351
|
Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S, Tang X. Comparative transcriptome analysis of soybean response to bean pyralid larvae. BMC Genomics 2017; 18:871. [PMID: 29132375 PMCID: PMC5683215 DOI: 10.1186/s12864-017-4256-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Soybean is one of most important oilseed crop worldwide, however, its production is often limited by many insect pests. Bean pyralid is one of the major soybean leaf-feeding insects in China. To explore the defense mechanisms of soybean resistance to bean pyralid, the comparative transcriptome sequencing was completed between the leaves infested with bean pyralid larvae and no worm of soybean (Gantai-2-2 and Wan82-178) on the Illumina HiSeq™ 2000 platform. RESULTS In total, we identified 1744 differentially expressed genes (DEGs) in the leaves of Gantai-2-2 (1064) and Wan82-178 (680) fed by bean pyralid for 48 h, compared to 0 h. Interestingly, 315 DEGs were shared by Gantai-2-2 and Wan82-178, while 749 and 365 DEGs specifically identified in Gantai-2-2 and Wan82-178, respectively. When comparing Gantai-2-2 with Wan82-178, 605 DEGs were identified at 0 h feeding, and 468 DEGs were identified at 48 h feeding. Gene Ontology (GO) annotation analysis revealed that the DEGs were mainly involved in the metabolic process, single-organism process, cellular process, responses to stimulus, catalytic activities and binding. Pathway analysis showed that most of the DEGs were associated with the plant-pathogen interaction, phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis, peroxisome, plant hormone signal transduction, terpenoid backbone biosynthesis, and so on. Finally, we used qRT-PCR to validate the expression patterns of several genes and the results showed an excellent agreement with deep sequencing. CONCLUSIONS According to the comparative transcriptome analysis results and related literature reports, we concluded that the response to bean pyralid feeding might be related to the disturbed functions and metabolism pathways of some key DEGs, such as DEGs involved in the ROS removal system, plant hormone metabolism, intracellular signal transduction pathways, secondary metabolism, transcription factors, biotic and abiotic stresses. We speculated that these genes may have played an important role in synthesizing substances to resist insect attacks in soybean. Our results provide a valuable resource of soybean defense genes that will benefit other studies in this field.
Collapse
Affiliation(s)
- Weiying Zeng
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zudong Sun
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhaoyan Cai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Huaizhu Chen
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhenguang Lai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Shouzhen Yang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Xiangmin Tang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| |
Collapse
|
352
|
Shi H, Ma W, Song J, Lu M, Rahman SU, Bui TTX, Vu DD, Zheng H, Wang J, Zhang Y. Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient- and deficient-nitrogen conditions. TREE PHYSIOLOGY 2017; 37:1457-1468. [PMID: 28985426 DOI: 10.1093/treephys/tpx090] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/18/2017] [Indexed: 05/11/2023]
Abstract
Many semi-arid ecosystems are simultaneously limited by soil water and nitrogen (N). We conducted a greenhouse experiment to address how N availability impacts drought-resistant traits of Catalpa bungei C. A. Mey at the physiological and molecular level. A factorial design was used, consisting of sufficient-N and deficient-N combined with moderate drought and well-watered conditions. Seedling biomass and major root parameters were significantly suppressed by drought under the deficient-N condition, whereas N application mitigated the inhibiting effects of drought on root growth, particularly that of fine roots with a diameter <0.2 mm. Intrinsic water-use efficiency was promoted by N addition under both water conditions, whereas stable carbon isotope compositions (δ13C) was promoted by N addition only under the well-watered condition. Nitrogen application positively impacted drought adaptive responses including osmotic adjustment and homeostasis of reactive oxygen species, the content of free proline, soluble sugar and superoxide dismutase activity: all were increased upon drought under sufficient-N conditions but not under deficient-N conditions. The extent of abscisic acid (ABA) inducement upon drought was elevated by N application. Furthermore, an N-dependent crosstalk between ABA, jasmonic acid and indole acetic acid at the biosynthesis level contributed to better drought acclimation. Moreover, the transcriptional level of most genes responsible for the ABA signal transduction pathway, and genes encoding the antioxidant enzymes and plasma membrane intrinsic proteins, are elevated upon drought only under sufficient-N addition. These observations confirmed at the molecular level that major adaptive responses to drought are dependent on sufficient N nutrition. Although N uptake was decreased under drought, N-use efficiency and transcription of most genes encoding N metabolism enzymes were elevated, demonstrating that active N metabolism positively contributed drought resistance and growth of C. bungei under sufficient-N conditions.
Collapse
Affiliation(s)
- Huili Shi
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junyu Song
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mei Lu
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siddiq Ur Rahman
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Thi Tuyet Xuan Bui
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dinh Duy Vu
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huifang Zheng
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yi Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
353
|
Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Front Chem 2017; 5:78. [PMID: 29075626 PMCID: PMC5643474 DOI: 10.3389/fchem.2017.00078] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022] Open
Abstract
An increasing need of nanotechnology in various industries may cause a huge environment dispersion of nanoparticles in coming years. A concern about nanoparticles interaction with flora and fauna is raised due to a growing load of it in the environment. In recent years, several investigators have shown impact of nanoparticles on plant growth and their accumulation in food source. This review examines the research performed in the last decade to show how metal and metal oxide nanoparticles are influencing the plant metabolism. We addressed here, the impact of nanoparticle on plant in relation to its size, concentration, and exposure methodology. Based on the available reports, we proposed oxidative burst as a general mechanism through which the toxic effects of nanoparticles are spread in plants. This review summarizes the current understanding and the future possibilities of plant-nanoparticle research.
Collapse
Affiliation(s)
- Anshu Rastogi
- Department of Meteorology, Poznan University of Life Sciences, Poznan, Poland
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
- SRL “Physiological Bases of Plant Productivity,” Educational and Scientific Center “Institute of Biology and Medicine,” Taras Shevchenko National University of Kyiv, Kiev, Ukraine
| | - Hazem M. Kalaji
- SI Technology, Warsaw, Poland
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Science—SGGW, Warsaw, Poland
| | - Xiaolan He
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sonia Mbarki
- National Research Institute of Rural Engineering, Water and Forests, Aryanah, Tunisia
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
354
|
Wang S, Wang Z, Chen M, Fang H, Wang D. Co-exposure of Freshwater Microalgae to Tetrabromobisphenol A and Sulfadiazine: Oxidative Stress Biomarker Responses and Joint Toxicity Prediction. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:438-444. [PMID: 28791442 DOI: 10.1007/s00128-017-2153-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Combined toxicity and oxidative stress biomarker responses were determined for tetrabromobisphenol A (TBBPA) and sulfadiazine (SDZ) to the unicellular green alga Scenedesmus obliquus. Concentration-response analyses were performed for single toxicants and for mixtures containing TBBPA and SDZ with two different mixture ratios. The effect concentrations and the observed effects of the mixtures were compared to the predictions of the joint toxicity by the concentration addition (CA) model and independent action (IA) model. Results showed that the observed joint toxicity was within the scope of the highest (TBBPA) and lowest (SDZ) toxicity observed for the individual components. Furthermore, co-exposure of S. obliquus to TBBPA and SDZ provided preliminary evidence that the mixtures induced oxidative stress leading to cell damage. The CA and IA models proved to be valid for the prediction of the joint toxicity of TBBPA and SDZ. This study highlights a combined environmental risk assessment for two emerging pollutants.
Collapse
Affiliation(s)
- Se Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hao Fang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Degao Wang
- School of Environmental Science and Technology, Dalian Maritime University, Dalian, 116023, China
| |
Collapse
|
355
|
Barczak-Brzyżek AK, Kiełkiewicz M, Gawroński P, Kot K, Filipecki M, Karpińska B. Cross-talk between high light stress and plant defence to the two-spotted spider mite in Arabidopsis thaliana. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:177-189. [PMID: 29119280 DOI: 10.1007/s10493-017-0187-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/01/2017] [Indexed: 05/17/2023]
Abstract
Little is known about how plants deal with arthropod herbivores under the fluctuating light intensity and spectra which occur in natural environments. Moreover, the role of simultaneous stress such as excess light (EL) in the regulation of plant responses to herbivores is poorly characterized. In the current study, we focused on a mite-herbivore, specifically, the two-spotted spider mite (TSSM), which is one of the major agricultural pests worldwide. Our results showed that TSSM-induced leaf damage (visualized by trypan blue staining) and oviposition rate (measured as daily female fecundity) decreased after EL pre-treatment in wild-type Arabidopsis plants, but the observed responses were not wavelength specific. Thus, we established that EL pre-treatment reduced Arabidopsis susceptibility to TSSM infestation. Due to the fact that a portion of EL energy is dissipated by plants as heat in the mechanism known as non-photochemical quenching (NPQ) of chlorophyll fluorescence, we tested an Arabidopsis npq4-1 mutant impaired in NPQ. We showed that npq4-1 plants are significantly less susceptible to TSSM feeding activity, and this result was not dependent on light pre-treatment. Therefore, our findings strongly support the role of light in plant defence against TSSM, pointing to a key role for a photo-protective mechanism such as NPQ in this regulation. We hypothesize that plants impaired in NPQ are constantly primed to mite attack, as this seems to be a universal evolutionarily conserved mechanism for herbivores.
Collapse
Affiliation(s)
| | - M Kiełkiewicz
- Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - P Gawroński
- Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - K Kot
- Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - M Filipecki
- Warsaw University of Life Sciences - SGGW, Warsaw, Poland.
| | - B Karpińska
- Warsaw University of Life Sciences - SGGW, Warsaw, Poland
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
356
|
Wang Z, Zhang F, Wang S, Peijnenburg WJGM. Assessment and prediction of joint algal toxicity of binary mixtures of graphene and ionic liquids. CHEMOSPHERE 2017; 185:681-689. [PMID: 28728125 DOI: 10.1016/j.chemosphere.2017.07.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Graphene and ionic liquids (ILs) released into the environment will interact with each other. So far however, the risks associated with the concurrent exposure of biota to graphene and ILs in the environment have received little attention. The research reported here focused on observing and predicting the joint toxicity effects in the green alga Scenedesmus obliquus exposed to binary mixtures of intrinsic graphene (iG)/graphene oxide (GO) and five ILs of varying anionic and cationic types. The isolated ILs in the binary mixtures were the main contributors to toxicity. The binary GO-IL mixtures resulted in more severe joint toxicity than the binary iG-IL mixtures, irrespective of mixture ratios. The mechanism of the joint toxicity may be associated with the adsorption capability of the graphenes for the ILs, the dispersion stability of the graphenes in aquatic media, and modulation of the binary mixtures-induced oxidative stress. A toxic unit assessment showed that the graphene and IL toxicities were additive at low concentration of the mixtures but antagonistic at high concentration of the mixtures. Predictions made using the concentration addition and independent action models were close to the observed joint toxicities regardless of mixture types and mixture ratios. These findings provide new insights that are of use in the risk assessment of mixtures of engineered nanoparticles and other environmentally relevant contaminants.
Collapse
Affiliation(s)
- Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 210044 Nanjing, China.
| | - Fan Zhang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 210044 Nanjing, China
| | - Se Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 210044 Nanjing, China
| | - Willie J G M Peijnenburg
- Center for the Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands; Institute of Environmental Sciences (CML), Leiden University, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
357
|
Rustioni L. Oxidized Polymeric Phenolics: Could They Be Considered Photoprotectors? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7843-7846. [PMID: 28817929 DOI: 10.1021/acs.jafc.7b03704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photooxidative sunburn is the consequence of photosystem overexcitations. It results in tissue color changes as a result of chlorophyll degradation and accumulation of oxidized polymeric phenolics (OPPs), resulting from scavenging of reactive oxygen species (ROS). From a productive point of view, OPPs should be considered as damages, decreasing the economical and esthetical values of plants and crops. However, from a physiological perspective, OPPs could be also play a screening role against excessive photosynthetically active radiation (PAR), because they follow the criteria proposed for the identification of photoprotectors, as follows: (i) As a result of the complex conjugated double bond systems, OPPs absorb and, thus, screen the visible PAR. (ii) The accumulation of brown OPPs is well-known to be stimulated by light exposure, resulting in sunburn symptoms. (iii) OPPs induce PAR resistance; for example, the sunburned brown skin allows the fruit ripening to proceed without further interferences. (iv) The screen provided by the accumulated OPPs in death cells protect underlying tissues, demonstrating an increased resistance to radiation when other physiological processes are not functioning.
Collapse
Affiliation(s)
- Laura Rustioni
- Dipartimento di Scienze Agrarie e Ambientali (DISAA), Università degli Studi di Milano , via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
358
|
Gong X, Shi S, Dou F, Song Y, Ma F. Exogenous Melatonin Alleviates Alkaline Stress in Malus hupehensis Rehd. by Regulating the Biosynthesis of Polyamines. Molecules 2017; 22:molecules22091542. [PMID: 28902159 PMCID: PMC6151414 DOI: 10.3390/molecules22091542] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Since melatonin was identified in plants decades ago, much attention has been devoted to discovering its role in plant science. There is still a great deal to learn about the functional importance of melatonin, as well as its functional mode. In this paper, we examine the role of melatonin treatment in the response of Malus hupehensis Rehd. to alkaline conditions. Stressed seedlings showed chlorosis and suppressed growth. However, this phenotype was ameliorated when 5 µM melatonin was added to the irrigation solution. This supplementation was also associated with a reduction in cell membrane damage and maintenance of a normal root system architecture. Fewer reactive oxygen species (ROS) were accumulated due to the enhanced scavenging activity of antioxidant enzymes superoxide dismutase, peroxidase, and catalase. In addition, alkaline-stressed seedlings that received the melatonin supplement accumulated more polyamines compared with untreated seedlings. Transcript levels of six genes involved in polyamine synthesis, including SAMDC1, -3, and -4, and SPDS1, -3, and -5, -6, were upregulated in response to melatonin application. All of these results demonstrate that melatonin has a positive function in plant tolerance to alkaline stress because it regulates enzyme activity and the biosynthesis of polyamines.
Collapse
Affiliation(s)
- Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Shuting Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Fangfang Dou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
359
|
Hussin S, Geissler N, El-Far MMM, Koyro HW. Effects of salinity and short-term elevated atmospheric CO 2 on the chemical equilibrium between CO 2 fixation and photosynthetic electron transport of Stevia rebaudiana Bertoni. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017. [PMID: 28645057 DOI: 10.1016/j.plaphy.2017.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The effect of water salinity on plant growth and photosynthetic traits of Stevia rebaudiana was investigated to determine its level and mechanisms of salinity tolerance. It was also attempted to assess how short-term elevated CO2 concentration would influence the boundaries and mechanisms of its photosynthetic capacity. The plants were grown in gravel/hydroponic system under controlled greenhouse conditions and irrigated with four different salinity levels (0, 25, 50 and 100 mol m-3NaCl). Low salinity did not significantly alter the plant fresh weight, which was substantially decreased by 67% at high salinity treatment. Salinity tolerance threshold was reached at 50 mol m-3 NaCl while C50 was between 50 and 100 mol m-3 NaCl, indicating that S. rebaudiana is a moderate salt tolerant species. Salt-induced growth reduction was apparently linked to a significant decline of about 47% in the photosynthetic rates (Anet) at high salinity treatment, leading consequently to a disequilibrium between CO2-assimilation and electron transport rates (indicated by enhanced ETRmax/Agross ratio). Elevated atmospheric CO2 enhanced CO2 assimilation rates by 65% and 80% for control and high-salt-stressed plants respectively, likely due to significant increases in intercellular CO2 concentration (indicated by enhanced Ci/Ca). The priority for Stevia under elevated atmospheric CO2 was not to save water but to maximize photosynthesis so that the PWUE was progressively improved and the threat of oxidative stress was diminished (decline in ETRmax/Agross). The results imply that elevated CO2 level could ameliorate some of the detrimental effects of salinity, conferring higher tolerance and survival of S. rebaudiana, a highlydesired feature with the forthcoming era of global changes.
Collapse
Affiliation(s)
- Sayed Hussin
- Institute of Plant Ecology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany; Agricultural Botany Department, Faculty of Agriculture, Ain Shams University, P.O. Box 68, Hadayek Shubra, 11241 Cairo, Egypt.
| | - Nicole Geissler
- Institute of Plant Ecology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Mervat M M El-Far
- Institute of Plant Ecology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Hans-Werner Koyro
- Institute of Plant Ecology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
360
|
Cahyanurani AB, Chiu KH, Wu TM. Glutathione biosynthesis plays an important role against 4-tert-octylphenol-induced oxidative stress in Ceratophyllum demersum. CHEMOSPHERE 2017; 183:565-573. [PMID: 28570900 DOI: 10.1016/j.chemosphere.2017.05.150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
4-tert-octylphenol (OP) is a persistent environmental pollutant with an endocrine-disrupting property. In the present study, we examined the effect of various concentrations of OP (0, 0.5, 1, 1.5, 2 and 3 mg L-1) applied to an aquatic plant, the submersed macrophyte Ceratophyllum demersum. The toxic effect caused by OP inhibited the plant's growth rate, reduced total chlorophyll content and increased levels of the reactive oxygen species (ROS) O2•- and H2O2. OP treatment significantly increased the activities of antioxidant enzymes including superoxide dismutase, guaiacol peroxidase, glutathione reductase and ascorbate peroxidase. The contents of the non-enzymatic antioxidant glutathione (GSH) and ratio of GSH to glutathione disulfide were markedly increased with OP treatment. Pretreatment with buthionine sulfoximine, a specific and potent inhibitor of GSH biosynthesis, significantly reduced total GSH content and conferred a more severe toxic phenotype on OP exposure. Thus, with OP-induced oxidative stress, C. demersum might actively regulate the antioxidant machinery, especially the biosynthesis and redox state of GSH.
Collapse
Affiliation(s)
- Annisa' Bias Cahyanurani
- Department of Aquaculture, Fisheries and Marine Science Faculty, University of Brawijaya, Malang 65145, Indonesia; Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Kuo-Hsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
361
|
Kiani-Pouya A, Roessner U, Jayasinghe NS, Lutz A, Rupasinghe T, Bazihizina N, Bohm J, Alharbi S, Hedrich R, Shabala S. Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species. PLANT, CELL & ENVIRONMENT 2017; 40:1900-1915. [PMID: 28558173 DOI: 10.1111/pce.12995] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/21/2017] [Indexed: 05/02/2023]
Abstract
Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non-brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control-grown plants but did have a pronounced effect on salt-grown plants, resulting in a salt-sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma-aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K+ retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations.
Collapse
Affiliation(s)
- Ali Kiani-Pouya
- School of Land and Food, University of Tasmania, 7001, Hobart, Tasmania, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, 3010, Parkville, Victoria, Australia
- Metabolomics Australia, School of BioSciences, The University of Melbourne, 3010, Parkville, Victoria, Australia
| | - Nirupama S Jayasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, 3010, Parkville, Victoria, Australia
| | - Adrian Lutz
- Metabolomics Australia, School of BioSciences, The University of Melbourne, 3010, Parkville, Victoria, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, 3010, Parkville, Victoria, Australia
| | - Nadia Bazihizina
- School of Land and Food, University of Tasmania, 7001, Hobart, Tasmania, Australia
- Deptartment of Agrifood Production and Environmental Science, University of Florence, I-50019, Florence, Italy
| | - Jennifer Bohm
- School of Land and Food, University of Tasmania, 7001, Hobart, Tasmania, Australia
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, Würzburg University, 97082, Wurzburg, Germany
| | - Sulaiman Alharbi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, Würzburg University, 97082, Wurzburg, Germany
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, 7001, Hobart, Tasmania, Australia
| |
Collapse
|
362
|
Zhang P, Huang H, Liu W, Zhang C. Physiological mechanisms of a wetland plant (Echinodorus osiris Rataj) to cadmium detoxification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21859-21866. [PMID: 28776297 DOI: 10.1007/s11356-017-9744-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Physiological responses of Echinodorus osiris Rataj plant under cadmium (Cd) stress (5 and 15 mg L-1) were studied by researching the change of non-enzymatic antioxidants and the exudation of root organic acids. There was a significant increase of ascorbic acid, glutathione, and non-protein thiols in the plant, and the increment was much obvious in roots than that in leaves with increased Cd stress. The accumulation of Cd was associated with mitochondrial structural damages in roots, while the organelle structure, such as chloroplast, in leaves remains intact. In exudates collected from the plants in the treatment with 15 mg L-1 Cd, oxalate, citric, and succinic acids responded intensively than other organic acids.
Collapse
Affiliation(s)
- Peng Zhang
- Guangdong Provincial Academy of Environmental Science, Guangzhou, Guangdong, 510045, China
| | - He Huang
- School of Environment, Guangxi University, Nanning, Guangxi, 530005, China
| | - Wanru Liu
- Henan Haisen Environmental Protection Technology Co. Ltd, Xuchang, Henan, 461000, China
| | - Chaolan Zhang
- School of Environment, Guangxi University, Nanning, Guangxi, 530005, China.
| |
Collapse
|
363
|
Toledo-Hernández C, Ruiz-Diaz CP, Díaz-Vázquez LM, Santiago-Cárdenas V, Rosario-Berrios DN, García-Almedina DM, Roberson LM. Comparison of chemical compounds associated with sclerites from healthy and diseased sea fan corals ( Gorgonia ventalina). PeerJ 2017; 5:e3677. [PMID: 28852592 PMCID: PMC5572935 DOI: 10.7717/peerj.3677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/22/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The roles of gorgonian sclerites as structural components and predator deterrents have been widely studied. Yet their role as barriers against microbes has only recently been investigated, and even less is known about the diversity and roles of the chemical compounds associated with sclerites. METHODS Here, we examine the semi-volatile organic compound fraction (SVOCs) associated with sclerites from healthy and diseased Gorgonia ventalina sea fan corals to understand their possible role as a stress response or in defense of infection. We also measured the oxidative potential of compounds from diseased and healthy G. ventalina colonies. RESULTS The results showed that sclerites harbor a great diversity of SVOCs. Overall, 70 compounds were identified, the majority of which are novel with unknown biological roles. The majority of SVOCs identified exhibit multiple immune-related roles including antimicrobial and radical scavenging functions. The free radical activity assays further confirmed the anti-oxidative potential of some these compounds. The anti-oxidative activity was, nonetheless, similar across sclerites regardless of the health condition of the colony, although sclerites from diseased sea fans display slightly higher anti-oxidative activity than the healthy ones. DISCUSSION Sclerites harbor great SVOCs diversity, the majority of which are novel to sea fans or any other corals. Yet the scientific literature consulted showed that the roles of compounds found in sclerites vary from antioxidant to antimicrobial compounds. However, this study fell short in determine the origin of the SVOCs identified, undermining our capacity to determine the biological roles of the SVOCs on sclerites and sea fans.
Collapse
Affiliation(s)
| | - Claudia P. Ruiz-Diaz
- Sociedad Ambiente Marino SAM, San Juan, Puerto Rico
- Department of Environmental Science, University of Puerto Rico, San Juan, Puerto Rico
| | | | | | | | | | - Loretta M. Roberson
- Bell Center, Marine Biological Laboratory, Woods Hole, MA, United States of America
| |
Collapse
|
364
|
Manimaran P, Venkata Reddy S, Moin M, Raghurami Reddy M, Yugandhar P, Mohanraj SS, Balachandran SM, Kirti PB. Activation-tagging in indica rice identifies a novel transcription factor subunit, NF-YC13 associated with salt tolerance. Sci Rep 2017; 7:9341. [PMID: 28839256 PMCID: PMC5570948 DOI: 10.1038/s41598-017-10022-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with three distinct NF-YA, NF-YB and NF-YC subunits. It plays important roles in plant growth, development and stress responses. We have reported earlier on development of gain-of-function mutants in an indica rice cultivar, BPT-5204. Now, we screened 927 seeds from 70 Ac/Ds plants for salinity tolerance and identified one activation-tagged salt tolerant DS plant (DS-16, T3 generation) that showed enhanced expression of a novel 'histone-like transcription factor' belonging to rice NF-Y subfamily C and was named as OsNF-YC13. Localization studies using GFP-fusion showed that the protein is localized to nucleus and cytoplasm. Real time expression analysis confirmed upregulation of transcript levels of OsNF-YC13 during salt treatment in a tissue specific manner. Biochemical and physiological characterization of the DS-16 revealed enhanced K+/Na+ ratio, proline content, chlorophyll content, enzymes with antioxidant activity etc. DS-16 also showed transcriptional up-regulation of genes that are involved in salinity tolerance. In-silico analysis of OsNF-YC13 promoter region evidenced the presence of various key stress-responsive cis-regulatory elements. OsNF-YC13 subunit alone does not appear to have the capacity for direct transcription activation, but appears to interact with the B- subunits in the process of transactivation.
Collapse
Affiliation(s)
- P Manimaran
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| | - S Venkata Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - Mazahar Moin
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - M Raghurami Reddy
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - Poli Yugandhar
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - S S Mohanraj
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - S M Balachandran
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| |
Collapse
|
365
|
Effects of catalase on chloroplast arrangement in Opuntia streptacantha chlorenchyma cells under salt stress. Sci Rep 2017; 7:8656. [PMID: 28819160 PMCID: PMC5561099 DOI: 10.1038/s41598-017-08744-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/13/2017] [Indexed: 01/23/2023] Open
Abstract
In arid and semiarid regions, low precipitation rates lead to soil salinity problems, which may limit plant establishment, growth, and survival. Herein, we investigated the NaCl stress effect on chlorophyll fluorescence, photosynthetic-pigments, movement and chloroplasts ultrastructure in chlorenchyma cells of Opuntia streptacantha cladodes. Cladodes segments were exposed to salt stress at 0, 100, 200, and 300 mM NaCl for 8, 16, and 24 h. The results showed that salt stress reduced chlorophyll content, F v /F m , ΦPSII, and qP values. Under the highest salt stress treatments, the chloroplasts were densely clumped toward the cell center and thylakoid membranes were notably affected. We analyzed the effect of exogenous catalase in salt-stressed cladode segments during 8, 16, and 24 h. The catalase application to salt-stressed cladodes counteracted the NaCl adverse effects, increasing the chlorophyll fluorescence parameters, photosynthetic-pigments, and avoided chloroplast clustering. Our results indicate that salt stress triggered the chloroplast clumping and affected the photosynthesis in O. streptacantha chlorenchyma cells. The exogenous catalase reverted the H2O2 accumulation and clustering of chloroplast, which led to an improvement of the photosynthetic efficiency. These data suggest that H2O2 detoxification by catalase is important to protect the chloroplast, thus conserving the photosynthetic activity in O. streptacantha under stress.
Collapse
|
366
|
Parveen M, Asaeda T, Rashid MH. Biochemical adaptations of four submerged macrophytes under combined exposure to hypoxia and hydrogen sulphide. PLoS One 2017; 12:e0182691. [PMID: 28777815 PMCID: PMC5544214 DOI: 10.1371/journal.pone.0182691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/21/2017] [Indexed: 01/05/2023] Open
Abstract
A hydroponic experiment was performed to investigate the stress responses and biochemical adaptations of four submerged macrophytes, Potamogeton crispus, Myriophyllum spicatum, Egeria densa, and Potamogeton oxyphyllus, to the combined exposure of hypoxia and hydrogen sulfide (H2S, provided by NaHS). The investigated plants were subjected to a control, hypoxia, 0.1mM NaHS, 0.5 mM NaHS, 0.1 mM NaHS+hypoxia and 0.5 mM NaHS+hypoxia conditions. All experimental plants grew optimally under control, hypoxic and NaHS conditions in comparison to that grown in the combined exposure of hypoxia and hydrogen sulfide. For P. crispus and M. spicatum, significant decreases of total chlorophyll and increases in oxidative stress (measured by hydrogen peroxide, H2O2, and malondialdehyde, MDA) were observed with exposure to both sulfide concentrations. However, the decrease in catalase (CAT) and ascorbate peroxidase (APX) from exposure to 0.5 mM NaHS suggests that the function of the protective enzymes reached their limit under these conditions. In contrast, for E. densa and P. oxyphyllus, the higher activities of the three antioxidative enzymes and their anaerobic respiration abilities (ADH activity) resulted in higher tolerance and susceptibility under high sulfide concentrations.
Collapse
Affiliation(s)
- Mahfuza Parveen
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, Japan
| | - Takashi Asaeda
- Department of Environmental Science and Technology, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, Japan
- Research Institute of Chuo University, Kasuga, Bunkyo, Tokyo, Japan
| | - Md H. Rashid
- Department of Environmental Science and Technology, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, Japan
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
367
|
Prasad A, Kumar A, Matsuoka R, Takahashi A, Fujii R, Sugiura Y, Kikuchi H, Aoyagi S, Aikawa T, Kondo T, Yuasa M, Pospíšil P, Kasai S. Real-time monitoring of superoxide anion radical generation in response to wounding: electrochemical study. PeerJ 2017; 5:e3050. [PMID: 28761775 PMCID: PMC5527980 DOI: 10.7717/peerj.3050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/29/2017] [Indexed: 01/13/2023] Open
Abstract
Background The growth and development of plants is deleteriously affected by various biotic and abiotic stress factors. Wounding in plants is caused by exposure to environmental stress, mechanical stress, and via herbivory. Typically, oxidative burst in response to wounding is associated with the formation of reactive oxygen species, such as the superoxide anion radical (O2•−), hydrogen peroxide (H2O2) and singlet oxygen; however, few experimental studies have provided direct evidence of their detection in plants. Detection of O2•− formation in plant tissues have been performed using various techniques including electron paramagnetic resonance spin-trap spectroscopy, epinephrine-adrenochrome acceptor methods, staining with dyes such as tetrazolium dye and nitro blue tetrazolium (NBT); however, kinetic measurements have not been performed. In the current study, we provide evidence of O2•− generation and its kinetics in the leaves of spinach (Spinacia oleracea) subjected to wounding. Methods Real-time monitoring of O2•− generation was performed using catalytic amperometry. Changes in oxidation current for O2•− was monitored using polymeric iron-porphyrin-based modified carbon electrodes (φ = 1 mm) as working electrode with Ag/AgCl as the reference electrode. Result The results obtained show continuous generation of O2•− for minutes after wounding, followed by a decline. The exogenous addition of superoxide dismutase, which is known to dismutate O2•− to H2O2, significantly suppressed the oxidation current. Conclusion Catalytic amperometric measurements were performed using polymeric iron-porphyrin based modified carbon electrode. We claim it to be a useful tool and a direct method for real-time monitoring and precise detection of O2•− in biological samples, with the potential for wide application in plant research for specific and sensitive detection of O2•−.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic.,Biomedical Engineering Research Center, Tohoku Institute of Technology, Sendai, Japan
| | - Aditya Kumar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | - Akemi Takahashi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Ryo Fujii
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Yamato Sugiura
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Hiroyuki Kikuchi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | | | - Tatsuo Aikawa
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba, Japan
| | - Takeshi Kondo
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba, Japan
| | - Makoto Yuasa
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba, Japan
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Shigenobu Kasai
- Biomedical Engineering Research Center, Tohoku Institute of Technology, Sendai, Japan.,Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| |
Collapse
|
368
|
Lima Neto MC, Cerqueira JVA, da Cunha JR, Ribeiro RV, Silveira JAG. Cyclic electron flow, NPQ and photorespiration are crucial for the establishment of young plants of Ricinus communis and Jatropha curcas exposed to drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:650-659. [PMID: 28403551 DOI: 10.1111/plb.12573] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 05/11/2023]
Abstract
Although plant physiological responses to drought have been widely studied, the interaction between photoprotection, photorespiration and antioxidant metabolism in water-stressed plants is scarcely addressed. This study aimed to evaluate the physiological adjustments preserving photosynthesis and growth in two plant species with different tolerance to drought: Jatropha curcas and Ricinus communis. We measured stress indicators, gas exchange, photochemistry of PSII and PSI, antioxidant enzymes, cyclic electron flow and photorespiration. Physiological stress indicators associated with reduction in growth confirmed R. communis as sensitive and J. curcas as tolerant to drought. Drought induced loss of photosynthesis in R. communis, whereas J. curcas maintained higher leaf gas exchange and photochemistry under drought. In addition, J. curcas showed higher dissipation of excess energy and presented higher cyclic electron flow when exposed to drought. Although none of these mechanisms have been triggered in R. communis, this species showed increases in photorespiration. R. communis displayed loss of Rubisco content while the Rubisco relative abundance did not change in J. curcas under drought. Accordingly, the in vivo maximum Rubisco carboxylation rate (Vcmax ) and the maximum photosynthetic electron transport rate driving RuBP regeneration (Jmax ) were less affected in J. curcas. Both species displayed an efficient antioxidant mechanism by increasing activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD). Overall, we suggest that the modulation of different photoprotective mechanisms is crucial to mitigate the effects caused by excess energy, maintaining photosynthetic apparatus efficiency and promoting the establishment of young plants of these two species under drought.
Collapse
Affiliation(s)
- M C Lima Neto
- UNESP - Biosciences Institute, São Paulo State University - UNESP, Coastal Campus, Praça Infante Dom Henrique s/n, São Vicente, São Paulo, Brazil
| | - J V A Cerqueira
- Department of Biochemistry and Molecular Biology, Plant Metabolism Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - J R da Cunha
- Department of Biochemistry and Molecular Biology, Plant Metabolism Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - R V Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - J A G Silveira
- Department of Biochemistry and Molecular Biology, Plant Metabolism Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
369
|
Moustakas M, Malea P, Haritonidou K, Sperdouli I. Copper bioaccumulation, photosystem II functioning, and oxidative stress in the seagrass Cymodocea nodosa exposed to copper oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16007-16018. [PMID: 28537017 DOI: 10.1007/s11356-017-9174-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/01/2017] [Indexed: 05/12/2023]
Abstract
Photosynthetic activity, oxidative stress, and Cu bioaccumulation in the seagrass Cymodocea nodosa were assessed 4, 12, 24, 48, and 72 h after exposure to two copper oxide nanoparticle (CuO NP) concentrations (5 and 10 mg L-1). CuO NPs were characterized by scanning electron microscopy (SEM) and dynamic light scattering measurements (DLS). Chlorophyll fluorescence analysis was applied to detect photosystem II (PSII) functionality, while the Cu accumulation kinetics into the leaf blades was fitted to the Michaelis-Menten equation. The uptake kinetics was rapid during the first 4 h of exposure and reached an equilibrium state after 10 h exposure to 10 mg L-1 and after 27 h to 5 mg L-1 CuO NPs. As a result, 4-h treatment with 5 mg L-1 CuO NPs, decreased the quantum yield of PS II photochemistry (Φ PSΙΙ ) with a parallel increase in the regulated non-photochemical energy loss in PSII (Φ NPQ ). However, the photoprotective dissipation of excess absorbed light energy as heat, through the process of non-photochemical quenching (NPQ), did not maintain the same fraction of open reaction centers (q p ) as in control plants. This reduced number of open reaction centers resulted in a significant increase of H2O2 production in the leaf veins serving possibly as an antioxidant defense signal. Twenty-four-hour treatment had no significant effect on Φ PSΙΙ and q p compared to controls. However, 24 h exposure to 5 mg L-1 CuO NPs increased the quantum yield of non-regulated energy loss in PSII (Φ NO ), and thus the formation of singlet oxygen (1O2) via the triplet state of chlorophyll, possible because the uptake kinetics had not yet reached the equilibrium state as did 10 mg L-1. Longer-duration treatment (48 and 72 h) had less effect on the allocation of absorbed light energy at PSII and the fraction of open reaction centers, compared to 4-h treatment, suggesting the function of a stress defense mechanism. The response of C. nodosa leaves to CuO NPs fits the "Threshold for Tolerance Model" with a threshold time (more than 4 h) required for induction of a stress defense mechanism, through H2O2 production.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey.
| | - Paraskevi Malea
- Department of Botany, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Katerina Haritonidou
- Department of Botany, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
370
|
Gu J, Zhou Z, Li Z, Chen Y, Wang Z, Zhang H, Yang J. Photosynthetic Properties and Potentials for Improvement of Photosynthesis in Pale Green Leaf Rice under High Light Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:1082. [PMID: 28676818 PMCID: PMC5476740 DOI: 10.3389/fpls.2017.01082] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/06/2017] [Indexed: 05/24/2023]
Abstract
Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS). Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ) to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To estimate light capture and light energy conversion in rice, a genotype with pale green leaves (pgl) and a normally pigmented control (Z802) were subjected to high (HL) and low light (LL). Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC) binding proteins, electron transport rates (ETR), photochemical and non-photochemical quenching, and generation of ROS were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size.
Collapse
Affiliation(s)
- Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
| | - Zhenxiang Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
| | - Zhikang Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
| | - Ying Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou UniversityYangzhou, China
| |
Collapse
|
371
|
Kolupaev YE, Karpets YV, Yastreb TO, Firsova EN. Protective effect of inhibitors of succinate dehydrogenase on wheat seedlings during osmotic stress. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817030097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
372
|
An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 2017; 67:39-52. [PMID: 28456602 DOI: 10.1016/j.niox.2017.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/16/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
Pollution due to heavy metal(loid)s has become common menace across the globe. This is due to unprecedented frequent geological changes coupled with increasing anthropogenic activities, and population growth rate. Heavy metals (HMs) presence in the soil causes toxicity, and hampers plant growth and development. Plants being sessile are exposed to a variety of stress and/or a network of different kinds of stresses throughout their life cycle. To sense and transduce these stress signal, the signal reactive nitrogen species (RNS) particularly nitric oxide (NO) is an important secondary messenger next to only reactive oxygen species (ROS). Nitric oxide, a redox active molecule, colourless simple gas, and being a free radical (NO) has the potential in regulating multiple biological signaling responses in a variety of plants. Nitric oxide can counteract HMs-induced ROS, either by direct scavenging or by stimulating antioxidants defense team; therefore, it is also known as secondary antioxidant. The imbalance or cross talk of/between NO and ROS concentration along with antioxidant system leads to nitrosative and oxidative stress, or combination of both i.e., nitro-oxidative stress. Endogenous synthesis of NO also takes place in plants in the presence of heavy metals. During HM stress the different organelles of plant cells can biosynthesize NO in parallel to the ROS, such as in mitochondria, chloroplasts, peroxisomes, cytoplasm, endoplasmic reticulum and apoplasts. In view of the above, an effort has been made in the present review article to trace current knowledge and latest advances in chemical properties, biological roles, mechanism of NO action along with the physiological, biochemical, and molecular changes that occur in plants under different metal stress. A brief focus is also carried on ROS properties, roles, and their production.
Collapse
|
373
|
Kumar A, AbdElgawad H, Castellano I, Lorenti M, Delledonne M, Beemster GTS, Asard H, Buia MC, Palumbo A. Physiological and Biochemical Analyses Shed Light on the Response of Sargassum vulgare to Ocean Acidification at Different Time Scales. FRONTIERS IN PLANT SCIENCE 2017; 8:570. [PMID: 28469628 PMCID: PMC5396147 DOI: 10.3389/fpls.2017.00570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/29/2017] [Indexed: 05/22/2023]
Abstract
Studies regarding macroalgal responses to ocean acidification (OA) are mostly limited to short-term experiments in controlled conditions, which hamper the possibility to scale up the observations to long-term effects in the natural environment. To gain a broader perspective, we utilized volcanic CO2 vents as a "natural laboratory" to study OA effects on Sargassum vulgare at different time scales. We measured photosynthetic rates, oxidative stress levels, antioxidant contents, antioxidant enzyme activities, and activities of oxidative metabolic enzymes in S. vulgare growing at a natural acidified site (pH 6.7) compared to samples from a site with current pH (pH 8.2), used as a control one. These variables were also tested in plants transplanted from the control to the acidified site and vice-versa. After short-term exposure, photosynthetic rates and energy metabolism were increased in S. vulgare together with oxidative damage. However, in natural populations under long-term conditions photosynthetic rates were similar, the activity of oxidative metabolic enzymes was maintained, and no sign of oxidative damages was observed. The differences in the response of the macroalga indicate that the natural population at the acidified site is adapted to live at the lowered pH. The results suggest that this macroalga can adopt biochemical and physiological strategies to grow in future acidified oceans.
Collapse
Affiliation(s)
- Amit Kumar
- Center of Villa Dohrn–Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaples, Italy
| | - Maurizio Lorenti
- Center of Villa Dohrn–Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | | | - Gerrit T. S. Beemster
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research Group, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Maria Cristina Buia
- Center of Villa Dohrn–Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton DohrnNaples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaples, Italy
| |
Collapse
|
374
|
Van Hoeck A, Horemans N, Nauts R, Van Hees M, Vandenhove H, Blust R. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 257:84-95. [PMID: 28224921 DOI: 10.1016/j.plantsci.2017.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 05/22/2023]
Abstract
Ecotoxicological research provides knowledge on ionising radiation-induced responses in different plant species. However, the sparse data currently available are mainly extracted from acute exposure treatments. To provide a better understanding of environmental exposure scenarios, the response to stress in plants must be followed in more natural relevant chronic conditions. We previously showed morphological and biochemical responses in Lemna minor plants continuously exposed for 7days in a dose-rate dependent manner. In this study responses on molecular (gene expression) and physiological (photosynthetic) level are evaluated in L. minor plants exposed to ionising radiation. To enable this, we examined the gene expression profiles of irradiated L. minor plants by using an RNA-seq approach. The gene expression data reveal indications that L. minor plants exposed at lower dose rates, can tolerate the exposure by triggering acclimation responses. In contrast, at the highest dose rate tested, a high number of genes related to antioxidative defense systems, DNA repair and cell cycle were differentially expressed suggesting that only high dose rates of ionising radiation drive L. minor plants into survival strategies. Notably, the photosynthetic process seems to be unaffected in L. minor plants among the tested dose rates. This study, supported by our earlier work, clearly indicates that plants shift from acclimation responses towards survival responses at increasing dose rates of ionising radiation.
Collapse
Affiliation(s)
- Arne Van Hoeck
- SCK●CEN, Boeretang, 200 2400, Mol, Belgium; Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Nele Horemans
- SCK●CEN, Boeretang, 200 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Universiteitslaan 1, 3590 Diepenbeek, Belgium.
| | | | | | | | - Ronny Blust
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
375
|
Yu L, Liu Y, Lu L, Zhang Q, Chen Y, Zhou L, Chen H, Peng C. Ascorbic acid deficiency leads to increased grain chalkiness in transgenic rice for suppressed of L-GalLDH. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:13-26. [PMID: 28142093 DOI: 10.1016/j.jplph.2016.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 05/15/2023]
Abstract
The grain chalkiness of rice (Oryza sativa L.), which determines the rice quality and price, is a major concern in rice breeding. Reactive oxygen species (ROS) plays a critical role in regulating rice endosperm chalkiness. Ascorbic acid (Asc) is a major plant antioxidant, which strictly regulates the levels of ROS. l-galactono-1, 4-lactone dehydrogenase (L-GalLDH, EC 1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in higher plants. Here we show that the L-GalLDH-suppressed transgenic rice, GI-1 and GI-2, which have constitutively low (between 30% and 50%) leaf and grain Asc content compared with the wild-type (WT), exhibit significantly increased grain chalkiness. Further examination showed that the deficiency of Asc resulted in a higher lipid peroxidation and H2O2 content, accompanied by a lower hydroxyl radical scavenging rate, total antioxidant capacity and photosynthetic ability. In addition, changes of the enzyme activities and gene transcript abundances related to starch synthesis were also observed in GI-1 and GI-2 grains. The results we presented here suggest a close correlation between Asc deficiency and grain chalkiness in the L-GalLDH-suppressed transgenics. Asc deficiency leads to the accumulation of H2O2, affecting antioxidant capacity and photosynthetic function, changing enzyme activities and gene transcript abundances related to starch synthesis, finally leading to the increased grain chalkiness.
Collapse
Affiliation(s)
- Le Yu
- College of Life Sciences, Zhaoqing University, Zhaoqing 526061, People's Republic of China
| | - Yonghai Liu
- College of Life Sciences, Zhaoqing University, Zhaoqing 526061, People's Republic of China
| | - Lina Lu
- College of Life Sciences, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Qilei Zhang
- College of Life Sciences, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Yezheng Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing 526061, People's Republic of China
| | - Liping Zhou
- College of Life Sciences, Zhaoqing University, Zhaoqing 526061, People's Republic of China
| | - Hua Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing 526061, People's Republic of China
| | - Changlian Peng
- College of Life Sciences, South China Normal University, Guangzhou 510631, People's Republic of China.
| |
Collapse
|
376
|
Santos EF, Kondo Santini JM, Paixão AP, Júnior EF, Lavres J, Campos M, Reis ARD. Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:6-19. [PMID: 28157580 DOI: 10.1016/j.plaphy.2017.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
Manganese (Mn) is an essential element for plants; however, high concentrations in certain soil conditions can cause toxicity symptoms in the plant tissue. Here, we describe Mn toxicity symptoms and Mn toxicity responses in soybean plants. Soybean plants exposed to excess Mn showed reductions in the CO2 assimilation rate and stomatal conductance, which in turn resulted in decreased shoot biomass. Furthermore, peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activity were higher in plants grown with the highest Mn concentration. The Mn doses increased the activity of antioxidant enzymes such as CAT, POD, and SOD. The toxicity symptoms presented by the leaves included hypertrophying of the adaxial epidermis and the formation of necrotic areas with purple-colored veins. Dramatic movement of calcium from the healthy region to the purple-colored necrotic region was observed, as was the exit of potassium from the necrotic area to the healthy region of the tissue. The high activities of POD and SOD in the presence of high Mn compartmented in the roots was the main physiological responses at high Mn uptake by soybean plants.
Collapse
Affiliation(s)
- Elcio Ferreira Santos
- USP - University of São Paulo, Center for Nuclear Energy in Agriculture, Postal Code 13416-000, Piracicaba, SP, Brazil.
| | | | - Amanda Pereira Paixão
- UNESP - São Paulo State University, Postal Code 15385-000, Ilha Solteira, SP, Brazil.
| | - Enes Furlani Júnior
- UNESP - São Paulo State University, Postal Code 15385-000, Ilha Solteira, SP, Brazil.
| | - José Lavres
- USP - University of São Paulo, Center for Nuclear Energy in Agriculture, Postal Code 13416-000, Piracicaba, SP, Brazil.
| | - Marcelo Campos
- UNESP - São Paulo State University, Postal Code 17602-496, Tupã, SP, Brazil.
| | - André Rodrigues Dos Reis
- UNESP - São Paulo State University, Postal Code 15385-000, Ilha Solteira, SP, Brazil; UNESP - São Paulo State University, Postal Code 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
377
|
Losada-Barreiro S, Bravo-Díaz C. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur J Med Chem 2017; 133:379-402. [PMID: 28415050 DOI: 10.1016/j.ejmech.2017.03.061] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
The oxidation of bioorganic materials by air and, particularly, the oxidative stress involved in the cell loss and other pathologies associated with neurodegenerative diseases (NDs) are of enormous social and economic importance. NDs generally involve free radical reactions, beginning with the formation of an initiating radical by some redox, thermal or photochemical process, causing nucleic acid, protein and lipid oxidations and the production of harmful oxidative products. Physically, persons afflicted by NDs suffer progressive loss of memory and thinking ability, mood swings, personality changes, and loss of independence. Therefore, the development of antioxidant strategies to retard or minimize the oxidative degradation of bioorganic materials has been, and still is, of paramount importance. While we are aware of the importance of investigating the biological and medical aspects of the diseases, elucidation of the associated chemistry is crucial to understanding their progression, heading to intelligent chemical intervention to find more efficient therapies to prevent or delay the onset of the diseases. Accordingly, this review aims to provide the reader with a chemical base to understand the behavior and properties of the reactive oxygen species involved and of typical radical scavengers such as polyphenolic antioxidants. Some discussion on the structures of the various species, their formation, chemical reactivities and lifetimes is included. The ultimate goal is to understand how, when and where they form, how far they travel prior to react, which molecules are their targets, and how we can, eventually, control their activity to minimize their impact by means of chemical methods. Recent strategies explore chemical modifications of the hydrophobicity of potent, natural antioxidants to improve their efficiency by fine-tuning their concentrations at the reaction site.
Collapse
Affiliation(s)
- Sonia Losada-Barreiro
- Universidad de Vigo, Fac. Química, Dpto Química Física, 36200, Vigo, Spain; Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Portugal
| | - Carlos Bravo-Díaz
- Universidad de Vigo, Fac. Química, Dpto Química Física, 36200, Vigo, Spain.
| |
Collapse
|
378
|
Metabolic Flux Redirection and Transcriptomic Reprogramming in the Albino Tea Cultivar 'Yu-Jin-Xiang' with an Emphasis on Catechin Production. Sci Rep 2017; 7:45062. [PMID: 28332598 PMCID: PMC5362904 DOI: 10.1038/srep45062] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/17/2017] [Indexed: 11/23/2022] Open
Abstract
In this study, shade-induced conversion from a young pale/yellow leaf phenotype to a green leaf phenotype was studied using metabolic and transcriptomic profiling and the albino cultivar ‘Yu-Jin-Xiang’ (‘YJX’) of Camellia sinensis for a better understanding of mechanisms underlying the phenotype shift and the altered catechin and theanine production. Shaded leaf greening resulted from an increase in leaf chlorophyll and carotenoid abundance and chloroplast development. A total of 1,196 differentially expressed genes (DEGs) were identified between the ‘YJX’ pale and shaded green leaves, and these DEGs affected ‘chloroplast organization’ and ‘response to high light’ besides many other biological processes and pathways. Metabolic flux redirection and transcriptomic reprogramming were found in flavonoid and carotenoid pathways of the ‘YJX’ pale leaves and shaded green leaves to different extents compared to the green cultivar ‘Shu-Cha-Zao’. Enhanced production of the antioxidant quercetin rather than catechin biosynthesis was correlated positively with the enhanced transcription of FLAVONOL SYNTHASE and FLAVANONE/FLAVONOL HYDROXYLASES leading to quercetin accumulation and negatively correlated to suppressed LEUCOANTHOCYANIDIN REDUCTASE, ANTHOCYANIDIN REDUCTASE and SYNTHASE leading to catechin biosynthesis. The altered levels of quercetin and catechins in ‘YJX’ will impact on its tea flavor and health benefits.
Collapse
|
379
|
Long A, Zhang J, Yang LT, Ye X, Lai NW, Tan LL, Lin D, Chen LS. Effects of Low pH on Photosynthesis, Related Physiological Parameters, and Nutrient Profiles of Citrus. FRONTIERS IN PLANT SCIENCE 2017; 8:185. [PMID: 28270819 PMCID: PMC5318377 DOI: 10.3389/fpls.2017.00185] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/30/2017] [Indexed: 05/03/2023]
Abstract
Seedlings of "Xuegan" (Citrus sinensis) and "Sour pummelo" (Citrus grandis) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H2O2 production and electrolyte leakage in roots and leaves. This was done (a) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and (b) to understand the mechanisms by which low pH may cause a decrease in leaf CO2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H+-toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H+-toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP) transients and many fluorescence parameters, root and leaf total soluble proteins, H2O2 production, and electrolyte leakage were all slightly greater in C. grandis than in C. sinensis seedlings. Hence, C. sinensis was slightly more tolerant to low pH than C. grandis. In conclusion, our findings provide novel insight into the causes of low pH-induced inhibition of seedling growth and leaf CO2 assimilation.
Collapse
Affiliation(s)
- An Long
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jiang Zhang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ling-Ling Tan
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Dan Lin
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry UniversityFuzhou, China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
380
|
Takahashi M, Mikami K. Oxidative Stress Promotes Asexual Reproduction and Apogamy in the Red Seaweed Pyropia yezoensis. FRONTIERS IN PLANT SCIENCE 2017; 8:62. [PMID: 28191011 PMCID: PMC5270553 DOI: 10.3389/fpls.2017.00062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/11/2017] [Indexed: 05/29/2023]
Abstract
The marine red seaweed Pyropia yezoensis has a haploid-diploid life cycle wherein two heteromorphic generations, a haploid gametophyte and a diploid sporophyte, are reciprocally generated from conchospores and carpospores, respectively. When we treated gametophytic blades of P. yezoensis with H2O2, discharge of asexual monospores was accelerated, resulting in increased numbers of gametophytic clones. Production of sporophytes without fertilization of male and female gametes was also observed. These findings indicate that oxidative stress can induce vegetative cells to develop into monospores that produce gametophytes asexually and can sometimes prompt carpospores to develop into sporophytes. The discovery of oxidative stress-triggered asexual reproduction and -apogamy will stimulate progress in studies of life-cycle regulation in P. yezoensis.
Collapse
Affiliation(s)
- Megumu Takahashi
- Department of Aquatic Bioscience, Faculty of Bio-Industry, Tokyo University of AgricultureAbashiri, Japan
| | - Koji Mikami
- Laboratory of Aquaculture, Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido UniversityHakodate, Japan
| |
Collapse
|
381
|
Zuccarelli R, Coelho ACP, Peres LEP, Freschi L. Shedding light on NO homeostasis: Light as a key regulator of glutathione and nitric oxide metabolisms during seedling deetiolation. Nitric Oxide 2017; 68:77-90. [PMID: 28109803 DOI: 10.1016/j.niox.2017.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 10/20/2022]
Abstract
Despite the significant impacts of light on nitric oxide (NO) levels in plants, the mechanism underlying the influence of this environmental factor on NO metabolism remains poorly understood. A critical mechanism controlling NO levels in plant cells relies on the S-nitrosylation of glutathione (GSH), giving rise to S-nitrosoglutathione (GSNO), which can be either stored or degraded depending on the cellular context. Here, we demonstrate that a strict balance is maintained between NO generation and scavenging during tomato (Solanum lycopersicum) seedling deetiolation. Given the absence of accurate methods in the literature to estimate NO scavenging in planta, we first developed a simple, robust system to continuously monitor the global in vivo NO scavenging by plant tissues. Then, using photomorphogenic tomato mutants, we demonstrated that the light-evoked de-etiolation is associated with a dramatic rise in NO content followed by a progressive increment in NO scavenging capacity of the tissues. Light-driven increments in NO scavenging rates coincided with pronounced rises in S-nitrosothiol content and GSNO reductase (GSNOR) activity, thereby suggesting that GSNO formation and subsequent removal via GSNOR might be key for controlling NO levels during seedling deetiolation. Accordingly, treatments with thiol-blocking compounds further indicated that thiol nitrosylation might be critically involved in the NO scavenging mechanism responsible for maintaining NO homeostasis during deetiolation. The impacts of both light and NO on the transcriptional profile of glutathione metabolic genes also revealed an independent but coordinated action of these signals on the regulation of key components of glutathione and GSNO metabolisms. Altogether, these data indicated that GSNO formation and subsequent removal might facilitate maintaining NO homeostasis during light-driven seedling deetiolation.
Collapse
Affiliation(s)
- Rafael Zuccarelli
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, 05508-090, Brazil
| | - Aline C P Coelho
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, 05508-090, Brazil
| | - Lazaro E P Peres
- Department of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900, Brazil
| | - Luciano Freschi
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, 05508-090, Brazil.
| |
Collapse
|
382
|
Samma MK, Zhou H, Cui W, Zhu K, Zhang J, Shen W. Methane alleviates copper-induced seed germination inhibition and oxidative stress in Medicago sativa. Biometals 2017; 30:97-111. [DOI: 10.1007/s10534-017-9989-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/05/2017] [Indexed: 11/24/2022]
|
383
|
Hernández-Vega JC, Cady B, Kayanja G, Mauriello A, Cervantes N, Gillespie A, Lavia L, Trujillo J, Alkio M, Colón-Carmona A. Detoxification of polycyclic aromatic hydrocarbons (PAHs) in Arabidopsis thaliana involves a putative flavonol synthase. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:268-280. [PMID: 27637093 PMCID: PMC5373802 DOI: 10.1016/j.jhazmat.2016.08.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants with cytotoxic, teratogenic and carcinogenic properties. Bioremediation studies with bacteria have led to the identification of dioxygenases (DOXs) in the first step to degrade these recalcitrant compounds. In this study, we characterized the role of the Arabidopsis thaliana AT5G05600, a putative DOX of the flavonol synthase family, in the transformation of PAHs. Phenotypic analysis of loss-of-function mutant lines showed that these plant lines were less sensitive to the toxic effects of phenanthrene, suggesting possible roles of this gene in PAH degradation in vivo. Interestingly, these mutant lines showed less accumulation of H2O2 after PAH exposure. Transgenic lines over-expressing At5g05600 showed a hypersensitive response and more oxidative stress after phenanthrene treatments. Moreover, fluorescence spectra results of biochemical assays with the recombinant His-tagged protein AT5G05600 detected chemical modifications of phenanthrene. Taken together, these results support the hypothesis that AT5G05600 is involved in the catabolism of PAHs and the accumulation of toxic intermediates during PAH biotransformation in plants. This research represents the first step in the design of transgenic plants with the potential to degrade PAHs, leading to the development of vigorous plant varieties that can reduce the levels of these pollutants in the environment.
Collapse
Affiliation(s)
- Juan C Hernández-Vega
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Brian Cady
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Gilbert Kayanja
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Anthony Mauriello
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Natalie Cervantes
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Andrea Gillespie
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Lisa Lavia
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Joshua Trujillo
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | | | - Adán Colón-Carmona
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA.
| |
Collapse
|
384
|
Zhang X, Wang Z, Wang S, Fang H, Zhang F, Wang DG. Impacts of dissolved organic matter on aqueous behavior of nano/micron-titanium nitride and their induced enzymatic/non-enzymatic antioxidant activities in Scenedesmus obliquus. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:23-29. [PMID: 27611067 DOI: 10.1080/10934529.2016.1221219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Freshwater dispersion stability and ecotoxicological effects of titanium nitride (TiN) with particle size of 20 nm, 50 nm, and 2-10 μm in the presence of dissolved organic matter (DOM) at various concentrations were studied. The TiN particles that had a more negative zeta potential and smaller hydrodynamic size showed more stable dispersion in an aqueous medium when DOM was present than when DOM was absent. Biochemical assays indicated that relative to the control, the TiN particles in the presence of DOM alleviated to some extent the antioxidative stress enzyme activity in Scenedesmus obliquus. In addition, it was found that the TiN with a primary size of 50 nm at a high concentration presented a significant impact on non-enzymatic antioxidant defense in algal cells.
Collapse
Affiliation(s)
- Xin Zhang
- a Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) , School of Environmental Science and Engineering, Nanjing University of Information Science and Technology , Nanjing , China
| | - Zhuang Wang
- a Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) , School of Environmental Science and Engineering, Nanjing University of Information Science and Technology , Nanjing , China
| | - Se Wang
- a Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) , School of Environmental Science and Engineering, Nanjing University of Information Science and Technology , Nanjing , China
| | - Hao Fang
- a Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) , School of Environmental Science and Engineering, Nanjing University of Information Science and Technology , Nanjing , China
| | - Fan Zhang
- a Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC) , School of Environmental Science and Engineering, Nanjing University of Information Science and Technology , Nanjing , China
| | - De-Gao Wang
- b School of Environmental Science and Technology , Dalian Maritime University , Dalian , China
| |
Collapse
|
385
|
Batth R, Singh K, Kumari S, Mustafiz A. Transcript Profiling Reveals the Presence of Abiotic Stress and Developmental Stage Specific Ascorbate Oxidase Genes in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:198. [PMID: 28261251 PMCID: PMC5314155 DOI: 10.3389/fpls.2017.00198] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/02/2017] [Indexed: 05/03/2023]
Abstract
Abiotic stress and climate change is the major concern for plant growth and crop yield. Abiotic stresses lead to enhanced accumulation of reactive oxygen species (ROS) consequently resulting in cellular damage and major losses in crop yield. One of the major scavengers of ROS is ascorbate (AA) which acts as first line of defense against external oxidants. An enzyme named ascorbate oxidase (AAO) is known to oxidize AA and deleteriously affect the plant system in response to stress. Genome-wide analysis of AAO gene family has led to the identification of five, three, seven, four, and six AAO genes in Oryza sativa, Arabidopsis, Glycine max, Zea mays, and Sorghum bicolor genomes, respectively. Expression profiling of these genes was carried out in response to various abiotic stresses and during various stages of vegetative and reproductive development using publicly available microarray database. Expression analysis in Oryza sativa revealed tissue specific expression of AAO genes wherein few members were exclusively expressed in either root or shoot. These genes were found to be regulated by both developmental cues as well as diverse stress conditions. The qRT-PCR analysis in response to salinity and drought stress in rice shoots revealed OsAAO2 to be the most stress responsive gene. On the other hand, OsAAO3 and OsAAO4 genes showed enhanced expression in roots under salinity/drought stresses. This study provides lead about important stress responsive AAO genes in various crop plants, which could be used to engineer climate resilient crop plants.
Collapse
Affiliation(s)
- Rituraj Batth
- Faculty of Life Sciences and Biotechnology, Plant Molecular Biology Laboratory, South Asian UniversityNew Delhi, India
| | - Kapil Singh
- Faculty of Life Sciences and Biotechnology, Plant Molecular Biology Laboratory, South Asian UniversityNew Delhi, India
| | - Sumita Kumari
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and TechnologyJammu, India
- *Correspondence: Ananda Mustafiz, Sumita Kumari,
| | - Ananda Mustafiz
- Faculty of Life Sciences and Biotechnology, Plant Molecular Biology Laboratory, South Asian UniversityNew Delhi, India
- *Correspondence: Ananda Mustafiz, Sumita Kumari,
| |
Collapse
|
386
|
Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, Negi YK, Arora S, Reddy MK. Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase. FRONTIERS IN PLANT SCIENCE 2017; 8:581. [PMID: 28473838 PMCID: PMC5397514 DOI: 10.3389/fpls.2017.00581] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/30/2017] [Indexed: 05/19/2023]
Abstract
One of the most significant manifestations of environmental stress in plants is the increased production of Reactive Oxygen Species (ROS). These ROS, if allowed to accumulate unchecked, can lead to cellular toxicity. A battery of antioxidant molecules is present in plants for keeping ROS levels under check and to maintain the cellular homeostasis under stress. Ascorbate peroxidase (APX) is a key antioxidant enzyme of such scavenging systems. It catalyses the conversion of H2O2 into H2O, employing ascorbate as an electron donor. The expression of APX is differentially regulated in response to environmental stresses and during normal plant growth and development as well. Different isoforms of APX show differential response to environmental stresses, depending upon their sub-cellular localization, and the presence of specific regulatory elements in the upstream regions of the respective genes. The present review delineates role of APX isoforms with respect to different types of abiotic stresses and its importance as a key antioxidant enzyme in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Saurabh Pandey
- Plant Molecular Biology Lab, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
- Department of Biotechnology, Uttarakhand Technical UniversityDehradun, India
- *Correspondence: Saurabh Pandey
| | - Dhirendra Fartyal
- Plant Molecular Biology Lab, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Aakrati Agarwal
- Plant Molecular Biology Lab, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
- Plant Molecular Biology Lab, Department of Botany, University of DelhiNew Delhi, India
| | - Tushita Shukla
- Division of Plant Physiology, Indian Agricultural Research InstituteNew Delhi, India
| | - Donald James
- Plant Molecular Biology Lab, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Tanushri Kaul
- Plant Molecular Biology Lab, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Yogesh K. Negi
- Department of Basic Sciences, College of Forestry, VCSG Uttarakhand University of Horticulture and Forestry (UUHF)Ranichauri, India
| | - Sandeep Arora
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and TechnologyPantnagar, India
| | - Malireddy K. Reddy
- Plant Molecular Biology Lab, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| |
Collapse
|
387
|
Brandão SE, Bulbovas P, Lima MEL, Domingos M. Biochemical leaf traits as indicators of tolerance potential in tree species from the Brazilian Atlantic Forest against oxidative environmental stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:406-417. [PMID: 27750137 DOI: 10.1016/j.scitotenv.2016.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/01/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
The tolerance potential against the oxidative injury in native plants from forest ecosystems affected by environmental stressors depends on how efficiently they keep their pro-oxidant/antioxidant balance. Great variations in plant tolerance are expected, highlighting the higher relevance of measuring biochemical leaf trait indicators of oxidative injury in species with similar functions in the forest than in single species. The use of this functional approach seems very useful in the Brazilian Atlantic Forest because it still holds high plant diversity and was the focus of this study. We aimed at determining the tolerance potential of tree species from the Atlantic Forest remnants in SE Brazil against multiple oxidative environmental stressors. We assumed that pioneer tree species are more tolerant against oxidative stress than non-pioneer tree species and that their tolerance potential vary spatially in response to distinct combined effects of oxidative environmental stressors. The study was carried out in three Atlantic Forest remnants, which differ in physiognomy, species composition, climatic characteristics and air pollution exposure. Leaves of three pioneer and three non-pioneer species were collected from each forest remnant during wet (January 2015) and dry periods (June 2015), for analyses of non-enzymatic and enzymatic antioxidants and oxidative injury indicators. Both hypotheses were confirmed. The pioneer tree species displayed biochemical leaf traits (e.g. high levels of ascorbic acid, glutathione and carotenoids and lower lipid peroxidation) that indicate their higher potential tolerance against oxidative environmental stressors than non-pioneer species. The biochemical leaf traits of both successional groups of species varied between the forest remnants, in response to a linear combination of oxidative environmental stressors, from natural (relative humidity and temperature) and anthropogenic sources (ozone and nitrogen dioxide).
Collapse
Affiliation(s)
- Solange E Brandão
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | - Patricia Bulbovas
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | - Marcos E L Lima
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil
| | - Marisa Domingos
- Instituto de Botânica, Caixa Postal 68041, 04045-972, São Paulo, Brazil.
| |
Collapse
|
388
|
Liang J, Xia X, Zhang W, Zaman WQ, Lin K, Hu S, Lin Z. The biochemical and toxicological responses of earthworm (Eisenia fetida) following exposure to nanoscale zerovalent iron in a soil system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2507-2514. [PMID: 27822688 DOI: 10.1007/s11356-016-8001-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Nanomaterials have increasingly gained a great amount of interest due to their widespread applications, while their potential impacts on invertebrates in soil lack thorough investigation. This study is mainly aimed at determining the acute and subacute toxicity to the earthworm Eisenia fetida, induced by different levels of nanoscale zerovalent iron (nZVI) (100, 500, 1000 mg kg-1) in natural soils. The results showed that compared to the controls, exposure to 500 and 1000 mg kg-1 of nZVI significantly (P < 0.05) inhibited growth and respiration and increased avoidance response in earthworms. The perturbations of antioxidant enzyme activities (superoxide dismutase-SOD and catalase-CAT), malondialdehyde (MDA) content, and reactive oxygen species (ROS) clearly revealed that oxidative stress was induced in E. fetida exposed to nZVI. Good correlations were observed in current results among the growth, respiration, MDA, and ROS (R > 0.8; P < 0.05), and that ROS was the most sensitive parameter in response to the stress caused by nZVI. Additionally, the histopathological examination of transverse sections of the exposed earthworms passing through the body wall illustrated that there was a serious injury in epidermal tissue after an exposure of 28 days. These findings will provide a comprehensive understanding of toxicological effects of nZVI in a soil-earthworm system.
Collapse
Affiliation(s)
- Jun Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoqian Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Waqas Qamar Zaman
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| | - Zhifen Lin
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
389
|
A Preliminary Comparison of Antioxidants of Tomato Fruit Grown Under Organic and Conventional Systems. HORTICULTURAE 2016. [DOI: 10.3390/horticulturae3010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
390
|
Corpas FJ, Barroso JB. Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O 2·-) in Arabidopsis peroxisomes, affects catalase activity. Nitric Oxide 2016; 68:103-110. [PMID: 28039072 DOI: 10.1016/j.niox.2016.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 01/06/2023]
Abstract
Lead (Pb) contamination has a toxic effect on plant metabolisms, leading to a decrease in biomass production. The free radical nitric oxide (NO) is involved in the mechanism of response to a wide range of abiotic stresses. However, little is known about the interplay between Pb-induced stress and NO metabolism. Peroxisomes are sub-cellular compartments involved in multiple cellular metabolic pathways which are characterized by an active nitro-oxidative metabolism. Thus, Arabidopsis thaliana mutants expressing cyan fluorescent protein (CFP) through the addition of peroxisomal targeting signal 1 (PTS1), which enables peroxisomes to be visualized in vivo by confocal laser scanning microscopy (CLSM) combined with fluorescent probes for nitric oxide (NO), superoxide anion (O2·-) and peroxynitrite (ONOO-), were used to evaluate the potential involvement of these organelles in the mechanism of response to 150 μM lead-induced stress. Both NO and O2·- radicals, and consequently ONOO-, were overproduced under Pb-stress. Additionally, biochemical and gene expression analyses of peroxisomal enzymes, including the antioxidant catalase (CAT) and two photorespiration enzymes, such as glycolate oxidase (GOX) and hydroxypyruvate reductase (HPR), show that, under Pb-stress, only the catalase was negatively affected, while the two photorespiration enzymes remained unaffected. These results corroborate the involvement of plant peroxisomal metabolisms in the mechanism of response to lead contamination and highlight the importance of the peroxisomal NO metabolism.
Collapse
Affiliation(s)
- Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", E-23071 Jaén, Spain
| |
Collapse
|
391
|
Smerilli A, Orefice I, Corato F, Gavalás Olea A, Ruban AV, Brunet C. Photoprotective and antioxidant responses to light spectrum and intensity variations in the coastal diatomSkeletonema marinoi. Environ Microbiol 2016; 19:611-627. [DOI: 10.1111/1462-2920.13545] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/09/2016] [Accepted: 09/22/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Arianna Smerilli
- Stazione Zoologica Anton Dohrn; Villa Comunale Napoli 80121 Italy
| | - Ida Orefice
- Stazione Zoologica Anton Dohrn; Villa Comunale Napoli 80121 Italy
| | - Federico Corato
- Stazione Zoologica Anton Dohrn; Villa Comunale Napoli 80121 Italy
| | - Antonio Gavalás Olea
- Instituto de Investigaciones Marinas CSIC; Av. Eduardo Cabello 6 Vigo 36208 Spain
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS United Kingdom
| | | |
Collapse
|
392
|
Zhang RR, Liu Y, Xue WL, Chen RX, Du ST, Jin CW. Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25074-25083. [PMID: 27677996 DOI: 10.1007/s11356-016-7742-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
Cadmium (Cd) pollution in vegetable crops has become a serious problem in recent years. Owing to the limited availability of arable land resources, large areas of Cd-contaminated lands are inevitably being used for the production of vegetables, posing great risks to human health via the food chain. However, strategies to improve yield and reduce Cd concentration in crops grown in contaminated soils are being developed. In the present study, using pot experiments, we investigated the effects of two slow-release nitrogen fertilizers (SRNFs), resin-coated ammonium nitrate (Osmocote313s), and resin-coated urea (urea620), on the growth and Cd concentration of the Cd-contaminated pakchoi. The results showed that pakchoi grown in soil containing 5 mg kg-1 of Cd-induced oxidative stress (indicated by malondialdehyde (MDA), H2O2, and O2·-) and photosynthesis inhibition, which in turn was restored with the application of SRNFs. However, pakchoi grown in Cd-contaminated soil supplied with Osmocote313s and urea620 showed 103 and 203 % increase in fresh weight and 51-55 % and 44-56 % decrease in Cd concentration, respectively, as compared with their controls (pakchoi treated with instant soluble nitrogen fertilizers). On the basis of an increase in their tolerance index (47-238 %) and a decrease in their translocation factor (7.5-21.6 %), we inferred that the plants treated with SRNFs have a stronger tolerance to Cd and a lower efficiency of Cd translocation to edible parts than those treated with instant soluble nitrogen fertilizers. Therefore, in terms of both crop production and food safety, application of SRNFs could be an effective strategy for improving both biomass production and quality in pakchoi grown under Cd stress.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yue Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wan-Lei Xue
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Rong-Xin Chen
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shao-Ting Du
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Chong-Wei Jin
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
393
|
Maruta T, Ogawa T, Tsujimura M, Ikemoto K, Yoshida T, Takahashi H, Yoshimura K, Shigeoka S. Loss-of-function of an Arabidopsis NADPH pyrophosphohydrolase, AtNUDX19, impacts on the pyridine nucleotides status and confers photooxidative stress tolerance. Sci Rep 2016; 6:37432. [PMID: 27874073 PMCID: PMC5118724 DOI: 10.1038/srep37432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/24/2016] [Indexed: 11/30/2022] Open
Abstract
The levels and redox states of pyridine nucleotides, such as NADP(H), regulate the cellular redox homeostasis, which is crucial for photooxidative stress response in plants. However, how they are controlled is poorly understood. An Arabidopsis Nudix hydrolase, AtNUDX19, was previously identified to have NADPH hydrolytic activity in vitro, suggesting this enzyme to be a regulator of the NADPH status. We herein examined the physiological role of AtNUDX19 using its loss-of-function mutants. NADPH levels were increased in nudx19 mutants under both normal and high light conditions, while NADP+ and NAD+ levels were decreased. Despite the high redox states of NADP(H), nudx19 mutants exhibited high tolerance to moderate light- or methylviologen-induced photooxidative stresses. This tolerance might be partially attributed to the activation of either or both photosynthesis and the antioxidant system. Furthermore, a microarray analysis suggested the role of ANUDX19 in regulation of the salicylic acid (SA) response in a negative manner. Indeed, nudx19 mutants accumulated SA and showed high sensitivity to the hormone. Our findings demonstrate that ANUDX19 acts as an NADPH pyrophosphohydrolase to modulate cellular levels and redox states of pyridine nucleotides and fine-tunes photooxidative stress response through the regulation of photosynthesis, antioxidant system, and possibly hormonal signaling.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Masaki Tsujimura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Keisuke Ikemoto
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Tomofumi Yoshida
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan (K.Y.)
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
394
|
Noshi M, Yamada H, Hatanaka R, Tanabe N, Tamoi M, Shigeoka S. Arabidopsis dehydroascorbate reductase 1 and 2 modulate redox states of ascorbate-glutathione cycle in the cytosol in response to photooxidative stress. Biosci Biotechnol Biochem 2016; 81:523-533. [PMID: 27852156 DOI: 10.1080/09168451.2016.1256759] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ascorbate and glutathione are indispensable cellular redox buffers and allow plants to acclimate stressful conditions. Arabidopsis contains three functional dehydroascorbate reductases (DHAR1-3), which catalyzes the conversion of dehydroascorbate into its reduced form using glutathione as a reductant. We herein attempted to elucidate the physiological role in DHAR1 and DHAR2 in stress responses. The total DHAR activities in DHAR knockout Arabidopsis plants, dhar1 and dhar2, were 22 and 92%, respectively, that in wild-type leaves. Under high light (HL), the levels of total ascorbate and dehydroascorbate were only reduced and increased, respectively, in dhar1. The oxidation of glutathione under HL was significantly inhibited in both dhar1 and dhar2, while glutathione contents were only enhanced in dhar1. The dhar1 showed stronger visible symptoms than the dhar2 under photooxidative stress conditions. Our results demonstrated a pivotal role of DHAR1 in the modulation of cellular redox states under photooxidative stress.
Collapse
Affiliation(s)
- Masahiro Noshi
- a Faculty of Agriculture, Department of Advanced Bioscience , Kindai University , Nara , Japan
| | - Hiroki Yamada
- a Faculty of Agriculture, Department of Advanced Bioscience , Kindai University , Nara , Japan
| | - Risa Hatanaka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kindai University , Nara , Japan
| | - Noriaki Tanabe
- a Faculty of Agriculture, Department of Advanced Bioscience , Kindai University , Nara , Japan
| | - Masahiro Tamoi
- a Faculty of Agriculture, Department of Advanced Bioscience , Kindai University , Nara , Japan
| | - Shigeru Shigeoka
- a Faculty of Agriculture, Department of Advanced Bioscience , Kindai University , Nara , Japan
| |
Collapse
|
395
|
Chen HH, Chu P, Zhou YL, Ding Y, Li Y, Liu J, Jiang LW, Huang SZ. Ectopic expression of NnPER1, a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:608-619. [PMID: 27464651 DOI: 10.1111/tpj.13286] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 05/07/2023]
Abstract
Seed longevity, the maintenance of viability during storage, is a major factor for conservation of genetic resources and biodiversity. Seed longevity is an important trait of agriculture crop and is impaired by reactive oxygen species (ROS) during seed desiccation, storage and germination (C. R. Biol., 331, 2008 and 796). Seeds possess a wide range of systems (protection, detoxification, repair) allowing them to survive during storage and to preserve a high germination ability. In many plants, 1-cys peroxiredoxin (1-Cys Prx, also named PER1) is a seed-specific antioxidant which eliminates ROS with cysteine residues. Here we identified and characterized a seed-specific PER1 protein from seeds of sacred lotus (Nelumbo nucifera Gaertn.). Purified NnPER1 protein protects DNA against the cleavage by ROS in the mixed-function oxidation system. The transcription and protein accumulation of NnPER1 increased during seed desiccation and imbibition and under abiotic stress treatment. Ectopic expression of NnPER1 in Arabidopsis enhanced the seed germination ability after controlled deterioration treatment (CDT), indicating that NnPER1 improves seed longevity of transgenic plants. Consistent with the function of NnPER1 on detoxifying ROS, we found that the level of ROS release and lipid peroxidation was strikingly lower in transgenic seeds compared to wild-type with or without CDT. Furthermore, transgenic Arabidopsis seeds ectopic-expressing NnPER1 displayed enhanced tolerance to high temperature and abscisic acid (ABA), indicating that NnPER1 may participate in the thermotolerance and ABA signaling pathway.
Collapse
Affiliation(s)
- Hu-Hui Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pu Chu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yu-Liang Zhou
- Guangdong Provincial Key Lab of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, China
- School of Life Sciences, Center for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yin Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Li-Wen Jiang
- School of Life Sciences, Center for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shang-Zhi Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
396
|
Noshi M, Mori D, Tanabe N, Maruta T, Shigeoka S. Arabidopsis clade IV TGA transcription factors, TGA10 and TGA9, are involved in ROS-mediated responses to bacterial PAMP flg22. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:12-21. [PMID: 27717447 DOI: 10.1016/j.plantsci.2016.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 05/22/2023]
Abstract
Reactive oxygen species (ROS) produced in chloroplasts have been proposed to act as signaling molecules for plant immunity through pathogen-associated molecular patterns (PAMPs), such as flg22. To elucidate this process, we herein conducted genetic screening of flg22-sensitive mutants from T-DNA insertion lines lacking chloroplastic H2O2-responsive genes. The results obtained showed that knockout mutants lacking a clade IV TGA transcription factor, TGA10, were more sensitive to the flg22 treatment than wild-type plants. Furthermore, although no flg22-sensitive phenotype was detected in the knockout mutant of another clade IV TGA9, double knockout tga9 tga10 mutants showed more sensitivity to flg22 than single knockout mutants. Transcripts of TGA10 and TGA9 were strongly induced by flg22 in leaves, and this was facilitated by the double knockout of stromal and thylakoid-bound ascorbate peroxidases (APX), which are major H2O2 scavengers in chloroplasts. The flg22-induced H2O2 accumulation was maintained at high level in these APXs mutants, indicating the clade IV TGAs may be induced by the ROS. Furthermore, TGA10 was required for the complete activation of the expression of several flg22-responsive genes in plants treated with this PAMP. These have provided a new insight into the relationship between the TGA transcription factors and ROS-mediated signaling in PAMPs responses.
Collapse
Affiliation(s)
- Masahiro Noshi
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan.
| | - Daisuke Mori
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan.
| | - Noriaki Tanabe
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan.
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
397
|
Vidović M, Morina F, Prokić L, Milić-Komić S, Živanović B, Jovanović SV. Antioxidative response in variegated Pelargonium zonale leaves and generation of extracellular H 2O 2 in (peri)vascular tissue induced by sunlight and paraquat. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:25-39. [PMID: 27688091 DOI: 10.1016/j.jplph.2016.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
In this study we exposed variegated leaves of Pelargonium zonale to strong sunlight (>1100μmolm-2s-1 of photosynthetically active radiation) with and without paraquat (Pq), with the aim to elucidate the mechanisms of H2O2 regulation in green and white tissues with respect to the photosynthetically-dependent generation of reactive oxygen species (ROS). Sunlight induced marked accumulation of H2O2 in the apoplast of vascular and (peri)vascular tissues only in green sectors. This effect was enhanced by the addition of Pq. In the presence of diphenyl iodide, an NADPH oxidase inhibitor, H2O2 accumulation was abolished. Distinct light-induced responses were observed: in photosynthetic cells, sunlight rapidly provoked ascorbate (Asc) biosynthesis and an increase of glutathione reductase (GR) and catalase activities, while in non-photosynthetic cells, early up-regulation of soluble ascorbate peroxidase, dehydroascorbate reductase (DHAR) and GR activities was observed. Paraquat addition stimulated DHAR and GR activities in green sectors, while in white sectors activities of monodehydroascorbate reductase, DHAR and class III peroxidases, as well as Asc content rapidly increased. Differential antioxidative responses in the two tissues in the frame of their contrasting metabolisms, and the possible role of (peri)vascular H2O2 in signaling were discussed.
Collapse
Affiliation(s)
- Marija Vidović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Filis Morina
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Sonja Milić-Komić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Bojana Živanović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Sonja Veljović Jovanović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| |
Collapse
|
398
|
Wang X, Cai X, Xu C, Wang Q, Dai S. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. Int J Mol Sci 2016; 17:E1706. [PMID: 27763546 PMCID: PMC5085738 DOI: 10.3390/ijms17101706] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
Plant drought tolerance is a complex trait that requires a global view to understand its underlying mechanism. The proteomic aspects of plant drought response have been extensively investigated in model plants, crops and wood plants. In this review, we summarize recent proteomic studies on drought response in leaves to reveal the common and specialized drought-responsive mechanisms in different plants. Although drought-responsive proteins exhibit various patterns depending on plant species, genotypes and stress intensity, proteomic analyses show that dominant changes occurred in sensing and signal transduction, reactive oxygen species scavenging, osmotic regulation, gene expression, protein synthesis/turnover, cell structure modulation, as well as carbohydrate and energy metabolism. In combination with physiological and molecular results, proteomic studies in leaves have helped to discover some potential proteins and/or metabolic pathways for drought tolerance. These findings provide new clues for understanding the molecular basis of plant drought tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
399
|
Calzadilla PI, Signorelli S, Escaray FJ, Menéndez AB, Monza J, Ruiz OA, Maiale SJ. Photosynthetic responses mediate the adaptation of two Lotus japonicus ecotypes to low temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:59-68. [PMID: 27457984 DOI: 10.1016/j.plantsci.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 05/09/2023]
Abstract
Lotus species are important forage legumes due to their high nutritional value and adaptability to marginal conditions. However, the dry matter production and regrowth rate of cultivable Lotus spp. is drastically reduced during colder seasons. In this work, we evaluated the chilling response of Lotus japonicus ecotypes MG-1 and MG-20. No significant increases were observed in reactive oxygen species and nitric oxide production or in lipid peroxidation, although a chilling-induced redox imbalance was suggested through NADPH/NADP(+) ratio alterations. Antioxidant enzyme catalase, ascorbate peroxidase, and superoxide dismutase activities were also measured. Superoxide dismutase, in particular the chloroplastic isoform, showed different activity for different ecotypes and treatments. Stress-induced photoinhibition also differentially influenced both ecotypes, with MG-1 more affected than MG-20. Data showed that the D2 PSII subunit was more affected than D1 after 1 d of low temperature exposure, although its protein levels recovered over the course of the experiment. Interestingly, D2 recovery was accompanied by improvements in photosynthetic parameters (Asat and Fv/Fm) and the NADPH/NADP(+) ratio. Our results suggest that the D2 protein is involved in the acclimation response of L. japonicus to low temperature. This may provide a deeper insight into the chilling tolerance mechanisms of the Lotus genus.
Collapse
Affiliation(s)
- Pablo Ignacio Calzadilla
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, UNSAM-CONICET, Chascomús, Argentina.
| | - Santiago Signorelli
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay; School of Plant Biology and the UWA Institute of Agriculture, University of Western Australia, Perth, Australia.
| | - Francisco Jose Escaray
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, UNSAM-CONICET, Chascomús, Argentina.
| | - Ana Bernardina Menéndez
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, PROPLAME-PRHIDEB (CONICET), Buenos Aires, Argentina.
| | - Jorge Monza
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay.
| | - Oscar Adolfo Ruiz
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, UNSAM-CONICET, Chascomús, Argentina.
| | - Santiago Javier Maiale
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, UNSAM-CONICET, Chascomús, Argentina.
| |
Collapse
|
400
|
Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium. Int J Genomics 2016; 2016:8740901. [PMID: 27660755 PMCID: PMC5021877 DOI: 10.1155/2016/8740901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/03/2016] [Indexed: 01/01/2023] Open
Abstract
Superoxide dismutase (SOD) as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of SOD gene family were identified in Gossypium arboreum and Gossypium raimondii, including 6 Cu-Zn-SODs, 2 Fe-SODs, and 2 Mn-SODs. The chromosomal distribution analysis revealed that SOD genes are distributed across 7 chromosomes in Gossypium arboreum and 8 chromosomes in Gossypium raimondii. Segmental duplication is predominant duplication event and major contributor for expansion of SOD gene family. Gene structure and protein structure analysis showed that SOD genes have conserved exon/intron arrangement and motif composition. Microarray-based expression analysis revealed that SOD genes have important function in abiotic stress. Moreover, the tissue-specific expression profile reveals the functional divergence of SOD genes in different organs development of cotton. Taken together, this study has imparted new insights into the putative functions of SOD gene family in cotton. Findings of the present investigation could help in understanding the role of SOD gene family in various aspects of the life cycle of cotton.
Collapse
|