-Golec J, Decewicz P, Pankowski JA, Országh-Szturo H, Bącal P, Dołęgowska B, Golec P. Characterization of a Unique Bordetella bronchiseptica vB_BbrP_BB8 Bacteriophage and Its Application as an Antibacterial Agent. Int J Mol Sci 2020; 21:ijms21041403. [PMID: 32093105 PMCID: PMC7073063 DOI: 10.3390/ijms21041403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Bordetella bronchiseptica, an emerging zoonotic pathogen, infects a broad range of mammalian hosts. B. bronchiseptica-associated atrophic rhinitis incurs substantial losses to the pig breeding industry. The true burden of human disease caused by B. bronchiseptica is unknown, but it has been postulated that some hypervirulent B. bronchiseptica isolates may be responsible for undiagnosed respiratory infections in humans. B. bronchiseptica was shown to acquire antibiotic resistance genes from other bacterial genera, especially Escherichia coli. Here, we present a new B. bronchiseptica lytic bacteriophage—vB_BbrP_BB8—of the Podoviridae family, which offers a safe alternative to antibiotic treatment of B. bronchiseptica infections. We explored the phage at the level of genome, physiology, morphology, and infection kinetics. Its therapeutic potential was investigated in biofilms and in an in vivoGalleria mellonella model, both of which mimic the natural environment of infection. The BB8 is a unique phage with a genome structure resembling that of T7-like phages. Its latent period is 75 ± 5 min and its burst size is 88 ± 10 phages. The BB8 infection causes complete lysis of B. bronchiseptica cultures irrespective of the MOI used. The phage efficiently removes bacterial biofilm and prevents the lethality induced by B. bronchiseptica in G. mellonella honeycomb moth larvae.
Collapse
Affiliation(s)
- Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.S.); (J.A.P.); (H.O.-S.)
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (B.G.); (B.D.)
| | - Joanna Karczewska-Golec
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.K.-G.); (P.D.)
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.K.-G.); (P.D.)
| | - Jarosław Adam Pankowski
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.S.); (J.A.P.); (H.O.-S.)
| | - Hanna Országh-Szturo
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.S.); (J.A.P.); (H.O.-S.)
| | - Paweł Bącal
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ksiecia Trojdena 4, 02-109 Warsaw, Poland;
- Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (B.G.); (B.D.)
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.S.); (J.A.P.); (H.O.-S.)
- Correspondence: ; Tel.: +48-225-541-414
| |
Collapse
|
371
|
Casiraghi A, Suigo L, Valoti E, Straniero V. Targeting Bacterial Cell Division: A Binding Site-Centered Approach to the Most Promising Inhibitors of the Essential Protein FtsZ. Antibiotics (Basel) 2020; 9:E69. [PMID: 32046082 PMCID: PMC7167804 DOI: 10.3390/antibiotics9020069] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 11/16/2022] Open
Abstract
Binary fission is the most common mode of bacterial cell division and is mediated by a multiprotein complex denominated the divisome. The constriction of the Z-ring splits the mother bacterial cell into two daughter cells of the same size. The Z-ring is formed by the polymerization of FtsZ, a bacterial protein homologue of eukaryotic tubulin, and it represents the first step of bacterial cytokinesis. The high grade of conservation of FtsZ in most prokaryotic organisms and its relevance in orchestrating the whole division system make this protein a fascinating target in antibiotic research. Indeed, FtsZ inhibition results in the complete blockage of the division system and, consequently, in a bacteriostatic or a bactericidal effect. Since many papers and reviews already discussed the physiology of FtsZ and its auxiliary proteins, as well as the molecular mechanisms in which they are involved, here, we focus on the discussion of the most compelling FtsZ inhibitors, classified by their main protein binding sites and following a medicinal chemistry approach.
Collapse
Affiliation(s)
| | | | | | - Valentina Straniero
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Luigi Mangiagalli, 25, 20133 Milano, Italy; (A.C.); (L.S.); (E.V.)
| |
Collapse
|
372
|
Williams CL, Neu HM, Alamneh YA, Reddinger RM, Jacobs AC, Singh S, Abu-Taleb R, Michel SLJ, Zurawski DV, Merrell DS. Characterization of Acinetobacter baumannii Copper Resistance Reveals a Role in Virulence. Front Microbiol 2020; 11:16. [PMID: 32117089 PMCID: PMC7015863 DOI: 10.3389/fmicb.2020.00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
Acinetobacter baumannii is often highly drug-resistant and causes severe infections in compromised patients. These infections can be life threatening due to limited treatment options. Copper is inherently antimicrobial and increasing evidence indicates that copper containing formulations may serve as non-traditional therapeutics against multidrug-resistant bacteria. We previously reported that A. baumannii is sensitive to high concentrations of copper. To understand A. baumannii copper resistance at the molecular level, herein we identified putative copper resistance components and characterized 21 strains bearing mutations in these genes. Eight of the strains displayed a copper sensitive phenotype (pcoA, pcoB, copB, copA/cueO, copR/cusR, copS/cusS, copC, copD); the putative functions of these proteins include copper transport, oxidation, sequestration, and regulation. Importantly, many of these mutant strains still showed increased sensitivity to copper while in a biofilm. Inductively coupled plasma mass spectrometry revealed that many of these strains had defects in copper mobilization, as the mutant strains accumulated more intracellular copper than the wild-type strain. Given the crucial antimicrobial role of copper-mediated killing employed by the immune system, virulence of these mutant strains was investigated in Galleria mellonella; many of the mutant strains were attenuated. Finally, the cusR and copD strains were also investigated in the murine pneumonia model; both were found to be important for full virulence. Thus, copper possesses antimicrobial activity against multidrug-resistant A. baumannii, and copper sensitivity is further increased when copper homeostasis mechanisms are interrupted. Importantly, these proteins are crucial for full virulence of A. baumannii and may represent novel drug targets.
Collapse
Affiliation(s)
- Caitlin L Williams
- Department of Microbiology & Immunology, Uniformed Services University, Bethesda, MD, United States
| | - Heather M Neu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Yonas A Alamneh
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ryan M Reddinger
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Anna C Jacobs
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Shweta Singh
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rania Abu-Taleb
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Daniel V Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - D Scott Merrell
- Department of Microbiology & Immunology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
373
|
Hardy BL, Bansal G, Hewlett KH, Arora A, Schaffer SD, Kamau E, Bennett JW, Merrell DS. Antimicrobial Activity of Clinically Isolated Bacterial Species Against Staphylococcus aureus. Front Microbiol 2020; 10:2977. [PMID: 32010080 PMCID: PMC6975196 DOI: 10.3389/fmicb.2019.02977] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/10/2019] [Indexed: 11/24/2022] Open
Abstract
Bacteria often exist in polymicrobial communities where they compete for limited resources. Intrinsic to this competition is the ability of some species to inhibit or kill their competitors. This phenomenon is pervasive throughout the human body where commensal bacteria block the colonization of incoming microorganisms. In this regard, molecular epidemiological and microbiota-based studies suggest that species-specific interactions play a critical role in the prevention of nasal colonization of the opportunistic pathogen Staphylococcus aureus. Despite this, S. aureus exists as part of the microbiota of ∼25% of the population, suggesting that the interplay between S. aureus and commensals can be complex. Microbiota studies indicate that several bacterial genera are negatively correlated with S. aureus colonization. While these studies paint a broad overview of bacterial presence, they often fail to identify individual species-specific interactions; a greater insight in this area could aid the development of novel antimicrobials. As a proof of concept study designed to identify individual bacterial species that possess anti-S. aureus activity, we screened a small collection of clinical isolates from the Walter Reed National Military Medical Center for the ability to inhibit multiple S. aureus strains. We found that the majority of the isolates (82%) inhibited at least one S. aureus strain; 23% inhibited all S. aureus strains tested. In total, seven isolates mediated inhibitory activity that was independent of physical contact with S. aureus, and seven isolates mediated bactericidal activity. 16S rRNA based-sequencing revealed that the inhibitory isolates belonged to the Acinetobacter, Agromyces, Corynebacterium, Microbacteria, Mycobacterium, and Staphylococcus genera. Unexpectedly, these included seven distinct Acinetobacter baumannii isolates, all of which showed heterogeneous degrees of anti-S. aureus activity. Defined mechanistic studies on specific isolates revealed that the inhibitory activity was retained in conditioned cell free medium (CCFM) derived from the isolates. Furthermore, CCFM obtained from S. saprophyticus significantly decreased mortality of S. aureus-infected Galleria mellonella caterpillars. While future studies will seek to define the molecular mechanisms of the inhibitory activities, our current findings support the study of polymicrobial interactions as a strategy to understand bacterial competition and to identify novel therapeutics against S. aureus and other pathogens.
Collapse
Affiliation(s)
- Britney L Hardy
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Garima Bansal
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Katharine H Hewlett
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Arshia Arora
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Scott D Schaffer
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Edwin Kamau
- Department of Clinical Microbiology, Walter Reed National Military Medical Center, Bethesda, MD, United States.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jason W Bennett
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Department of Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - D Scott Merrell
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
374
|
Orihuela CJ, Maus UA, Brown JS. Can animal models really teach us anything about pneumonia? Pro. Eur Respir J 2020; 55:55/1/1901539. [DOI: 10.1183/13993003.01539-2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023]
|
375
|
Chávez-Ramírez B, Kerber-Díaz JC, Acoltzi-Conde MC, Ibarra JA, Vásquez-Murrieta MS, Estrada-de Los Santos P. Inhibition of Rhizoctonia solani RhCh-14 and Pythium ultimum PyFr-14 by Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24: A proposal for biocontrol of phytopathogenic fungi. Microbiol Res 2020; 230:126347. [PMID: 31586859 DOI: 10.1016/j.micres.2019.126347] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/20/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023]
Abstract
Biocontrol has emerged in recent years as an alternative to pesticides. Given the importance of environmental preservation using biocontrol, in this study two antagonistic bacteria against phytopathogenic fungi were isolated and evaluated. These bacterial strains, identified as Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24, inhibited (70 to 80%) the development of two phytopathogens of economic importance: the fungus Rhizoctonia solani RhCh-14, isolated from chili pepper, and the oomycete Pythium ultimum PyFr-14, isolated from tomato. The spectrum was not limited to the previous pathogens, but also to other phytopathogenic fungus, some bacteria and other oomycetes. Fungi-bacteria microcultures observed with optical and scanning electron microscopy revealed hyphae disintegration and pores formation. The antifungal activity was found also in the supernatant, suggesting a diffusible compound is present. Innocuous tests on tobacco leaves, blood agar, bean seed germination and in Galleria mellonella larvae showed that strain NMA1017 has the potential to be a biocontrol agent. Greenhouse experiments with bean plants inoculated with P. polymyxa exhibited the efficacy to inhibit the growth of R. solani and P. ultimum. Furthermore, P. polymyxa NMA1017 showed plant growth promotion activities, such as siderophore synthesis and nitrogen fixation which can contribute to the crop development.
Collapse
Affiliation(s)
- Belén Chávez-Ramírez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - Jeniffer Chris Kerber-Díaz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - Marí Carmen Acoltzi-Conde
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - J Antonio Ibarra
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - María-Soledad Vásquez-Murrieta
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| | - Paulina Estrada-de Los Santos
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
376
|
Lo Sciuto A, Cervoni M, Stefanelli R, Spinnato MC, Di Giamberardino A, Mancone C, Imperi F. Genetic Basis and Physiological Effects of Lipid A Hydroxylation in Pseudomonas aeruginosa PAO1. Pathogens 2019; 8:E291. [PMID: 31835493 PMCID: PMC6963906 DOI: 10.3390/pathogens8040291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 01/09/2023] Open
Abstract
Modifications of the lipid A moiety of lipopolysaccharide influence the physicochemical properties of the outer membrane of Gram-negative bacteria. Some bacteria produce lipid A with a single hydroxylated secondary acyl chain. This hydroxylation is catalyzed by the dioxygenase LpxO, and is important for resistance to cationic antimicrobial peptides (e.g., polymyxins), survival in human blood, and pathogenicity in animal models. The lipid A of the human pathogen Pseudomonas aeruginosa can be hydroxylated in both secondary acyl chains, but the genetic basis and physiological role of these hydroxylations are still unknown. Through the generation of single and double deletion mutants in the lpxO1 and lpxO2 homologs of P. aeruginosa PAO1 and lipid A analysis by mass spectrometry, we demonstrate that both LpxO1 and LpxO2 are responsible for lipid A hydroxylation, likely acting on different secondary acyl chains. Lipid A hydroxylation does not appear to affect in vitro growth, cell wall stability, and resistance to human blood or antibiotics in P. aeruginosa. In contrast, it is required for infectivity in the Galleria mellonella infection model, without relevantly affecting in vivo persistence. Overall, these findings suggest a role for lipid A hydroxylation in P. aeruginosa virulence that could not be directly related to outer membrane integrity.
Collapse
Affiliation(s)
| | - Matteo Cervoni
- Department of Science, Roma Tre University, 00146 Roma, Italy (M.C.S.)
| | - Roberta Stefanelli
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, 00185 Roma, Italy;
| | | | | | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Roma, Italy; (A.D.G.); (C.M.)
| | - Francesco Imperi
- Department of Science, Roma Tre University, 00146 Roma, Italy (M.C.S.)
| |
Collapse
|
377
|
Knidel C, Pereira MF, Barcelos DHF, Gomes DCDO, Guimarães MCC, Schuenck RP. Epigallocatechin gallate has antibacterial and antibiofilm activity in methicillin resistant and susceptible Staphylococcus aureus of different lineages in non-cytotoxic concentrations. Nat Prod Res 2019; 35:4643-4647. [DOI: 10.1080/14786419.2019.1698575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Carina Knidel
- Department of Pathology, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Monalessa Fábia Pereira
- Department of Pathology, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | | | - Ricardo Pinto Schuenck
- Department of Pathology, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Brazil
| |
Collapse
|
378
|
Kandiah E, Carriel D, Garcia PS, Felix J, Banzhaf M, Kritikos G, Bacia-Verloop M, Brochier-Armanet C, Elsen S, Gutsche I. Structure, Function, and Evolution of the Pseudomonas aeruginosa Lysine Decarboxylase LdcA. Structure 2019; 27:1842-1854.e4. [PMID: 31653338 DOI: 10.1016/j.str.2019.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 11/28/2022]
Abstract
The only enzyme responsible for cadaverine production in the major multidrug-resistant human pathogen Pseudomonas aeruginosa is the lysine decarboxylase LdcA. This enzyme modulates the general polyamine homeostasis, promotes growth, and reduces bacterial persistence during carbenicillin treatment. Here we present a 3.7-Å resolution cryoelectron microscopy structure of LdcA. We introduce an original approach correlating phylogenetic signal with structural information and reveal possible recombination among LdcA and arginine decarboxylase subfamilies within structural domain boundaries. We show that LdcA is involved in full virulence in an insect pathogenesis model. Furthermore, unlike its enterobacterial counterparts, LdcA is regulated neither by the stringent response alarmone ppGpp nor by the AAA+ ATPase RavA. Instead, the P. aeruginosa ravA gene seems to play a defensive role. Altogether, our study identifies LdcA as an important player in P. aeruginosa physiology and virulence and as a potential drug target.
Collapse
Affiliation(s)
- Eaazhisai Kandiah
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Diego Carriel
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; Biology of Cancer and Infection, U1036 INSERM, CEA, University of Grenoble Alpes, ERL5261 CNRS, Grenoble, France
| | - Pierre Simon Garcia
- Univ Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France; MMSB Molecular Microbiology and Structural Biochemistry, Institut de Biologie et de Chimie des Protéines 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Jan Felix
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Manuel Banzhaf
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - George Kritikos
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Maria Bacia-Verloop
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622 Villeurbanne, France; MMSB Molecular Microbiology and Structural Biochemistry, Institut de Biologie et de Chimie des Protéines 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Sylvie Elsen
- Biology of Cancer and Infection, U1036 INSERM, CEA, University of Grenoble Alpes, ERL5261 CNRS, Grenoble, France
| | - Irina Gutsche
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
| |
Collapse
|
379
|
Zhang X, Zhao Y, Wu Q, Lin J, Fang R, Bi W, Dong G, Li J, Zhang Y, Cao J, Zhou T. Zebrafish and Galleria mellonella: Models to Identify the Subsequent Infection and Evaluate the Immunological Differences in Different Klebsiella pneumoniae Intestinal Colonization Strains. Front Microbiol 2019; 10:2750. [PMID: 31849893 PMCID: PMC6900958 DOI: 10.3389/fmicb.2019.02750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
The intestine is the main reservoir of bacterial pathogens in most organisms. Klebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial bacterial infections. Intestinal colonization with K. pneumoniae has been shown to be associated with an increased risk of subsequent infections. However, not all K. pneumoniae strains in the intestine cause further infection, and the distinction of the difference among strains that cause infection after colonization and the ones causing only asymptomatic colonization is unclear. In this study, we report a case of a hospitalized patient from the ICU. We screened out two intestine colonization strains (FK4111, FK4758) to analyze the subsequent infection conditions. We set up infection models of zebrafish and Galleria mellonella to establish the differences in the potential for causing subsequent infection and the immunological specificities after K. pneumoniae intestine colonization. Sudan Black B and neutral red staining results indicated that FK4758 was more responsive to neutrophil recruitment and phagocytosis of macrophages than FK4111. The results of the assessment of the organ bacterial load revealed that FK4111 and FK4758 both had the highest bacterial loads in the zebrafish intestine compared to those in other organs. However, in the zebrafish spleen, liver, and heart, the FK4758 load was significantly higher than that of FK4111. The ST37 strain FK4111, which does not produce carbapenemase, did not cause infection after colonization, whereas the ST11 strain FK4758, which produces carbapenemase, caused infection after intestinal colonization. Our finding demonstrated that not all intestinal colonization of K. pneumoniae subsequently caused infections, and the infections of K. pneumoniae after colonization are different. Therefore, the infection models we established provided possibility for the estimation of host-microbial interactions.
Collapse
Affiliation(s)
- Xiucai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajie Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Qing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenzi Bi
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Guofeng Dong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizhi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
380
|
Cutuli MA, Petronio Petronio G, Vergalito F, Magnifico I, Pietrangelo L, Venditti N, Di Marco R. Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence 2019; 10:527-541. [PMID: 31142220 PMCID: PMC6550544 DOI: 10.1080/21505594.2019.1621649] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
A greater ethical conscience, new global rules and a modified perception of ethical consciousness entail a more rigorous control on utilizations of vertebrates for in vivo studies. To cope with this new scenario, numerous alternatives to rodents have been proposed. Among these, the greater wax moth Galleria mellonella had a preponderant role, especially in the microbiological field, as demonstrated by the growing number of recent scientific publications. The reasons for its success must be sought in its peculiar characteristics such as the innate immune response mechanisms and the ability to grow at a temperature of 37°C. This review aims to describe the most relevant features of G. mellonella in microbiology, highlighting the most recent and relevant research on antibacterial strategies, novel drug tests and toxicological studies. Although solutions for some limitations are required, G. mellonella has all the necessary host features to be a consolidated in vivo model host.
Collapse
Affiliation(s)
- Marco Alfio Cutuli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Franca Vergalito
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| |
Collapse
|
381
|
Leshkasheli L, Kutateladze M, Balarjishvili N, Bolkvadze D, Save J, Oechslin F, Que YA, Resch G. Efficacy of newly isolated and highly potent bacteriophages in a mouse model of extensively drug-resistant Acinetobacter baumannii bacteraemia. J Glob Antimicrob Resist 2019; 19:255-261. [DOI: 10.1016/j.jgar.2019.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 02/02/2023] Open
|
382
|
Kayis T, Altun M, Coskun M. Thiamethoxam-mediated alteration in multi-biomarkers of a model organism, Galleria mellonella L. (Lepidoptera: Pyralidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36623-36633. [PMID: 31732954 DOI: 10.1007/s11356-019-06810-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Thiamethoxam (TMX), a second-generation neonicotinoid, is extensively used to control numerous pests that infest crops. We investigated the effects of TMX (10, 20, 30, 40, and 50 μg/mL for 24, 48, 72, and 96 h) on biomarkers such as antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)); malondialdehyde (MDA), protein, lipid, and carbohydrate levels; micronucleus formation; and total hemocyte count in a model organism, Galleria mellonella L. SOD and CAT activities significantly decreased after 72 and 96 h of treatment at all TMX concentrations compared with control. MDA level increased following treatment with all TMX doses, with the exception of that following treatment with the lowest dose (10 μg/mL) at all tested treatment durations. Lipid and carbohydrate levels significantly decreased following treatment with high doses of TMX (40 and 50 μg/mL) after 48, 72, and 96 h. Micronucleated cell number significantly increased following treatment with all TMX doses at all tested treatment durations, except with 10 μg/mL of TMX for 24 h, when compared with control. During the first 72 h, total hemocyte count significantly decreased following treatment with 20-, 30-, 40-, and 50-μg/mL TMX; however, it was significantly reduced at all doses of TMX after 96 h. These results suggest that TMX can induce immunotoxicity, oxidative stress, and genotoxicity in a potential target and also in the model organism, G. mellonella. In addition, our study provides additional information regarding the prospective toxic effects of TMX.
Collapse
Affiliation(s)
- Tamer Kayis
- Faculty of Science and Letters, Department of Biology, Adiyaman University, 02040, Adiyaman, Turkey.
| | - Murat Altun
- Institutes of Natural and Applied Sciences, Adiyaman University, 02040, Adiyaman, Turkey
| | - Mustafa Coskun
- Faculty of Science and Letters, Department of Biology, Adiyaman University, 02040, Adiyaman, Turkey
| |
Collapse
|
383
|
Vergis J, Malik SS, Pathak R, Kumar M, Ramanjaneya S, Kurkure NV, Barbuddhe SB, Rawool DB. Antimicrobial Efficacy of Indolicidin Against Multi-Drug Resistant Enteroaggregative Escherichia coli in a Galleria mellonella Model. Front Microbiol 2019; 10:2723. [PMID: 31849877 PMCID: PMC6895141 DOI: 10.3389/fmicb.2019.02723] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance against enteroaggregative Escherichia coli (EAEC), an emerging food-borne pathogen, has been observed in an increasing trend recently. In the recent wake of antimicrobial resistance, alternate strategies especially, cationic antimicrobial peptides (AMPs) have attracted considerable attention to source antimicrobial technology solutions. This study evaluated the in vitro antimicrobial efficacy of Indolicidin against multi-drug resistant enteroaggregative Escherichia coli (MDR-EAEC) strains and further to assess its in vivo antimicrobial efficacy in Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 32 μM) and minimum bactericidal concentration (MBC; 64 μM) of Indolicidin against MDR-EAEC was determined by micro broth dilution method. Indolicidin was also tested for its stability (high-end temperatures, physiological concentration of salts and proteases); safety (sheep RBCs; HEp-2 and RAW 264.7 cell lines); effect on beneficial microflora (Lactobacillus rhamnosus and Lactobacillus acidophilus) and its mode of action (flow cytometry; nitrocefin and ONPG uptake). In vitro time-kill kinetic assay of MDR-EAEC treated with Indolicidin was performed. Further, survival rate, MDR-EAEC count, melanization rate, hemocyte enumeration, cytotoxicity assay and histopathological examination were carried out in G. mellonella model to assess in vivo antimicrobial efficacy of Indolicidin against MDR-EAEC strains. Indolicidin was tested stable at high temperatures (70°C; 90°C), physiological concentration of cationic salts (NaCl; MgCl2) and proteases, except for trypsin and tested safe with sheep RBCs and cell lines (RAW 264.7; HEp-2) at MIC (1X and 2X); the beneficial flora was not inhibited. Indolicidin exhibited outer membrane permeabilization in a concentration- and time-dependent manner. In vitro time-kill assay revealed concentration-cum-time dependent clearance of MDR-EAEC in Indolicidin-treated groups at 120 min, while, in G. mellonella, the infected group treated with Indolicidin revealed an increased survival rate, immunomodulatory effect, reduced MDR-EAEC counts and were tested safe to the larval cells which was concurred histopathologically. To conclude, the results suggests Indolicidin as an effective antimicrobial candidate against MDR-EAEC and we recommend its further investigation in appropriate animal models (mice/piglets) before its application in the target host.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sunitha Ramanjaneya
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
384
|
Ribeiro F, Rossoni R, Barros P, Santos J, Fugisaki L, Leão M, Junqueira J. Action mechanisms of probiotics on
Candida
spp. and candidiasis prevention: an update. J Appl Microbiol 2019; 129:175-185. [DOI: 10.1111/jam.14511] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Affiliation(s)
- F.C. Ribeiro
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - R.D. Rossoni
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - P.P. Barros
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - J.D. Santos
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - L.R.O. Fugisaki
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - M.P.V. Leão
- Bioscience Basic Institute University of Taubaté Bom Conselho Taubaté SP Brazil
| | - J.C. Junqueira
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| |
Collapse
|
385
|
Asai M, Li Y, Khara JS, Robertson BD, Langford PR, Newton SM. Galleria mellonella: An Infection Model for Screening Compounds Against the Mycobacterium tuberculosis Complex. Front Microbiol 2019; 10:2630. [PMID: 31824448 PMCID: PMC6882372 DOI: 10.3389/fmicb.2019.02630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023] Open
Abstract
Drug screening models have a vital role in the development of novel antimycobacterial agents which are urgently needed to tackle drug-resistant tuberculosis (TB). We recently established the larvae of the insect Galleria mellonella (greater wax moth) as a novel infection model for the Mycobacterium tuberculosis complex. Here we demonstrate its use as a rapid and reproducible screen to evaluate antimycobacterial drug efficacy using larvae infected with bioluminescent Mycobacterium bovis BCG lux. Treatment improved larval survival outcome and, with the exception of pyrazinamide, was associated with a significant reduction in in vivo mycobacterial bioluminescence over a 96 h period compared to the untreated controls. Isoniazid and rifampicin displayed the greatest in vivo efficacy and survival outcome. Thus G. mellonella, infected with bioluminescent mycobacteria, can rapidly determine in vivo drug efficacy, and has the potential to significantly reduce and/or replace the number of animals used in TB research.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Yanwen Li
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Jasmeet Singh Khara
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom.,Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
386
|
Qi C, Xu S, Wu M, Zhu S, Liu Y, Huang H, Zhang G, Li J, Huang X. Pharmacodynamics Of Linezolid-Plus-Fosfomycin Against Vancomycin-Susceptible And -Resistant Enterococci In Vitro And In Vivo Of A Galleria mellonella Larval Infection Model. Infect Drug Resist 2019; 12:3497-3505. [PMID: 31814738 PMCID: PMC6858807 DOI: 10.2147/idr.s219117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Objectives To explore the in vitro and in vivo antibacterial activity of linezolid/fosfomycin combination against vancomycin-susceptible and -resistant enterococci (VSE and VRE), and provide a theoretical basis for the treatment of VRE. Methods The checkerboard method and time-kill curve study were used to evaluate the efficacy of linezolid combined with fosfomycin against VSE and VRE. The transmission electron microscopy (TEM) was employed to observe the cell morphology of bacteria treated with each drug alone or in combination, which further elucidate the mechanism of action of antibiotic combination therapy. The Galleria mellonella infection model was constructed to demonstrate the in vivo efficacy of linezolid plus fosfomycin for VSE and VRE infection. Results The fractional inhibitory concentration index (FICI) values of all strains suggested that linezolid showed synergy or additivity in combination with fosfomycin against five of the six strains. Time-kill experiments demonstrated that the combination of linezolid-fosfomycin at 1×MIC or 2×MIC led to higher degree of bacterial killing without regrowth for all isolates tested than each monotherapy. TEM images showed that the combination treatment damaged the bacterial cell morphology more obviously than each drug alone. In the Galleria mellonella infection model, the enhanced survival rate of the combination treatment compared with linezolid monotherapy (P<0.05) was revealed. Conclusion Our data manifested that the combination of linezolid and fosfomycin was a potential therapeutic regimen for VRE infection. The combination displayed excellent bacterial killing and inhibited amplification of fosfomycin-resistant subpopulations.
Collapse
Affiliation(s)
- Caifen Qi
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China.,Department of Pharmacy, The Anqing Affiliated Hospital of Anhui Medical University, Anqing, Anhui, People's Republic of China
| | - Shuangli Xu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Maomao Wu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shuo Zhu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hong Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Guijun Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiaohui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
387
|
Ngo TD, Plé S, Thomas A, Barette C, Fortuné A, Bouzidi Y, Fauvarque MO, Pereira de Freitas R, Francisco Hilário F, Attrée I, Wong YS, Faudry E. Chimeric Protein-Protein Interface Inhibitors Allow Efficient Inhibition of Type III Secretion Machinery and Pseudomonas aeruginosa Virulence. ACS Infect Dis 2019; 5:1843-1854. [PMID: 31525902 DOI: 10.1021/acsinfecdis.9b00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen naturally resistant to many common antibiotics and acquires new resistance traits at an alarming pace. Targeting the bacterial virulence factors by an antivirulence strategy, therefore, represents a promising alternative approach besides antibiotic therapy. The Type III secretion system (T3SS) of P. aeruginosa is one of its main virulence factors. It consists of more than 20 proteins building a complex syringe-like machinery enabling the injection of toxin into host cells. Previous works showed that disrupting interactions between components of this machinery efficiently lowers the bacterial virulence. Using automated target-based screening of commercial and in-house libraries of small molecules, we identified compounds inhibiting the protein-protein interaction between PscE and PscG, the two cognate chaperones of the needle subunit PscF of P. aeruginosa T3SS. Two hits were selected and assembled using Split/Mix/Click chemistry to build larger hybrid analogues. Their efficacy and toxicity were evaluated using phenotypic analysis including automated microscopy and image analysis. Two nontoxic hybrid leads specifically inhibited the T3SS and reduced the ex vivo cytotoxicity of bacteria and their virulence in Galleria mellonella.
Collapse
Affiliation(s)
- Tuan-Dung Ngo
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, UMR 1036/ERL 5261, 17 avenue des Martyrs, Grenoble 38054, France
| | - Sophie Plé
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, UMR 1036/ERL 5261, 17 avenue des Martyrs, Grenoble 38054, France
| | - Aline Thomas
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
| | - Caroline Barette
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, Genetics & Chemogenomics, 17 avenue des Martyrs, Grenoble 38054, France
| | - Antoine Fortuné
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
| | - Younes Bouzidi
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
| | - Marie-Odile Fauvarque
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, Genetics & Chemogenomics, 17 avenue des Martyrs, Grenoble 38054, France
| | - Rossimiriam Pereira de Freitas
- Universidade Federal de Minas Gerais, Departamento de Química, UFMG, Av Pres Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Flaviane Francisco Hilário
- Universidade Federal de Ouro Preto, Departamento de Química, ICEB, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Ina Attrée
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, UMR 1036/ERL 5261, 17 avenue des Martyrs, Grenoble 38054, France
| | - Yung-Sing Wong
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
| | - Eric Faudry
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, UMR 1036/ERL 5261, 17 avenue des Martyrs, Grenoble 38054, France
| |
Collapse
|
388
|
Orner EP, Bhattacharya S, Kalenja K, Hayden D, Del Poeta M, Fries BC. Cell Wall-Associated Virulence Factors Contribute to Increased Resilience of Old Cryptococcus neoformans Cells. Front Microbiol 2019; 10:2513. [PMID: 31787940 PMCID: PMC6854031 DOI: 10.3389/fmicb.2019.02513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
As Cryptococcus neoformans mother cells generationally age, their cell walls become thicker and cell-wall associated virulence factors are upregulated. Antiphagocytic protein 1 (App1), and laccase enzymes (Lac1 and Lac2) are virulence factors known to contribute to virulence of C. neoformans during infection through inhibition of phagocytic uptake and melanization. Here we show that these cell-wall-associated proteins are not only significantly upregulated in old C. neoformans cells, but also that their upregulation likely contributes to the increased resistance to antifungal and host-mediated killing during infection and to the subsequent accumulation of old cells. We found that old cells melanize to a greater extent than younger cells and as a consequence, old melanized cells are more resistant to killing by amphotericin B compared to young melanized cells. A decrease in melanization of old lacΔ mutants lead to a decrease in old-cell resilience, indicating that age-related melanization is contributing to the overall resilience of older cells and is being mediated by laccase genes. Additionally, we found that older cells are more resistant to macrophage phagocytosis, but this resistance is lost when APP1 is knocked out, indicating that upregulation of APP1 in older cells is in part responsible for their increased resistance to phagocytosis by macrophages. Finally, infections with old cells in the Galleria mellonella model support our conclusions, as loss of the APP1, LAC1, and LAC2 gene ablates the enhanced virulence of old cells, indicating their importance in age-dependent resilience.
Collapse
Affiliation(s)
- Erika P Orner
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Somanon Bhattacharya
- Department of Medicine, Division of Infectious Disease, Stony Brook University, Stony Brook, NY, United States
| | - Klea Kalenja
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Danielle Hayden
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Department of Medicine, Division of Infectious Disease, Stony Brook University, Stony Brook, NY, United States.,Northport Veterans Affairs Medical Center, Northport, NY, United States
| | - Bettina C Fries
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Department of Medicine, Division of Infectious Disease, Stony Brook University, Stony Brook, NY, United States.,Northport Veterans Affairs Medical Center, Northport, NY, United States
| |
Collapse
|
389
|
Zhou K, Tang X, Wang L, Guo Z, Xiao S, Wang Q, Zhuo C. An Emerging Clone (ST457) of Acinetobacter baumannii Clonal Complex 92 With Enhanced Virulence and Increasing Endemicity in South China. Clin Infect Dis 2019; 67:S179-S188. [PMID: 30423046 DOI: 10.1093/cid/ciy691] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background The global dissemination of carbapenem-resistant Acinetobacter baumannii clonal complex (CC) 92 has become an urgent public health concern. Methods A. baumannii isolates were collected in 5 tertiary hospitals in south China during 2012-2015, and their clinical data were obtained. The clinical characterization was studied by statistical analysis. Whole-genome sequencing and a Galleria mellonella infection model were used to investigate the genetic characterization and pathogenicity of isolates, respectively. Results Sequence type (ST)457, following ST195, become the second-most prevalent clone in our collection. Patients infected by ST457 had significantly higher 7-day mortality rates (44.4% vs 14.3%; P = .01) and proportions of 7-day deaths (70.6% vs 26.7%; P = .01) than those infected by the other STs of CC92, except for ST195 and ST208. Consistently, the day of death after culture was significantly sooner in patients infected with ST457 than those with the non-ST195/208 members of CC92 (8.71 ± 15.27 vs 25.20 ± 6.51; P = .02). This is accordant with results that ST457 had enhanced virulence with a high mortality rate through use of the G. mellonella larvae infection model. Genomic analysis suggests that ST457 evolved distinctly from the other CC92 members mainly via recombinations. This clone exclusively shared a few virulence factors with the hypervirulence strain LAC-4, including a capsule biosynthesis locus (KL49) that is supposed to be important for the hypervirulence in LAC-4. Conclusions The rising trends in prevalence and enhanced virulence of ST457 highlight the urgent need for tailored surveillance to control the further dissemination of this clone.
Collapse
Affiliation(s)
- Kai Zhou
- Shenzhen Institute of Respiratory Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou
| | - Xiang Tang
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University
| | - Luxia Wang
- Guangzhou General Hospital of Guangzhou Military, China
| | - Zhenghui Guo
- Guangzhou General Hospital of Guangzhou Military, China
| | - Shunian Xiao
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University
| | - Qin Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University
| |
Collapse
|
390
|
Ottoni CA, Maria DA, Gonçalves PJRDO, de Araújo WL, de Souza AO. Biogenic Aspergillus tubingensis silver nanoparticles' in vitro effects on human umbilical vein endothelial cells, normal human fibroblasts, HEPG2, and Galleria mellonella. Toxicol Res (Camb) 2019; 8:789-801. [PMID: 32206300 PMCID: PMC7069381 DOI: 10.1039/c9tx00091g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Silver nanoparticles (AgNPs) are widely incorporated into different hygiene, personal care, and healthcare products. However, few studies have been undertaken to determine the effects of biogenic AgNPs on human health. The effect of biosynthesized AgNPs using the fungus Aspergillus tubingensis culture was evaluated on human umbilical vein endothelial cells (HUVECs), normal human fibroblasts (FN1), human hepatoma cells (HEPG2) and a Galleria mellonella model. HUVECs were more susceptible to biogenic AgNPs than normal fibroblasts FN1 and intense cytotoxicity was observed only for very high concentrations at and above 2.5 μM for both cells. Normal human fibroblasts FN1 exposed to AgNPs for 24 h showed viability of 98.83 ± 8.40% and 94.86 ± 5.50% for 1.25 and 2.5 μM, respectively. At 5 and 10 μM, related to the control, an increase in cell viability was observed being 112.66 ± 9.94% and 117.86 ± 8.86%, respectively. Similar results were obtained for treatment for 48 and 72 h. At 1.25, 2.5, 5 and 10 μM of AgNPs, at 24 h, HUVECs showed 51.34 ± 7.47%, 27.01 ± 5.77%, 26.00 ± 3.03% and 27.64 ± 5.85% of viability, respectively. No alteration in cell distribution among different cycle phases was observed after HUVEC and normal fibroblast FN1 exposure to AgNPs from 0.01 to 1 μM for 24, 48 and 72 h. Based on the clonogenic assay, nanoparticles successfully inhibited HEPG2 cell proliferation when exposed to concentrations up to 1 μM. In addition to that, AgNPs did not induce senescence and no morphological alteration was observed by scanning electron microscopy on the endothelial cells. In the larvae of the wax moth, Galleria mellonella, a model for toxicity, AgNPs showed no significant effects, which corroborates to the safety of their use in mammalian cells. These results demonstrate that the use of A. tubingensis AgNPs is a promising biotechnological approach and these AgNPs can be applied in several biomedical situations.
Collapse
Affiliation(s)
- Cristiane Angélica Ottoni
- São Paulo State University (UNESP) , Praça Infante Dom Henrique , s/n - São Vicente - SP , Zip Code 11330-900 , São Vicente , SP , Brazil
| | - Durvanei Augusto Maria
- Molecular Biology Laboratory , Instituto Butantan , Avenida Vital Brasil , 1500 , Zip Code 05503-900 , São Paulo , SP , Brazil . ; Tel: +55113723-7034
| | | | - Welington Luiz de Araújo
- LABMEM , Microbiology Department , ICB II , Avenida Professor Lineu Prestes , 1374 , Universidade de São Paulo , Zipe code 05508-900 , São Paulo , SP , Brazil
| | - Ana Olívia de Souza
- Molecular Biology Laboratory , Instituto Butantan , Avenida Vital Brasil , 1500 , Zip Code 05503-900 , São Paulo , SP , Brazil . ; Tel: +55113723-7034
| |
Collapse
|
391
|
Malmquist JA, Rogan MR, McGillivray SM. Galleria mellonella as an Infection Model for Bacillus anthracis Sterne. Front Cell Infect Microbiol 2019; 9:360. [PMID: 31681636 PMCID: PMC6813211 DOI: 10.3389/fcimb.2019.00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/04/2019] [Indexed: 01/09/2023] Open
Abstract
Understanding bacterial virulence provides insight into the molecular basis behind infection and could identify new drug targets. However, assessing potential virulence determinants relies on testing in an animal model. The mouse is a well-validated model but it is constrained by the ethical and logistical challenges of using vertebrate animals. Recently the larva of the greater wax moth Galleria mellonella has been explored as a possible infection model for a number of pathogens. In this study, we developed G. mellonella as an infection model for Bacillus anthracis Sterne. We first validated two different infection assays, a survival assay and a competition assay, using mutants containing disruptions in known B. anthracis virulence genes. We next tested the utility of G. mellonella to assess the virulence of transposon mutants with unknown mutations that had increased susceptibility to hydrogen peroxide in in vitro assays. One of these transposon mutants also displayed significantly decreased virulence in G. mellonella. Further investigation revealed that this mutant had a disruption in the petrobactin biosynthesis operon (asbABCDEF), which has been previously implicated in both virulence and defense against oxidative stress. We conclude that G. mellonella can detect attenuated virulence of B. anthracis Sterne in a manner consistent with that of mammalian infection models. Therefore, G. mellonella could serve as a useful alternative to vertebrate testing, especially for early assessments of potential virulence genes when use of a mammalian model may not be ethical or practical.
Collapse
Affiliation(s)
- Jacob A Malmquist
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Madison R Rogan
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Shauna M McGillivray
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| |
Collapse
|
392
|
Exploring Listeria monocytogenes Transcriptomes in Correlation with Divergence of Lineages and Virulence as Measured in Galleria mellonella. Appl Environ Microbiol 2019; 85:AEM.01370-19. [PMID: 31471303 DOI: 10.1128/aem.01370-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022] Open
Abstract
As for many opportunistic pathogens, the virulence potential of Listeria monocytogenes is highly heterogeneous between isolates and correlated, to some extent, with phylogeny and gene repertoires. In sharp contrast with copious data on intraspecies genome diversity, little is known about transcriptome diversity despite the role of complex genetic regulation in pathogenicity. The current study implemented RNA sequencing to characterize the transcriptome profiles of 33 isolates under optimal in vitro growth conditions. Transcript levels of conserved single-copy genes were comprehensively explored from several perspectives, including phylogeny, in silico-predicted virulence category based on epidemiological multilocus sequence typing (MLST) data, and in vivo virulence phenotype assessed in Galleria mellonella Comparing baseline transcriptomes between isolates was intrinsically more complex than standard genome comparison because of the inherent plasticity of gene expression in response to environmental conditions. We show that the relevance of correlation analyses and their statistical power can be enhanced by using principal-component analysis to remove the first level of irrelevant, highly coordinated changes linked to growth phase. Our results highlight the major contribution of transcription factors with key roles in virulence to the diversity of transcriptomes. Divergence in the basal transcript levels of a substantial fraction of the transcriptome was observed between lineages I and II, echoing previously reported epidemiological differences. Correlation analysis with in vivo virulence identified numerous sugar metabolism-related genes, suggesting that specific pathways might play roles in the onset of infection in G. mellonella IMPORTANCE Listeria monocytogenes is a multifaceted bacterium able to proliferate in a wide range of environments from soil to mammalian host cells. The accumulated genomic data underscore the contribution of intraspecies variations in gene repertoire to differential adaptation strategies between strains, including infection and stress resistance. It seems very likely that the fine-tuning of the transcriptional regulatory network is also a key component of the phenotypic diversity, albeit more difficult to investigate than genome content. Some studies reported incongruity in the basal transcriptome between isolates, suggesting a putative relationship with phenotypes, but small isolate numbers hampered proper correlation analyses with respect to their characteristics. The present study is the embodiment of the promising approach that consists of analyzing correlations between transcriptomes and various isolate characteristics. Statistically significant correlations were found with phylogenetic groups, epidemiological evidence of virulence potential, and virulence in Galleria mellonella larvae used as an in vivo model.
Collapse
|
393
|
Comparison of type 5d autotransporter phospholipases demonstrates a correlation between high activity and intracellular pathogenic lifestyle. Biochem J 2019; 476:2657-2676. [PMID: 31492736 DOI: 10.1042/bcj20190136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Autotransporters, or type 5 secretion systems, are widespread surface proteins of Gram-negative bacteria often associated with virulence functions. Autotransporters consist of an outer membrane β-barrel domain and an exported passenger. In the poorly studied type 5d subclass, the passenger is a patatin-like lipase. The prototype of this secretion pathway is PlpD of Pseudomonas aeruginosa, an opportunistic human pathogen. The PlpD passenger is a homodimer with phospholipase A1 (PLA1) activity. Based on sequencing data, PlpD-like proteins are present in many bacterial species. We characterized the enzymatic activity, specific lipid binding and oligomeric status of PlpD homologs from Aeromonas hydrophila (a fish pathogen), Burkholderia pseudomallei (a human pathogen) and Ralstonia solanacearum (a plant pathogen) and compared these with PlpD. We demonstrate that recombinant type 5d-secreted patatin domains have lipase activity and form dimers or higher-order oligomers. However, dimerization is not necessary for lipase activity; in fact, by making monomeric variants of PlpD, we show that enzymatic activity slightly increases while protein stability decreases. The lipases from the intracellular pathogens A. hydrophila and B. pseudomallei display PLA2 activity in addition to PLA1 activity. Although the type 5d-secreted lipases from the animal pathogens bound to intracellular lipid targets, phosphatidylserine and phosphatidylinositol phosphates, hydrolysis of these lipids could only be observed for FplA of Fusobacterium nucleatum Yet, we noted a correlation between high lipase activity in type 5d autotransporters and intracellular lifestyle. We hypothesize that type 5d phospholipases are intracellularly active and function in modulation of host cell signaling events.
Collapse
|
394
|
Yap PSX, Ahmad Kamar A, Chong CW, Ngoi ST, Teh CSJ. Genomic Insights into Two Colistin-Resistant Klebsiella pneumoniae Strains Isolated from the Stool of Preterm Neonate During the First Week of Life. Microb Drug Resist 2019; 26:190-203. [PMID: 31545116 DOI: 10.1089/mdr.2019.0199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Klebsiella pneumoniae is a major opportunistic pathogen frequently associated with nosocomial infections, and often poses a major threat to immunocompromised patients. In our previous study, two K. pneumoniae (K36 and B13), which displayed resistance to almost all major antibiotics, including colistin, were isolated. Both isolates were not associated with infection and isolated from the stools of two preterm neonates admitted to the neonatal intensive care unit (NICU) during their first week of life. Materials and Methods: In this study, whole genome sequencing was performed on these two clinical multidrug resistant K. pneumoniae. We aimed to determine the genetic factors that underline the antibiotic-resistance phenotypes of these isolates. Results: The strains harbored blaSHV-27, blaSHV-71, and oqxAB genes conferring resistance to cephalosporins, carbapenems, and fluoroquinolones, respectively, but not harboring any known plasmid-borne colistin resistance determinants such as mcr-1. However, genome analysis discovered interruption of mgrB gene by insertion sequences gaining insight into the development of colistin resistance. Conclusion: The observed finding that points to a scenario of potential gut-associated resistance genes to Gram negative (K. pneumoniae) host in the NICU environment warrants attention and further investigation.
Collapse
Affiliation(s)
- Polly Soo Xi Yap
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azanna Ahmad Kamar
- Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun Wie Chong
- School of Pharmacy, Monash University, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Soo Tein Ngoi
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
395
|
Barkowsky G, Lemster AL, Pappesch R, Jacob A, Krüger S, Schröder A, Kreikemeyer B, Patenge N. Influence of Different Cell-Penetrating Peptides on the Antimicrobial Efficiency of PNAs in Streptococcus pyogenes. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:444-454. [PMID: 31655262 PMCID: PMC6831891 DOI: 10.1016/j.omtn.2019.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/15/2019] [Accepted: 09/08/2019] [Indexed: 01/31/2023]
Abstract
Streptococcus pyogenes is an exclusively human pathogen causing a wide range of clinical manifestations from mild superficial infections to severe, life-threatening, invasive diseases. S. pyogenes is consistently susceptible toward penicillin, but therapeutic failure of penicillin treatment has been reported frequently. At the same time, streptococcal resistance to alternative antibiotics, e.g., macrolides, is common. To reduce the application of antibiotics for treatment of S. pyogenes infections, it is mandatory to develop novel therapeutic strategies. Antisense peptide nucleic acids (PNAs) are synthetic DNA derivatives widely applied for hybridization-based microbial diagnostics. They have a high potential as therapeutic agents, because PNA antisense targeting of essential genes was shown to reduce growth of several pathogenic bacterial species. Spontaneous cellular uptake of PNAs is restricted in eukaryotes and in bacteria. To overcome this problem, PNAs can be coupled to cell-penetrating peptides (CPPs) that support PNA translocation over the cell membrane. In bacteria, the efficiency of CPP-mediated PNA uptake is species specific. Previously, HIV-1 transactivator of transcription (HIV-1 TAT) peptide-coupled anti-gyrA PNA was shown to inhibit growth of S. pyogenes. Here, we investigate the effect of 18 CPP-coupled anti-gyrA PNAs on S. pyogenes growth and virulence. HIV-1 TAT, oligolysine (K8), and (RXR)4XB peptide-coupled anti-gyrA PNAs efficiently abolished bacterial growth in vitro. Consistently, treatment with these three CPP-PNAs increased survival of larvae in a Galleria mellonella infection model.
Collapse
Affiliation(s)
- Gina Barkowsky
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Anna-Lena Lemster
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Roberto Pappesch
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Anette Jacob
- Peps4LS GmbH, INF 583, 69120 Heidelberg, Germany; Functional Genome Analysis, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Selina Krüger
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Anne Schröder
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany.
| |
Collapse
|
396
|
Evolution of resistance mechanisms and biological characteristics of rifampicin-resistant Staphylococcus aureus strains selected in vitro. BMC Microbiol 2019; 19:220. [PMID: 31533633 PMCID: PMC6751903 DOI: 10.1186/s12866-019-1573-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background We aimed to determine the evolutionary pathways of rifampicin resistance in Staphylococcus aureus, and the impact of resistance mutations in the rpoB gene on fitness. Methods Three clinical strains and one reference strain were used to select for rifampicin-resistant S. aureus variants. The mutations responsible for rifampicin resistance in all of the selected isolates in vitro were investigated by polymerase chain reaction (PCR) and DNA sequencing. To compare the fitness cost of rpoB mutations against their corresponding original isolates, we performed bacterial growth curve assays, static biofilm assays, in vitro competition experiments and an infection model of Galleria mellonella larvae. Results We obtained four rifampicin-resistant S. aureus isolates that showed high levels of resistance to rifampicin with a minimal inhibitory concentration (MIC) of 128 mg/L, and all isolates had a mutation at position 481 (H481F/Y) in RpoB. A broth microdilution assay indicated that mutation of H481F/Y did not affect susceptibility to common antibacterial drugs but slightly increased the vancomycin MIC. To identify the pathways involved in the development of rifampicin resistance, 32 variants (eight mutants for each strain) and four original isolates were selected for gene sequencing. Different generations of isolates were found to harbor various mutations sites. Compared with the corresponding original isolates, an in vitro fitness assay of the variant isolates showed that growth and virulence were reduced, with a statistically significantly decreased fitness, whereas the capacity for biofilm formation was elevated. Conclusions Our findings suggested that the acquisition of rifampicin resistance in S. aureus was dynamic and was associated with a significant fitness cost. Electronic supplementary material The online version of this article (10.1186/s12866-019-1573-9) contains supplementary material, which is available to authorized users.
Collapse
|
397
|
Staniszewska M, Gizińska M, Kazek M, de Jesús González-Hernández R, Ochal Z, Mora-Montes HM. New antifungal 4-chloro-3-nitrophenyldifluoroiodomethyl sulfone reduces the Candida albicans pathogenicity in the Galleria mellonella model organism. Braz J Microbiol 2019; 51:5-14. [PMID: 31486049 PMCID: PMC7058776 DOI: 10.1007/s42770-019-00140-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022] Open
Abstract
Candida albicans represents an interesting microorganism to study complex host-pathogen interactions and for the development of effective antifungals. Our goal was to assess the efficacy of 4-chloro-3-nitrophenyldifluoroiodomethyl sulfone (named Sulfone) against the C. albicans infections in the Galleria mellonella host model. We assessed invasiveness of CAI4 parental strain and mutants: kex2Δ/KEX2 and kex2Δ/kex2Δ in G. mellonella treated with Sulfone. We determined that KEX2 expression was altered following Sulfone treatment in G. mellonella-C. albicans infection model. Infection with kex2Δ/kex2Δ induced decreased inflammation and minimal fault in fitness of larvae vs CAI4. Fifty percent of larvae died within 4–5 days (P value < 0.0001) when infected with CAI4 and kex2Δ/KEX2 at 109 CFU/mL; survival reached 100% in those injected with kex2Δ/kex2Δ. Larvae treated with Sulfone at 0.01 mg/kg 30 min before infection with all C. albicans tested survived infection at 90–100% vs C. albicans infected-PBS-treated larvae. Hypersensitive to Sulfone, kex2Δ/kex2Δ reduced virulence in survival. KEX2 was down-regulated when larvae were treated with Sulfone: 30 min before and 2 h post-SC5314-wild-type infection respectively. kex2Δ/kex2Δ was able to infect larvae, but failed to kill host when treated with Sulfone. Sulfone can be used to prevent or treat candidiasis. G. mellonella facilitates studding of host-pathogen interactions, i.e., testing host vs panel of C. albicans mutants when antifungal is dosed.
Collapse
Affiliation(s)
- Monika Staniszewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | | | - Michalina Kazek
- Laboratory of Physiology, The Witold Stefański Institute of Parasitology, Polish Academy of Science, Twarda 51/55, 00-818, Warsaw, Poland
| | - Roberto de Jesús González-Hernández
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., Mexico
| | - Zbigniew Ochal
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Héctor M Mora-Montes
- Departamento de Biologia, Division de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., Mexico
| |
Collapse
|
398
|
Minimal Inhibitory Concentration (MIC)-Phenomena in Candida albicans and Their Impact on the Diagnosis of Antifungal Resistance. J Fungi (Basel) 2019; 5:jof5030083. [PMID: 31487830 PMCID: PMC6787722 DOI: 10.3390/jof5030083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
Antifungal susceptibility testing (AFST) of clinical isolates is a tool in routine diagnostics to facilitate decision making on optimal antifungal therapy. The minimal inhibitory concentration (MIC)-phenomena (trailing and paradoxical effects (PXE)) observed in AFST complicate the unambiguous and reproducible determination of MICs and the impact of these phenomena on in vivo outcome are not fully understood. We aimed to link the MIC-phenomena with in vivo treatment response using the alternative infection model Galleria mellonella. We found that Candida albicans strains exhibiting PXE for caspofungin (CAS) had variable treatment outcomes in the Galleria model. In contrast, C. albicans strains showing trailing for voriconazole failed to respond in vivo. Caspofungin- and voriconazole-susceptible C. albicans strains responded to the respective antifungal therapy in vivo. In conclusion, MIC data and subsequent susceptibility interpretation of strains exhibiting PXE and/or trailing should be carried out with caution, as both effects are linked to drug adaptation and treatment response is uncertain to predict.
Collapse
|
399
|
Allonsius CN, Van Beeck W, De Boeck I, Wittouck S, Lebeer S. The microbiome of the invertebrate model host Galleria mellonella is dominated by Enterococcus. Anim Microbiome 2019; 1:7. [PMID: 33499945 PMCID: PMC7807499 DOI: 10.1186/s42523-019-0010-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/21/2019] [Indexed: 01/16/2023] Open
Abstract
Background The popularity of Galleria mellonella as invertebrate model is increasing rapidly, because it forms an attractive alternative to study bacterial, fungal and viral infections, toxin biology, and to screen antimicrobial drugs. For a number of vertebrate and invertebrate animal and plant models, it has been established that the commensals present within the microbial communities on various host surfaces will influence the host’s immune and growth development state and the colonization capacity of newly introduced micro-organisms. The microbial communities of Galleria mellonella larvae have, however, not yet been well characterized. Results In this study, we present the bacterial communities that were found by 16S rRNA amplicon sequencing on different body sites of G. mellonella larvae. These communities showed very little diversity and were mostly dominated by one Enterococcus taxon. In addition, we found that the production conditions (as ‘bait’ for fishing or under more controlled ‘research grade’ conditions - with or without hormones and antibiotics) appear to have little impact on the microbiota of the larvae. Conclusions Establishment of the simplicity of the microbiota of G. mellonella larvae underlines the potential of the larvae as a model host system for microbiome-host interactions.
Collapse
Affiliation(s)
- Camille Nina Allonsius
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Wannes Van Beeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Ilke De Boeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium.
| |
Collapse
|
400
|
New Shuttle Vectors for Real-Time Gene Expression Analysis in Multidrug-Resistant Acinetobacter Species: In Vitro and In Vivo Responses to Environmental Stressors. Appl Environ Microbiol 2019; 85:AEM.01334-19. [PMID: 31324623 DOI: 10.1128/aem.01334-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/06/2019] [Indexed: 11/20/2022] Open
Abstract
The Acinetobacter genus includes species of opportunistic pathogens and harmless saprophytes. The type species, Acinetobacter baumannii, is a nosocomial pathogen renowned for being multidrug resistant (MDR). Despite the clinical relevance of infections caused by MDR A. baumannii and a few other Acinetobacter spp., the regulation of their pathogenicity remains elusive due to the scarcity of adequate genetic tools, including vectors for gene expression analysis. Here, we report the generation and testing of a series of Escherichia coli-Acinetobacter promoter-probe vectors suitable for gene expression analysis in Acinetobacter spp. These vectors, named pLPV1Z, pLPV2Z, and pLPV3Z, carry both gentamicin and zeocin resistance markers and contain lux, lacZ, and green fluorescent protein (GFP) reporter systems downstream of an extended polylinker, respectively. The presence of a toxin-antitoxin gene system and the high copy number allow pLPV plasmids to be stably maintained even without antibiotic selection. The pLPV plasmids can easily be introduced by electroporation into MDR A. baumannii belonging to the major international lineages as well as into species of the Acinetobacter calcoaceticus-A. baumannii complex. The pLPV vectors have successfully been employed to study the regulation of stress-responsive A. baumannii promoters, including the DNA damage-inducible uvrABC promoter, the ethanol-inducible adhP and yahK promoters, and the iron-repressible promoter of the acinetobactin siderophore biosynthesis gene basA A lux-tagged A. baumannii ATCC 19606T strain, carrying the iron-responsive pLPV1Z::PbasA promoter fusion, allowed in vivo and ex vivo monitoring of the bacterial burden in the Galleria mellonella infection model.IMPORTANCE The short-term adaptive response to environmental cues greatly contributes to the ecological success of bacteria, and profound alterations in bacterial gene expression occur in response to physical, chemical, and nutritional stresses. Bacteria belonging to the Acinetobacter genus are ubiquitous inhabitants of soil and water though some species, such as Acinetobacter baumannii, are pathogenic and cause serious concern due to antibiotic resistance. Understanding A. baumannii pathobiology requires adequate genetic tools for gene expression analysis, and to this end we developed user-friendly shuttle vectors to probe the transcriptional responses to different environmental stresses. Vectors were constructed to overcome the problem of antibiotic selection in multidrug-resistant strains and were equipped with suitable reporter systems to facilitate signal detection. By means of these vectors, the transcriptional response of A. baumannii to DNA damage, ethanol exposure, and iron starvation was investigated both in vitro and in vivo, providing insights into A. baumannii adaptation during stress and infection.
Collapse
|