351
|
Ellinger D, Stingl N, Kubigsteltig II, Bals T, Juenger M, Pollmann S, Berger S, Schuenemann D, Mueller MJ. DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation. PLANT PHYSIOLOGY 2010; 153:114-27. [PMID: 20348210 PMCID: PMC2862439 DOI: 10.1104/pp.110.155093] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/24/2010] [Indexed: 05/20/2023]
Abstract
Lipases are involved in the generation of jasmonates, which regulate responses to biotic and abiotic stresses. Two sn-1-specific acyl hydrolases, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) and DONGLE (DGL), have been reported to be localized in plastids and to be essential and sufficient for jasmonate biosynthesis in Arabidopsis (Arabidopsis thaliana) leaves. Here, we show that levels of 12-oxo-phytodienoic acid (OPDA) and jasmonic acid in three different DGL RNA interference lines and the dad1 mutant were similar to wild-type levels during the early wound response as well as after Pseudomonas infection. Due to the lack of sn-2 substrate specificity, synthesis of dinor OPDA was not expected and also not found to be affected in DGL knockdown and DGL-overexpressing lines. As reported, DAD1 participates in jasmonate formation only in the late wound response. In addition, DGL protein was found to be localized in lipid bodies and not in plastids. Furthermore, jasmonate levels in 16 additional mutants defective in the expression of lipases with predicted chloroplast localization did not show strong differences from wild-type levels after wounding, except for a phospholipase A (PLA) PLA-Igamma1 (At1g06800) mutant line that displayed diminished wound-induced dinor OPDA, OPDA, and jasmonic acid levels. A quadruple mutant defective in four DAD1-like lipases displayed similar jasmonate levels as the mutant line of PLA-Igamma1 after wounding. Hence, we identify PLA-Igamma1 as a novel target gene to manipulate jasmonate biosynthesis. Our results suggest that, in addition to DAD1 and PLA-Igamma1, still unidentified enzymes with sn-1 and sn-2 hydrolase activity are involved in wound- and pathogen-induced jasmonate formation, indicating functional redundancy within the lipase family.
Collapse
Affiliation(s)
- Dorothea Ellinger
- Department of Plant Physiology, Ruhr-Universität, 44801 Bochum, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
352
|
Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N. Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog Lipid Res 2010; 49:128-58. [DOI: 10.1016/j.plipres.2009.10.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 01/14/2023]
|
353
|
Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S. Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. PLANT PHYSIOLOGY 2010; 5:1493-6. [PMID: 20190093 PMCID: PMC2850018 DOI: 10.1104/pp.110.153114] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 02/21/2010] [Indexed: 05/17/2023]
Abstract
Jasmonic acid and related oxylipins are controversially discussed to be involved in regulating the initiation and progression of leaf senescence. To this end, we analyzed profiles of free and esterified oxylipins during natural senescence and upon induction of senescence-like phenotypes by dark treatment and flotation on sorbitol in Arabidopsis (Arabidopsis thaliana). Jasmonic acid and free 12-oxo-phytodienoic acid increased during all three processes, with the strongest increase of jasmonic acid after dark treatment. Arabidopside content only increased considerably in response to sorbitol treatment. Monogalactosyldiacylglycerols and digalactosyldiacylglycerols decreased during these treatments and aging. Lipoxygenase 2-RNA interference (RNAi) plants were generated, which constitutively produce jasmonic acid and 12-oxo-phytodienoic acid but do not exhibit accumulation during natural senescence or upon stress treatment. Chlorophyll loss during aging and upon dark incubation was not altered, suggesting that these oxylipins are not involved in these processes. In contrast, lipoxygenase 2-RNAi lines and the allene oxid synthase-deficient mutant dde2 were less sensitive to sorbitol than the wild type, indicating that oxylipins contribute to the response to sorbitol stress.
Collapse
|
354
|
Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corrales YE. Flower development. THE ARABIDOPSIS BOOK 2010; 8:e0127. [PMID: 22303253 PMCID: PMC3244948 DOI: 10.1199/tab.0127] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.
Collapse
Affiliation(s)
- Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Mariana Benítez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Corvera-Poiré
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Álvaro Chaos Cador
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Stefan de Folter
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alicia Gamboa de Buen
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Fabiola Jaimes-Miranda
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Rigoberto V. Pérez-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alma Piñeyro-Nelson
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Yara E. Sánchez-Corrales
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| |
Collapse
|
355
|
Bonaventure G, Baldwin IT. New insights into the early biochemical activation of jasmonic acid biosynthesis in leaves. PLANT SIGNALING & BEHAVIOR 2010; 5:287-9. [PMID: 20037473 PMCID: PMC2881280 DOI: 10.4161/psb.5.3.10713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 05/18/2023]
Abstract
In plants, herbivore attack elicits the rapid accumulation of jasmonic acid (JA) which results from the activation of constitutively expressed biosynthetic enzymes. The molecular mechanisms controlling the activation of JA biosynthesis remain largely unknown however new research has elucidated some of the early regulatory components involved in this process. Nicotiana attenuata plants, a wild tobacco species, responds to fatty acid amino acid conjuguates (FAC) elicitors in the oral secretion of its natural herbivore, Manduca sexta, by triggering specific defense and tolerance responses against it; all of the defense responses known to date require the amplification of the wound-induced JA increase. We recently demonstrated that this FAC-elicited JA burst requires an increased flux of free linolenic acid (18:3) likely originating from the activation of a plastidial glycerolipase (GLA1) which is activated by an abundant FAC found in insect oral secretions, N-linolenoyl-glutamate (18:3-Glu). The lack of accumulation of free 18:3 after elicitation suggests a tight physical association between GLA1 and LOX3 in N. attenuata leaves. In addition, the salicylate-induced protein kinase (SIPK) and the nonexpressor of PR-1 (NPR1) participate in this activation mechanism that controls the supply of 18:3. In contrast, the wound-induced protein kinase (WIPK) does not but instead regulates the conversion of 13(S)-hydroperoxy-18:3 into 12-oxo-phytodienoic acid (OPDA). These results open new perspectives on the complex network of signals and regulatory components inducing the JA biosynthetic pathway.
Collapse
Affiliation(s)
- Gustavo Bonaventure
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, Germany.
| | | |
Collapse
|
356
|
Smith CM, Liu X, Wang LJ, Liu X, Chen MS, Starkey S, Bai J. Aphid feeding activates expression of a transcriptome of oxylipin-based defense signals in wheat involved in resistance to herbivory. J Chem Ecol 2010; 36:260-76. [PMID: 20229216 PMCID: PMC3831272 DOI: 10.1007/s10886-010-9756-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 12/08/2009] [Accepted: 01/20/2010] [Indexed: 11/24/2022]
Abstract
Damage by the Russian wheat aphid (RWA), Diuraphis noxia, significantly reduces wheat and barley yields worldwide. In compatible interactions, virulent RWA populations flourish and susceptible plants suffer extensive leaf chlorophyll loss. In incompatible interactions, RWA reproduction and population growth are significantly reduced and RWA-related chlorophyll loss in resistant plants is minor. The objectives of this study were to develop an understanding of the molecular and phytochemical bases of RWA resistance in plants containing the Dnx resistance gene. Microarray, real-time polymerase chain reaction, and phytohormone assays were conducted to identify transcriptome components unique to RWA-infested Dnx plants and susceptible (Dn0) plants, and to identify and characterize putative genes involved in Dnx plant defense responses. We found that RWA-infested Dnx plants upregulated >180 genes related to reactive oxygen species, signaling, pathogen defense, and arthropod allelochemical and physical defense. The expression of several of these genes in RWA-infested Dnx plants increased significantly from 6- to 24-h post infestation (hpi), but their expression in Dn0 plants, when present, was delayed until 48- to 96 hpi. Concentrations of 16- and 18-carbon fatty acids, trans-methyl-12-oxophytodienoic acid, and abscisic acid were significantly greater in Dnx foliage than in Dn0 foliage after RWA infestation, suggesting that Dnx RWA defense and resistance genes may be regulated via the oxylipin pathway. These findings provide a foundation for the elucidation of the molecular basis for compatible- and incompatible plant-aphid interactions.
Collapse
|
357
|
Abstract
Plants produce nectar in their flowers as a reward for their pollinators and most of our crops depend on insect pollination, but little is known on the physiological control of nectar secretion. Jasmonates are well-known for their effects on senescence, the development and opening of flowers and on plant defences such as extrafloral nectar. Their role in floral nectar secretion has, however, not been explored so far. We investigated whether jasmonates have an influence on floral nectar secretion in oil-seed rape, Brassica napus. The floral tissues of this plant produced jasmonic acid (JA) endogenously, and JA concentrations peaked shortly before nectar secretion was highest. Exogenous application of JA to flowers induced nectar secretion, which was suppressed by treatment with phenidone, an inhibitor of JA synthesis. This effect could be reversed by additional application of JA. Jasmonoyl-isoleucine and its structural mimic coronalon also increased nectar secretion. Herbivory or addition of JA to the leaves did not have an effect on floral nectar secretion, demonstrating a functional separation of systemic defence signalling from reproductive nectar secretion. Jasmonates, which have been intensively studied in the context of herbivore defences and flower development, have a profound effect on floral nectar secretion and, thus, pollination efficiency in B. napus. Our results link floral nectar secretion to jasmonate signalling and thereby integrate the floral nectar secretion into the complex network of oxylipid-mediated developmental processes of plants.
Collapse
|
358
|
Coimbra S, Costa M, Mendes MA, Pereira AM, Pinto J, Pereira LG. Early germination of Arabidopsis pollen in a double null mutant for the arabinogalactan protein genes AGP6 and AGP11. ACTA ACUST UNITED AC 2010; 23:199-205. [PMID: 20162305 DOI: 10.1007/s00497-010-0136-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 02/01/2010] [Indexed: 12/25/2022]
Abstract
The pollen specificity of the Arabidopsis arabinogalactan protein (AGP) genes AGP6 and AGP11 suggests that they are integral to pollen biogenesis, and their high percent of sequence similarity may indicate a potential for overlapping function. Arabidopsis agp6 agp11 double null mutants have been studied in our laboratory, and in the present work, we characterize the germination and growth of its pollen. When compared to wild type, mutant agp6 agp11 pollen displayed reduced germination and elongation, both in vivo and in vitro, and precocious germination inside the anthers, provided that sufficient moisture was available. This characteristic was not observed in wild type plants, even in water content conditions which for the mutant were sufficient for pollen germination. Therefore, an additional distinctive phenotypic trait of arabinogalactan proteins AGP6 and AGP11 may be to avert untimely germination of pollen. Such AGPs may control germination through water uptake, suggesting an important biological function of this gene family in pollen.
Collapse
Affiliation(s)
- Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
359
|
Wasternack C, Kombrink E. Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 2010; 5:63-77. [PMID: 20025249 DOI: 10.1021/cb900269u] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Jasmonates are lipid-derived signals that mediate plant stress responses and development processes. Enzymes participating in biosynthesis of jasmonic acid (JA) (1, 2) and components of JA signaling have been extensively characterized by biochemical and molecular-genetic tools. Mutants of Arabidopsis and tomato have helped to define the pathway for synthesis of jasmonoyl-isoleucine (JA-Ile), the active form of JA, and to identify the F-box protein COI1 as central regulatory unit. However, details of the molecular mechanism of JA signaling have only recently been unraveled by the discovery of JAZ proteins that function in transcriptional repression. The emerging picture of JA perception and signaling cascade implies the SCF(COI1) complex operating as E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S-proteasome pathway, thereby allowing the transcription factor MYC2 to activate gene expression. The fact that only one particular stereoisomer, (+)-7-iso-JA-l-Ile (4), shows high biological activity suggests that epimerization between active and inactive diastereomers could be a mechanism for turning JA signaling on or off. The recent demonstration that COI1 directly binds (+)-7-iso-JA-l-Ile (4) and thus functions as JA receptor revealed that formation of the ternary complex COI1-JA-Ile-JAZ is an ordered process. The pronounced differences in biological activity of JA stereoisomers also imply strict stereospecific control of product formation along the JA biosynthetic pathway. The pathway of JA biosynthesis has been unraveled, and most of the participating enzymes are well-characterized. For key enzymes of JA biosynthesis the crystal structures have been established, allowing insight into the mechanisms of catalysis and modes of substrate binding that lead to formation of stereospecific products.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Natural Product Biotechnology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Erich Kombrink
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Cologne, Germany
| |
Collapse
|
360
|
Kallenbach M, Alagna F, Baldwin IT, Bonaventure G. Nicotiana attenuata SIPK, WIPK, NPR1, and fatty acid-amino acid conjugates participate in the induction of jasmonic acid biosynthesis by affecting early enzymatic steps in the pathway. PLANT PHYSIOLOGY 2010; 152:96-106. [PMID: 19897603 PMCID: PMC2799349 DOI: 10.1104/pp.109.149013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/03/2009] [Indexed: 05/18/2023]
Abstract
Wounding and herbivore attack elicit the rapid (within minutes) accumulation of jasmonic acid (JA) that results from the activation of previously synthesized biosynthetic enzymes. Recently, several regulatory factors that affect JA production have been identified; however, how these regulators affect JA biosynthesis remains at present unknown. Here we demonstrate that Nicotiana attenuata salicylate-induced protein kinase (SIPK), wound-induced protein kinase (WIPK), nonexpressor of PR-1 (NPR1), and the insect elicitor N-linolenoyl-glutamate [corrected] (18:3-Glu) participate in mechanisms affecting early enzymatic steps of the JA biosynthesis pathway. Plants silenced in the expression of SIPK and NPR1 were affected in the initial accumulation of 13-hydroperoxy-linolenic acid (13-OOH-18:3) after wounding and 18:3-Glu elicitation by mechanisms independent of changes in 13-lipoxygenase activity. Moreover, 18:3-Glu elicited an enhanced and rapid accumulation of 13-OOH-18:3 that depended partially on SIPK and NPR1 but was independent of increased 13-lipoxygenase activity. Together, the results suggested that substrate supply for JA production was altered by 18:3-Glu elicitation and SIPK- and NPR1-mediated mechanisms. Consistent with a regulation at the level of substrate supply, we demonstrated by virus-induced gene silencing that a wound-repressed plastidial glycerolipase (NaGLA1) plays an essential role in the induction of de novo JA biosynthesis. In contrast to SIPK and NPR1, mechanisms mediated by WIPK did not affect the production of 13-OOH-18:3 but were critical to control the conversion of this precursor into 12-oxo-phytodienoic acid. These differences could be partially accounted for by reduced allene oxide synthase activity in WIPK-silenced plants.
Collapse
Affiliation(s)
| | | | | | - Gustavo Bonaventure
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena 07745, Germany
| |
Collapse
|
361
|
Abstract
ARABIDOPSIS IS A SUPERB MODEL FOR THE STUDY OF AN IMPORTANT SUBGROUP OF OXYLIPINS: the jasmonates. Jasmonates control many responses to cell damage and invasion and are essential for reproduction. Jasmonic acid (JA) is a prohormone and is conjugated to hydrophobic amino acids to produce regulatory ligands. The major receptor for active jasmonate ligands is closely related to auxin receptors and, as in auxin signaling, jasmonate signaling requires the destruction of repressor proteins. This chapter uses a frequently asked question (FAQ) approach and concludes with a practical section.
Collapse
Affiliation(s)
- Iván F. Acosta
- Department of Plant Molecular Biology, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| | - Edward E. Farmer
- Department of Plant Molecular Biology, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
- Address correspondence to
| |
Collapse
|
362
|
Kram BW, Carter CJ. Arabidopsis thaliana as a model for functional nectary analysis. SEXUAL PLANT REPRODUCTION 2009. [PMID: 20033445 DOI: 10.1007/s00497-009-0112-115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nectaries and nectar have received much research attention for well over 200 years due to their central roles in plant-pollinator interactions. Despite this, only a few genes have demonstrated impacts on nectary development, and none have been reported to mediate de novo nectar production. This scarcity of information is largely due to the lack of a model that combines sizeable nectaries, and high levels of nectar production, along with suitable genomics resources. For example, even though Arabidopsis thaliana has been useful for developmental studies, it has been largely overlooked as a model for studying nectary function due to the small size of its flowers. However, Arabidopsis nectaries, along with those of related species, are quite operational and can be used to discern molecular mechanisms of nectary form and function. A current understanding of the machinery underlying nectary function in plants is briefly presented, with emphasis placed on the prospects of using Arabidopsis as a model for studying these processes.
Collapse
Affiliation(s)
- Brian W Kram
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | | |
Collapse
|
363
|
Pak H, Guo Y, Chen M, Chen K, Li Y, Hua S, Shamsi I, Meng H, Shi C, Jiang L. The effect of exogenous methyl jasmonate on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica napus L.). PLANTA 2009; 231:79-91. [PMID: 19826836 DOI: 10.1007/s00425-009-1029-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/24/2009] [Indexed: 05/20/2023]
Abstract
The oilseed rape plant's transition from the vegetative to the reproductive stage is important to its yield. This transition is controlled by a large group of flowering time genes that respond to environmental and endogenous cues. The role of jasmonates in flowering is almost unknown in Brassicaceae, even in the genus Arabidopsis. In this paper, the clear effect of exogenous methyl jasmonate (MeJA) on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in floral development is shown. In controlled greenhouse experiments, we found that the effect of MeJA depended on both plant genotype and jasmonate dosage. MeJA promoted maximum flowering when it was applied to the cultivars of early flowering types of oilseed rape, such as cultivars Mei-Jian and Fu-You 4. In addition, a concentration of 100 microM resulted in the most number of early open flowers, in comparison with the results obtained for concentrations of 50 and 80 microM. Furthermore, the application of high concentrations of MeJA (100 microM) also produced various kinds of abnormal flowers. Our results demonstrated that the combined actions of the floral identity genes, specifically BnAP1, BnAP2, BnAP3, BnAG1, and BnPI3, as reflected by their respective relative transcript levels, were responsible for causing the different kinds of flower abnormalities previously undescribed in oilseed rape. We expect our assay to be an enriching addition to the body of work that attempts to understand the signaling function of jasmonates in the floral inductive pathway.
Collapse
Affiliation(s)
- Haksong Pak
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, 268 Kaixuan Road, 310029, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Sundberg E, Østergaard L. Distinct and dynamic auxin activities during reproductive development. Cold Spring Harb Perspect Biol 2009; 1:a001628. [PMID: 20457563 PMCID: PMC2882118 DOI: 10.1101/cshperspect.a001628] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Flowering plants have evolved sophisticated and complicated reproductive structures to ensure optimal conditions for the next generation. Successful reproduction relies on careful timing and coordination of tissue development, which requires constant communication between these tissues. Work on flower and fruit development over the last decade places the phytohormone auxin in a key role as a master of patterning and tissue specification of reproductive organs. Although many questions still remain, it is now clear that auxin mediates its function in flowers and fruits through an integrated process of biosynthesis, transport, and signaling, as well as interaction with other hormonal pathways. In addition, the knowledge obtained so far about auxin function already allows researchers to develop tools for crop improvement and precision agriculture.
Collapse
Affiliation(s)
- Eva Sundberg
- Uppsala BioCenter, Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| | | |
Collapse
|
365
|
Ng KH, Yu H, Ito T. AGAMOUS controls GIANT KILLER, a multifunctional chromatin modifier in reproductive organ patterning and differentiation. PLoS Biol 2009; 7:e1000251. [PMID: 19956801 PMCID: PMC2774341 DOI: 10.1371/journal.pbio.1000251] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 10/16/2009] [Indexed: 11/18/2022] Open
Abstract
The floral, homeotic protein AGAMOUS coordinates multiple downstream genes through direct transcriptional regulation of the nuclear matrix attachment region binding protein GIANT KILLER. The Arabidopsis homeotic protein AGAMOUS (AG), a MADS domain transcription factor, specifies reproductive organ identity during flower development. Using a binding assay and expression analysis, we identified a direct target of AG, GIANT KILLER (GIK), which fine-tunes the expression of multiple genes downstream of AG. The GIK protein contains an AT-hook DNA binding motif that is widely found in chromosomal proteins and that binds to nuclear matrix attachment regions of DNA elements. Overexpression and loss of function of GIK cause wide-ranging defects in patterning and differentiation of reproductive organs. GIK directly regulates the expression of several key transcriptional regulators, including ETTIN/AUXIN RESPONSE FACTOR 3 (ETT/ARF3) that patterns the gynoecium, by binding to the matrix attachment regions of target promoters. Overexpression of GIK causes a swift and dynamic change in repressive histone modification in the ETT promoter. We propose that GIK acts as a molecular node downstream of the homeotic protein AG, regulating patterning and differentiation of reproductive organs through chromatin organization. Multicellular development depends on proper expression of thousands of genes. Master regulators, such as homeotic proteins, code for transcription factors in both plants and animals and are thought to act by regulating other genes. Recent genomic studies in the plant Arabidopsis have shown that over 1,000 genes are regulated by homeotic proteins that directly control various target genes, including different classes of transcriptional regulators. It is not known, however, how expression of so many genes is coordinated by a single homeotic gene to form functional organs and tissues. Here we identified a transcriptional target of the plant homeotic protein AGAMOUS using bioinformatics analysis and showed that AGAMOUS directly controls GIANT KILLER, a multifunctional chromatin modifier. GIANT KILLER then binds to the upstream regions of multiple genes involved in patterning and differentiation in the AGAMOUS pathway and fine-tunes the expression of these genes. These data therefore provide a possible mechanism by which a homeotic gene coordinates multiple downstream targets in plants.
Collapse
Affiliation(s)
- Kian-Hong Ng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Toshiro Ito
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
- * E-mail:
| |
Collapse
|
366
|
Koo AJ, Howe GA. The wound hormone jasmonate. PHYTOCHEMISTRY 2009; 70:1571-80. [PMID: 19695649 PMCID: PMC2784233 DOI: 10.1016/j.phytochem.2009.07.018] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 05/17/2023]
Abstract
Plant tissues are highly vulnerable to injury by herbivores, pathogens, mechanical stress, and other environmental insults. Optimal plant fitness in the face of these threats relies on complex signal transduction networks that link damage-associated signals to appropriate changes in metabolism, growth, and development. Many of these wound-induced adaptive responses are triggered by de novo synthesis of the plant hormone jasmonate (JA). Recent studies provide evidence that JA mediates systemic wound responses through distinct cell autonomous and non-autonomous pathways. In both pathways, bioactive JAs are recognized by an F-box protein-based receptor system that couples hormone binding to ubiquitin-dependent degradation of transcriptional repressor proteins. These results provide a framework for understanding how plants recognize and respond to tissue injury.
Collapse
Affiliation(s)
- Abraham J.K. Koo
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Gregg A. Howe
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Corresponding author: Tel.: 1-517-355-5159; Fax: 1-517-353-9168. E-mail address:
| |
Collapse
|
367
|
Takano M, Inagaki N, Xie X, Kiyota S, Baba-Kasai A, Tanabata T, Shinomura T. Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc Natl Acad Sci U S A 2009; 106:14705-10. [PMID: 19706555 PMCID: PMC2732857 DOI: 10.1073/pnas.0907378106] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are believed to be solely responsible for red and far-red light perception, but this has never been definitively tested. To directly address this hypothesis, a phytochrome triple mutant (phyAphyBphyC) was generated in rice (Oryza sativa L. cv. Nipponbare) and its responses to red and far-red light were monitored. Since rice only has three phytochrome genes (PHYA, PHYB and PHYC), this mutant is completely lacking any phytochrome. Rice seedlings grown in the dark develop long coleoptiles while undergoing regular circumnutation. The phytochrome triple mutants also show this characteristic skotomorphogenesis, even under continuous red or far-red light. The morphology of the triple mutant seedlings grown under red or far-red light appears completely the same as etiolated seedlings, and they show no expression of the light-induced genes. This is direct evidence demonstrating that phytochromes are the sole photoreceptors for perceiving red and far-red light, at least during rice seedling establishment. Furthermore, the shape of the triple mutant plants was dramatically altered. Most remarkably, triple mutants extend their internodes even during the vegetative growth stage, which is a time during which wild-type rice plants never elongate their internodes. The triple mutants also flowered very early under long day conditions and set very few seeds due to incomplete male sterility. These data indicate that phytochromes play an important role in maximizing photosynthetic abilities during the vegetative growth stage in rice.
Collapse
Affiliation(s)
- Makoto Takano
- Department of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
368
|
Wong CE, Singh MB, Bhalla PL. Floral initiation process at the soybean shoot apical meristem may involve multiple hormonal pathways. PLANT SIGNALING & BEHAVIOR 2009. [PMID: 19820354 PMCID: PMC2710565 DOI: 10.4161/psb.4.7.8978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Flowering and seed set underpin most of the agriculture production. In the 57 Issue of The Plant Journal, we analysed the gene expression changes in the shoot apical meristem (SAM) during the transition from vegetative to flowering phase in soybean, an important legume crop. We identified a number of genes that are actively transcribed or repressed during the transition to flowering and the annotation of which have allowed us to infer the involvement of at least three hormonal pathways: those that involve abscisic acid (ABA), auxin and jasmonic acid (JA) in the regulation of floral initiation process in soybean. Intriguingly, the induction of known floral homeiotic transcript that includes APETALA1 in the SAM occurred after the induction of these hormonal transcripts adding a likely novel biochemical dimension to the current understanding of floral regulatory pathways. In view of recent studies, a cross-regulatory mechanism involving these hormones is proposed to operate at the SAM to initiate flowering.
Collapse
Affiliation(s)
- Chui E Wong
- Plant Molecular Biology and Biotechnology laboratory, Australian Research Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
369
|
Abstract
As an important metabolic pathway, phosphatidylinositol metabolism generates both constitutive and signalling molecules that are crucial for plant growth and development. Recent studies using genetic and molecular approaches reveal the important roles of phospholipid molecules and signalling in multiple processes of higher plants, including root growth, pollen and vascular development, hormone effects and cell responses to environmental stimuli plants. The present review summarizes the current progress in our understanding of the functional mechanism of phospholipid signalling, with an emphasis on the regulation of Ins(1,4,5)P3-Ca2+ oscillation, the second messenger molecule phosphatidic acid and the cytoskeleton.
Collapse
|
370
|
Kim EH, Kim YS, Park SH, Koo YJ, Choi YD, Chung YY, Lee IJ, Kim JK. Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. PLANT PHYSIOLOGY 2009; 149:1751-60. [PMID: 19211695 PMCID: PMC2663756 DOI: 10.1104/pp.108.134684] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/04/2009] [Indexed: 05/18/2023]
Abstract
Jasmonic acid (JA) is involved in plant development and the defense response. Transgenic overexpression of the Arabidopsis (Arabidopsis thaliana) jasmonic acid carboxyl methyltransferase gene (AtJMT) linked to the Ubi1 promoter increased levels of methyl jasmonate (MeJA) by 6-fold in young panicles. Grain yield was greatly reduced in Ubi1:AtJMT plants due to a lower numbers of spikelets and lower filling rates than were observed for nontransgenic (NT) controls. Ubi1:AtJMT plants had altered numbers of spikelet organs, including the lemma/palea, lodicule, anther, and pistil. The loss of grain yield and alteration in spikelet organ numbers were reproduced by treating NT plants with exogenous MeJA, indicating that increased levels of MeJA in Ubi1:AtJMT panicles inhibited spikelet development. Interestingly, MeJA levels were increased by 19-fold in young NT panicles upon exposure to drought conditions, resulting in a loss of grain yield that was similar to that observed in Ubi1:AtJMT plants. Levels of abscisic acid (ABA) were increased by 1.9- and 1.4-fold in Ubi1:AtJMT and drought-treated NT panicles, respectively. The ABA increase in Ubi1:AtJMT panicles grown in nondrought conditions suggests that MeJA, rather than drought stress, induces ABA biosynthesis under drought conditions. Using microarray and quantitative polymerase chain reaction analyses, we identified seven genes that were regulated in both Ubi1:AtJMT and drought-treated NT panicles. Two genes, OsJMT1 and OsSDR (for short-chain alcohol dehydrogenase), are involved in MeJA and ABA biosynthesis, respectively, in rice (Oryza sativa). Overall, our results suggest that plants produce MeJA during drought stress, which in turn stimulates the production of ABA, together leading to a loss of grain yield.
Collapse
Affiliation(s)
- Eun Hye Kim
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | | | | | | | | | | | | | | |
Collapse
|
371
|
Berger B, Baldwin IT. Silencing the hydroxyproline-rich glycopeptide systemin precursor in two accessions of Nicotiana attenuata alters flower morphology and rates of self-pollination. PLANT PHYSIOLOGY 2009; 149:1690-700. [PMID: 19211701 PMCID: PMC2663750 DOI: 10.1104/pp.108.132928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 01/29/2009] [Indexed: 05/27/2023]
Abstract
Systemins and their hydroxyproline-rich glycopeptide systemin (ppHS) subfamily members are known to mediate antiherbivore defenses in some solanaceous taxa but not others; functions other than in defense remain largely unexplored. Nicotiana attenuata's ppHS is known not to function in herbivore defense. NappHS transcripts are abundant in flowers, particularly in pistils, and when two N. attenuata accessions from Utah and Arizona were transformed to silence NappHS by RNAi (IRsys), seed capsule production and seed number per capsule were reduced in both accessions. These reductions in reproductive performance could not be attributed to impaired pollen or ovule viability; hand-pollination of all IRsys lines of both accessions restored seed production per capsule to levels found in wild-type plants. Rather, changes in flower morphology that decreased the efficiency of self-pollination are likely responsible: IRsys plants of both accessions have flowers with pistils that protrude beyond their anthers. Because these changes in flower morphology are reminiscent of CORONATINE-INSENSITIVE1-silenced N. attenuata plants, we measured jasmonates (JAs) and their biosynthetic transcripts in different floral developmental stages, and found levels of JA-isoleucine (Ile)/leucine and threonine deaminase transcripts, which are abundant in wild-type pistils, to be significantly reduced in IRsys buds and flowers. Threonine deaminase supplies Ile for JA-Ile biosynthesis, and we propose that ppHS mediates JA signaling during flower development and thereby changes flower morphology. These results suggest that the function of ppHS family members in N. attenuata may have diversified to modulate flower morphology and thereby outcrossing rates in response to biotic or abiotic stresses.
Collapse
Affiliation(s)
- Beatrice Berger
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, D-07745 Jena, Germany
| | | |
Collapse
|
372
|
Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 2009; 5:e1000440. [PMID: 19325888 PMCID: PMC2654962 DOI: 10.1371/journal.pgen.1000440] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 02/27/2009] [Indexed: 01/19/2023] Open
Abstract
Precise coordination between stamen and pistil development is essential to make a fertile flower. Mutations impairing stamen filament elongation, pollen maturation, or anther dehiscence will cause male sterility. Deficiency in plant hormone gibberellin (GA) causes male sterility due to accumulation of DELLA proteins, and GA triggers DELLA degradation to promote stamen development. Deficiency in plant hormone jasmonate (JA) also causes male sterility. However, little is known about the relationship between GA and JA in controlling stamen development. Here, we show that MYB21, MYB24, and MYB57 are GA-dependent stamen-enriched genes. Loss-of-function of two DELLAs RGA and RGL2 restores the expression of these three MYB genes together with restoration of stamen filament growth in GA-deficient plants. Genetic analysis showed that the myb21-t1 myb24-t1 myb57-t1 triple mutant confers a short stamen phenotype leading to male sterility. Further genetic and molecular studies demonstrate that GA suppresses DELLAs to mobilize the expression of the key JA biosynthesis gene DAD1, and this is consistent with the observation that the JA content in the young flower buds of the GA-deficient quadruple mutant ga1-3 gai-t6 rga-t2 rgl1-1 is much lower than that in the WT. We conclude that GA promotes JA biosynthesis to control the expression of MYB21, MYB24, and MYB57. Therefore, we have established a hierarchical relationship between GA and JA in that modulation of JA pathway by GA is one of the prerequisites for GA to regulate the normal stamen development in Arabidopsis.
Collapse
|
373
|
Yoshida Y, Sano R, Wada T, Takabayashi J, Okada K. Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 2009; 136:1039-48. [PMID: 19234066 DOI: 10.1242/dev.030585] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Once attacked by herbivores, plants regenerate new leaves with increased trichome density as an inducible defense. Trichomes are specified from neighboring epidermal cells through local cell-cell interactions in the leaf primordia. However, the molecular mechanism of how herbivore-induced damage at older leaves remodels the pattern of trichome fate specification at newly forming leaves is largely unknown. In this study, we show that mutations in either the biosynthetic or signaling pathway of jasmonates (JAs),long-distance wound signals, abolish the wound-induced formation of trichomes. To identify the factors linking JA signaling to trichome fate specification,we isolated a novel class of mutants, unarmed (urm), which lack trichome induction but show otherwise normal responses to JAs. URM9 encodes an Importin β family protein, and URM23 is identical to TRANSPARENT TESTA GLABRA1 (TTG1), the product of which interacts with the bHLH transcription factor GLABRA3 (GL3). Loss of either URM9 or URM23 disrupts the subnuclear localization of GL3, thus implicating GL3 in trichome induction. The expression of GL3 was enhanced by JA treatment prior to trichome initiation. Genetic analysis of multiple trichome mutants shows that GL3, in concert with the R2R3-Myb transcription factor GLABRA1 (GL1), promotes trichome fate in response to JA in a dosage-dependent manner. These results indicate that GL3 is a key transcription factor of wound-induced trichome formation acting downstream of JA signaling in Arabidopsis.
Collapse
Affiliation(s)
- Yuki Yoshida
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Ryosuke Sano
- Plant Science Center, RIKEN, Yokohama 230-0045, Japan
| | - Takuji Wada
- Plant Science Center, RIKEN, Yokohama 230-0045, Japan
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Kiyotaka Okada
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| |
Collapse
|
374
|
Li H, Xue D, Gao Z, Yan M, Xu W, Xing Z, Huang D, Qian Q, Xue Y. A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:593-605. [PMID: 18980657 PMCID: PMC2667685 DOI: 10.1111/j.1365-313x.2008.03710.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/19/2008] [Accepted: 09/26/2008] [Indexed: 05/19/2023]
Abstract
Recent studies have shown that molecular control of inner floral organ identity appears to be largely conserved between monocots and dicots, but little is known regarding the molecular mechanism underlying development of the monocot outer floral organ, a unique floral structure in grasses. In this study, we report the cloning of the rice EXTRA GLUME1 (EG1) gene, a putative lipase gene that specifies empty-glume fate and floral meristem determinacy. In addition to affecting the identity and number of empty glumes, mutations in EG1 caused ectopic floral organs to be formed at each organ whorl or in extra ectopic whorls. Iterative glume-like structures or new floral organ primordia were formed in the presumptive region of the carpel, resulting in an indeterminate floral meristem. EG1 is expressed strongly in inflorescence primordia and weakly in developing floral primordia. We also found that the floral meristem and organ identity gene OsLHS1 showed altered expression with respect to both pattern and levels in the eg1 mutant, and is probably responsible for the pleiotropic floral defects in eg1. As a putative class III lipase that functionally differs from any known plant lipase, EG1 reveals a novel pathway that regulates rice empty-glume fate and spikelet development.
Collapse
Affiliation(s)
- Haoge Li
- The State Key Laboratory of Rice Biology, College of Life Sciences, Zhejiang UniversityHangzhou, 310029 China
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene ResearchBeijing 100101, China
- The State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou 310006, China
- College of Biological Science and Technology, Shenyang Agricultural UniversityShenyang 110161, China
- † These authors contributed equally to this work
| | - Dawei Xue
- The State Key Laboratory of Rice Biology, College of Life Sciences, Zhejiang UniversityHangzhou, 310029 China
- The State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou 310006, China
- † These authors contributed equally to this work
| | - Zhenyu Gao
- The State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou 310006, China
| | - Meixian Yan
- The State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou 310006, China
| | - Wenying Xu
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene ResearchBeijing 100101, China
| | - Zhuo Xing
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene ResearchBeijing 100101, China
| | - Danian Huang
- The State Key Laboratory of Rice Biology, College of Life Sciences, Zhejiang UniversityHangzhou, 310029 China
- The State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou 310006, China
- * For correspondence (fax +86 10 62537814; e-mail or )
| | - Qian Qian
- The State Key Laboratory of Rice Biology, College of Life Sciences, Zhejiang UniversityHangzhou, 310029 China
- The State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou 310006, China
- * For correspondence (fax +86 10 62537814; e-mail or )
| | - Yongbiao Xue
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene ResearchBeijing 100101, China
- * For correspondence (fax +86 10 62537814; e-mail or )
| |
Collapse
|
375
|
Mandaokar A, Browse J. MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. PLANT PHYSIOLOGY 2009; 149:851-62. [PMID: 19091873 PMCID: PMC2633834 DOI: 10.1104/pp.108.132597] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 12/03/2008] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), jasmonate is a key signal required for stamen and pollen maturation and thus for male fertility. Using transcriptional profiling, we have previously identified a set of 13 transcription factors that are proposed to be involved in controlling jasmonate responses in stamens. This finding suggests that a transcriptional cascade regulates the many developmental and biochemical pathways required to ensure fertility; however, the organization of this cascade is currently not understood. Here, we provide a genetic characterization of the role of MYB108 and map its relationship to MYB21 and MYB24, two other transcription factors involved in the jasmonate response in Arabidopsis stamens. Transcriptional profiling and analysis of plants expressing a MYB108:GUS fusion protein demonstrated that MYB108 expression is largely confined to sporophytic tissues of the stamen. Three allelic myb108 mutants exhibited reduced male fertility that was associated with delayed anther dehiscence, reduced pollen viability, and decreased fecundity relative to wild type. These phenotypes were all found to be exacerbated in myb108 myb24 double mutants, which also had shorter stamen filaments. Measurements of MYB108 transcript levels in wild-type and mutant flowers showed that expression of this gene is strongly dependent on MYB21. Taken together, our results indicate that MYB108 and MYB24 have overlapping functions and act downstream of MYB21 in a transcriptional cascade that mediates stamen and pollen maturation in response to jasmonate.
Collapse
Affiliation(s)
- Ajin Mandaokar
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | |
Collapse
|
376
|
Kurasawa K, Matsui A, Yokoyama R, Kuriyama T, Yoshizumi T, Matsui M, Suwabe K, Watanabe M, Nishitani K. The AtXTH28 gene, a xyloglucan endotransglucosylase/hydrolase, is involved in automatic self-pollination in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2009; 50:413-22. [PMID: 19139039 PMCID: PMC2642609 DOI: 10.1093/pcp/pcp003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/04/2009] [Indexed: 05/22/2023]
Abstract
Successful automatic self-pollination in flowering plants is dependent on the correct development of reproductive organs. In the stamen, the appropriate growth of the filament, which largely depends on the mechanical properties of the cell wall, is required to position the anther correctly close to the stigma at the pollination stage. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a family of enzymes that mediate the construction and restructuring of xyloglucan cross-links, thereby controlling the extensibility or mechanical properties of the cell wall in a wide variety of plant tissues. Our reverse genetic analysis has revealed that a loss-of-function mutation of an Arabidopsis XTH family gene, AtXTH28, led to a decrease in capability for self-pollination, probably due to inhibition of stamen filament growth. Our results also suggest that the role of AtXTH28 in the development of the stamen is not functionally redundant with its closest paralog, AtXTH27. Thus, our finding indicates that AtXTH28 is specifically involved in the growth of stamen filaments, and is required for successful automatic self-pollination in certain flowers in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kasumi Kurasawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Akihiro Matsui
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Ryusuke Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Tomoko Kuriyama
- Plant Functional Genomics Research Team, Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Takeshi Yoshizumi
- Plant Functional Genomics Research Team, Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Minami Matsui
- Plant Functional Genomics Research Team, Plant Functional Genomics Research Group, Plant Science Center, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Keita Suwabe
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Masao Watanabe
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
- The 21st Century Center of Excellence Program, Iwate University, Morioka, 020-8550 Japan
| | - Kazuhiko Nishitani
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| |
Collapse
|
377
|
Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 2009; 323:262-5. [PMID: 19131630 DOI: 10.1126/science.1164645] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sex determination in maize is controlled by a developmental cascade leading to the formation of unisexual florets derived from an initially bisexual floral meristem. Abortion of pistil primordia in staminate florets is controlled by a tasselseed-mediated cell death process. We positionally cloned and characterized the function of the sex determination gene tasselseed1 (ts1). The TS1 protein encodes a plastid-targeted lipoxygenase with predicted 13-lipoxygenase specificity, which suggests that TS1 may be involved in the biosynthesis of the plant hormone jasmonic acid. In the absence of a functional ts1 gene, lipoxygenase activity was missing and endogenous jasmonic acid concentrations were reduced in developing inflorescences. Application of jasmonic acid to developing inflorescences rescued stamen development in mutant ts1 and ts2 inflorescences, revealing a role for jasmonic acid in male flower development in maize.
Collapse
Affiliation(s)
- Iván F Acosta
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | |
Collapse
|
378
|
Chung HS, Howe GA. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. THE PLANT CELL 2009; 21:131-45. [PMID: 19151223 PMCID: PMC2648087 DOI: 10.1105/tpc.108.064097] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/22/2008] [Accepted: 01/02/2009] [Indexed: 05/17/2023]
Abstract
JASMONATE ZIM-domain (JAZ) proteins act as repressors of jasmonate (JA) signaling. Perception of bioactive JAs by the F-box protein CORONATINE INSENSITIVE1 (COI1) causes degradation of JAZs via the ubiquitin-proteasome pathway, which in turn activates the expression of genes involved in plant growth, development, and defense. JAZ proteins contain two highly conserved sequence regions: the Jas domain that interacts with COI1 to destabilize the repressor and the ZIM domain of unknown function. Here, we show that the conserved TIFY motif (TIFF/YXG) within the ZIM domain mediates homo- and heteromeric interactions between most Arabidopsis thaliana JAZs. We have also identified an alternatively spliced form (JAZ10.4) of JAZ10 that lacks the Jas domain and, as a consequence, is highly resistant to JA-induced degradation. Strong JA-insensitive phenotypes conferred by overexpression of JAZ10.4 were suppressed by mutations in the TIFY motif that block JAZ10.4-JAZ interactions. We conclude that JAZ10.4 functions to attenuate signal output in the presence of JA and further suggest that the dominant-negative action of this splice variant involves protein-protein interaction through the ZIM/TIFY domain. The ability of JAZ10.4 to interact with MYC2 is consistent with a model in which a JAZ10.4-containing protein complex directly represses the activity of transcription factors that promote expression of JA response genes.
Collapse
Affiliation(s)
- Hoo Sun Chung
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
379
|
Cacas JL, Marmey P, Montillet JL, Sayegh-Alhamdia M, Jalloul A, Rojas-Mendoza A, Clérivet A, Nicole M. A novel patatin-like protein from cotton plant, GhPat1, is co-expressed with GhLox1 during Xanthomonas campestris-mediated hypersensitive cell death. PLANT CELL REPORTS 2009; 28:155-164. [PMID: 18850102 DOI: 10.1007/s00299-008-0622-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/12/2008] [Accepted: 09/22/2008] [Indexed: 05/26/2023]
Abstract
In cotton plant, Xanthomonas-induced hypersensitive response (HR) is accompanied by a lipid peroxidation process involving a 9-lipoxygenase (LOX), GhLox1. Initiation of this oxidative metabolism implies the release of the LOX substrates, or polyunsaturated fatty acids. Since patatin-like proteins (PLPs) are likely candidates for mediating the latter step, we searched for genes encoding such enzymes, identified and cloned one of them that we named GhPat1. Biochemical and molecular studies showed that GhPat1 expression was up-regulated during the incompatible interaction, prior to the onset of the corresponding galactolipase activity and cell death symptoms in tissues. Protein sequence analysis and modelling also revealed that GhPat1 catalytic amino acids and fold were conserved across plant PLPs. Based on these results and our previous work (Jalloul et al. in Plant J 32:1-12, 2002), a role for GhPat1, in synergy with GhLox1, during HR-specific lipid peroxidation is discussed.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Résistance des Plantes aux Bioagresseurs, Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
380
|
Abstract
Since the discovery of the phosphoinositide/phospholipase C (PI/PLC) system in animal systems, we know that phospholipids are much more then just structural components of biological membranes. In the beginning, this idea was fairly straightforward. Receptor stimulation activates PLC, which hydrolyses phosphatidylinositol4,5-bisphosphate [PtdIns(4,5)P2] into two second messengers: inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DG). While InsP3 difuses into the cytosol and triggers the release of calcium from an internal store via ligand-gated calcium channels, DG remains in the membrane where it recruits and activates members of the PKC family. The increase in calcium, together with the change in phosphorylation status, (in)activates a variety of protein targets, leading to a massive reprogramming, allowing the cell to appropriately respond to the extracellular stimulus. Later, it became obvious that not just PLC, but a variety of other phospholipid-metabolizing enzymes were activated, including phospholipase A, phospholipase D, and PI 3-kinase. More recently, it has become apparent that PtdIns4P and PtdIns(4,5)P2 are not just signal precursors but can also function as signaling molecules themselves. While plants contain most of the components described above, and evidence for their role in cell signaling is progressively increasing, major differences between plants and the mammalian paradigms exist. Below, these are described "in a nutshell."
Collapse
Affiliation(s)
- Teun Munnik
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL-1098SM, Amsterdam, The Netherlands.
| | | |
Collapse
|
381
|
Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 2008; 6:e230. [PMID: 18816164 PMCID: PMC2553836 DOI: 10.1371/journal.pbio.0060230] [Citation(s) in RCA: 577] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 08/13/2008] [Indexed: 01/09/2023] Open
Abstract
Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate. Short, single-stranded RNA molecules called microRNAs (miRNAs) regulate gene expression by negatively controlling both the stability and translation of target messenger RNAs that they recognize through sequence complementarity. In plants, miRNAs mostly regulate other regulators, the DNA-binding transcription factors. We investigated the downstream events regulated by five TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factors that are controlled by the microRNA miR319 in Arabidopsis thaliana. The miR319-regulated TCPs were previously known to be important for limiting the growth of leaves. By applying a combination of genome-wide, biochemical, and genetic studies, we identified new TCP targets that include enzymes responsible for the synthesis of the hormone jasmonic acid. Our analysis of leaf extracts from plants with increased activity of miR319 confirms that altered expression of the biosynthetic genes leads to changed jasmonic acid levels. These plants show also an altered senescence behavior that becomes more normal again when the plants are treated with jasmonate. We propose that the miR319-regulated TCP factors thus coordinate different aspects of leaf development and physiology: growth, which they negatively regulate, and aging, which they positively regulate. A plant microRNA and its targets turn out to regulate both early and late stages of leaf development: early on, they inhibit growth, while later on, they promote the onset of senescence.
Collapse
Affiliation(s)
- Carla Schommer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Javier F Palatnik
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Pooja Aggarwal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Aurore Chételat
- Gene Expression Laboratory, Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pilar Cubas
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Edward E Farmer
- Gene Expression Laboratory, Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
382
|
Sousa E, Kost B, Malhó R. Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. THE PLANT CELL 2008; 20:3050-64. [PMID: 19033528 PMCID: PMC2613665 DOI: 10.1105/tpc.108.058826] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 10/19/2008] [Accepted: 11/09/2008] [Indexed: 05/18/2023]
Abstract
Phosphatidylinositol-4-monophosphate 5-kinases produce phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] and have been implicated in vesicle trafficking and cytoskeletal rearrangements. Here, we adopted a reverse genetics approach to investigate the function of the Arabidopsis thaliana pollen-expressed gene encoding phosphatidylinositol-4-monophosphate 5-kinase 4 (PIP5K4). Pollen germination, tube growth, and polarity were significantly impaired in homozygous mutant plants lacking PIP5K4 transcript. In vitro, supplementation with PtdIns(4,5)P(2) rescued these phenotypes. In vivo, mutant pollen fertilized ovules, leading to normal seed set and silique length. However, fertilization took longer than in wild-type plants, and the pip5k4 null mutant allele was transmitted through the pollen at a reduced frequency. Analysis of endocytic events using FM1-43 (or FM4-64) suggested a reduction in endocytosis and membrane recycling in pip5k4 null mutant pollen tubes. Imaging of elongating tobacco (Nicotiana tabacum) pollen tubes transiently transformed with a PIP5K4-green fluorescent protein fusion construct revealed that the protein localized to the plasma membrane, particularly in the subapical region. Overexpression of PIP5K4-GFP delocalized the protein to the apical region of the plasma membrane, perturbed pollen tube growth, and caused apical cell wall thickening. Thus, PIP5K4 plays a crucial role in regulating the polarity of pollen tubes. This study supports a model for membrane secretion and recycling where the apical and subapical regions appear to contain the components required to promote and sustain growth.
Collapse
Affiliation(s)
- Eva Sousa
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, Instituto Ciéncia Aplicada e Tecnologia, 1749-016 Lisboa, Portugal
| | | | | |
Collapse
|
383
|
Hyun Y, Lee I. Generating and maintaining jasmonic acid in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2008; 3:798-800. [PMID: 19704561 PMCID: PMC2634376 DOI: 10.4161/psb.3.10.5875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 03/10/2008] [Indexed: 05/28/2023]
Abstract
Jasmonic acid (JA) is a lipid-derived plant hormone that mediates diverse biological phenomena. It is one of major goals in JA research field to elucidate the regulatory mechanism of JA level. Recently we have demonstrated cooperative and differentiated roles of two chloroplast localized galactolipases, DGL (DONGLE) and DAD1 (DEFECTIVE IN ANTHER DEHISCENCE 1), for the regulation of JA content. The DGL maintains a basal level of JA in unwounded vegetative tissues, while the DAD1 is involved in JA production in floral tissues. The JA in vegetative tissues regulates cell expansion while the JA produced in flowers regulates pollen maturation. After wounding, the cooperative function of DGL and DAD1 causes drastic increase of JA. The analysis of induction kinetics showed that the two enzymes have temporally separated roles in wound response; DGL in early phase and DAD1 in late phase of JA production. In this addendum, we discuss the implications of our recent findings and extend our working model for JA homeostasis in plants.
Collapse
Affiliation(s)
- Youbong Hyun
- National Research Laboratory of Plant Developmental Genetics; Department of Biological Sciences; Seoul National University; Seoul, Korea
| | - Ilha Lee
- National Research Laboratory of Plant Developmental Genetics; Department of Biological Sciences; Seoul National University; Seoul, Korea
- Global Research Laboratory for Flowering at SNU and UW; Seoul Korea
| |
Collapse
|
384
|
Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim RA, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. PLANT & CELL PHYSIOLOGY 2008; 49:1429-50. [PMID: 18718932 PMCID: PMC2566925 DOI: 10.1093/pcp/pcn123] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/18/2008] [Indexed: 05/18/2023]
Abstract
To investigate the involvement of phytohormones during rice microspore/pollen (MS/POL) development, endogenous levels of IAA, gibberellins (GAs), cytokinins (CKs) and abscisic acid (ABA) in the mature anther were analyzed. We also analyzed the global expression profiles of genes related to seven phytohormones, namely auxin, GAs, CKs, brassinosteroids, ethylene, ABA and jasmonic acids, in MS/POL and tapetum (TAP) using a 44K microarray combined with a laser microdissection technique (LM-array analysis). IAA and GA(4) accumulated in a much higher amount in the mature anther compared with the other tissues, while CKs and ABA did not. LM-array analysis revealed that sets of genes required for IAA and GA synthesis were coordinately expressed during the later stages of MS/POL development, suggesting that these genes are responsible for the massive accumulation of IAA and GA(4) in the mature anther. In contrast, genes for GA signaling were preferentially expressed during the early developmental stages of MS/POL and throughout TAP development, while their expression was down-regulated at the later stages of MS/POL development. In the case of auxin signaling genes, such mirror-imaged expression observed in GA synthesis and signaling genes was not observed. IAA receptor genes were mostly expressed during the late stages of MS/POL development, and various sets of AUX/IAA and ARF genes were expressed during the different stages of MS/POL or TAP development. Such cell type-specific expression profiles of phytohormone biosynthesis and signaling genes demonstrate the validity and importance of analyzing the expression of phytohormone-related genes in individual cell types independently of other cells/tissues.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | - Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | - Tokunori Hobo
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | | | - Mikiko Kojima
- RIKEN Plant Science Center, Tsurumi, Yokohama, 230-0045 Japan
| | | | - Yasuko Hasegawa
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | | | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| |
Collapse
|
385
|
Shimizu KK, Ito T, Ishiguro S, Okada K. MAA3 (MAGATAMA3) helicase gene is required for female gametophyte development and pollen tube guidance in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2008; 49:1478-83. [PMID: 18772186 PMCID: PMC2566929 DOI: 10.1093/pcp/pcn130] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/29/2008] [Indexed: 05/18/2023]
Abstract
The female gametophyte plays a central role in the sexual reproduction of angiosperms. We previously isolated the maa3 (magatama3) mutant of Arabidopsis thaliana, defective in development of the female gametophyte, micropylar pollen tube guidance, and preventing the attraction of multiple pollen tubes. We here observed that the nucleolus of polar nuclei is small, and that the fusion of polar nuclei often did not occur at the time of pollination. The MAA3 gene encodes a homolog of yeast Sen1 helicase, required for RNA metabolism. It is suggested that MAA3 may regulate RNA molecules responsible for nucleolar organization and pollen tube guidance.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake, Sakyo, Kyoto, 606-8502 Japan.
| | | | | | | |
Collapse
|
386
|
Sharma SK, Millam S, Hedley PE, McNicol J, Bryan GJ. Molecular regulation of somatic embryogenesis in potato: an auxin led perspective. PLANT MOLECULAR BIOLOGY 2008; 68:185-201. [PMID: 18553172 DOI: 10.1007/s11103-008-9360-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 05/31/2008] [Indexed: 05/22/2023]
Abstract
Potato internodal segments (INS) treated with the auxin 2,4-dichlorophenoxyacetic acid can be induced to develop somatic embryos upon their transfer to an auxin-free medium, while the continuous presence of auxin in the medium suppresses the progression of embryogenically-induced somatic cells to embryos. We have employed these contrasting pathways, in combination with potato microarrays representing circa 10,000 genes, to profile global gene expression patterns during the progression of somatic embryogenesis in potato. The induction phase, characterised by the presence of auxin, was analysed by the direct comparison of RNA isolated from freshly excised (0 days) and embryogenically induced (14 days) INS explants. RNAs from embryo-forming (withdrawal of auxin after 14 days) and embryo-inhibitory (continuous presence of auxin) conditions, isolated over a range of time-points until the emergence of somatic embryos, were compared in a loop design to identify auxin responsive genes putatively involved in the process of somatic embryogenesis. A total of 402 transcripts were found to be showing significant differential expression patterns during somatic embryogenesis 'induction' phase, 524 during 'embryo-transition' phase, while 44 transcripts were common to both phases. Functional classification of these transcripts, using Gene Ontology vocabularies (molecular and biological), revealed that a significant proportion of transcripts were involved in processes which are more relevant to somatic embryogenesis such as apoptosis, development, reproduction, stress and signal transduction. This is the first study profiling global gene expression patterns during true somatic embryogenesis initiated from mature and completely differentiated explants and has enabled the description of stage-specific expression patterns of a large number of genes during potato somatic embryogenesis (PSE). The significance of the key identified genes during critical stages of somatic embryogenesis is discussed.
Collapse
|
387
|
Verelst W, Twell D, de Folter S, Immink R, Saedler H, Münster T. MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 2008; 8:R249. [PMID: 18034896 PMCID: PMC2258202 DOI: 10.1186/gb-2007-8-11-r249] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/15/2007] [Accepted: 11/22/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differentiation processes are responsible for the diversity and functional specialization of the cell types that compose an organism. The outcome of these processes can be studied at molecular, physiologic, and biochemical levels by comparing different cell types, but the complexity and dynamics of the regulatory processes that specify the differentiation are largely unexplored. RESULTS Here we identified the pollen-specific MIKC* class of MADS-domain transcription factors as major regulators of transcriptome dynamics during male reproductive cell development in Arabidopsis thaliana. Pollen transcript profiling of mutants deficient in different MIKC* protein complexes revealed that they control a transcriptional switch that directs pollen maturation and that is essential for pollen competitive ability. We resolved the functional redundancy among the MIKC* proteins and uncovered part of the underlying network by identifying the non-MIKC* MADS-box genes AGL18 and AGL29 as downstream regulators of a subset of the MIKC* MADS-controlled genes. CONCLUSION Our results provide a first, unique, and compelling insight into the complexity of a transcription factor network that directs cellular differentiation during pollen maturation, a process that is essential for male reproductive fitness in flowering plants.
Collapse
Affiliation(s)
- Wim Verelst
- Department of Molecular Plant Genetics, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg, 50829 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
388
|
Ge X, Wang H, Cao K. Transformation by T-DNA integration causes highly sterile phenotype independent of transgenes in Arabidopsis thaliana. PLANT CELL REPORTS 2008; 27:1341-8. [PMID: 18521611 DOI: 10.1007/s00299-008-0561-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 05/04/2008] [Accepted: 05/18/2008] [Indexed: 05/24/2023]
Abstract
Agrobacterium tumefaciens-mediated gene transformation caused highly sterile phenotype in T1 transgenic populations of Arabidopsis thaliana. The phenomenon occurred independent of the genes and construct types used for transformation. The occurring frequency is less than 10% and the phenotype is inheritable. Intensive examination elucidated that the sterility is due to indehiscence or delayed dehiscence of the anthers during the flowering stage, resulting from the reduced or disordered endothecial secondary wall thickening of the anthers in the sterile flowers. Exogenous jasmonic acid application cannot rescue the sterile phenotype. Additionally, by using the Escherichia coli uidA gene encoding the beta-glucuronidase as a reporter gene, we indicated that the Cauliflower mosaic virus 35S promoter was not constitutively active as expected previously in the reproductive organs of Arabidopsis. These results contribute significantly to the plant community by suggesting that more careful examination and statistical analysis are needed while studying gain-of-function phenotypes of genes, especially for genes that might be involved in reproductive development.
Collapse
Affiliation(s)
- Xiaochun Ge
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, 220 Handan Road, Shanghai, 200433, People's Republic of China.
| | | | | |
Collapse
|
389
|
Hou X, Hu WW, Shen L, Lee LYC, Tao Z, Han JH, Yu H. Global identification of DELLA target genes during Arabidopsis flower development. PLANT PHYSIOLOGY 2008; 147:1126-42. [PMID: 18502975 PMCID: PMC2442519 DOI: 10.1104/pp.108.121301] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/20/2008] [Indexed: 05/19/2023]
Abstract
Gibberellin (GA) plays important roles in regulating many aspects of plant development. GA derepresses its signaling pathway by promoting the degradation of DELLA proteins, a family of nuclear growth repressors. Although the floral organ identity is established in flowers of the GA-deficient mutant ga1-3, the growth of all floral organs is severely retarded. In particular, abortive anther development in ga1-3 results in male sterility. Genetic analysis has revealed that various combinations of null mutants of DELLA proteins could gradually rescue floral organ defects in ga1-3 and that RGA is the most important DELLA protein involved in floral organ development. To elucidate the early molecular events controlled by RGA during flower development, we performed whole-genome microarray analysis to identify genes in response to the steroid-inducible activation of RGA in ga1-3 rgl2 rga 35S:RGA-GR. Although DELLA proteins were suggested as transcriptional repressors, similar numbers of genes were down-regulated or up-regulated by RGA during floral organ development. More than one-third of RGA down-regulated genes were specifically or predominantly expressed in stamens. A significant number of RGA-regulated genes are involved in phytohormone signaling or stress response. Further expression analysis through activation of RGA by steroid induction combined with cycloheximide identified eight genes as immediate targets of RGA. In situ hybridization and transgenic studies further showed that the expression pattern and function of several selected genes were consistent with the predictions from microarray analysis. These results suggest that DELLA regulation of floral organ development is modulated by multiple phytohormones and stress signaling pathways.
Collapse
Affiliation(s)
- Xingliang Hou
- Department of Biological Sciences, Faculty of Sciences , National University of Singapore, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
390
|
Hou X, Hu WW, Shen L, Lee LYC, Tao Z, Han JH, Yu H. Global identification of DELLA target genes during Arabidopsis flower development. PLANT PHYSIOLOGY 2008. [PMID: 18502975 DOI: 10.1104/pp.108.121301:pp.108.121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Gibberellin (GA) plays important roles in regulating many aspects of plant development. GA derepresses its signaling pathway by promoting the degradation of DELLA proteins, a family of nuclear growth repressors. Although the floral organ identity is established in flowers of the GA-deficient mutant ga1-3, the growth of all floral organs is severely retarded. In particular, abortive anther development in ga1-3 results in male sterility. Genetic analysis has revealed that various combinations of null mutants of DELLA proteins could gradually rescue floral organ defects in ga1-3 and that RGA is the most important DELLA protein involved in floral organ development. To elucidate the early molecular events controlled by RGA during flower development, we performed whole-genome microarray analysis to identify genes in response to the steroid-inducible activation of RGA in ga1-3 rgl2 rga 35S:RGA-GR. Although DELLA proteins were suggested as transcriptional repressors, similar numbers of genes were down-regulated or up-regulated by RGA during floral organ development. More than one-third of RGA down-regulated genes were specifically or predominantly expressed in stamens. A significant number of RGA-regulated genes are involved in phytohormone signaling or stress response. Further expression analysis through activation of RGA by steroid induction combined with cycloheximide identified eight genes as immediate targets of RGA. In situ hybridization and transgenic studies further showed that the expression pattern and function of several selected genes were consistent with the predictions from microarray analysis. These results suggest that DELLA regulation of floral organ development is modulated by multiple phytohormones and stress signaling pathways.
Collapse
Affiliation(s)
- Xingliang Hou
- Department of Biological Sciences, Faculty of Sciences , National University of Singapore, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
391
|
Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. THE PLANT CELL 2008; 20:1760-74. [PMID: 18628351 PMCID: PMC2518247 DOI: 10.1105/tpc.107.057570] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 06/27/2008] [Accepted: 07/02/2008] [Indexed: 05/18/2023]
Abstract
We provide evidence on the localization, synthesis, transport, and effects of auxin on the processes occurring late in Arabidopsis thaliana stamen development: anther dehiscence, pollen maturation, and preanthesis filament elongation. Expression of auxin-sensitive reporter constructs suggests that auxin effects begin in anthers between the end of meiosis and the bilocular stage in the somatic tissues involved in the first step of dehiscence as well as in the microspores and in the junction region between anther and filament. In situ hybridizations of the auxin biosynthetic genes YUC2 and YUC6 suggest that auxin is synthesized in anthers. In agreement with the timing of auxin effects, the TIR1, AFB1, AFB2, and AFB3 auxin receptor-encoding genes are transcribed in anthers only during late stages of development starting at the end of meiosis. We found that in tir1 afb triple and quadruple mutants, anther dehiscence and pollen maturation occur earlier than in the wild type, causing the release of mature pollen grains before the completion of filament elongation. We also assessed the contribution of auxin transport to late stamen developmental processes. Our results suggest that auxin synthesized in anthers plays a major role in coordinating anther dehiscence and pollen maturation, while auxin transport contributes to the independent regulation of preanthesis filament elongation.
Collapse
Affiliation(s)
- Valentina Cecchetti
- Dipartimento di Genetica e Biologia Molecolare, Istituto Pasteur Fondazione Cenci Bolognetti, Università La Sapienza, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
392
|
Li Y, Cao J. Morphological and functional characterization of BcMF13 in the antisense-silenced plants of Brassica campestris ssp. chinensis var. parachinensis. Mol Biol Rep 2008; 36:929-37. [PMID: 18592396 DOI: 10.1007/s11033-008-9265-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 04/18/2008] [Indexed: 11/29/2022]
Abstract
The gene Brassica campestris male fertility 13 (BcMF13, GenBank accession number EF158459) was isolated as a reproductive organ-specific gene from Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis). It is exclusively expressed in stage four and five flower buds of fertile lines and is most strongly expressed in stamens. Here, we report a functional characterization of this BcMF13 gene in the antisense-silenced plants. The inflorescence of the BcMF13 mutant was compacted with anthers curved outside. The fertility of this mutant was greatly reduced with less than 5 seeds per silique. Under scanning electron microscopy, the mutant demonstrated numerous shriveled pollen grains with deep invaginations. The frequency of normal pollen grains was just 45.34%. The pollen mother cell, the tetrad, and the mature pollen of the BcMF13 mutant were abnormal resulting in the poor pollen vitality. Germination test in vivo suggested BcMF13 delayed the pollen tubes' extension in the style. All these indicated BcMF13 had a vital role in pollen development of Chinese cabbage.
Collapse
Affiliation(s)
- Yanyan Li
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
393
|
Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C. Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. THE NEW PHYTOLOGIST 2008; 177:114-127. [PMID: 17995915 DOI: 10.1111/j.1469-8137.2007.02252.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In potato 12-hydroxyjasmonic acid (12-OH-JA) is a tuber-inducing compound. Here, it is demonstrated that 12-OH-JA, as well as its sulfated and glucosylated derivatives, are constituents of various organs of many plant species. All accumulate differentially and usually to much higher concentrations than jasmonic acid (JA). In wounded tomato leaves, 12-OH-JA and its sulfated, as well as glucosylated, derivative accumulate after JA, and their diminished accumulation in wounded leaves of the JA-deficient mutants spr2 and acx1 and also a JA-deficient 35S::AOCantisense line suggest their JA-dependent formation. To elucidate how signaling properties of JA/JAME (jasmonic acid methyl ester) are affected by hydroxylation and sulfation, germination and root growth were recorded in the presence of the different jasmonates, indicating that 12-OH-JA and 12-hydroxyjasmonic acid sulfate (12-HSO(4)-JA) were not bioactive. Expression analyses for 29 genes showed that expression of wound-inducible genes such as those coding for PROTEINASE INHIBITOR2, POLYPHENOL OXIDASE, THREONINE DEAMINASE or ARGINASE was induced by JAME and less induced or even down-regulated by 12-OH-JA and 12-HSO(4)-JA. Almost all genes coding for enzymes in JA biosynthesis were up-regulated by JAME but down-regulated by 12-OH-JA and 12-HSO(4)-JA. The data suggest that wound-induced metabolic conversion of JA/JAME into 12-OH-JA alters expression pattern of genes including a switch off in JA signaling for a subset of genes.
Collapse
Affiliation(s)
- Otto Miersch
- Leibniz-Institute of Plant Biochemistry, Department of Natural Product Biotechnology, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Jana Neumerkel
- Leibniz-Institute of Plant Biochemistry, Department of Natural Product Biotechnology, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Martin Dippe
- Leibniz-Institute of Plant Biochemistry, Department of Natural Product Biotechnology, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Irene Stenzel
- Leibniz-Institute of Plant Biochemistry, Department of Natural Product Biotechnology, Weinberg 3, D-06120 Halle (Saale), Germany
- Albrecht-von-Haller-Institute for Plant Sciences, Georg-August University of Goettingen, Department of Plant Biochemistry of Plants, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany
| | - Claus Wasternack
- Leibniz-Institute of Plant Biochemistry, Department of Natural Product Biotechnology, Weinberg 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
394
|
Balbi V, Devoto A. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. THE NEW PHYTOLOGIST 2008; 177:301-318. [PMID: 18042205 DOI: 10.1111/j.1469-8137.2007.02292.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant development and stress responses are regulated by complex signalling networks that mediate specific and dynamic plant responses upon activation by various types of exogenous and endogenous signal. In this review, we focus on the latest published work on jasmonate (JA) signalling components and new regulatory nodes in the transcriptional network that regulates a number of diverse plant responses to developmental and environmental cues. Not surprisingly, the majority of the key revelations in the field have been made in Arabidopsis thaliana. However, for comparative reasons, we integrate information on Arabidopsis with recent reports for other plant species (when available). Recent findings on the regulation of plant responses to pathogens by JAs, as well as new evidence implicating JAs in the regulation of senescence, suggest a common mechanism of JA action in these responses via distinct groups of transcription factors. Moreover, a significant increase in the amount of evidence has allowed placing of specific mitogen-activated protein kinases (MAPKs) as crucial regulatory nodes in the defence signalling network. In addition, we report on new physiological scenarios for JA signalling, such as organogenesis of nitrogen-fixing nodules and anticancer therapy.
Collapse
Affiliation(s)
- Virginia Balbi
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Alessandra Devoto
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
395
|
Ito T, Ng KH, Lim TS, Yu H, Meyerowitz EM. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. THE PLANT CELL 2007; 19:3516-29. [PMID: 17981996 PMCID: PMC2174883 DOI: 10.1105/tpc.107.055467] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 10/07/2007] [Accepted: 10/10/2007] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana floral homeotic gene AGAMOUS (AG) plays a central role in reproductive organ (stamen and carpel) development. AG RNA is expressed in the center of floral primordia from a time prior to the initiation of stamen and carpel primordia until late in flower development. While early AG expression acts in specification of stamens and carpels, the role, if any, of continued AG expression in later flower development is unknown. To examine the timing of AG action and its possible late-stage functions, we performed a series of time-course experiments using a transgenic line with inducible AG activity in an ag homozygous mutant background. We show that AG controls late-stage stamen development, including anther morphogenesis and dehiscence, as well as filament formation and elongation. We further show that AG coordinates late stamen maturation by controlling a biosynthetic gene of the lipid-derived phytohormone jasmonic acid (JA). Expression analysis and in vivo binding of AG indicate that AG directly regulates the transcription of a catalytic enzyme of JA, DEFECTIVE IN ANTHER DEHISCENCE1. Our results indicate that stamen identity and differentiation control by AG is achieved by the regulation of different transcriptional cascades in different floral stages, with organ specification induced early, followed by phytohormone biosynthesis to coordinate stamen maturation.
Collapse
Affiliation(s)
- Toshiro Ito
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.
| | | | | | | | | |
Collapse
|
396
|
Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. ANNALS OF BOTANY 2007; 100:681-97. [PMID: 17513307 PMCID: PMC2749622 DOI: 10.1093/aob/mcm079] [Citation(s) in RCA: 1100] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 02/15/2007] [Indexed: 05/15/2023]
Abstract
BACKGROUND Jasmonates are ubiquitously occurring lipid-derived compounds with signal functions in plant responses to abiotic and biotic stresses, as well as in plant growth and development. Jasmonic acid and its various metabolites are members of the oxylipin family. Many of them alter gene expression positively or negatively in a regulatory network with synergistic and antagonistic effects in relation to other plant hormones such as salicylate, auxin, ethylene and abscisic acid. SCOPE This review summarizes biosynthesis and signal transduction of jasmonates with emphasis on new findings in relation to enzymes, their crystal structure, new compounds detected in the oxylipin and jasmonate families, and newly found functions. CONCLUSIONS Crystal structure of enzymes in jasmonate biosynthesis, increasing number of jasmonate metabolites and newly identified components of the jasmonate signal-transduction pathway, including specifically acting transcription factors, have led to new insights into jasmonate action, but its receptor(s) is/are still missing, in contrast to all other plant hormones.
Collapse
Affiliation(s)
- C Wasternack
- Department of Natural Product Biotechnology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.
| |
Collapse
|
397
|
Böttcher C, Weiler EW. cyclo-Oxylipin-galactolipids in plants: occurrence and dynamics. PLANTA 2007; 226:629-37. [PMID: 17404756 DOI: 10.1007/s00425-007-0511-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 03/14/2007] [Indexed: 05/14/2023]
Abstract
cyclo-Oxylipin-galactolipids (cGL) are mono- or digalactosyldiglycerides carrying a cyclo-oxylipin in the sn1- and/or sn2-position or esterified to the galactose moiety. These compounds were recently identified in Arabidopsis thaliana. We provide evidence that cGL are mainly, if not exclusively, part of the thylakoid and can be hydrolysed by lipolytic activities associated with photosynthesis-related protein complexes in vitro. Using HPLC/ESI-mass spectrometry, cGL are shown to be restricted in occurrence to the genus Arabidopsis, they do not occur in other plants tested. A. thaliana cGL are rapidly and transiently formed upon wounding with characteristic changes in composition of the cGL-fraction. While the biological role of cGL is not understood, the genus Arabidopsis may present a model-case of chemical evolution of a novel class of regulatory molecules.
Collapse
Affiliation(s)
- Christine Böttcher
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany.
| | | |
Collapse
|
398
|
Yang W, Devaiah SP, Pan X, Isaac G, Welti R, Wang X. AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. J Biol Chem 2007; 282:18116-18128. [PMID: 17475618 DOI: 10.1074/jbc.m700405200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular phospholipase A2 (PLA2) plays an important role in regulating oxylipin biosynthesis in mammals, but the molecular and biochemical nature of intracellular PLA2 is not well understood in plants. Arabidopsis thaliana gene At1g61850 (AtPLAI) encodes a 140-kDa protein that is most similar to mammalian calcium-independent PLA2, and additionally contains leucine-rich repeats and Armadillo repeats. AtPLAI hydrolyzes phospholipids at both the sn-1 and sn-2 positions, but prefers galactolipids to phospholipids as substrates. Profiling of lipid species altered in response to the necrotrophic fungus Botrytis cinerea revealed decreases in the levels of phosphatidylglycerol and digalactosyldiacylglycerol, suggesting that hydrolysis of plastidic polar lipids might provide precursors for pathogen-induced jasmonic acid (JA) production. Disruption of AtPLAI by T-DNA insertion reduced the basal level of JA, but did not impede pathogen-induced production of JA, free linolenic acid, or hydrolysis of plastidic lipids. Still, AtPLAI-deficient plants exhibited more damage than wild type plants after B. cinerea infection, and pretreatment of plants with methyl jasmonate alleviated pathogen damage to the mutant plants. The study shows that AtPLAI is an acyl hydrolase, rather than a specific phospholipase A. AtPLAI is involved in basal JA production and Arabidopsis resistance to the necrotrophic fungus B. cinerea.
Collapse
Affiliation(s)
- Wenyu Yang
- Department of Biology, University of Missouri, St. Louis, Missouri 63121; Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Shivakumar P Devaiah
- Department of Biology, University of Missouri, St. Louis, Missouri 63121; Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Xiangqing Pan
- Department of Biology, University of Missouri, St. Louis, Missouri 63121; Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Giorgis Isaac
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, Missouri 63121; Donald Danforth Plant Science Center, St. Louis, Missouri 63132.
| |
Collapse
|
399
|
Padham AK, Hopkins MT, Wang TW, McNamara LM, Lo M, Richardson LGL, Smith MD, Taylor CA, Thompson JE. Characterization of a plastid triacylglycerol lipase from Arabidopsis. PLANT PHYSIOLOGY 2007; 143:1372-84. [PMID: 17259290 PMCID: PMC1820909 DOI: 10.1104/pp.106.090811] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 01/03/2007] [Indexed: 05/13/2023]
Abstract
Full-length cDNA corresponding to Arabidopsis (Arabidopsis thaliana) gene At2g31690, which has been annotated in GenBank as a putative triacylglycerol (TAG) lipase, was obtained by reverse transcription-polymerase chain reaction using RNA from senescing rosette leaves of Arabidopsis as a template. The cognate protein was found to contain the lipase active site sequence, and corresponding recombinant protein proved capable of deesterifying TAG. In vitro chloroplast import assays indicated that the lipase is targeted to chloroplasts. This was confirmed by confocal microscopy of rosette leaf tissue treated with fluorescein isocyanate-labeled, lipase-specific antibody, which revealed that lipase protein colocalizes with plastoglobular neutral lipids. Western-blot analysis indicated that the lipase is expressed in roots, inflorescence stems, flowers, siliques, and leaves and that it is strongly up-regulated in senescing rosette leaf tissue. Transgenic plants with suppressed lipase protein levels were obtained by expressing At2g31690 cDNA in antisense orientation under the regulation of a constitutive promoter. Transgenic plants bolted and flowered at the same time as wild-type plants, but were severely stunted and exhibited delayed rosette senescence. Moreover, the stunted growth phenotype correlated with irregular chloroplast morphology. The chloroplasts of transgenic plants were structurally deformed, had reduced abundance of thylakoids that were abnormally stacked, and contained more plastoglobular neutral lipids than chloroplasts of wild-type plants. These observations collectively indicate that this TAG lipase plays a role in maintaining the structural integrity of chloroplasts, possibly by mobilizing the fatty acids of plastoglobular TAG.
Collapse
Affiliation(s)
- Anita K Padham
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | | | | | | | |
Collapse
|
400
|
|