351
|
Liu Z, Kumari S, Zhang L, Zheng Y, Ware D. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS One 2012; 7:e39786. [PMID: 22768123 PMCID: PMC3387268 DOI: 10.1371/journal.pone.0039786] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/31/2012] [Indexed: 01/22/2023] Open
Abstract
Waterlogging of plants leads to low oxygen levels (hypoxia) in the roots and causes a metabolic switch from aerobic respiration to anaerobic fermentation that results in rapid changes in gene transcription and protein synthesis. Our research seeks to characterize the microRNA-mediated gene regulatory networks associated with short-term waterlogging. MicroRNAs (miRNAs) are small non-coding RNAs that regulate many genes involved in growth, development and various biotic and abiotic stress responses. To characterize the involvement of miRNAs and their targets in response to short-term hypoxia conditions, a quantitative real time PCR (qRT-PCR) assay was used to quantify the expression of the 24 candidate mature miRNA signatures (22 known and 2 novel mature miRNAs, representing 66 miRNA loci) and their 92 predicted targets in three inbred Zea mays lines (waterlogging tolerant Hz32, mid-tolerant B73, and sensitive Mo17). Based on our studies, miR159, miR164, miR167, miR393, miR408 and miR528, which are mainly involved in root development and stress responses, were found to be key regulators in the post-transcriptional regulatory mechanisms under short-term waterlogging conditions in three inbred lines. Further, computational approaches were used to predict the stress and development related cis-regulatory elements on the promoters of these miRNAs; and a probable miRNA-mediated gene regulatory network in response to short-term waterlogging stress was constructed. The differential expression patterns of miRNAs and their targets in these three inbred lines suggest that the miRNAs are active participants in the signal transduction at the early stage of hypoxia conditions via a gene regulatory network; and crosstalk occurs between different biochemical pathways.
Collapse
Affiliation(s)
- Zhijie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Yonglian Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- * E-mail: (YZ); (DW)
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- United States Department of Agriculture – Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
- * E-mail: (YZ); (DW)
| |
Collapse
|
352
|
Li X, Wang X, Zhang S, Liu D, Duan Y, Dong W. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. PLoS One 2012; 7:e39650. [PMID: 22802924 PMCID: PMC3384596 DOI: 10.1371/journal.pone.0039650] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/24/2012] [Indexed: 01/11/2023] Open
Abstract
Soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pathogen of soybean worldwide. MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are known to play important role in plant stress response. However, there are few reports profiling the miRNA expression patterns during pathogen stress. We sequenced four small RNA libraries from two soybean cultivar (Hairbin xiaoheidou, SCN race 3 resistant, Liaodou 10, SCN race 3 susceptible) that grown under un-inoculated and SCN-inoculated soil. Small RNAs were mapped to soybean genome sequence, 364 known soybean miRNA genes were identified in total. In addition, 21 potential miRNA candidates were identified. Comparative analysis of miRNA profiling indicated 101 miRNAs belong to 40 families were SCN-responsive. We also found 20 miRNAs with different express pattern even between two cultivars of the same species. These findings suggest that miRNA paly important role in soybean response to SCN and have important implications for further identification of miRNAs under pathogen stress.
Collapse
Affiliation(s)
- Xiaoyan Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xue Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Shaopeng Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Dawei Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
| | - Wei Dong
- Beijing Genomics Institute, Hangzhou, China
| |
Collapse
|
353
|
Ubeda-Tomás S, Beemster GTS, Bennett MJ. Hormonal regulation of root growth: integrating local activities into global behaviour. TRENDS IN PLANT SCIENCE 2012; 17:326-31. [PMID: 22401844 DOI: 10.1016/j.tplants.2012.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 05/04/2023]
Abstract
To date, plant researchers have probed the control of root growth by studying the roles of individual regulatory components or cellular processes. However, recent studies in the Arabidopsis (Arabidopsis thaliana) root have shown that different hormones control organ growth by regulating specific growth processes (cell proliferation, differentiation or expansion) in distinct tissues. We discuss key issues raised by these new insights and hypothesise that novel tissue-to-tissue signals exist to coordinate organ growth. We conclude by describing how multiscale models can help probe the interplay between the different scales at which hormones and their regulatory networks operate in different cells and tissues. Such approaches promise to generate new insights into the mechanisms that control root growth.
Collapse
Affiliation(s)
- Susana Ubeda-Tomás
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, LE12 5RD, UK
| | | | | |
Collapse
|
354
|
Wang Y, Deng D, Zhang R, Wang S, Bian Y, Yin Z. Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species. Mol Biol Rep 2012; 39:6267-6282. [PMID: 22302388 DOI: 10.1007/s11033-012-1448-8/figures/4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/23/2012] [Indexed: 05/26/2023]
Abstract
B3 domain-containing proteins constitute a large transcription factor superfamily. The plant-specific B3 superfamily consists of four family members, i.e., LAV (LEC2 [LEAFY COTYLEDON 2]/ABI3 [ABSCISIC ACID INSENSITIVE 3] − VAL [VP1/ABI3-LIKE]), RAV (RELATED to ABI3/VP1), ARF (AUXIN RESPONSE FACTOR) and REM (REPRODUCTIVE MERISTEM) families. The B3 superfamily plays a central role in plant life, from embryogenesis to seed maturation and dormancy. In previous research, we have characterized ARF family, member of the B3 superfamily in silico (Wang et al., Mol Biol Rep, 2011, doi:10.1007/s11033-011-0991-z). In this study, we systematically analyzed the diversity, phylogeny and evolution of B3 domain-containing proteins based on genomic resources of 11 sequenced species. A total of 865 B3 domain-containing genes were identified from 11 sequenced species through an iterative strategy. The number of B3 domain-containing genes varies not only between species but between gene families. B3 domain-containing genes are unevenly distributed in chromosomes and tend to cluster in the genome. Numerous combinations of B3 domains and their partner domains contribute to the sequences and structural diversification of the B3 superfamiy. Phylogenetic results showed that moss VAL proteins are related to LEC2/ABI3 instead of VAL proteins from higher plants. Lineage-specific expansion of ARF and REM proteins was observed. The REM family is the most diversified member among the B3 superfamily and experiences a rapid divergence during selective sweep. Based on structural and phylogenetic analysis results, two possible evolutional modes of the B3 superfamily were presented. Results presented here provide a resource for further characterization of the B3 superfamily.
Collapse
Affiliation(s)
- Yijun Wang
- Key Laboratory of Jiangsu Province for Crop Genetics and Physiology, Key Laboratory of Ministry of Education for Plant Functional Genomics, Yangzhou University, Yangzhou, 225009, China.
| | | | | | | | | | | |
Collapse
|
355
|
Hewezi T, Maier TR, Nettleton D, Baum TJ. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. PLANT PHYSIOLOGY 2012; 159:321-35. [PMID: 22419826 PMCID: PMC3375968 DOI: 10.1104/pp.112.193649] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/13/2012] [Indexed: 05/18/2023]
Abstract
The syncytium is a unique plant root organ whose differentiation is induced by plant-parasitic cyst nematodes to create a source of nourishment. Syncytium formation involves the redifferentiation and fusion of hundreds of root cells. The underlying regulatory networks that control this unique change of plant cell fate are not understood. Here, we report that a strong down-regulation of Arabidopsis (Arabidopsis thaliana) microRNA396 (miR396) in cells giving rise to the syncytium coincides with the initiation of the syncytial induction/formation phase and that specific miR396 up-regulation in the developed syncytium marks the beginning of the maintenance phase, when no new cells are incorporated into the syncytium. In addition, our results show that miR396 in fact has a role in the transition from one phase to the other. Expression modulations of miR396 and its Growth-Regulating Factor (GRF) target genes resulted in reduced syncytium size and arrested nematode development. Furthermore, genome-wide expression profiling revealed that the miR396-GRF regulatory system can alter the expression of 44% of the more than 7,000 genes reported to change expression in the Arabidopsis syncytium. Thus, miR396 represents a key regulator for the reprogramming of root cells. As such, this regulatory unit represents a powerful molecular target for the parasitic animal to modulate plant cells and force them into novel developmental pathways.
Collapse
|
356
|
Christ A, Maegele I, Ha N, Nguyen HH, Crespi MD, Maizel A. In silico identification and in vivo validation of a set of evolutionary conserved plant root-specific cis-regulatory elements. Mech Dev 2012; 130:70-81. [PMID: 22504372 DOI: 10.1016/j.mod.2012.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
Marker genes are specifically expressed in a tissue, organ or time of development. Here we used a computational screen to identify marker genes of the root in Arabidopsis thaliana. We mined the existing transcriptome datasets for genes having high expression in roots while being low in all other organs under a wide range of growth conditions. We show that the root-specificity of these genes is conserved in the sister species Arabidopsis lyrata, indicating that their expression pattern is under selective pressure. We delineated the cis-regulatory elements responsible for root-specific expression and validated two third of those in planta as bona fide root-specific regulatory sequences. We identified three motifs over-represented in these sequences, which mutation resulted in alteration of root-specific expression, demonstrating that these motifs are functionally relevant. In addition, the three motifs are also over-represented in the cis-regulatory regions of the A. lyrata orthologs of our root-specific genes, and this despite an overall low degree of sequence conservation of these regions. Our results provide a resource to assess root-identity in the model genus Arabidopsis and shed light on the evolutionary history of gene regulation in plants.
Collapse
Affiliation(s)
- Aurélie Christ
- Institut des Sciences du Végétal CNRS UPR2355, F-91190 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
357
|
Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y, Zažímalovà E, Petrášek J, Geisler M, Friml J, Kleine-Vehn J. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 2012; 485:119-22. [PMID: 22504182 DOI: 10.1038/nature11001] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/24/2012] [Indexed: 02/08/2023]
Abstract
The phytohormone auxin acts as a prominent signal, providing, by its local accumulation or depletion in selected cells, a spatial and temporal reference for changes in the developmental program. The distribution of auxin depends on both auxin metabolism (biosynthesis, conjugation and degradation) and cellular auxin transport. We identified in silico a novel putative auxin transport facilitator family, called PIN-LIKES (PILS). Here we illustrate that PILS proteins are required for auxin-dependent regulation of plant growth by determining the cellular sensitivity to auxin. PILS proteins regulate intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signalling. PILS activity affects the level of endogenous auxin indole-3-acetic acid (IAA), presumably via intracellular accumulation and metabolism. Our findings reveal that the transport machinery to compartmentalize auxin within the cell is of an unexpected molecular complexity and demonstrate this compartmentalization to be functionally important for a number of developmental processes.
Collapse
Affiliation(s)
- Elke Barbez
- Department of Plant Systems Biology, Ghent University, 9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Neelakandan AK, Wang K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. PLANT CELL REPORTS 2012; 31:597-620. [PMID: 22179259 DOI: 10.1007/s00299-011-1202-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 05/23/2023]
Abstract
In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation.
Collapse
|
359
|
Bozorov TA, Pandey SP, Dinh ST, Kim SG, Heinrich M, Gase K, Baldwin IT. DICER-like proteins and their role in plant-herbivore interactions in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:189-206. [PMID: 22313877 DOI: 10.1111/j.1744-7909.2012.01104.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DICER-like (DCL) proteins produce small RNAs that silence genes involved in development and defenses against viruses and pathogens. Which DCLs participate in plant-herbivore interactions remains unstudied. We identified and stably silenced four distinct DCL genes by RNAi in Nicotiana attenuata (Torrey ex. Watson), a model for the study of plant-herbivore interactions. Silencing DCL1 expression was lethal. Manduca sexta larvae performed significantly better on ir-dcl3 and ir-dcl4 plants, but not on ir-dcl2 plants compared to wild type plants. Phytohormones, defense metabolites and microarray analyses revealed that when DCL3 and DCL4 were silenced separately, herbivore resistance traits were regulated in distinctly different ways. Crossing of the lines revealed complex interactions in the patterns of regulation. Single ir-dcl4 and double ir-dcl2 ir-dcl3 plants were impaired in JA accumulation, while JA-Ile was increased in ir-dcl3 plants. Ir-dcl3 and ir-dcl4 plants were impaired in nicotine accumulation; silencing DCL2 in combination with either DCL3 or DCL4 restored nicotine levels to those of WT. Trypsin proteinase inhibitor activity and transcripts were only silenced in ir-dcl3 plants. We conclude that DCL2/3/4 interact in a complex manner to regulate anti-herbivore defenses and that these interactions significantly complicate the already challenging task of understanding smRNA function in the regulation of biotic interactions.
Collapse
|
360
|
Chen L, Wang T, Zhao M, Zhang W. Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:14-9. [PMID: 22284705 DOI: 10.1016/j.plantsci.2011.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/29/2011] [Accepted: 11/10/2011] [Indexed: 05/08/2023]
Abstract
Ethylene is one of the classical plant hormones with a diverse function in plant growth and development. Root elongation is sensitive to ethylene such that treatments with ethylene and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) inhibit root growth. MicroRNA as one type of endogenous, non-coding small RNAs, plays an important role in regulation of plant growth, development and hormonal signaling by affecting expression of target genes. However, there has been no detailed study to evaluate the role of microRNAs in mediation of ethylene-dependent physiological processes in plants. Medicago truncatula is a model plant widely used for investigation of molecular biology in legume species. In this study, we constructed two small RNA libraries from roots of M. truncatula treated with and without ACC. High-throughput sequencing was employed to sequence the small RNA libraries, and more than 30 M raw reads were obtained. We annotated 301 known miRNAs and identified 3 new miRNAs in the two libraries. Treatment of M. truncatula with 10 μM ACC led to changes in expression of 8 miRNAs. The targets of the ethylene-responsive miRNAs were predicted by bioinformatic approach. The potential role of the ethylene-responsive miRNAs in the ethylene-induced inhibition of root elongation is discussed. These results are useful for functional characterization of miRNAs in mediation of ethylene-dependent physiological processes in general and root elongation in particular.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China
| | | | | | | |
Collapse
|
361
|
Abstract
Small RNAs have crucial roles in numerous aspects of plant biology. Despite our current understanding of their biogenesis and mechanisms of action, the biological function of small RNAs, particularly miRNAs, remains largely unknown. To decipher small RNA function, knowledge about their spatiotemporal patterns of expression is essential. Here we report an in situ hybridization method for the precise localization of small RNAs in plants by using locked nucleic acid (LNA) oligonucleotide probes. This method has been adapted from protocols used to detect messenger RNAs in formaldehyde-fixed and paraffin-embedded tissue sections, but it includes essential optimizations in key prehybridization, hybridization and posthybridization steps. Most importantly, optimization of probe concentration and hybridization temperature is required for each unique LNA probe. We present the detailed protocol starting from sectioned tissues, and we include troubleshooting tips and recommended controls. This method has been used successfully in several plant species and can be completed within 2-6 d.
Collapse
|
362
|
Tang S, Wang Y, Li Z, Gui Y, Xiao B, Xie J, Zhu QH, Fan L. Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum). BMC PLANT BIOLOGY 2012; 12:28. [PMID: 22353177 PMCID: PMC3306195 DOI: 10.1186/1471-2229-12-28] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 02/22/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are two major classes of small RNAs. They play important regulatory roles in plants and animals by regulating transcription, stability and/or translation of target genes in a sequence-complementary dependent manner. Over 4,000 miRNAs and several classes of siRNAs have been identified in plants, but in tobacco only computational prediction has been performed and no tobacco-specific miRNA has been experimentally identified. Wounding is believed to induce defensive response in tobacco, but the mechanism responsible for this response is yet to be uncovered. RESULTS To get insight into the role of small RNAs in damage-induced responses, we sequenced and analysed small RNA populations in roots and leaves from wounding or topping treated tobacco plants. In addition to confirmation of expression of 27 known miRNA families, we identified 59 novel tobacco-specific miRNA members of 38 families and a large number of loci generating phased 21- or 24-nt small RNAs (including ta-siRNAs). A number of miRNAs and phased small RNAs were found to be responsive to wounding or topping treatment. Targets of small RNAs were further surveyed by degradome sequencing. CONCLUSIONS The expression changes of miRNAs and phased small RNAs responsive to wounding or topping and identification of defense related targets for these small RNAs suggest that the inducible defense response in tobacco might be controlled by pathways involving small RNAs.
Collapse
Affiliation(s)
- She Tang
- Department of Agronomy and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Wang
- Department of Agronomy and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zefeng Li
- Department of Agronomy and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yijie Gui
- Department of Agronomy and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Bingguang Xiao
- Yunnan Academy of Tobacco Agricultural Sciences and China Tobacco Breeding Research Center at Yunnan, Yuxi 653100, Yunnan, China
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Qian-Hao Zhu
- CSIRO Plant Industry, Canberra ACT 2601, Australia
| | - Longjiang Fan
- Department of Agronomy and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
363
|
Jouannet V, Moreno AB, Elmayan T, Vaucheret H, Crespi MD, Maizel A. Cytoplasmic Arabidopsis AGO7 accumulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis. EMBO J 2012; 31:1704-13. [PMID: 22327216 DOI: 10.1038/emboj.2012.20] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/17/2012] [Indexed: 12/13/2022] Open
Abstract
Formation of trans-acting small interfering RNAs (ta-siRNAs) from the TAS3 precursor is triggered by the AGO7/miR390 complex, which primes TAS3 for conversion into double-stranded RNA by the RNA-dependent RNA polymerase RDR6 and SGS3. These ta-siRNAs control several aspects of plant development. The mechanism routing AGO7-cleaved TAS3 precursor to RDR6/SGS3 and its subcellular organization are unknown. We show that AGO7 accumulates together with SGS3 and RDR6 in cytoplasmic siRNA bodies that are distinct from P-bodies. siRNA bodies colocalize with a membrane-associated viral protein and become positive for stress-granule markers upon stress-induced translational repression, this suggests that siRNA bodies are membrane-associated sites of accumulation of mRNA stalled during translation. AGO7 congregates with miR390 and SGS3 in membranes and its targeting to the nucleus prevents its accumulation in siRNA bodies and ta-siRNA formation. AGO7 is therefore required in the cytoplasm and membranous siRNA bodies for TAS3 processing, revealing a hitherto unknown role for membrane-associated ribonucleoparticles in ta-siRNA biogenesis and AGO action in plants.
Collapse
Affiliation(s)
- Virginie Jouannet
- Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
364
|
Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species. Mol Biol Rep 2012; 39:6267-82. [DOI: 10.1007/s11033-012-1448-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
|
365
|
Chen L, Wang T, Zhao M, Tian Q, Zhang WH. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. PLANTA 2012; 235:375-86. [PMID: 21909758 DOI: 10.1007/s00425-011-1514-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/26/2011] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) play important roles in response of plants to biotic and abiotic stresses. Aluminum (Al) toxicity is a major factor limiting plant growth in acidic soils. However, there has been limited report on the involvement of miRNAs in response of plants to toxic Al(3+). To identify Al(3+)-responsive miRNAs at whole-genome level, high-throughput sequencing technology was used to sequence libraries constructed from root apices of the model legume plant Medicago truncatula treated with and without Al(3+). High-throughput sequencing of the control and two Al(3+)-treated libraries led to generation of 17.1, 14.1 and 17.4 M primary reads, respectively. We identified 326 known miRNAs and 21 new miRNAs. Among the miRNAs, expression of 23 miRNAs was responsive to Al(3+), and the majority of Al(3+)-responsive mRNAs was down-regulated. We further classified the Al(3+)-responsive miRNAs into three groups based on their expression patterns: rapid-responsive, late-responsive and sustained-responsive miRNAs. The majority of Al(3+)-responsive miRNAs belonged to the 'rapid-responsive' category, i.e. they were responsive to short-term, but not long-term Al(3+) treatment. The Al(3+)-responsive miRNAs were also verified by quantitative real-time PCR. The potential targets of the 21 new miRNAs were predicted to be involved in diverse cellular processes in plants, and their potential roles in Al(3+)-induced inhibition of root growth were discussed. These findings provide valuable information for functional characterization of miRNAs in Al(3+) toxicity and tolerance.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | | | | | | | | |
Collapse
|
366
|
Takehisa H, Sato Y, Igarashi M, Abiko T, Antonio BA, Kamatsuki K, Minami H, Namiki N, Inukai Y, Nakazono M, Nagamura Y. Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:126-40. [PMID: 21895812 DOI: 10.1111/j.1365-313x.2011.04777.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The root system is a crucial determinant of plant growth potential because of its important functions, e.g. uptake of water and nutrients, structural support and interaction with symbiotic organisms. Elucidating the molecular mechanism of root development and functions is therefore necessary for improving plant productivity, particularly for crop plants, including rice (Oryza sativa). As an initial step towards developing a comprehensive understanding of the root system, we performed a large-scale transcriptome analysis of the rice root via a combined laser microdissection and microarray approach. The crown root was divided into eight developmental stages along the longitudinal axis and three radial tissue types at two different developmental stages, namely: epidermis, exodermis and sclerenchyma; cortex; and endodermis, pericycle and stele. We analyzed a total of 38 microarray data and identified 22,297 genes corresponding to 17,010 loci that showed sufficient signal intensity as well as developmental- and tissue type-specific transcriptome signatures. Moreover, we clarified gene networks associated with root cap function and lateral root formation, and further revealed antagonistic and synergistic interactions of phytohormones such as auxin, cytokinin, brassinosteroids and ethylene, based on the expression pattern of genes related to phytohormone biosynthesis and signaling. Expression profiling of transporter genes defined not only major sites for uptake and transport of water and nutrients, but also distinct signatures of the radial transport system from the rhizosphere to the xylem vessel for each nutrient. All data can be accessed from our gene expression profile database, RiceXPro (http://ricexpro.dna.affrc.go.jp), thereby providing useful information for understanding the molecular mechanisms involved in root system development of crop plants.
Collapse
Affiliation(s)
- Hinako Takehisa
- Genome Resource Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Parent JS, Martínez de Alba AE, Vaucheret H. The origin and effect of small RNA signaling in plants. FRONTIERS IN PLANT SCIENCE 2012; 3:179. [PMID: 22908024 PMCID: PMC3414853 DOI: 10.3389/fpls.2012.00179] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/23/2012] [Indexed: 05/18/2023]
Abstract
Given their sessile condition, land plants need to integrate environmental cues rapidly and send signal throughout the organism to modify their metabolism accordingly. Small RNA (sRNA) molecules are among the messengers that plant cells use to carry such signals. These molecules originate from fold-back stem-loops transcribed from endogenous loci or from perfect double-stranded RNA produced through the action of RNA-dependent RNA polymerases. Once produced, sRNAs associate with Argonaute (AGO) and other proteins to form the RNA-induced silencing complex (RISC) that executes silencing of complementary RNA molecules. Depending on the nature of the RNA target and the AGO protein involved, RISC triggers either DNA methylation or chromatin modification (leading to transcriptional gene silencing, TGS) or RNA cleavage or translational inhibition (leading to post-transcriptional gene silencing, PTGS). In some cases, sRNAs move to neighboring cells and/or to the vascular tissues for long-distance trafficking. Many genes are involved in the biogenesis of sRNAs and recent studies have shown that both their origin and their protein partners have great influence on their activity and range. Here we summarize the work done to uncover the mode of action of the different classes of sRNA with special emphasis on their movement and how plants can take advantage of their mobility. We also review the various genetic requirements needed for production, movement and perception of the silencing signal.
Collapse
Affiliation(s)
| | | | - Hervé Vaucheret
- *Correspondence: Hervé Vaucheret, Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France. e-mail:
| |
Collapse
|
368
|
Bhardwaj AR, Pandey R, Agarwal M, Katiyar-Agarwal S. Northern blot analysis for expression profiling of mRNAs and small RNAs. Methods Mol Biol 2012; 883:19-45. [PMID: 22589122 DOI: 10.1007/978-1-61779-839-9_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Northern analysis is a conventional but gold standard method for detection and quantification of gene expression changes. It not only detects the presence of a transcript but also indicates size and relative comparison of transcript abundance on a single membrane. In recent years, it has been aptly adapted to validate and study the size and expression of small noncoding RNAs. Here, we describe protocols employed in our laboratory for conventional northern analysis with total RNA/mRNA to study gene expression and validation of small noncoding RNAs using low molecular weight fraction of RNAs.
Collapse
|
369
|
Mendoza-Soto AB, Sánchez F, Hernández G. MicroRNAs as regulators in plant metal toxicity response. FRONTIERS IN PLANT SCIENCE 2012; 3:105. [PMID: 22661980 PMCID: PMC3356851 DOI: 10.3389/fpls.2012.00105] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/04/2012] [Indexed: 05/03/2023]
Abstract
Metal toxicity is a major stress affecting crop production. This includes metals that are essential for plants (copper, iron, zinc, manganese), and non-essential metals (cadmium, aluminum, cobalt, mercury). A primary common effect of high concentrations of metal such as aluminum, copper, cadmium, or mercury is root growth inhibition. Metal toxicity triggers the accumulation of reactive oxygen species leading to damage of lipids, proteins, and DNA. The plants response to metal toxicity involves several biological processes that require fine and precise regulation at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) are 21 nucleotide non-coding RNAs that regulate gene expression at the post-transcriptional level. A miRNA, incorporated into a RNA-induced silencing complex, promotes cleavage of its target mRNA that is recognized by an almost perfect base complementarity. In plants, miRNA regulation is involved in development and also in biotic and abiotic stress responses. We review novel advances in identifying miRNAs related to metal toxicity responses and their potential role according to their targets. Most of the targets for plant metal-responsive miRNAs are transcription factors. Information about metal-responsive miRNAs in different plants points to important regulatory roles of miR319, miR390, miR393, and miR398. The target of miR319 is the TCP transcription factor, implicated in growth control. miR390 exerts its action through the biogenesis of trans-acting small interference RNAs that, in turn, regulate auxin responsive factors. miR393 targets the auxin receptors TIR1/AFBs and a bHLH transcription factor. Increasing evidence points to the crucial role of miR398 and its targets Cu/Zn superoxide dismutases in the control of the oxidative stress generated after high copper or iron exposure.
Collapse
Affiliation(s)
- Ana B. Mendoza-Soto
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca,Morelos, México
| | - Federico Sánchez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca,Morelos, México
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca,Morelos, México
- *Correspondence: Georgina Hernández, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av Universidad 1001, Cuernavaca, Morelos 62209, México. e-mail:
| |
Collapse
|
370
|
Root branching: mechanisms, robustness, and plasticity. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:329-43. [DOI: 10.1002/wdev.17] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
371
|
Chen ZH, Bao ML, Sun YZ, Yang YJ, Xu XH, Wang JH, Han N, Bian HW, Zhu MY. Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis. PLANT MOLECULAR BIOLOGY 2011; 77:619-29. [PMID: 22042293 DOI: 10.1007/s11103-011-9838-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/15/2011] [Indexed: 05/03/2023]
Abstract
miR393, which is encoded by MIR393a and MIR393b in Arabidopsis, post-transcriptionally regulates mRNAs for the F-box auxin receptors TIR1 (Transport Inhibitor Response Protein 1), AFB1 (Auxin Signaling F-box Protein 1), AFB2 and AFB3. However, biological functions of the miR393-TIR1/AFBs module in auxin response and plant development is not fully understood. In the study herein, we demonstrate that miR393 accumulated in response to exogenous IAA treatment, and its induction was due to enhanced MIR393b transcription but not MIR393a. Overexpression of a miR393-resistant form of TIR1 (mTIR1) enhanced auxin sensitivity and led to pleiotropic effects on plant development including inhibition of primary root growth, overproduction of lateral roots, altered leave phenotype and delayed flowering. Furthermore, miR393 level was increased in 35S:mTIR1 plant, suggesting that TIR1 promoted the expression of miR393 by a feedback loop. The interaction between miR393 and its target indicates a fine adjustment to the roles of the miR393-TIR1 module, which is required for auxin responses in plant development.
Collapse
Affiliation(s)
- Zhe-Hao Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Meng Y, Shao C, Wang H, Chen M. The regulatory activities of plant microRNAs: a more dynamic perspective. PLANT PHYSIOLOGY 2011; 157:1583-95. [PMID: 22003084 PMCID: PMC3327222 DOI: 10.1104/pp.111.187088] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/13/2011] [Indexed: 05/19/2023]
Affiliation(s)
- Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, People's Republic of China.
| | | | | | | |
Collapse
|
373
|
Christie M, Carroll BJ. SERRATE is required for intron suppression of RNA silencing in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2011; 6:2035-7. [PMID: 22112452 PMCID: PMC3337200 DOI: 10.4161/psb.6.12.18238] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Transposons and viruses are generally devoid of introns and are prime targets for small interfering RNAs (siRNAs) and RNA silencing. Conversely, endogenous genes often contain introns and are not usually subjected to post-transcriptional gene silencing by siRNAs. In a recent study, we reported that efficient intron splicing directly suppresses siRNA biogenesis and RNA silencing of a Green Fluorescence Protein (GFP) transgene. Splicing-mediated suppression of GFP silencing was dependent on ABH1, the Arabidopsis ortholog of human mRNA cap-binding protein 80. Furthermore, genome-wide analyses of Arabidopsis small RNA libraries showed that exons from intron-containing genes accumulate less small RNAs than exons from intronless genes. Our in silico analysis therefore suggested that intron splicing has a fundamental role in protecting endogenous genes from becoming templates for siRNA biogenesis and RNA silencing. Here, we show that SERRATE (SE) is also required for splicing-mediated suppression of RNA silencing in Arabidopsis. SE encodes a zinc finger protein that, like ABH1, functions in micro-RNA (miRNA) biogenesis and intron splicing. The implications of our findings are also discussed in a broader context.
Collapse
|
374
|
Wu J, Wang F, Cheng L, Kong F, Peng Z, Liu S, Yu X, Lu G. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. PLANT CELL REPORTS 2011; 30:2059-73. [PMID: 21735233 DOI: 10.1007/s00299-011-1113-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 05/18/2023]
Abstract
Auxin response factors (ARFs) encode transcriptional factors that bind specifically to the TGTCTC-containing auxin response elements found in the promoters of primary/early auxin response genes that regulate plant development. In this study, investigation of the tomato genome revealed 21 putative functional ARF genes (SlARFs), a number comparable to that found in Arabidopsis (23) and rice (25). The full cDNA sequences of 15 novel SlARFs were isolated and delineated by sequencing of PCR products. A comprehensive genome-wide analysis of this gene family is presented, including the gene structures, chromosome locations, phylogeny, and conserved motifs. In addition, a comparative analysis between ARF family genes in tomato and maize was performed. A phylogenetic tree generated from alignments of the full-length protein sequences of 21 OsARFs, 23 AtARFs, 31 ZmARFs, and 21 SlARFs revealed that these ARFs were clustered into four major groups. However, we could not find homologous genes in rice, maize, or tomato with AtARF12-15 and AtARF20-23. The expression patterns of tomato ARF genes were analyzed by quantitative real-time PCR. Our comparative analysis will help to define possible functions for many of these newly isolated ARF-family genes in plant development.
Collapse
Affiliation(s)
- Jian Wu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou, 310058, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
375
|
Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EHK. High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:377-85. [PMID: 21711399 DOI: 10.1111/j.1365-313x.2011.04692.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most plant growth occurs post-embryonically and is characterized by the constant and iterative formation of new organs. Non-invasive time-resolved imaging of intact, fully functional organisms allows studies of the dynamics involved in shaping complex organisms. Conventional and confocal fluorescence microscopy suffer from limitations when whole living organisms are imaged at single-cell resolution. We applied light sheet-based fluorescence microscopy to overcome these limitations and study the dynamics of plant growth. We designed a special imaging chamber in which the plant is maintained vertically under controlled illumination with its leaves in the air and its root in the medium. We show that minimally invasive, multi-color, three-dimensional imaging of live Arabidopsis thaliana samples can be achieved at organ, cellular and subcellular scales over periods of time ranging from seconds to days with minimal damage to the sample. We illustrate the capabilities of the method by recording the growth of primary root tips and lateral root primordia over several hours. This allowed us to quantify the contribution of cell elongation to the early morphogenesis of lateral root primordia and uncover the diurnal growth rhythm of lateral roots. We demonstrate the applicability of our approach at varying spatial and temporal scales by following the division of plant cells as well as the movement of single endosomes in live growing root samples. This multi-dimensional approach will have an important impact on plant developmental and cell biology and paves the way to a truly quantitative description of growth processes at several scales.
Collapse
Affiliation(s)
- Alexis Maizel
- Department of Stem Cell Biology, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
376
|
Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:302-13. [PMID: 21707801 DOI: 10.1111/j.1365-313x.2011.04687.x] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
NAC transcription factors play important roles in plant growth, development and stress responses. Previously, we identified multiple NAC genes in soybean (Glycine max). Here, we identify the roles of two genes, GmNAC11 and GmNAC20, in stress responses and other processes. The two genes were differentially induced by multiple abiotic stresses and plant hormones, and their transcripts were abundant in roots and cotyledons. Both genes encoded proteins that localized to the nucleus and bound to the core DNA sequence CGT[G/A]. In the protoplast assay system, GmNAC11 acts as a transcriptional activator, whereas GmNAC20 functions as a mild repressor; however, the C-terminal end of GmANC20 has transcriptional activation activity. Over-expression of GmNAC20 enhances salt and freezing tolerance in transgenic Arabidopsis plants; however, GmNAC11 over-expression only improves salt tolerance. Over-expression of GmNAC20 also promotes lateral root formation. GmNAC20 may regulate stress tolerance through activation of the DREB/CBF-COR pathway, and may control lateral root development by altering auxin signaling-related genes. GmNAC11 probably regulates DREB1A and other stress-related genes. The roles of the two GmNAC genes in stress tolerance were further analyzed in soybean transgenic hairy roots. These results provide a basis for genetic manipulation to improve the agronomic traits of important crops.
Collapse
Affiliation(s)
- Yu-Jun Hao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
Grativol C, Hemerly AS, Ferreira PCG. Genetic and epigenetic regulation of stress responses in natural plant populations. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:176-85. [PMID: 21914492 DOI: 10.1016/j.bbagrm.2011.08.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/30/2022]
Abstract
Plants have developed intricate mechanisms involving gene regulatory systems to adjust to stresses. Phenotypic variation in plants under stress is classically attributed to DNA sequence variants. More recently, it was found that epigenetic modifications - DNA methylation-, chromatin- and small RNA-based mechanisms - can contribute separately or together to phenotypes by regulating gene expression in response to the stress effect. These epigenetic modifications constitute an additional layer of complexity to heritable phenotypic variation and the evolutionary potential of natural plant populations because they can affect fitness. Natural populations can show differences in performance when they are exposed to changes in environmental conditions, partly because of their genetic variation but also because of their epigenetic variation. The line between these two components is blurred because little is known about the contribution of genotypes and epigenotypes to stress tolerance in natural populations. Recent insights in this field have just begun to shed light on the behavior of genetic and epigenetic variation in natural plant populations under biotic and abiotic stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Clícia Grativol
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
378
|
Khan GA, Declerck M, Sorin C, Hartmann C, Crespi M, Lelandais-Brière C. MicroRNAs as regulators of root development and architecture. PLANT MOLECULAR BIOLOGY 2011; 77:47-58. [PMID: 21607657 DOI: 10.1007/s11103-011-9793-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 05/09/2011] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of growth and development in both plants and animals. In plants, roots play essential roles in their anchorage to the soil as well as in nutrient and water uptake. In this review, we present recent advances made in the identification of miRNAs involved in embryonic root development, radial patterning, vascular tissue differentiation and formation of lateral organs (i.e., lateral and adventitious roots and symbiotic nitrogen-fixing nodules in legumes). Certain mi/siRNAs target members of the Auxin Response Factors family involved in auxin homeostasis and signalling and participate in complex regulatory loops at several crucial stages of root development. Other miRNAs target and restrict the action of various transcription factors that control root-related processes in several species. Finally, because abiotic stresses, which include nutrient or water deficiencies, generally modulate root growth and branching, we summarise the action of certain miRNAs in response to these stresses that may be involved in the adaptation of the root system architecture to the soil environment.
Collapse
Affiliation(s)
- Ghazanfar A Khan
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique (C.N.R.S.), 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
379
|
Abstract
MicroRNAs (miRNAs) are negative regulators of gene expression in eukaryotic organisms, whereas small interfering RNAs (siRNAs) guide host-cell defence against viruses, transposons and transgenes. A key issue in plant biology is whether miRNAs act only in cells in which they are formed, or if, like siRNAs, they also function after passive diffusion or active transportation into other cells. Recent reports show that miRNAs are indeed able to move between plant cells to direct developmental programming of gene expression. In both leaf and root development, miRNAs establish intercellular gradients of gene expression that are essential for cell and tissue differentiation. Gradients in gene expression also play crucial roles in animal development, and there is strong evidence for intercellular movement of miRNAs in animals. Thus, intercellular movement of miRNAs may be crucial to animal developmental biology as well as plants.
Collapse
Affiliation(s)
- Nial R Gursanscky
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
380
|
D'haeseleer K, Den Herder G, Laffont C, Plet J, Mortier V, Lelandais-Brière C, De Bodt S, De Keyser A, Crespi M, Holsters M, Frugier F, Goormachtig S. Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots. THE NEW PHYTOLOGIST 2011; 191:647-661. [PMID: 21770944 DOI: 10.1111/j.1469-8137.2011.03719.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• Legume roots develop two types of lateral organs, lateral roots and nodules. Nodules develop as a result of a symbiotic interaction with rhizobia and provide a niche for the bacteria to fix atmospheric nitrogen for the plant. • The Arabidopsis NAC1 transcription factor is involved in lateral root formation, and is regulated post-transcriptionally by miRNA164 and by SINAT5-dependent ubiquitination. We analyzed in Medicago truncatula the role of the closest NAC1 homolog in lateral root formation and in nodulation. • MtNAC1 shows a different expression pattern in response to auxin than its Arabidopsis homolog and no changes in lateral root number or nodulation were observed in plants affected in MtNAC1 expression. In addition, no interaction was found with SINA E3 ligases, suggesting that post-translational regulation of MtNAC1 does not occur in M. truncatula. Similar to what was found in Arabidopsis, a conserved miR164 target site was retrieved in MtNAC1, which reduced protein accumulation of a GFP-miR164 sensor. Furthermore, miR164 and MtNAC1 show an overlapping expression pattern in symbiotic nodules, and overexpression of this miRNA led to a reduction in nodule number. • This work suggests that regulatory pathways controlling a conserved transcription factor are complex and divergent between M. truncatula and Arabidopsis.
Collapse
Affiliation(s)
- Katrien D'haeseleer
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Griet Den Herder
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Carole Laffont
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), 91198 Gif sur Yvette Cedex, France
| | - Julie Plet
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), 91198 Gif sur Yvette Cedex, France
| | - Virginie Mortier
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Christine Lelandais-Brière
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), 91198 Gif sur Yvette Cedex, France
- Université Paris Diderot Paris 7, 75205 Paris Cedex 13, France
| | - Stefanie De Bodt
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Martin Crespi
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), 91198 Gif sur Yvette Cedex, France
| | - Marcelle Holsters
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Florian Frugier
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), 91198 Gif sur Yvette Cedex, France
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
381
|
Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet 2011; 7:e1002172. [PMID: 21779177 PMCID: PMC3136439 DOI: 10.1371/journal.pgen.1002172] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/19/2011] [Indexed: 01/10/2023] Open
Abstract
The phytohormone abscisic acid (ABA) is an important regulator of plant development and response to environmental stresses. In this study, we identified two ABA overly sensitive mutant alleles in a gene encoding Auxin Response Factor2 (ARF2). The expression of ARF2 was induced by ABA treatment. The arf2 mutants showed enhanced ABA sensitivity in seed germination and primary root growth. In contrast, the primary root growth and seed germination of transgenic plants over-expressing ARF2 are less inhibited by ABA than that of the wild type. ARF2 negatively regulates the expression of a homeodomain gene HB33, the expression of which is reduced by ABA. Transgenic plants over-expressing HB33 are more sensitive, while transgenic plants reducing HB33 by RNAi are more resistant to ABA in the seed germination and primary root growth than the wild type. ABA treatment altered auxin distribution in the primary root tips and made the relative, but not absolute, auxin accumulation or auxin signal around quiescent centre cells and their surrounding columella stem cells to other cells stronger in arf2-101 than in the wild type. These results indicate that ARF2 and HB33 are novel regulators in the ABA signal pathway, which has crosstalk with auxin signal pathway in regulating plant growth. Abscisic acid is a phytohormone that regulates many aspects in plant growth and development and response to different biotic and abiotic stresses. Research on ABA inhibiting seed germination, controlling stomatal movement, and regulating gene expression has been widely performed. However, the molecular mechanism for ABA regulating root growth is not well known. We have set up a genetic screen by using ABA inhibiting root growth to identify ABA related mutants and to dissect the molecular mechanism of ABA regulating root growth. In this study, we identified two new mutant alleles that are defective in ARF2 gene. ARF2 is a transcriptional suppressor that has been found to be involved in ethylene, auxin, and brassinosteroid pathway to control plant growth and development. Our study indicates that ARF2 is an ABA responsive regulator that functions in both seed germination and primary root growth. ARF2 directly regulates the expression of a homeodomain gene HB33. We demonstrate that ABA treatment reduces the cell division and alters auxin distribution more in arf2 mutant than in the wild type, suggesting an important mechanism in ABA inhibiting the primary root growth through mediating cell division in root tips.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Deping Hua
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junna He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhizhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuhui Hong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- China Agricultural University–Purdue University Joint Research Center, Beijing, China
- National Center for Plant Gene Research, Beijing, China
- * E-mail:
| |
Collapse
|
382
|
Hohn T, Vazquez F. RNA silencing pathways of plants: silencing and its suppression by plant DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:588-600. [PMID: 21683815 DOI: 10.1016/j.bbagrm.2011.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 02/02/2023]
Abstract
RNA silencing refers to processes that depend on small (s)RNAs to regulate the expression of eukaryotic genomes. In plants, these processes play critical roles in development, in responses to a wide array of stresses, in maintaining genome integrity and in defense against viral and bacterial pathogens. We provide here an updated view on the array of endogenous sRNA pathways, including microRNAs (miRNAs), discovered in the model plant Arabidopsis, which are also the basis for antiviral silencing. We emphasize the current knowledge as well as the recent advances made on understanding the defense and counter-defense strategies evolved in the arms race between plants and DNA viruses on both the nuclear and the cytoplasmic front. This article is part of a Special Issue entitled: MicroRNA's in viral gene regulation.
Collapse
Affiliation(s)
- Thomas Hohn
- Institute of Botany, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
383
|
Wang Y, Deng D, Shi Y, Miao N, Bian Y, Yin Z. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes. Mol Biol Rep 2011; 39:2401-15. [PMID: 21667107 DOI: 10.1007/s11033-011-0991-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 05/28/2011] [Indexed: 01/01/2023]
Abstract
Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.
Collapse
Affiliation(s)
- Yijun Wang
- Key Laboratory of Jiangsu Province for Crop Genetics and Physiology, Key Laboratory of Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | | | | | | | | | | |
Collapse
|
384
|
Rodriguez-Enriquez J, Dickinson HG, Grant-Downton RT. MicroRNA misregulation: an overlooked factor generating somaclonal variation? TRENDS IN PLANT SCIENCE 2011; 16:242-8. [PMID: 21470895 DOI: 10.1016/j.tplants.2011.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 05/10/2023]
Abstract
Somaclonal variation is an important phenomenon that can be observed at high levels in plant tissue culture. Although known to science since plant cell culture techniques were first developed, its origins remain mysterious. Here, we propose that misregulation of microRNAs and small RNA pathways can make a significant contribution to the phenomenon. For many reasons, microRNAs and related small RNAs appear ideal candidates. Their mode of action gives them disproportionate influence over the transcriptome, proteome and epigenome. They regulate important developmental and physiological events such as meristem formation, phase changes and hormone responses. However, the genomic locations of microRNA genes and their unique biogenesis might make them unusually susceptible to aberrant regulation in vitro.
Collapse
Affiliation(s)
- J Rodriguez-Enriquez
- Instituto Universitario de Bioorganica Antonio González, Universidad de La Laguna, 38206 La Laguna, Santa Cruz de Tenerife, Spain
| | | | | |
Collapse
|
385
|
Rubio-Somoza I, Weigel D. MicroRNA networks and developmental plasticity in plants. TRENDS IN PLANT SCIENCE 2011; 16:258-64. [PMID: 21466971 DOI: 10.1016/j.tplants.2011.03.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 05/18/2023]
Abstract
Plant microRNAs (miRNAs) are embedded in regulatory networks that coordinate different gene expression programs in support of developmental plasticity. Modification of miRNA-target nodes during evolution might in turn underlie morphological and physiological diversity. A survey of the literature indicates that miRNA-target nodes themselves are organized in networks, and here we discuss some of the developmental traits they control along with possible interactions between miRNA and their targets. Because miRNAs and their interactions are not only at the heart of regulating many aspects of developmental plasticity, but because they also have an inherently quantitative mode of action, they present important targets for biotechnology applications.
Collapse
Affiliation(s)
- Ignacio Rubio-Somoza
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 37-39, 72076 Tübingen, Germany.
| | | |
Collapse
|
386
|
Armenta-Medina A, Demesa-Arévalo E, Vielle-Calzada JP. Epigenetic control of cell specification during female gametogenesis. ACTA ACUST UNITED AC 2011; 24:137-47. [PMID: 21484604 DOI: 10.1007/s00497-011-0166-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 03/17/2011] [Indexed: 11/29/2022]
Abstract
In flowering plants, the formation of gametes depends on the differentiation of cellular precursors that divide meiotically before giving rise to a multicellular gametophyte. The establishment of this gametophytic phase presents an opportunity for natural selection to act on the haploid plant genome by means of epigenetic mechanisms that ensure a tight regulation of plant reproductive development. Despite this early acting selective pressure, there are numerous examples of naturally occurring developmental alternatives that suggest a flexible regulatory control of cell specification and subsequent gamete formation in flowering plants. In this review, we discuss recent findings indicating that epigenetic mechanisms related to the activity of small RNA pathways prevailing during ovule formation play an essential role in cell specification and genome integrity. We also compare these findings to small RNA pathways acting during gametogenesis in animals and discuss their implications for the understanding of the mechanisms that control the establishment of the female gametophytic lineage during both sexual reproduction and apomixis.
Collapse
Affiliation(s)
- Alma Armenta-Medina
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, CINVESTAV, Irapuato, Mexico
| | | | | |
Collapse
|
387
|
Jouannet V, Crespi M. Long Nonprotein-Coding RNAs in Plants. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:179-200. [PMID: 21287139 DOI: 10.1007/978-3-642-16502-3_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, nonprotein-coding RNAs (or npcRNAs) have emerged as a major part of the eukaryotic transcriptome. Many new regulatory npcRNAs or riboregulators riboregulators have been discovered and characterized due to the advent of new genomic approaches. This growing number suggests that npcRNAs could play a more important role than previously believed and significantly contribute to the generation of evolutionary complexity in multicellular organisms. Regulatory npcRNAs range from small RNAs (si/miRNAs) to very large transcripts (or long npcRNAs) and play diverse functions in development and/or environmental stress responses. Small RNAs include an expanding number of 20-40 nt RNAs that function in the regulation of gene expression by affecting mRNA decay and translational inhibition or lead to DNA methylation and gene silencing. They generally involve double-stranded RNA or stem loops and imply transcriptional or posttranscriptional gene silencing (PTGS). RNA silencing besides small interfering RNA and microRNA, gene silencing in plants is also mediated by tasiRNAs (trans-acting siRNAs) and nat-siRNAs (natural antisense mediated siRNAs). In contrast to small RNAs, much less is known about the large and diverse population of long npcRNAs, and only a few have been implicated in diverse functions such as abiotic stress responses, nodulation and flower development, and sex chromosome-specific expression. Moreover, many long npcRNAs act as antisense transcripts or are substrates of the small RNA pathways, thus interfering with a variety of RNA-related metabolisms. An emerging hypothesis is that long npcRNAs, as shown for small si/miRNAs, integrate into ribonucleoprotein particles (RNPs) to modulate their function, localization, or stability to act on target mRNAs. As plants show a remarkable developmental plasticity to adapt their growth to changing environmental conditions, understanding how npcRNAs work may reveal novel mechanisms involved in growth control and differentiation and help to design new tools for biotechnological applications.
Collapse
Affiliation(s)
- Virginie Jouannet
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, 91198, Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
388
|
Willmann MR, Endres MW, Cook RT, Gregory BD. The Functions of RNA-Dependent RNA Polymerases in Arabidopsis. THE ARABIDOPSIS BOOK 2011; 9:e0146. [PMID: 22303271 PMCID: PMC3268507 DOI: 10.1199/tab.0146] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
One recently identified mechanism that regulates mRNA abundance is RNA silencing, and pioneering work in Arabidopsis thaliana and other genetic model organisms helped define this process. RNA silencing pathways are triggered by either self-complementary fold-back structures or the production of double-stranded RNA (dsRNA) that gives rise to small RNAs (smRNAs) known as microRNAs (miRNAs) or small-interfering RNAs (siRNAs). These smRNAs direct sequence-specific regulation of various gene transcripts, repetitive sequences, viruses, and mobile elements via RNA cleavage, translational inhibition, or transcriptional silencing through DNA methylation and heterochromatin formation. Early genetic screens in Arabidopsis were instrumental in uncovering numerous proteins required for these important regulatory pathways. Among the factors identified by these studies were RNA-dependent RNA polymerases (RDRs), which are proteins that synthesize siRNA-producing dsRNA molecules using a single-stranded RNA (ssRNA) molecule as a template. Recently, a growing body of evidence has implicated RDR-dependent RNA silencing in many different aspects of plant biology ranging from reproductive development to pathogen resistance. Here, we focus on the specific functions of the six Arabidopsis RDRs in RNA silencing, their ssRNA substrates and resulting RDR-dependent smRNAs, and the numerous biological functions of these proteins in plant development and stress responses.
Collapse
Affiliation(s)
| | | | | | - Brian D. Gregory
- Department of Biology
- PENN Genome Frontiers Institute
- Genomics and Computational Biology Graduate Program University of Pennsylvania, Philadelphia, PA 19104, USA
- Address correspondence to
| |
Collapse
|
389
|
Benková E, Bielach A. Lateral root organogenesis - from cell to organ. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:677-83. [PMID: 20934368 DOI: 10.1016/j.pbi.2010.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 05/18/2023]
Abstract
Unlike locomotive organisms capable of actively approaching essential resources, sessile plants must efficiently exploit their habitat for water and nutrients. This involves root-mediated underground interactions allowing plants to adapt to soils of diverse qualities. The root system of plants is a dynamic structure that modulates primary root growth and root branching by continuous integration of environmental inputs, such as nutrition availability, soil aeration, humidity, or salinity. Root branching is an extremely flexible means to rapidly adjust the overall surface of the root system and plants have evolved efficient control mechanisms, including, firstly initiation, when and where to start lateral root formation; secondly lateral root primordia organogenesis, during which the development of primordia can be arrested for a certain time; and thirdly lateral root emergence. Our review will focus on the most recent advances in understanding the molecular mechanisms involved in the regulation of lateral root initiation and organogenesis with the main focus on root system of the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Eva Benková
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium.
| | | |
Collapse
|
390
|
Nonogaki H. MicroRNA Gene Regulation Cascades During Early Stages of Plant Development. ACTA ACUST UNITED AC 2010; 51:1840-6. [DOI: 10.1093/pcp/pcq154] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
391
|
Liang G, Yu D. Reciprocal regulation among miR395, APS and SULTR2;1 in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2010; 5:1257-9. [PMID: 20935495 PMCID: PMC3115361 DOI: 10.4161/psb.5.10.12608] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/07/2010] [Indexed: 05/20/2023]
Abstract
Sulfur element plays a pivotal role in plant growth and development. Recently, we have demonstrated that miR395 is crucial for the sulfate homeostasis through regulating the sulfate uptake, transport and assimilation in Arabidopsis thaliana. miR395 controls the sulfate concentration in the shoot by targeting three ATP sulfurylase genes (APS), which encode the first enzymes catalyzing sulfate activation in sulfur assimilation pathway. Furthermore, miR395 also regulates the transport of sulfate between leaves. Under sulfate starvation conditions, up-regulated miR395 represses the expression of SULTR2;1, which then confined the transport of sulfate from mature to young leaves. Of note, transcript expression analysis suggested that, unlike APS1 and APS4 mRNA, APS3 and shoot SULTR2;1 is in accordance with miR395 in response to sulfate deprivation. We proposed that the differential regulation of targets by miR395 may be required for adaptation to the sulfate deficiency environment. In addition, our results revealed that there is reciprocal regulation between SULTR2;1 and APS genes through miR395.
Collapse
Affiliation(s)
- Gang Liang
- Key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Kunming, Yunnan PR China
- Graduate University of Chinese Academy of Sciences; Beijing PR China
| | - Diqiu Yu
- Key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Kunming, Yunnan PR China
| |
Collapse
|
392
|
To JPC, Zhu J, Benfey PN, Elich T. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration. F1000 BIOLOGY REPORTS 2010; 2:65. [PMID: 21173868 PMCID: PMC2990534 DOI: 10.3410/b2-65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.
Collapse
Affiliation(s)
- Jennifer PC To
- GrassRoots Biotechnology302 E Pettigrew Street, Suite A200, Durham, NC 27701USA
| | - Jinming Zhu
- GrassRoots Biotechnology302 E Pettigrew Street, Suite A200, Durham, NC 27701USA
| | - Philip N Benfey
- GrassRoots Biotechnology302 E Pettigrew Street, Suite A200, Durham, NC 27701USA
- Department of Biology and IGSP Center for Systems Biology, Duke UniversityDurham, NC 27708USA
| | - Tedd Elich
- GrassRoots Biotechnology302 E Pettigrew Street, Suite A200, Durham, NC 27701USA
| |
Collapse
|
393
|
Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci U S A 2010; 107:15269-74. [PMID: 20643946 PMCID: PMC2930544 DOI: 10.1073/pnas.1001738107] [Citation(s) in RCA: 359] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of RNA silencing in plants can be amplified if the production of secondary small interfering RNAs (siRNAs) is triggered by the interaction of microRNAs (miRNAs) or siRNAs with a long target RNA. miRNA and siRNA interactions are not all equivalent, however; most of them do not trigger secondary siRNA production. Here we use bioinformatics to show that the secondary siRNA triggers are miRNAs and transacting siRNAs of 22 nt, rather than the more typical 21-nt length. Agrobacterium-mediated transient expression in Nicotiana benthamiana confirms that the siRNA-initiating miRNAs, miR173 and miR828, are effective as triggers only if expressed in a 22-nt form and, conversely, that increasing the length of miR319 from 21 to 22 nt converts it to an siRNA trigger. We also predicted and validated that the 22-nt miR771 is a secondary siRNA trigger. Our data demonstrate that the function of small RNAs is influenced by size, and that a length of 22 nt facilitates the triggering of secondary siRNA production.
Collapse
Affiliation(s)
- Ho-Ming Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; and
| | - Li-Teh Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; and
| | - Kanu Patel
- Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Yi-Hang Li
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; and
| | - David C. Baulcombe
- Department of Plant Science, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; and
| |
Collapse
|