351
|
Wei BL, Yin RX, Liu CX, Deng GX, Guan YZ, Zheng PF. The MC4R SNPs, their haplotypes and gene-environment interactions on the risk of obesity. Mol Med 2020; 26:77. [PMID: 32770936 PMCID: PMC7414557 DOI: 10.1186/s10020-020-00202-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Background Little is known about the correlation between the melanocortin 4 receptor gene (MC4R) single nucleotide polymorphisms (SNPs) and the risk of obesity. This research sought to test the MC4R rs17782313, rs476828 and rs12970134 SNPs, their haplotypes and gene-environment interactions on the risk of obesity in the Maonan ethnic group, an isolated minority in China. Methods A case-control study comprised of 1836 participants (obesity group, 858; and control group, 978) was conducted. Genotypes of the three SNPs were determined by the next-generation sequencing (NGS) technology. Results The genotypic frequencies of the three SNPs were different between the obesity and control groups (P < 0.05 for all). The minor allelic frequency of the MC4R rs17782313C, rs476828C and rs12970134A was higher in obesity than in control groups (13.8% vs. 8.3%, P < 0.001, 17.1% vs. 10.9%, P < 0.001; and 15.5% vs. 11.5%, P < 0.001; respectively). Additionally, the dominant model of rs17782313 and rs476828 SNPs revealed an increased morbidity function on the risk of obesity (P < 0.05). A correlation between SNP-environment and the risk of obesity was also observed. The rs17782313C-rs476828C-rs12970134A haplotype was associated with high risk of obesity (OR = 1.796, 95% CI = 1.447–2.229), whereas the rs17782313T-rs476828T-rs12970134G and rs17782313T-rs476828T-rs12970134A haplotypes were associated with low risk of obesity (OR = 0.699, 95% CI = 0.586–0.834 and OR = 0.620, 95% CI = 0.416–0.925; respectively). The interactions between haplotype and waist circumference on the risk of obesity were also noted. Conclusions We discovered that the MC4R rs17782313, rs476828 and rs12970134 SNPs and their haplotypes were associated with the risk of obesity in the Chinese Maonan population.
Collapse
Affiliation(s)
- Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China. .,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning, Guangxi, 530021, People's Republic of China. .,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, Guangxi, 530021, People's Republic of China.
| | - Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| |
Collapse
|
352
|
Guo A, Li K, Xiao Q. Sarcopenic obesity: Myokines as potential diagnostic biomarkers and therapeutic targets? Exp Gerontol 2020; 139:111022. [PMID: 32707318 DOI: 10.1016/j.exger.2020.111022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Sarcopenic obesity (SO) is a condition characterized by the occurrence of both sarcopenia and obesity and imposes a heavy burden on the health of the elderly. Controversies and challenges regarding the definition, diagnosis and treatment of SO still remain because of its complex pathogenesis and limitations. Over the past few decades, numerous studies have revealed that myokines secreted from skeletal muscle play significant roles in the regulation of muscle mass and function as well as metabolic homeostasis. Abnormalities in myokines may trigger and promote the pathogenesis underlying age-related and metabolic diseases, including obesity, sarcopenia, type 2 diabetes (T2D), and SO. This review mainly focuses on the role of myokines as potential biomarkers for the early diagnosis and therapeutic targets in SO.
Collapse
Affiliation(s)
- Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Kai Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
353
|
Molonia MS, Occhiuto C, Muscarà C, Speciale A, Bashllari R, Villarroya F, Saija A, Cimino F, Cristani M. Cyanidin-3-O-glucoside restores insulin signaling and reduces inflammation in hypertrophic adipocytes. Arch Biochem Biophys 2020; 691:108488. [PMID: 32692982 DOI: 10.1016/j.abb.2020.108488] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
Obesity is a metabolic disorder characterized by excess adipose tissue, macrophages infiltration, and inflammation which in turn lead to insulin-resistance. Epidemiological evidences reported that anthocyanins possess not only high antioxidant and antiinflammatory activities, but also improve metabolic complications associated with obesity. The aim of this work was to evaluate the in vitro beneficial effects of cyanidin-3-O-glucoside (C3G) in counteracting inflammation and insulin-resistance in 3T3-L1 hypertrophic adipocytes exposed to palmitic acid (PA). In the present study murine 3T3-L1 adipocytes were pretreated with C3G for 24 h and then exposed to palmitic acid (PA) for 24 h. Real-time PCR, western blotting analysis and Oil Red O staining were applied for investigating the mechanism involved in adipocytes dysfunction. C3G pretreatment reduced lipid accumulation, PPARγ pathway and NF-κB pathway induced by PA in murine adipocytes. In addition, our data demonstrated that PA reduced insulin signaling via IRS-1 Ser307phosphorylation while C3G dose-dependently improved insulin sensitivity restoring IRS-1/PI3K/Akt pathway. Furthermore, C3G improved adiponectin mRNA levels altered by PA in 3T3-L1 murine and SGBS human adipocytes. Herein reported data demonstrate that C3G ameliorated adipose tissue dysfunction, thus suggesting new potential roles for this compound of nutritional interest in the prevention of pathological conditions linked to obesity.
Collapse
Affiliation(s)
- Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; "Prof. Antonio Imbesi" Foundation, Messina, Italy
| | - Cristina Occhiuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Romina Bashllari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain; CIBER "Fisiopatologia de La Obesidad y Nutrición", Spain
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
354
|
Tait S, Baldassarre A, Masotti A, Calura E, Martini P, Varì R, Scazzocchio B, Gessani S, Del Cornò M. Integrated Transcriptome Analysis of Human Visceral Adipocytes Unravels Dysregulated microRNA-Long Non-coding RNA-mRNA Networks in Obesity and Colorectal Cancer. Front Oncol 2020; 10:1089. [PMID: 32714872 PMCID: PMC7351520 DOI: 10.3389/fonc.2020.01089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity, and the obesity-associated inflammation, represents a major risk factor for the development of chronic diseases, including colorectal cancer (CRC). Dysfunctional visceral adipose tissue (AT) is now recognized as key player in obesity-associated morbidities, although the biological processes underpinning the increased CRC risk in obese subjects are still a matter of debate. Recent findings have pointed to specific alterations in the expression pattern of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), and long non-coding RNAs (lncRNAs), as mechanisms underlying dysfunctional adipocyte phenotype in obesity. Nevertheless, the regulatory networks and interrelated processes relevant for adipocyte functions, that may contribute to a tumor-promoting microenvironment, are poorly known yet. To this end, based on RNA sequencing data, we identified lncRNAs and miRNAs, which are aberrantly expressed in visceral adipocytes from obese and CRC subjects, as compared to healthy lean control, and validated a panel of modulated ncRNAs by real-time qPCR. Furthermore, by combining the differentially expressed lncRNA and miRNA profiles with the transcriptome analysis dataset of adipocytes from lean and obese subjects affected or not by CRC, lncRNA-miRNA-mRNA adipocyte networks were defined for obese and CRC subjects. This analysis highlighted several ncRNAs modulation that are common to both obesity and CRC or unique of each disorder. Functional enrichment analysis of network-related mRNA targets, revealed dysregulated pathways associated with metabolic processes, lipid and energy metabolism, inflammation, and cancer. Moreover, adipocytes from obese subjects affected by CRC exhibited a higher complexity, in terms of number of genes, lncRNAs, miRNAs, and biological processes found to be dysregulated, providing evidence that the transcriptional and post-transcriptional program of adipocytes from CRC patients is deeply affected by obesity. Overall, this study adds further evidence for a central role of visceral adipocyte dysfunctions in the obesity-cancer relationship.
Collapse
Affiliation(s)
- Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, Rome, Italy
| | - Enrica Calura
- Department of Biology, University of Padua, Padua, Italy
| | - Paolo Martini
- Department of Biology, University of Padua, Padua, Italy
| | - Rosaria Varì
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Del Cornò
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
355
|
Rodrigues MOM, Evangelista-Silva PH, Neves NN, Moreno LG, Santos CS, Rocha KLS, Ottone VO, Batista-da-Silva B, Dias-Peixoto MF, Magalhães FC, Esteves EA. Caloric restriction-induced weight loss with a high-fat diet does not fully recover visceral adipose tissue inflammation in previously obese C57BL/6 mice. Appl Physiol Nutr Metab 2020; 45:1353-1359. [PMID: 32574503 DOI: 10.1139/apnm-2020-0220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caloric restriction (CR) reduces body weight and systemic inflammation, but the effects on adipose tissue under dietary lipid overload are controversial. We evaluated the effects of CR-induced weight loss with a high-fat diet on adipose tissue inflammation of obese mice. Male mice were assigned into low-fat diet (LF) and high-fat diet (HF) groups. After 8 weeks, the mice in the HF group were reassigned for another 7 weeks into the following 3 conditions: (i) kept in the HF condition; (ii) changed to low-fat diet ad libitum (LFAL); and (iii) changed to high-fat calorie-restricted (RHF) diet to reach LFAL body weight. Serum markers, adipocytokines, morphology, and inflammatory infiltrates in retroperitoneal adipose tissue (RAT) were accessed. The body weights of the LFAL and RHF groups were reduced, equaling the body weights of the LF group. The LFAL mice had restored almost all inflammatory markers as the LF mice, except tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and adiponectin. Compared with the HF group, the RHF group had lowered visceral adiposity, retroperitoneal adipocyte sizes, and RAT inflammatory cell infiltration, as well as TNF-α, interleukin-6, and hepatic and serum C-reactive protein, which were higher than that of the LFAL group; adiponectin and MCP-1 did not change. CR with high-fat diet reduced body weight and attenuated visceral adiposity but did not fully recover visceral tissue inflammation. Novelty Caloric restriction in a high-fat diet ameliorated visceral adiposity. Caloric restriction in a high-fat diet did not recover visceral adipose tissue inflammation.
Collapse
Affiliation(s)
- M O M Rodrigues
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - P H Evangelista-Silva
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - N N Neves
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - L G Moreno
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - C S Santos
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - K L S Rocha
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - V O Ottone
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - B Batista-da-Silva
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG 38408-100, Brazil
| | - M F Dias-Peixoto
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - F C Magalhães
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - E A Esteves
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| |
Collapse
|
356
|
Post A, Bakker SJL, Dullaart RPF. Obesity, adipokines and COVID-19. Eur J Clin Invest 2020; 50:e13313. [PMID: 32531806 PMCID: PMC7323011 DOI: 10.1111/eci.13313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Adrian Post
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Stephan J. L. Bakker
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Robin P. F. Dullaart
- Department of Internal MedicineUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
357
|
França GDO, Frantz EDC, Magliano DC, Bargut TCL, Sepúlveda-Fragoso V, Silvares RR, Daliry A, Nascimento ARD, Borges JP. Effects of short-term high-intensity interval and continuous exercise training on body composition and cardiac function in obese sarcopenic rats. Life Sci 2020; 256:117920. [PMID: 32522571 DOI: 10.1016/j.lfs.2020.117920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
AIM We investigated the effects of high-intensity interval and continuous short-term exercise on body composition and cardiac function after myocardial ischemia-reperfusion injury (IRI) in obese rats. METHODS Rats fed with a standard chow diet (SC) or high-fat diet (HFD) for 20 weeks underwent systolic blood pressure (SBP), glycemia and dual-energy X-ray absorptiometry analyses. Then, animals fed with HFD were subdivided into three groups: sedentary (HFD-SED); moderate-intensity continuous training (HFD-MICT); and high-intensity interval training (HFD-HIIT). Exercised groups underwent four isocaloric aerobic exercise sessions, in which HFD-MICT maintained the intensity continuously and HFD-HIIT alternated it. After exercise sessions, all groups underwent global IRI and myocardial infarct size (IS) was determined histologically. Fat and muscle mass were weighted, and protein levels involved in muscle metabolism were assessed in skeletal muscle. RESULTS HFD-fed versus SC-fed rats reduced lean body mass by 31% (P < 0.001), while SBP, glycemia and body fat percentage were increased by 10% (P = 0.04), 30% (P = 0.006) and 54% (P < 0.001); respectively. HFD-induced muscle atrophy was restored in exercised groups, as only HFD-SED presented lower gastrocnemius (32%; P = 0.001) and quadriceps mass (62%; P < 0.001) than SC. PGC1-α expression was 2.7-fold higher in HFD-HIIT versus HFD-SED (P = 0.04), whereas HFD-HIIT and HFD-MICT exhibited 1.7-fold increase in p-mTORSer2481 levels compared to HFD-SED (P = 0.04). Although no difference was detected among groups for IS (P = 0.30), only HFD-HIIT preserved left-ventricle developed pressure after IRI (+0.7 mmHg; P = 0.9). SIGNIFICANCE Short-term exercise, continuous or HIIT, restored HFD-induced muscle atrophy and increased mTOR expression, but only HIIT maintained myocardial contractility following IRI in obese animals.
Collapse
Affiliation(s)
- Guilherme de Oliveira França
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil; Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Laboratory of Morphological and Metabolic Analyses, Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; National Institute for Science and Technology - INCT (In)activity and Exercise, CNPq - Niteroi, RJ, Brazil; Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Laboratory of Morphological and Metabolic Analyses, Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Vinicius Sepúlveda-Fragoso
- Laboratory of Morphological and Metabolic Analyses, Department of Morphology, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Raquel Rangel Silvares
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Juliana Pereira Borges
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
358
|
Anti-Inflammatory Strategies Targeting Metaflammation in Type 2 Diabetes. Molecules 2020; 25:molecules25092224. [PMID: 32397353 PMCID: PMC7249034 DOI: 10.3390/molecules25092224] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023] Open
Abstract
One of the concepts explaining the coincidence of obesity and type 2 diabetes (T2D) is the metaflammation theory. This chronic, low-grade inflammatory state originating from metabolic cells in response to excess nutrients, contributes to the development of T2D by increasing insulin resistance in peripheral tissues (mainly in the liver, muscles, and adipose tissue) and by targeting pancreatic islets and in this way impairing insulin secretion. Given the role of this not related to infection inflammation in the development of both: insulin resistance and insulitis, anti-inflammatory strategies could be helpful not only to control T2D symptoms but also to treat its causes. This review presents current concepts regarding the role of metaflammation in the development of T2D in obese individuals as well as data concerning possible application of different anti-inflammatory strategies (including lifestyle interventions, the extra-glycemic potential of classical antidiabetic compounds, nonsteroidal anti-inflammatory drugs, immunomodulatory therapies, and bariatric surgery) in the management of T2D.
Collapse
|
359
|
Pahlavani M, Ramalingam L, Miller EK, Davis H, Scoggin S, Moustaid-Moussa N. Discordant Dose-Dependent Metabolic Effects of Eicosapentanoic Acid in Diet-Induced Obese Mice. Nutrients 2020; 12:E1342. [PMID: 32397139 PMCID: PMC7284763 DOI: 10.3390/nu12051342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a widespread epidemic that increases the risk for several metabolic diseases. Despite several beneficial health effects of eicosapentaenoic acid (C20:5n-3, EPA), previous studies have used very high doses of EPA. In this study, dose-dependent effects of EPA on metabolic outcomes were determined in diet-induced obese mice. We used B6 male mice, fed high-fat diet (HF, 45% kcal fat) or HF diet supplemented with 9, 18, and 36 g/kg of EPA-enriched fish oil for 14 weeks. We conducted metabolic phenotyping during the feeding period, and harvested tissues and blood at termination. Only mice fed 36 g/kg of EPA significantly (p < 0.05) lowered body weight, fat content and epididymal fat pad weight, compared to HF. Both 18 and 36 g/kg doses of EPA significantly increased glucose clearance and insulin sensitivity, compared to HF or 9 g/kg of EPA. Locomotor activity was significantly increased with both 18 and 36 g/kg doses of EPA. Interestingly, all doses of EPA compared to HF, significantly increased energy expenditure and oxygen consumption and significantly reduced serum insulin, leptin, and triglycerides levels. These results demonstrate weight- and adiposity-independent metabolic benefits of EPA, at doses comparable to those currently used to treat hypertriglyceridemia.
Collapse
Affiliation(s)
| | | | | | | | | | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (M.P.); (L.R.); (E.K.M.); (H.D.); (S.S.)
| |
Collapse
|
360
|
Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front Mol Biosci 2020; 7:76. [PMID: 32457917 PMCID: PMC7226927 DOI: 10.3389/fmolb.2020.00076] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is now a widespread disorder, and its prevalence has become a critical concern worldwide, due to its association with common co-morbidities like cancer, cardiovascular diseases and diabetes. Adipose tissue is an endocrine organ and therefore plays a critical role in the survival of an individual, but its dysfunction or excess is directly linked to obesity. The journey from multipotent mesenchymal stem cells to the formation of mature adipocytes is a well-orchestrated program which requires the expression of several genes, their transcriptional factors, and signaling intermediates from numerous pathways. Understanding all the intricacies of adipogenesis is vital if we are to counter the current epidemic of obesity because the limited understanding of these intricacies is the main barrier to the development of potent therapeutic strategies against obesity. In particular, AMP-Activated Protein Kinase (AMPK) plays a crucial role in regulating adipogenesis – it is arguably the central cellular energy regulation protein of the body. Since AMPK promotes the development of brown adipose tissue over that of white adipose tissue, special attention has been given to its role in adipose tissue development in recent years. In this review, we describe the molecular mechanisms involved in adipogenesis, the role of signaling pathways and the substantial role of activated AMPK in the inhibition of adiposity, concluding with observations which will support the development of novel chemotherapies against obesity epidemics.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
361
|
Alterations in Serum Adropin, Adiponectin, and Proinflammatory Cytokine Levels in OSAS. Can Respir J 2020; 2020:2571283. [PMID: 32454912 PMCID: PMC7225856 DOI: 10.1155/2020/2571283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023] Open
Abstract
Objective The present study was planned to examine the relationships between obstructive sleep apnea syndrome (OSAS) and the newly revealed adipokines adropin and adiponectin concentrations that display significant metabolic and cardiovascular functions and the levels of proinflammatory cytokine levels. Method A total of 166 overweight and obese male patients with a body mass index (BMI) >27 kg/m2 were included in the study. Among study participants, 84 were recently diagnosed with OSAS by polysomnography with an apnea-hypopnea index (AHI) ≥5, and 82 were nonapneic with normal polysomnography (AHI<5) findings. The serum adropin and adiponectin levels of all cases were analyzed via the enzyme-linked immunosorbent assay method. Serum interleukin-1 (IL-1) beta and tumor necrotizing factor-alpha (TNF-alpha) levels were determined using Luminex cytokine multiplex analyses. Results The mean age of the OSAS patients was 50.9 ± 5.7 years and BMI was 32.4 ± 6.0 kg/m2, and there was no statistically significant difference determined with the control group (49.3 ± 5.8 years and 30.6 ± 5, 6 kg/m2) (p > 0.05). There were no statistically significant differences between the OSAS and control groups concerning total cholesterol, triglyceride, low-density lipoprotein (LDL), high-density lipoprotein (HDL), and glucose levels. Adiponectin was lower in the OSAS group at a statistically significant level in comparison with the control group and was related at a statistically significant level to OSAS intensity. Adropin concentration was determined to be higher in the OSAS group at a statistically significant level in comparison with the control group. Conclusion The results of our study suggest that increased adropin concentration may be an indicator of endothelium dysfunction in OSAS patients. Serum adropin and adiponectin levels may be new bioindicators used for diagnosis and risk assessment in OSAS patients.
Collapse
|
362
|
Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020; 12:nu12051305. [PMID: 32375231 PMCID: PMC7284998 DOI: 10.3390/nu12051305] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is a major risk factor for the development of insulin resistance and type 2 diabetes. The exact mechanism by which adipose tissue induces insulin resistance is still unclear. It has been demonstrated that obesity is associated with the adipocyte dysfunction, macrophage infiltration, and low-grade inflammation, which probably contributes to the induction of insulin resistance. Adipose tissue synthesizes and secretes numerous bioactive molecules, namely adipokines and cytokines, which affect the metabolism of both lipids and glucose. Disorders in the synthesis of adipokines and cytokines that occur in obesity lead to changes in lipid and carbohydrates metabolism and, as a consequence, may lead to insulin resistance and type 2 diabetes. Obesity is also associated with the accumulation of lipids. A special group of lipids that are able to regulate the activity of intracellular enzymes are biologically active lipids: long-chain acyl-CoAs, ceramides, and diacylglycerols. According to the latest data, the accumulation of these lipids in adipocytes is probably related to the development of insulin resistance. Recent studies indicate that the accumulation of biologically active lipids in adipose tissue may regulate the synthesis/secretion of adipokines and proinflammatory cytokines. Although studies have revealed that inflammation caused by excessive fat accumulation and abnormalities in lipid metabolism can contribute to the development of obesity-related insulin resistance, further research is needed to determine the exact mechanism by which obesity-related insulin resistance is induced.
Collapse
|
363
|
Elevated serum chemokine CCL22 levels in first-episode psychosis: associations with symptoms, peripheral immune state and in vivo brain glial cell function. Transl Psychiatry 2020; 10:94. [PMID: 32179746 PMCID: PMC7075957 DOI: 10.1038/s41398-020-0776-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023] Open
Abstract
Several lines of research support immune system dysregulation in psychotic disorders. However, it remains unclear whether the immunological marker alterations are stable and how they associate with brain glial cell function. This longitudinal study aimed at investigating whether peripheral immune functions are altered in the early phases of psychotic disorders, whether the changes are associated with core symptoms, remission, brain glial cell function, and whether they persist in a one-year follow-up. Two independent cohorts comprising in total of 129 first-episode psychosis (FEP) patients and 130 controls were assessed at baseline and at the one-year follow-up. Serum cyto-/chemokines were measured using a 38-plex Luminex assay. The FEP patients showed a marked increase in chemokine CCL22 levels both at baseline (p < 0.0001; Cohen's d = 0.70) and at the 12-month follow-up (p = 0.0007) compared to controls. The group difference remained significant (p = 0.0019) after accounting for relevant covariates including BMI, smoking, and antipsychotic medication. Elevated serum CCL22 levels were significantly associated with hallucinations (ρ = 0.20) and disorganization (ρ = 0.23), and with worse verbal performance (ρ = -0.23). Brain glial cell activity was indexed with positron emission tomography and the translocator protein radiotracer [11C]PBR28 in subgroups of 15 healthy controls and 14 FEP patients with serum CCL22/CCL17 measurements. The distribution volume (VT) of [11C]PBR28 was lower in patients compared to controls (p = 0.026; Cohen's d = 0.94) without regionally specific effects, and was inversely associated with serum CCL22 and CCL17 levels (p = 0.036). Our results do not support the over-active microglia hypothesis of psychosis, but indicate altered CCR4 immune signaling in early psychosis with behavioral correlates possibly mediated through cross-talk between chemokine networks and dysfunctional or a decreased number of glial cells.
Collapse
|
364
|
Garruti G, De Fazio M, Capuano P, Martinez G, Rotelli MT, Puglisi F, Palasciano N, Giorgino F. Exercise and apulian hypocaloric diet affect adipokine changes and gastric banding-induced weight loss: A prospective study on severe obese subjects. Ann Med Surg (Lond) 2020; 52:10-15. [PMID: 32153773 PMCID: PMC7052402 DOI: 10.1016/j.amsu.2020.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/29/2022] Open
Abstract
Background Adiponectin and Resistin correlate with insulin sensitivity and cardiovascular risk, respectively. This study aimed to identify lifestyle factors that modulate changes in Adiponectin and Resistin levels after gastric banding positioning (LapGB). Materials and methods Before (T0), 3 months (T3), 6 months (T6), and 12 months (T12) after LapGB, serum Adiponectin and Resistin levels were evaluated in a single-centre prospective study including a cohort of 27 non-diabetic obese subjects (S-Ob, BMI ≥35 kg/m2). After surgery, a dietitian checked the adherence of S-Ob to an Apulian hypocaloric diet (aphypoD)/physical activity (phA) and, according to their high or low compliance to aphypoD/phA, S-Ob were included in group 1 (n = 14) or 2 (n = 13) respectively. Serum Adiponectin and Resistin were also measured in 10 healthy controls. Results At baseline, Resistin levels were significantly higher and Adiponectin levels significantly lower in S-Ob than in controls. After surgery, group 1 showed a 50.2% excess weight loss (%EWL), significantly decreased Resistin levels at T12 and increased Adiponectin levels at both T6 and T12 as compared with baseline. Group 2 showed 24.6 %EWL at T12, decreased Adiponectin levels at T6 and T12 as compared with baseline, but unaltered Resistin levels. After surgery, group 1 followed aphypoD/phA, while group 2 did not. Conclusions LapGB fails to improve cardiovascular risk markers (Resistin) in S-Ob not improving lifestyle. Future studies might investigate these findings in a larger cohort and display whether aphypoD is more effective than other dietary intervention on cardiovascular risk in subjects undergoing LapGB or other Bariatric procedures. Gastric banding (LapGB) plus a 12-month lifestyle program was followed by a % excess weight loss >40. Resistin significantly declined in subjects adhering to a 1-year LapGB/lifestyle intervention. In subjects not following any lifestyle program after surgery, Adiponectin unexpectedly decreased. LapGB fails to change cardiovascular risk or insulin sensitivity without a healthy lifestyle.
Collapse
Affiliation(s)
- Gabriella Garruti
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Michele De Fazio
- Department of Emergency and Organ Transplantation, Section of General Surgery and Liver Transplantation, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Palma Capuano
- Department of Emergency and Organ Transplantation, Section of General Surgery and Liver Transplantation, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Gennaro Martinez
- Department of Emergency and Organ Transplantation, Section of General Surgery and Liver Transplantation, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Maria T Rotelli
- Department of Emergency and Organ Transplantation, Section of General Surgery and Liver Transplantation, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Francesco Puglisi
- Department of Emergency and Organ Transplantation, Section of General Surgery and Liver Transplantation, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Nicola Palasciano
- Department of Emergency and Organ Transplantation, Section of General Surgery and Liver Transplantation, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
365
|
Watanabe Y, Watanabe K, Fujioka D, Nakamura K, Nakamura T, Uematsu M, Bachschmid MM, Matsui R, Kugiyama K. Protein S-glutathionylation stimulate adipogenesis by stabilizing C/EBPβ in 3T3L1 cells. FASEB J 2020; 34:5827-5837. [PMID: 32141127 DOI: 10.1096/fj.201902575r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/07/2020] [Accepted: 02/20/2020] [Indexed: 02/02/2023]
Abstract
Reactive oxygen species (ROS) increase during adipogenesis and in obesity. Oxidants react with cysteine residues of proteins to form glutathione (GSH) adducts, S-glutathionylation, that are selectively removed by glutaredoxin-1 (Glrx). We have previously reported that Glrx knockout mice had increased protein S-glutathionylation and developed obesity by an unknown mechanism. In this study, we demonstrated that 3T3L1 adipocytes differentiation increased ROS and protein S-glutathionylation. Glrx ablation elevated protein S-glutathionylation and lipid content in 3T3L1 cells. Glrx replenishment decreased the lipid content of Glrx KO 3T3L1 cells. Glrx KO also increased protein expression and protein S-glutathionylation of the adipogenic transcription factor CCAAT enhancer-binding protein (C/EBP) β. Protein S-glutathionylation decreased the interaction of C/EBPβ and protein inhibitor of activated STAT (PIAS) 1, a small ubiquitin-related modifier E3 ligase that facilitates C/EBPβ degradation. Experiments with truncated mutant C/EBPβ demonstrated that PIAS1 interacted with the liver-enriched inhibitory protein (LIP) region of C/EBPβ. Furthermore, mass spectrometry analysis identified protein S-glutathionylation of Cys201 and Cys296 in the LIP region of C/EBPβ. The C201S, C296S double-mutant C/EBPβ prevented protein S-glutathionylation and preserved the interaction with PIAS1. In summary, Glrx ablation stimulated 3T3L1 cell differentiation and adipogenesis via increased protein S-glutathionylation of C/EBPβ, stabilizing and increasing C/EBPβ protein levels.
Collapse
Affiliation(s)
- Yosuke Watanabe
- Department of Internal Medicine II, University of Yamanashi, Chuo, Japan
| | - Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Chuo, Japan
| | - Daisuke Fujioka
- Department of Internal Medicine II, University of Yamanashi, Chuo, Japan
| | - Kazuto Nakamura
- Department of Internal Medicine II, University of Yamanashi, Chuo, Japan
| | - Takamitsu Nakamura
- Department of Internal Medicine II, University of Yamanashi, Chuo, Japan
| | - Manabu Uematsu
- Department of Internal Medicine II, University of Yamanashi, Chuo, Japan
| | - Markus M Bachschmid
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Reiko Matsui
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Kiyotaka Kugiyama
- Department of Internal Medicine II, University of Yamanashi, Chuo, Japan
| |
Collapse
|
366
|
Rozenberg K, Wollman A, Ben-Shachar M, Argaev-Frenkel L, Rosenzweig T. Anti-inflammatory effects of Sarcopoterium spinosum extract. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112391. [PMID: 31730890 DOI: 10.1016/j.jep.2019.112391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sarcopoterium spinosum is a Mediterranean plant, widely used by the Beduin traditional medicine. While its major use is for the treatment of diabetes, there are also documentations for its use as anti-inflammatory agent. This therapeutic potential of Sarcopoterium spinosum was not validated before. AIM OF THE STUDY To investigate the anti-inflammatory properties of Sarcopoterium spinosum extract (SSE). MATERIALS AND METHODS Experiments were performed on RAW264.7 macrophages and bone marrow-derived macrophages (BMDM) and the effect of SSE on markers of inflammation was investigated. In addition, the effect of SSE on the development of inflammation in adipose-tissue of obese, insulin resistant mice was measured in KK-Ay mice and high fat diet (HFD)-fed mice. RESULTS Lipopolysaccharide (LPS) and SSE increased the viability of RAW264.7. In addition, the cells acquired distinct dendritic-like morphology, however, while LPS induced NO production and the mRNA expression of pro-inflammatory cytokines, SSE increased the mRNA expression of anti-inflammatory genes and blocked LPS effects. All three pathways of MAPK were activated by LPS and SSE, as demonstrated by the phosphorylation of ERK, p38 and JNK. NFκB was activated and Akt was phosphorylated by LPS, while SSE blocked this effects. STAT proteins were differently phosphorylated by SSE and LPS. Immunomodulatory effects of SSE were also found in BMDM. In adipose tissue of SSE-treated mice, less crown-like structures were found, and lower expression of pro-inflammatory adipocytokines was observed, although adipocytes hypertrophy was not affected. CONCLUSIONS SSE has an immunomodulatory effects that affect macrophage function, and reduces adipose tissue inflammation. Identifying active component and clarifying its mechanism of action might support the development of new anti-inflammatory agent.
Collapse
Affiliation(s)
- Konstantin Rozenberg
- Department of Molecular Biology, Ariel University, Ariel, Israel; Department of Nutrition Sciences, Ariel University, Ariel, Israel.
| | - Ayala Wollman
- Department of Molecular Biology, Ariel University, Ariel, Israel; Department of Nutrition Sciences, Ariel University, Ariel, Israel.
| | - Michaella Ben-Shachar
- Department of Molecular Biology, Ariel University, Ariel, Israel; Department of Nutrition Sciences, Ariel University, Ariel, Israel.
| | - Lital Argaev-Frenkel
- Department of Molecular Biology, Ariel University, Ariel, Israel; Department of Nutrition Sciences, Ariel University, Ariel, Israel.
| | - Tovit Rosenzweig
- Department of Molecular Biology, Ariel University, Ariel, Israel; Department of Nutrition Sciences, Ariel University, Ariel, Israel.
| |
Collapse
|
367
|
Ha X, Wang J, Chen K, Deng Y, Zhang X, Feng J, Li X, Zhu J, Ma Y, Qiu T, Wang C, Xie J, Zhang J. Free Fatty Acids Promote the Development of Prostate Cancer by Upregulating Peroxisome Proliferator-Activated Receptor Gamma. Cancer Manag Res 2020; 12:1355-1369. [PMID: 32158268 PMCID: PMC7048952 DOI: 10.2147/cmar.s236301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction As one of the most common forms of cancer that threatens men's health, prostate cancer (PCa) is under a trend of increasing morbidity and mortality in most countries. More and more studies have pointed out that obesity is closely linked to the occurrence and development of PCa, although there are still many undiscovered molecular mechanisms between the two. Methods In the present study, we compare serum lipid levels in patients with PCa and normal individuals. PCa cells (PC3 and 22RV1) were cultured in vitro, the TC/TG/HDL/GLU assay kit was used to detect the glucose and lipid metabolism level of PCa cells, the flow cytometry technique was used to detect the proliferation ability of PCa cells, and the Transwell was used to detect the invasion and migration ability of PCa cells. Western blot/quantitative real-time PCR was used to detect peroxisome proliferator-activated receptor γ (PPARγ) and vimentin/vascular endothelial growth factor-A (VEGF-A) expression levels, and immunohistochemistry was used to observe tumor-associated gene expression levels in nude mice. All data were analysed using the Independent samples t-test or rank sum test. Results We found higher levels of FFA in the serum of patients with PCa. In vitro experiments have demonstrated that high levels of FFA can promote the proliferation, migration and invasion of two PCa cells (PC3 and 22RV1) and affect the energy metabolism of PCa cells. The upregulated PPARγ plays a key role in this process, and vimentin may be involved in this signaling pathway. Conclusion We infer that high levels of FFA may promote PCa development by upregulating PPARγ expression.
Collapse
Affiliation(s)
- Xiaodan Ha
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jingzhou Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Keru Chen
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Yuchun Deng
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Xueting Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jiale Feng
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Xue Li
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jiaojiao Zhu
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Yinghua Ma
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Tongtong Qiu
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Cuizhe Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jianxin Xie
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jun Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| |
Collapse
|
368
|
|
369
|
Laurent JS, Watts R, Adise S, Allgaier N, Chaarani B, Garavan H, Potter A, Mackey S. Associations Among Body Mass Index, Cortical Thickness, and Executive Function in Children. JAMA Pediatr 2020; 174:170-177. [PMID: 31816020 PMCID: PMC6902097 DOI: 10.1001/jamapediatrics.2019.4708] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE A total of 25.7 million children in the United States are classified as overweight or obese. Obesity is associated with deficits in executive function, which may contribute to poor dietary decision-making. Less is known about the associations between being overweight or obese and brain development. OBJECTIVE To examine whether body mass index (BMI) is associated with thickness of the cerebral cortex and whether cortical thickness mediates the association between BMI and executive function in children. DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional study, cortical thickness maps were derived from T1-weighted structural magnetic resonance images of a large, diverse sample of 9 and 10-year-old children from 21 US sites. List sorting, flanker, matrix reasoning, and Wisconsin card sorting tasks were used to assess executive function. MAIN OUTCOMES AND MEASURES A 10-fold nested cross-validation general linear model was used to assess mean cortical thickness from BMI across cortical brain regions. Associations between BMI and executive function were explored with Pearson partial correlations. Mediation analysis examined whether mean prefrontal cortex thickness mediated the association between BMI and executive function. RESULTS Among 3190 individuals (mean [SD] age, 10.0 [0.61] years; 1627 [51.0%] male), those with higher BMI exhibited lower cortical thickness. Eighteen cortical regions were significantly inversely associated with BMI. The greatest correlations were observed in the prefrontal cortex. The BMI was inversely correlated with dimensional card sorting (r = -0.088, P < .001), list sorting (r = -0.061, P < .003), and matrix reasoning (r = -0.095, P < .001) but not the flanker task. Mean prefrontal cortex thickness mediated the association between BMI and list sorting (mean [SE] indirect effect, 0.014 [0.008]; 95% CI, 0.001-0.031) but not the matrix reasoning or card sorting task. CONCLUSIONS AND RELEVANCE These results suggest that BMI is associated with prefrontal cortex development and diminished executive functions, such as working memory.
Collapse
Affiliation(s)
- Jennifer S. Laurent
- Department of Nursing, College of Nursing and Health Sciences, University of Vermont, Burlington
| | - Richard Watts
- Magnetic Resonance Imaging Facility, Yale University, New Haven, Connecticut
| | - Shana Adise
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington
| | - Nicholas Allgaier
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington
| | - Bader Chaarani
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington
| | - Hugh Garavan
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington
| | - Alexandra Potter
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington
| | - Scott Mackey
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington
| |
Collapse
|
370
|
Claro-Cala CM, Quintela JC, Pérez-Montero M, Miñano J, Alvarez de Sotomayor M, Herrera MD, Rodríguez-Rodríguez R. Pomace Olive Oil Concentrated in Triterpenic Acids Restores Vascular Function, Glucose Tolerance and Obesity Progression in Mice. Nutrients 2020; 12:nu12020323. [PMID: 31991894 PMCID: PMC7071211 DOI: 10.3390/nu12020323] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pomace olive oil, an olive oil sub-product, is a promising source of bioactive triterpenoids such as oleanolic acid and maslinic acid. Considering the vascular actions of pomace olive oil and the potential effects of the isolated oleanolic acid on metabolic complications of obesity, this study investigates for the first time the dietary intervention with a pomace olive oil with high concentrations of the triterpenic acids (POCTA), oleanolic and maslinic acid, during diet-induced obesity in mice. The results demonstrate that obese mice, when switched to a POCTA-diet for 10 weeks, show a substantial reduction of body weight, insulin resistance, adipose tissue inflammation, and particularly, improvement of vascular function despite high caloric intake. This study reveals the potential of a functional food based on pomace olive oil and its triterpenic fraction against obesity progression. Our data also contribute to understanding the health-promoting effects attributable to the Mediterranean diet.
Collapse
Affiliation(s)
- Carmen Maria Claro-Cala
- Department of Pharmacology, Pediatric and Radiology, Faculty of Medicine, University of Sevilla, E-41009 Sevilla, Spain;
- Correspondence: (C.M.C.-C.); (R.R.-R.); Tel.: +34-954-550-988 (C.M.C.-C.); +34-935-042-002 (R.R.-R.)
| | | | - Marta Pérez-Montero
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain;
| | - Javier Miñano
- Department of Pharmacology, Pediatric and Radiology, Faculty of Medicine, University of Sevilla, E-41009 Sevilla, Spain;
| | - María Alvarez de Sotomayor
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain; (M.A.d.S.); (M.D.H.)
| | - María Dolores Herrera
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, E-41012 Sevilla, Spain; (M.A.d.S.); (M.D.H.)
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain;
- Correspondence: (C.M.C.-C.); (R.R.-R.); Tel.: +34-954-550-988 (C.M.C.-C.); +34-935-042-002 (R.R.-R.)
| |
Collapse
|
371
|
The association between sugar-sweetened beverages intake, body mass index, and inflammation in US adults. Int J Public Health 2020; 65:45-53. [PMID: 31982934 DOI: 10.1007/s00038-020-01330-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/07/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES This study aims to (1) assess the associations between sugar-sweetened beverages (SSB) consumption and C-reactive protein (CRP) levels, and (2) evaluate the modifying effect of body mass index (BMI) on the association between SSB consumption and CRP levels. METHODS A total of 6856 eligible adults were selected from the 2007-2010 National Health and Nutrition Examination Survey (NHANES). Average quantity of SSB consumption was calculated from 2-day 24-h dietary recalls. All data analyses were performed with appropriate sampling weights. RESULTS Compared with non-SSB drinkers, a 0.26 mg/l higher CRP was observed in heavy SSB drinkers after adjusting for demographic characteristics, lifestyle patterns, and BMI. An effect modification of BMI on SSB intake and CRP levels was detected (P < 0.05). Medium and heavy SSB consumers with obesity had 0.58 and 0.50 higher CRP than non-SSB consumers, respectively (P = 0.014 and 0.013). No association was found in SSB drinkers who were normal weight or overweight. CONCLUSIONS These findings emphasize that SSB intake is positively associated with CRP levels. Obesity might strengthen CRP levels in individuals with medium/heavy amount of SSB consumption.
Collapse
|
372
|
Impact of Weight Loss on Inflammation State and Endothelial Markers Among Individuals with Extreme Obesity After Gastric Bypass Surgery: a 2-Year Follow-up Study. Obes Surg 2020; 30:1881-1890. [PMID: 31953742 DOI: 10.1007/s11695-020-04411-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
373
|
Varela-Rodríguez BM, Juiz-Valiña P, Varela L, Outeiriño-Blanco E, Bravo SB, García-Brao MJ, Mena E, Noguera JF, Valero-Gasalla J, Cordido F, Sangiao-Alvarellos S. Beneficial Effects of Bariatric Surgery-Induced by Weight Loss on the Proteome of Abdominal Subcutaneous Adipose Tissue. J Clin Med 2020; 9:jcm9010213. [PMID: 31941045 PMCID: PMC7019912 DOI: 10.3390/jcm9010213] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Bariatric surgery (BS) is the most effective treatment for obesity and has a positive impact on cardiometabolic risk and in the remission of type 2 diabetes. Following BS, the majority of fat mass is lost from the subcutaneous adipose tissue depot (SAT). However, the changes in this depot and functions and as well as its relative contribution to the beneficial effects of this surgery are still controversial. With the aim of studying altered proteins and molecular pathways in abdominal SAT (aSAT) after body weight normalization induced by BS, we carried out a proteomic approach sequential window acquisition of all theoretical mass spectra (SWATH-MS) analysis. These results were complemented by Western blot, electron microscopy and RT-qPCR. With all of the working tools mentioned, we confirmed that after BS, up-regulated proteins were associated with metabolism, the citric acid cycle and respiratory electron transport, triglyceride catabolism and metabolism, formation of ATP, pyruvate metabolism, glycolysis/gluconeogenesis and thermogenesis among others. In contrast, proteins with decreased values are part of the biological pathways related to the immune system. We also confirmed that obesity caused a significant decrease in mitochondrial density and coverage, which was corrected by BS. Together, these findings reveal specific molecular mechanisms, genes and proteins that improve adipose tissue function after BS characterized by lower inflammation, increased glucose uptake, higher insulin sensitivity, higher de novo lipogenesis, increased mitochondrial function and decreased adipocyte size.
Collapse
Affiliation(s)
- Bárbara María Varela-Rodríguez
- Endocrine, Nutritional and Metabolic Diseases Group, Faculty of Health Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain; (B.M.V.-R.); (P.J.-V.); (F.C.)
- INIBIC (Instituto de Investigación Biomédica de A Coruña), Xubias de Arriba, 84. 15006 A Coruña, Spain
- CICA (Centro de Investigaciones Científicas Avanzadas), As Carballeiras, s/n Campus de, San Vicente de Elviña, 15008 A Coruña, Spain
| | - Paula Juiz-Valiña
- Endocrine, Nutritional and Metabolic Diseases Group, Faculty of Health Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain; (B.M.V.-R.); (P.J.-V.); (F.C.)
- INIBIC (Instituto de Investigación Biomédica de A Coruña), Xubias de Arriba, 84. 15006 A Coruña, Spain
- CICA (Centro de Investigaciones Científicas Avanzadas), As Carballeiras, s/n Campus de, San Vicente de Elviña, 15008 A Coruña, Spain
| | - Luis Varela
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Elena Outeiriño-Blanco
- Department of Endocrinology, Hospital Universitario A Coruña, A Coruña, 15006 A Coruña, Spain;
| | - Susana Belén Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705 A Coruña, Spain;
| | - María Jesús García-Brao
- Department of Digestive and General Surgery, Hospital Universitario A Coruña, 15006 A Coruña, Spain; (M.J.G.-B.); (E.M.); (J.F.N.)
| | - Enrique Mena
- Department of Digestive and General Surgery, Hospital Universitario A Coruña, 15006 A Coruña, Spain; (M.J.G.-B.); (E.M.); (J.F.N.)
| | - José Francisco Noguera
- Department of Digestive and General Surgery, Hospital Universitario A Coruña, 15006 A Coruña, Spain; (M.J.G.-B.); (E.M.); (J.F.N.)
| | - Javier Valero-Gasalla
- Department of Plastic, Reconstructive & Aesthetic Surgery. Hospital Universitario A Coruña, 15006 A Coruña, Spain;
| | - Fernando Cordido
- Endocrine, Nutritional and Metabolic Diseases Group, Faculty of Health Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain; (B.M.V.-R.); (P.J.-V.); (F.C.)
- INIBIC (Instituto de Investigación Biomédica de A Coruña), Xubias de Arriba, 84. 15006 A Coruña, Spain
- CICA (Centro de Investigaciones Científicas Avanzadas), As Carballeiras, s/n Campus de, San Vicente de Elviña, 15008 A Coruña, Spain
- Department of Endocrinology, Hospital Universitario A Coruña, A Coruña, 15006 A Coruña, Spain;
| | - Susana Sangiao-Alvarellos
- Endocrine, Nutritional and Metabolic Diseases Group, Faculty of Health Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain; (B.M.V.-R.); (P.J.-V.); (F.C.)
- INIBIC (Instituto de Investigación Biomédica de A Coruña), Xubias de Arriba, 84. 15006 A Coruña, Spain
- CICA (Centro de Investigaciones Científicas Avanzadas), As Carballeiras, s/n Campus de, San Vicente de Elviña, 15008 A Coruña, Spain
- Correspondence:
| |
Collapse
|
374
|
Ali MM, Phillips SA, Mahmoud AM. HIF1α/TET1 Pathway Mediates Hypoxia-Induced Adipocytokine Promoter Hypomethylation in Human Adipocytes. Cells 2020; 9:cells9010134. [PMID: 31935962 PMCID: PMC7016890 DOI: 10.3390/cells9010134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Obesity is associated with the accumulation of dysfunctional adipose tissue that secretes several pro-inflammatory cytokines (adipocytokines). Recent studies have presented evidence that adipose tissues in obese individuals and animal models are hypoxic, which may result in upregulation and stabilization of the hypoxia inducible factor HIF1α. Epigenetic mechanisms such as DNA methylation enable the body to respond to microenvironmental changes such as hypoxia and may represent a mechanistic link between obesity-associated hypoxia and upregulated inflammatory adipocytokines. The purpose of this study was to investigate the role of hypoxia in modifying adipocytokine DNA methylation and subsequently adipocytokine expression. We suggested that this mechanism is mediated via the DNA demethylase, ten-eleven translocation-1 (TET1), transcription of which has been shown to be induced by HIF1α. To this end, we studied the effect of hypoxia (2% O2) in differentiated subcutaneous human adipocytes in the presence or absence of HIF1α stabilizer (Dimethyloxalylglycine (DMOG), 500 μM), HIF1α inhibitor (methyl 3-[[2-[4-(2-adamantyl) phenoxy] acetyl] amino]-4-hydroxybenzoate, 30 μM), or TET1-specific siRNA. Subjecting the adipocytes to hypoxia significantly induced HIF1α and TET1 protein levels. Moreover, hypoxia induced global hydroxymethylation, reduced adipocytokine DNA promoter methylation, and induced adipocytokine expression. These effects were abolished by either HIF1α inhibitor or TET1 gene silencing. The major hypoxia-responsive adipocytokines were leptin, interleukin-1 (IL6), IL1β, tumor necrosis factor α (TNFα), and interferon γ (IFNγ). Overall, these data demonstrate an activation of the hydroxymethylation pathway mediated by TET1. This pathway contributes to promoter hypomethylation and gene upregulation of the inflammatory adipocytokines in adipocytes in response to hypoxia.
Collapse
Affiliation(s)
- Mohamed M. Ali
- Department of Physical Therapy and Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Shane A. Phillips
- Department of Physical Therapy and Integrative Physiology Laboratory, College of Applied Health Sciences and Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-312-355-8099
| |
Collapse
|
375
|
Zhou H, Urso CJ, Jadeja V. Saturated Fatty Acids in Obesity-Associated Inflammation. J Inflamm Res 2020; 13:1-14. [PMID: 32021375 PMCID: PMC6954080 DOI: 10.2147/jir.s229691] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/11/2019] [Indexed: 01/14/2023] Open
Abstract
Obesity is a major risk factor for the development of various pathological conditions including insulin resistance, diabetes, cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Central to these conditions is obesity-associated chronic low-grade inflammation in many tissues including adipose, liver, muscle, kidney, pancreas, and brain. There is increasing evidence that saturated fatty acids (SFAs) increase the phosphorylation of MAPKs, enhance the activation of transcription factors such as nuclear factor (NF)-κB, and elevate the expression of inflammatory genes. This paper focuses on the mechanisms by which SFAs induce inflammation. SFAs may induce the expression inflammatory genes via different pathways including toll-like receptor (TLR), protein kinase C (PKC), reactive oxygen species (ROS), NOD-like receptors (NLRs), and endoplasmic reticulum (ER) stress. These findings suggest that SFAs act as an important link between obesity and inflammation.
Collapse
Affiliation(s)
- Heping Zhou
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - C J Urso
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Viren Jadeja
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
376
|
McElwain CJ, Tuboly E, McCarthy FP, McCarthy CM. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front Endocrinol (Lausanne) 2020; 11:655. [PMID: 33042016 PMCID: PMC7516342 DOI: 10.3389/fendo.2020.00655] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Placental insufficiency and adipose tissue dysregulation are postulated to play key roles in the pathophysiology of both pre-eclampsia (PE) and gestational diabetes mellitus (GDM). A dysfunctional release of deleterious signaling motifs can offset an increase in circulating oxidative stressors, pro-inflammatory factors and various cytokines. It has been previously postulated that endothelial dysfunction, instigated by signaling from endocrine organs such as the placenta and adipose tissue, may be a key mediator of the vasculopathy that is evident in both adverse obstetric complications. These signaling pathways also have significant effects on long term maternal cardiometabolic health outcomes, specifically cardiovascular disease, hypertension, and type II diabetes. Recent studies have noted that both PE and GDM are strongly associated with lower maternal flow-mediated dilation, however the exact pathways which link endothelial dysfunction to clinical outcomes in these complications remains in question. The current diagnostic regimen for both PE and GDM lacks specificity and consistency in relation to clinical guidelines. Furthermore, current therapeutic options rely largely on clinical symptom control such as antihypertensives and insulin therapy, rather than that of early intervention or prophylaxis. A better understanding of the pathogenic origin of these obstetric complications will allow for more targeted therapeutic interventions. In this review we will explore the complex signaling relationship between the placenta and adipose tissue in PE and GDM and investigate how these intricate pathways affect maternal endothelial function and, hence, play a role in acute pathophysiology and the development of future chronic maternal health outcomes.
Collapse
Affiliation(s)
- Colm J. McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
- *Correspondence: Colm J. McElwain
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
377
|
Wang XH, Lin JN, Liu GZ, Fan HM, Huang YP, Li CJ, Yan HY. Women Are at a Higher Risk of Chronic Metabolic Diseases Compared to Men With Increasing Body Mass Index in China. Front Endocrinol (Lausanne) 2020; 11:127. [PMID: 32226411 PMCID: PMC7080650 DOI: 10.3389/fendo.2020.00127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Chronic non-communicable diseases are the major causes of mortality in the world. However, few studies have investigated the association between multi-categories BMI and chronic diseases from perspective of sex stratification. This study aimed to investigate the risk of chronic diseases at different BMI levels, and to further explore whether BMI-health risk associations differ by sex. Methods: In total, 21,134 participants aged 19-65 years (60.4% men) from the Tianjin People's Hospital, Tianjin Union Medical Center-Health Management Center were recruited for this cross-sectional study. Sex-specific percentiles of BMI were calculated and divided into 11 categories according to the 2000 CDC growth charts. Health-related indicators, such as hyperglycemia, hypertension, non-alcoholic fatty liver diseases (NAFLD), hyperuricemia, etc., were used as dependent variables in this study. Statistical differences were tested by unpaired Mann-Whitney U-test and chi-squared test. Logistic regression models were used to examine the associations between BMI and health-related indicators. Results: The risk of hyperglycemia (OR: 1.67, 95%CI: 1.23-2.29), NAFLD (OR: 2.22, 95%CI: 1.74-2.85), hypertriglyceridemia (OR: 1.65, 95%CI: 1.28-2.12), and hyperuricemia (OR: 1.39, 95%CI: 1.12-1.72) in men began to increase significantly when BMI was in the range of 22.59-23.89 kg/m2. However, in women, the risk of hyperglycemia (OR: 3.02, 95%CI: 1.25-8.98) and hyperuricemia (OR: 1.94, 95%CI: 1.26-3.05) began to increase significantly when BMI was in the range of 22.76-23.62 kg/m2, and the risk of NAFLD (OR: 5.48, 95%CI: 2.49-14.47) began to increase significantly when BMI was in the range of 21.08-21.97 kg/m2. Besides, at the same BMI level, the risk of diseases in women were significantly higher than that in men, especially when BMI > 25 kg/m2. Conclusion: In the Chinese population, the risk of chronic diseases in women were significantly higher than that in men at the same BMI level, especially when BMI was >25 kg/m2. In addition, the risk of chronic diseases began to increase significantly when BMI was >21.97 kg/m2 in women and 23.89 kg/m2 in men. The results indicated that women should be more alert to the risk of chronic diseases caused by the increase of BMI than men.
Collapse
Affiliation(s)
- Xiao-He Wang
- College of Public Health, Hebei University, Baoding, China
| | - Jing-Na Lin
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | | | - Hai-Ming Fan
- Tianjin Municipal Health Commission, Tianjin, China
| | | | - Chun-Jun Li
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
- *Correspondence: Chun-Jun Li
| | - Hong-Yuan Yan
- College of Public Health, Hebei University, Baoding, China
- Hong-Yuan Yan
| |
Collapse
|
378
|
Zhu L, Yang B, Ma D, Wang L, Duan W. Hydrogen Sulfide, Adipose Tissue and Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:1873-1886. [PMID: 32581562 PMCID: PMC7276333 DOI: 10.2147/dmso.s249605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is now increasingly considered to be the third gasotransmitter alongside other gaseous signaling molecules, nitric oxide (NO) and carbon monoxide (CO). H2S is produced by a variety of endogenous enzymatic and non-enzymatic pathways and acts as a modulator of the physiological and pathological events of the body. Adipocytes express the cystathionine γ lyase (CSE)/H2S system, which modulates a variety of biological activities in adipose tissue (AT), including inflammation, apoptosis, insulin resistance, adipokine secretion and adipocyte differentiation. Abnormalities in the physiological functions of AT play an important role in the process of diabetes mellitus. Therefore, this review provides an overview of the general aspects of H2S biochemistry, the effect of H2S on AT function and diabetes mellitus and its molecular signalling mechanisms as well as the potential application of H2S in pharmacotherapy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Dongxia Ma
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan250012, People’s Republic of China
- Correspondence: Wu Duan Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan250012, People’s Republic of China Tel/Fax +86-531-8692-7544 Email
| |
Collapse
|
379
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
380
|
Scudiero O, Pero R, Ranieri A, Terracciano D, Fimiani F, Cesaro A, Gentile L, Leggiero E, Laneri S, Moscarella E, Mazzaccara C, Frisso G, D'Alicandro G, Limongelli G, Pastore L, Calabrò P, Lombardo B. Childhood obesity: an overview of laboratory medicine, exercise and microbiome. Clin Chem Lab Med 2019; 58:1385-1406. [PMID: 31821163 DOI: 10.1515/cclm-2019-0789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
In the last few years, a significant increase of childhood obesity incidence unequally distributed within countries and population groups has been observed, thus representing an important public health problem associated with several health and social consequences. Obese children have more than a 50% probability of becoming obese adults, and to develop pathologies typical of obese adults, that include type 2-diabetes, dyslipidemia and hypertension. Also environmental factors, such as reduced physical activity and increased sedentary activities, may also result in increased caloric intake and/or decreased caloric expenditure. In the present review, we aimed to identify and describe a specific panel of parameters in order to evaluate and characterize the childhood obesity status useful in setting up a preventive diagnostic approach directed at improving health-related behaviors and identifying predisposing risk factors. An early identification of risk factors for childhood obesity could definitely help in setting up adequate and specific clinical treatments.
Collapse
Affiliation(s)
- Olga Scudiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Raffaela Pero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy
| | - Annaluisa Ranieri
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Daniela Terracciano
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Naples "Federico II", Napoli, Italy
| | - Fabio Fimiani
- Divisione di Cardiologia, Dipartimento di Scienze Cardiotoraciche e Respiratorie, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Arturo Cesaro
- Divisione di Cardiologia, Dipartimento di Scienze Cardiotoraciche e Respiratorie, Università della Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Naples "Federico II", Napoli, Italy
| | - Elisabetta Moscarella
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", Caserta, Italy.,Unità di Cardiologia, Ospedale "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Cristina Mazzaccara
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Giovanni D'Alicandro
- Centro di Medicina dello Sport e delle Disabilità, Dipartimento di Neuroscienze e Riabilitazione, AORN, Santobono-Pausillipon, Naples, Italy
| | - Giuseppe Limongelli
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Lucio Pastore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Paolo Calabrò
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", Caserta, Italy.,Unità di Cardiologia, Ospedale "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Barbara Lombardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
381
|
Cui S, Qiao L, Yu S, Men L, Li Y, Li F, Du J. The antagonist of CXCR1 and CXCR2 protects db/db mice from metabolic diseases through modulating inflammation. Am J Physiol Endocrinol Metab 2019; 317:E1205-E1217. [PMID: 31573846 DOI: 10.1152/ajpendo.00117.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin-8 (IL-8, also named CXCL8) binds to its receptors (CXCR1 and CXCR2) with subsequent recruitment of neutrophils and enhancement of their infiltration into inflamed sites, which exaggerates inflammation in many diseases. Recent studies have proposed that metabolic disorders can be attenuated by counteracting certain inflammatory signal pathways. In this study, we examined whether intervention with G31P, an antagonist of CXCL8, could attenuate tissue inflammation and development of metabolic disorders in db/db mice. The db/m and db/db mice were subcutaneously injected with G31P or equivalent normal saline once a day for 6 wk. The physical and metabolic parameters, glucose tolerance, insulin sensitivity, hepatic lipid accumulation, and inflammation markers were measured. G31P improved hepatic insulin sensitivity by modulating expression of genes related to gluconeogenesis and phosphorylated Akt levels. The expressions of several genes encoding proteins involved in de novo lipogenesis were decreased in G31P-treated db/db mice. Meanwhile, immune cell infiltration and cytokine release were attenuated in db/db mice with G31P treatment. G31P also improved the ratio of proinflammatory M1 and anti-inflammatory M2 macrophages. Furthermore, G31P ameliorates metabolic disturbances via inhibition of CXCR1 and CXCR2 pathways in db/db mice. These data suggest that the selective inhibition of CXC chemokines may have therapeutic effects on symptoms associated with obesity and diabetes.
Collapse
MESH Headings
- Animals
- Cytokines/drug effects
- Cytokines/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Fatty Acids, Nonesterified/metabolism
- Gluconeogenesis/drug effects
- Gluconeogenesis/genetics
- Insulin/metabolism
- Insulin Resistance
- Interleukin-6/metabolism
- Interleukin-8/antagonists & inhibitors
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Lipid Metabolism/drug effects
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Macrophages/drug effects
- Mice
- Peptide Fragments/pharmacology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Interleukin-8A/antagonists & inhibitors
- Receptors, Interleukin-8A/genetics
- Receptors, Interleukin-8A/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Tumor Necrosis Factor-alpha/drug effects
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Siyuan Cui
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lu Qiao
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shanshan Yu
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lili Men
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yu Li
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fang Li
- Department of Immunology, Dalian Medical University, Dalian, Liaoning, China
| | - Jianling Du
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
382
|
Circulating Wnt1-inducible signaling pathway protein-1 (WISP-1/CCN4) is a novel biomarker of adiposity in subjects with type 2 diabetes. J Cell Commun Signal 2019; 14:101-109. [PMID: 31782053 DOI: 10.1007/s12079-019-00536-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Wnt1-inducible signaling pathway protein 1, or cellular communication network factor 4 (CCN4), a member of CCN family of secreted, extracellular matrix associated signaling proteins, recently was validated as a novel adipose tissue derived cytokine. OBJECTIVE To assess the relationships between circulating CCN4, adipose tissue distribution and function, and chronic low-grade inflammation in subjects with type 2 diabetes. METHODS We observed 156 patients with type 2 diabetes and 24 healthy controls. Serum levels of CCN4, hsCRP and alpha1-acid glycoprotein (alpha1-AGP) were measured by ELISA. Serum concentrations of leptin, resistin, visfatin, adipsin, adiponectin, IL-6, IL-8, IL-18 and TNF-alpha were determined by multiplex analysis. Fat mass and distribution was assessed by DEXA. Mean diameter of adipocytes was estimated in samples of subcutaneous adipose tissue. RESULTS Patients with diabetes had higher levels of circulating CCN4, leptin, resistin, adipsin, visfatin, hsCRP, alpha1-AGP, and IL-6 (all p < 0.02). The CCN4 concentration correlated positively with percentage of fat mass in central abdominal area, as well as with leptin, resistin and visfatin levels; negative correlation was found between CCN4 and mean adipocyte diameter. In multiple regression analysis fat mass in central abdominal area was independent predictor for CCN4 concentration. CONCLUSION In subjects with type 2 diabetes serum levels of CCN4 are associated with central abdominal fat mass and adipose tissue dysfunction.
Collapse
|
383
|
The Endocannabinoid System in Pediatric Inflammatory and Immune Diseases. Int J Mol Sci 2019; 20:ijms20235875. [PMID: 31771129 PMCID: PMC6928713 DOI: 10.3390/ijms20235875] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022] Open
Abstract
Endocannabinoid system consists of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors, their endogenous ligands, and the enzymes responsible for their synthesis and degradation. CB2, to a great extent, and CB1, to a lesser extent, are involved in regulating the immune response. They also regulate the inflammatory processes by inhibiting pro-inflammatory mediator release and immune cell proliferation. This review provides an overview on the role of the endocannabinoid system with a major focus on cannabinoid receptors in the pathogenesis and onset of inflammatory and autoimmune pediatric diseases, such as immune thrombocytopenia, juvenile idiopathic arthritis, inflammatory bowel disease, celiac disease, obesity, neuroinflammatory diseases, and type 1 diabetes mellitus. These disorders have a high social impact and represent a burden for the healthcare system, hence the importance of individuating more innovative and effective treatments. The endocannabinoid system could address this need, representing a possible new diagnostic marker and therapeutic target.
Collapse
|
384
|
Landecho MF, Tuero C, Valentí V, Bilbao I, de la Higuera M, Frühbeck G. Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients 2019; 11:nu11112664. [PMID: 31694146 PMCID: PMC6893824 DOI: 10.3390/nu11112664] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/02/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity, which is a worldwide epidemic, confers increased risk for multiple serious conditions including type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases. Adipose tissue is considered one of the largest endocrine organs in the body as well as an active tissue for cellular reactions and metabolic homeostasis rather than an inert tissue only for energy storage. The functional pleiotropism of adipose tissue relies on its ability to synthesize and release a large number of hormones, cytokines, extracellular matrix proteins, and growth and vasoactive factors, which are collectively called adipokines known to influence a variety of physiological and pathophysiological processes. In the obese state, excessive visceral fat accumulation causes adipose tissue dysfunctionality that strongly contributes to the onset of obesity-related comorbidities. The mechanisms underlying adipose tissue dysfunction include adipocyte hypertrophy and hyperplasia, increased inflammation, impaired extracellular matrix remodeling, and fibrosis together with an altered secretion of adipokines. This review describes the relevance of specific adipokines in the obesity-associated cardiovascular disease.
Collapse
Affiliation(s)
- Manuel F. Landecho
- Department of Internal Medicine, General Health Check-up Unit, Clínica Universidad de Navarra, Avenida Pío XII, 36, 31008 Pamplona, Navarra, Spain; (M.F.L.); (I.B.)
| | - Carlota Tuero
- Department of Surgery, Bariatric and Metabolic Surgery Unit, Clínica Universidad de Navarra, 31008 Pamplona, Navarra, Spain; (C.T.); (V.V.)
| | - Víctor Valentí
- Department of Surgery, Bariatric and Metabolic Surgery Unit, Clínica Universidad de Navarra, 31008 Pamplona, Navarra, Spain; (C.T.); (V.V.)
- Instituto de Salud Carlos III, CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 31008 Pamplona, Navarra, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Navarra, Spain
| | - Idoia Bilbao
- Department of Internal Medicine, General Health Check-up Unit, Clínica Universidad de Navarra, Avenida Pío XII, 36, 31008 Pamplona, Navarra, Spain; (M.F.L.); (I.B.)
| | - Magdalena de la Higuera
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, 28027 Madrid, Spain;
| | - Gema Frühbeck
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Navarra, Spain
- Metabolic Research Laboratory, Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Pamplona, Spain
- Correspondence: ; Tel.: +0034-948-255-400
| |
Collapse
|
385
|
Tryggestad JB, Teague AM, Sparling DP, Jiang S, Chernausek SD. Macrophage-Derived microRNA-155 Increases in Obesity and Influences Adipocyte Metabolism by Targeting Peroxisome Proliferator-Activated Receptor Gamma. Obesity (Silver Spring) 2019; 27:1856-1864. [PMID: 31531958 PMCID: PMC6832842 DOI: 10.1002/oby.22616] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This study aimed to investigate cellular sources of microRNAs (miRNA) within adipose tissue and the impact of obesity on miRNA expression, as well as to examine targets of miRNAs. METHODS miRNA expression by quantitative polymerase chain reaction was examined in adipocytes, adipose tissue macrophages (ATM), and peripheral blood mononuclear cells from and individuals with normal weight and with obesity. Differentiated 3T3-L1 adipocytes were cocultured with macrophages, and 3T3-L1 and differentiated human mesenchymal stem cells were transfected with miR-155, with peroxisome proliferator-activated receptor gamma (PPAR-γ) and solute carrier family 2 member 4 (GLUT4) abundance measured via Western blot analysis. RESULTS Abundance of miR-155 and miR-210 was increased in ATM of participants with obesity by 6.7-fold and 2.9-fold (P = 0.002 and P = 0.013, respectively). miR-130b expression was increased 1.8-fold in ATM and 4.3-fold in adipocytes from participants with obesity (P = 0.007 and P = 0.02, respectively). PPARG mRNA expression decreased 32% (P = 0.044) in adipocytes from individuals with obesity. In 3T3-L1 cells exposed to macrophages, PPARG expression decreased 99.4% (P = 0.02). PPAR-γ protein content declined 75% (P = 0.001) in 3T3-L1 cells transfected with miR-155. GLUT4 protein levels were reduced by 55% (P = 0.021) in differentiated human mesenchymal stem cells exposed to miR-155. CONCLUSIONS Adipose tissue miRNAs are influenced in a cell type-specific fashion by obesity, with macrophage miR-155 potentially impacting neighboring adipocytes.
Collapse
Affiliation(s)
| | - April M. Teague
- University of Oklahoma Health Sciences Center, Oklahoma City OK, USA
| | - David P. Sparling
- University of Oklahoma Health Sciences Center, Oklahoma City OK, USA
| | - Shaoning Jiang
- University of Oklahoma Health Sciences Center, Oklahoma City OK, USA
| | | |
Collapse
|
386
|
Tan BL, Norhaizan ME. Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients 2019; 11:nu11112579. [PMID: 31731503 PMCID: PMC6893649 DOI: 10.3390/nu11112579] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
Cognitive dysfunction is linked to chronic low-grade inflammatory stress that contributes to cell-mediated immunity in creating an oxidative environment. Food is a vitally important energy source; it affects brain function and provides direct energy. Several studies have indicated that high-fat consumption causes overproduction of circulating free fatty acids and systemic inflammation. Immune cells, free fatty acids, and circulating cytokines reach the hypothalamus and initiate local inflammation through processes such as microglial proliferation. Therefore, the role of high-fat diet (HFD) in promoting oxidative stress and neurodegeneration is worthy of further discussion. Of particular interest in this article, we highlight the associations and molecular mechanisms of HFD in the modulation of inflammation and cognitive deficits. Taken together, a better understanding of the role of oxidative stress in cognitive impairment following HFD consumption would provide a useful approach for the prevention of cognitive dysfunction.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-8947-2427
| |
Collapse
|
387
|
More Than an Adipokine: The Complex Roles of Chemerin Signaling in Cancer. Int J Mol Sci 2019; 20:ijms20194778. [PMID: 31561459 PMCID: PMC6801800 DOI: 10.3390/ijms20194778] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Chemerin is widely recognized as an adipokine, with diverse biological roles in cellular differentiation and metabolism, as well as a leukocyte chemoattractant. Research investigating the role of chemerin in the obesity-cancer relationship has provided evidence both for pro- and anti-cancer effects. The tumor-promoting effects of chemerin primarily involve direct effects on migration, invasion, and metastasis as well as growth and proliferation of cancer cells. Chemerin can also promote tumor growth via the recruitment of tumor-supporting mesenchymal stromal cells and stimulation of angiogenesis pathways in endothelial cells. In contrast, the majority of evidence supports that the tumor-suppressing effects of chemerin are immune-mediated and result in a shift from immunosuppressive to immunogenic cell populations within the tumor microenvironment. Systemic chemerin and chemerin produced within the tumor microenvironment may contribute to these effects via signaling through CMKLR1 (chemerin1), GPR1 (chemerin2), and CCLR2 on target cells. As such, inhibition or activation of chemerin signaling could be beneficial as a therapeutic approach depending on the type of cancer. Additional studies are required to determine if obesity influences cancer initiation or progression through increased adipose tissue production of chemerin and/or altered chemerin processing that leads to changes in chemerin signaling in the tumor microenvironment.
Collapse
|
388
|
Abreu S, Agostinis-Sobrinho C, Santos R, Moreira C, Lopes L, Gonçalves C, Oliveira-Santos J, Sousa-Sá E, Rodrigues B, Mota J, Rosário R. Association of Dairy Product Consumption with Metabolic and Inflammatory Biomarkers in Adolescents: A Cross-Sectional Analysis from the LabMed Study. Nutrients 2019; 11:nu11102268. [PMID: 31546602 PMCID: PMC6835390 DOI: 10.3390/nu11102268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/09/2023] Open
Abstract
This study aimed to investigate the association between dairy product consumption and metabolic and inflammatory biomarkers in Portuguese adolescents, and whether the association differed by weight status. A cross-sectional study was conducted during the school year 2011/2012 with 412 Portuguese adolescents (52.4% girls) in 7th and 10th grade (aged 12 to 18 years old). The World Health Organization cutoffs were used to categorize adolescents as non-overweight (NW) or overweight (OW). Blood samples were collected to analyze C-reactive protein (CRP), interleukin-6 (IL-6), leptin, and adiponectin. Dairy product intake was evaluated using a food frequency questionnaire. Participants were divided by tertiles according to the amount of dairy product consumed. The associations between dairy product consumption with metabolic and inflammatory biomarkers were evaluated using generalized linear regression models with logarithmic link and gamma distribution and adjusted for potential confounders. The majority of adolescents were NW (67.2%). NW adolescents had lower IL-6, CRP, and leptin concentration than their counterparts (p < 0.05, for all comparisons). Higher levels of total dairy product and milk intake were inversely associated with IL-6 (P for trend <0.05, for all) in NW adolescents, but not in OW adolescents. NW adolescents in the second tertile of yogurt consumption had lower level of IL-6 compared to those in the first tertile (p = 0.004). Our results suggest an inverse association between total dairy product and milk intake and serum concentrations of IL-6 only among NW adolescents.
Collapse
Affiliation(s)
- Sandra Abreu
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.
- Faculty of Psychology, Education and Sports, Lusófona University of Porto, 4000-098 Porto, Portugal.
| | | | - Rute Santos
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.
- Early Start Research Institute, Faculty of Social Sciences, School of Education, University of Wollongong, Wollongong, NSW 2522, Australia.
- General Directorate of Health-National Program for Physical Activity Promotion, 1499-002 Lisbon, Portugal.
| | - Carla Moreira
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.
| | - Luís Lopes
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.
| | - Carla Gonçalves
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.
- University of Trás-os-Montes and Alto Douro, 5001-801 Vila-Real, Portugal.
- Faculty of Nutrition and Food Sciences, University of Porto, 4200-465 Porto, Portugal.
| | - José Oliveira-Santos
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.
| | | | - Bruno Rodrigues
- Interdisciplinary Centre for the Study of Human Performance, Faculty of Human Kinetic, 1499-002 Lisbon, Portugal.
| | - Jorge Mota
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.
| | - Rafaela Rosário
- School of Nursing, University of Minho, 4710 Braga, Portugal.
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal.
| |
Collapse
|
389
|
Saleh J, Al-Maqbali M, Abdel-Hadi D. Role of Complement and Complement-Related Adipokines in Regulation of Energy Metabolism and Fat Storage. Compr Physiol 2019; 9:1411-1429. [PMID: 31688967 DOI: 10.1002/cphy.c170037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adipose tissue releases many cytokines and inflammatory factors described as adipokines. In obesity, adipokines released from expanding adipose tissue are implicated in disease progression and metabolic dysfunction. However, mechanisms controlling the progression of adiposity and metabolic complications are not fully understood. It has been suggested that expanding fat mass and sustained release of inflammatory adipokines in adipose tissue lead to hypoxia, oxidative stress, apoptosis, and cellular damage. These changes trigger an immune response involving infiltration of adipose tissue with immune cells, complement activation and generation of factors involved in opsonization and clearance of damaged cells. Abundant evidence now indicates that adipose tissue is an active secretory source of complement and complement-related adipokines that, in addition to their inflammatory role, contribute to the regulation of metabolic function. This article highlights advances in knowledge regarding the role of these adipokines in energy regulation of adipose tissue through modulating lipogenic and lipolytic pathways. Several adipokines will be discussed including adipsin, Factor H, properdin, C3a, Acylation-Stimulating Protein, C1q/TNF-related proteins, and response gene to complement-32 (RGC-32). Interactions between these factors will be described considering their immune-metabolic roles in the adipose tissue microenvironment and their potential contribution to progression of adiposity and metabolic dysfunction. The differential expression and the role of complement factors in gender-related fat partitioning will also be addressed. Identifying lipogenic adipokines and their specific autocrine/paracrine roles may provide means for adipose-tissue-targeted therapeutic interventions that may disrupt the vicious circle of adiposity and disease progression. © 2019 American Physiological Society. Compr Physiol 9:1411-1429, 2019.
Collapse
Affiliation(s)
- Jumana Saleh
- Biochemistry Department, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Muna Al-Maqbali
- Biochemistry Department, College of Medicine, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
390
|
Chen SQ, Niu Q, Ju LP, Alimujiang M, Yan H, Bai NN, Xu J, Fang QC, Han JF, Yang Y, Jia WP. Predicted secreted protein analysis reveals synaptogenic function of Clstn3 during WAT browning and BAT activation in mice. Acta Pharmacol Sin 2019; 40:999-1009. [PMID: 30796355 DOI: 10.1038/s41401-019-0211-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/05/2019] [Indexed: 11/09/2022]
Abstract
Promoting white adipose tissue (WAT) browning and enhancing brown adipose tissue (BAT) activity are attractive therapeutic strategies for obesity and its metabolic complications. Targeting sympathetic innervation in WAT and BAT represents a promising therapeutic concept. However, there are few reports on extracellular microenvironment remodeling, especially changes in nerve terminal connections. Identifying the key molecules mediating the neuro-adipose synaptic junctions is a key point. In this study, we used bioinformatics methods to identify the differentially expressed predicted secreted genes (DEPSGs) during WAT browning and BAT activation. These DEPSGs largely reflect changes of cytokines, extracellular matrix remodeling, vascularization, and adipocyte-neuronal cross-talk. We then performed functional enrichment and cellular distribution specificity analyses. The upregulated and downregulated DEPDGs during WAT browning displayed a distinctive biological pattern and cellular distribution. We listed a cluster of adipocyte-enriched DEPSGs, which might participate in the cross-talk between mature adipocytes and other cells; then identified a synaptogenic adhesion molecule, Clstn3, as the top gene expressed enriched in both mature white and brown adipocytes. Using Q-PCR and immunohistochemistry, we found significantly increased Clstn3 expression level during WAT browning and BAT activation in mice subjected to cold exposure (4 °C). We further demonstrated that treatment with isoproterenol significantly increased Clstn3 and UCP1 expression in differentiated white and beige adipocytes in vitro. In conclusion, our study demonstrates that the secretion pattern was somewhat different between WAT browning and BAT activation. We reveal that Clstn3 may be a key gene mediating the neuro-adipose junction formation or remodeling in WAT browning and BAT activation process.
Collapse
|
391
|
Pamphlett R, Kum Jew S. Mercury Is Taken Up Selectively by Cells Involved in Joint, Bone, and Connective Tissue Disorders. Front Med (Lausanne) 2019; 6:168. [PMID: 31380381 PMCID: PMC6659129 DOI: 10.3389/fmed.2019.00168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background: The causes of most arthropathies, osteoarthritis, and connective tissue disorders remain unknown, but exposure to toxic metals could play a part in their pathogenesis. Human exposure to mercury is common, so to determine whether mercury could be affecting joints, bones, and connective tissues we used a histochemical method to determine the cellular uptake of mercury in mice. Whole neonatal mice were examined since this allowed histological assessment of mercury in joint, bone, and connective tissue cells. Materials and Methods: Pregnant mice were exposed to a non-toxic dose of 0.5 mg/m3 of mercury vapor for 4 h a day on gestational days 14-18. Neonates were sacrificed at postnatal day 1, fixed in formalin, and transverse blocks of the body were processed for paraffin embedding. Seven micrometer sections were stained for inorganic mercury using silver nitrate autometallography, either alone or combined with CD44 immunostaining to detect progenitor cells. Control neonates were not exposed to mercury during gestation. Results: Uptake of mercury was marked in synovial cells, articular chondrocytes, and periosteal and tracheal cartilage cells. Mercury was seen in fibroblasts in the dermis, aorta, esophagus and striated muscle, some of which were CD44-positive progenitor cells, and in the endothelial cells of small blood vessels. Mercury was also present in renal tubules and liver periportal cells. Conclusions: Mercury is taken up selectively by cells that are predominantly affected in rheumatoid arthritis and osteoarthritis. In addition, fibroblasts in several organs often involved in multisystem connective tissue disorders take up mercury. Mercury provokes the autoimmune, inflammatory, genetic, and epigenetic changes that have been described in a range of arthropathies and bone and connective tissue disorders. These findings support the hypothesis that mercury exposure could trigger some of these disorders, particularly in people with a genetic susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Stephen Kum Jew
- Discipline of Pathology, Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
392
|
Nordic Diet and Inflammation-A Review of Observational and Intervention Studies. Nutrients 2019; 11:nu11061369. [PMID: 31216678 PMCID: PMC6627927 DOI: 10.3390/nu11061369] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
Low-grade inflammation (LGI) has been suggested to be involved in the development of chronic diseases. Healthy dietary patterns, such as the Mediterranean diet (MD), may decrease the markers of LGI. Healthy Nordic diet (HND) has many similarities with MD, but its effects on LGI are less well known. Both of these dietary patterns emphasize the abundant use of fruits and vegetables (and berries in HND), whole grain products, fish, and vegetable oil (canola oil in HND and olive oil in MD), but restrict the use of saturated fat and red and processed meat. The aim of this narrative review is to summarize the results of studies, which have investigated the associations or effects of HND on the markers of LGI. Altogether, only two publications of observational studies and eight publications of intervention trials were found through the literature search. Both observational studies reported an inverse association between the adherence to HND and concentration of high sensitivity C-reactive protein (hsCRP). A significant decrease in the concentration of hsCRP was reported in two out of four intervention studies measuring hsCRP. Single intervention studies reported the beneficial effects on interleukin 1Ra and Cathepsin S. Current evidence suggests the beneficial effects on LGI with HND, but more carefully controlled studies are needed to confirm the anti-inflammatory effects of the HND.
Collapse
|
393
|
Ma M, Percopo CM, Sturdevant DE, Sek AC, Komarow HD, Rosenberg HF. Cytokine Diversity in Human Peripheral Blood Eosinophils: Profound Variability of IL-16. THE JOURNAL OF IMMUNOLOGY 2019; 203:520-531. [PMID: 31182481 DOI: 10.4049/jimmunol.1900101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/20/2019] [Indexed: 01/07/2023]
Abstract
Eosinophilic leukocytes develop in the bone marrow and migrate from peripheral blood to tissues, where they maintain homeostasis and promote dysfunction via release of preformed immunomodulatory mediators. In this study, we explore human eosinophil heterogeneity with a specific focus on naturally occurring variations in cytokine content. We found that human eosinophil-associated cytokines varied on a continuum from minimally (coefficient of variation [CV] ≤ 50%) to moderately variable (50% < CV ≤ 90%). Within the moderately variable group, we detected immunoreactive IL-27 (953 ± 504 pg/mg lysate), a mediator not previously associated with human eosinophils. However, our major finding was the distinct and profound variability of eosinophil-associated IL-16 (CV = 103%). Interestingly, eosinophil IL-16 content correlated directly with body mass index (R 2 = 0.60, ***p < 0.0001) in one donor subset. We found no direct correlation between eosinophil IL-16 content and donor age, sex, total leukocytes, lymphocytes, or eosinophils (cells per microliter), nor was there any relationship between IL-16 content and the characterized -295T/C IL-16 promoter polymorphism. Likewise, although eosinophil IL-1β, IL-1α, and IL-6 levels correlated with one another, there was no direct association between any of these cytokines and eosinophil IL-16 content. Finally, a moderate increase in total dietary fat resulted in a 2.7-fold reduction in eosinophil IL-16 content among C57BL/6-IL5tg mice. Overall, these results suggest that relationships between energy metabolism, eosinophils, and IL-16 content are not direct or straightforward. Nonetheless, given our current understanding of the connections between asthma and obesity, these findings suggest important eosinophil-focused directions for further exploration.
Collapse
Affiliation(s)
- Michelle Ma
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Caroline M Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daniel E Sturdevant
- Genomics Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Albert C Sek
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Hirsh D Komarow
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
394
|
Wang YX, Zhu N, Zhang CJ, Wang YK, Wu HT, Li Q, Du K, Liao DF, Qin L. Friend or foe: Multiple roles of adipose tissue in cancer formation and progression. J Cell Physiol 2019; 234:21436-21449. [PMID: 31054175 DOI: 10.1002/jcp.28776] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
Obesity is well-known as the second factor for tumorigenesis after smoking and is bound up with the malignant progression of several kinds of cancers, including esophageal cancer, liver cancer, colorectal cancer, kidney cancer, and ovarian cancer. The increased morbidity and mortality of obesity-related cancer are mostly attributed to dysfunctional adipose tissue. The possible mechanisms connecting dysfunctional adipose tissue to high cancer risk mainly focus on chronic inflammation, obesity-related microenvironment, adipokine secretion disorder, and browning of adipose tissue, and so forth. The stromal vascular cells in adipose tissue trigger chronic inflammation through secreting inflammatory factors and promote cancer cell proliferation. Hypertrophic adipose tissues lead to metabolic disorders of adipocytes, such as abnormal levels of adipokines that mediate cancer progression and metastasis. Cancer patients often show adipose tissue browning and cancerous cachexia in an advanced stage, which lead to unsatisfied chemotherapy effect and poor prognosis. However, increasing evidence has shown that adipose tissue may display quite opposite effects in cancer development. Therefore, the interaction between cancers and adipose tissue exert a vital role in mediates adipose tissue dysfunction and further leads to cancer progression. In conclusion, targeting the dysfunction of adipose tissue provides a promising strategy for cancer prevention and therapy.
Collapse
Affiliation(s)
- Yu-Xiang Wang
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chan-Juan Zhang
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yi-Kai Wang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia
| | - Hong-Tao Wu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qun Li
- Outpatient Department of Hanpu Campus, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ke Du
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Lab for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Qin
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
395
|
Macoska JA, Wang Z, Virta J, Zacharias N, Bjorling DE. Inhibition of the CXCL12/CXCR4 axis prevents periurethral collagen accumulation and lower urinary tract dysfunction in vivo. Prostate 2019; 79:757-767. [PMID: 30811623 PMCID: PMC7269149 DOI: 10.1002/pros.23781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Several studies show that prostatic fibrosis is associated with male lower urinary tract dysfunction (LUTD). Development of fibrosis is typically attributed to signaling through the transforming growth factor β (TGF-β) pathway, but our laboratory has demonstrated that in vitro treatment of human prostatic fibroblasts with the C-X-C motif chemokine ligand 12 (CXCL12) chemokine stimulates myofibroblast phenoconversion and that CXCL12 has the capacity to activate profibrotic pathways in these cells in a TGF-β-independent manner. We have previously reported that feeding mice high-fat diet (HFD) results in obesity, type II diabetes, increased prostatic fibrosis, and urinary voiding dysfunction. The purpose of this study was to test the hypothesis that in vivo blockade of the CXCL12/CXCR4 axis would inhibit the development of fibrosis-mediated LUTD in HFD-fed mice. METHODS Two-month-old male senescence-accelerated mouse prone-6 mice were fed either a HFD or low-fat diet (LFD) for 8 months. Half of each dietary group were given constant access to normal water or water that contained the C-X-C chemokine receptor type 4 (CXCR4; CXCL12 receptor) antagonist CXCR4AIII. At the conclusion of the study, mice were weighed, subjected to oral glucose tolerance testing and cystometry, and lower urinary tract tissues collected and assessed for collagen content. RESULTS HFD-fed mice became significantly obese, insulin resistant, and hyperglycemic, consistent with acquisition of metabolic syndrome, compared with LFD-fed mice. Anesthetized cystometry demonstrated that HFD-fed mice experienced significantly longer intercontractile intervals and greater functional bladder capacity than LFD-fed mice. Immunohistochemistry demonstrated high levels of CXCR4 and CXCR7 staining in mouse prostate epithelial and stromal cells. Picrosirius red staining indicated significantly greater periurethral collagen deposition in the prostates of HFD than LFD-fed mice. Treatment with the CXCR4 antagonist CXCR4AIII did not affect acquisition of metabolic syndrome but did reduce both urinary voiding dysfunction and periurethral prostate collagen accumulation. CONCLUSIONS This is the first study to report that obesity-induced lower urinary tract fibrosis and voiding dysfunction can be repressed by antagonizing the activity of the CXCR4 chemokine receptor in vivo. These data suggest that targeting the CXCL12/CXCR4 signaling pathway may be a clinical option for the prevention or treatment of human male LUTD.
Collapse
Affiliation(s)
- Jill A. Macoska
- Center for Personalized Cancer Therapy, The University of Massachusetts Boston, Boston, Massachusetts
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
| | - Zunyi Wang
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
- School of Veterinary Medicine, The University of Wisconsin Madison, Madison, Wisconsin
| | - Johanna Virta
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
- School of Veterinary Medicine, The University of Wisconsin Madison, Madison, Wisconsin
| | - Nicholas Zacharias
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
- School of Veterinary Medicine, The University of Wisconsin Madison, Madison, Wisconsin
| | - Dale E. Bjorling
- Department of Urology, George M. O’Brien Center for Urologic Research, Madison, Wisconsin
- School of Veterinary Medicine, The University of Wisconsin Madison, Madison, Wisconsin
| |
Collapse
|
396
|
Hou X, Wang Z, Ding F, He Y, Wang P, Liu X, Xu F, Wang J, Yang Y. Taurine Transporter Regulates Adipogenic Differentiation of Human Adipose-Derived Stem Cells through Affecting Wnt/β-catenin Signaling Pathway. Int J Biol Sci 2019; 15:1104-1112. [PMID: 31182929 PMCID: PMC6535786 DOI: 10.7150/ijbs.31794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/16/2019] [Indexed: 11/26/2022] Open
Abstract
Increased adipocytes are associated with obesity and many human disorders including cancers. To further understand the molecular mechanisms of adipogenesis, transcriptome sequencing was performed to find genes involved in the adipogenic differentiation of human adipose-derived stem cells (hASCs). The mRNA of taurine transporter (TauT, also known as SLC6A6) was found significantly upregulated in hASCs undergoing differentiation. TauT expression was also markedly increased in fat tissues from obese mice induced by high fat diet or genetic mutations (ob/ob and db/db mice). In vitro, downregulation of TauT attenuated effectively the adipogenic differentiation of hASCs, and TauT overexpression promoted the formation of adipocytes. Among the molecules transported by TauT, hypotaurine and β-alanine promoted adipocyte formation, whereas taurine inhibited the process. Moreover, the inhibitory effect of TauT knockdown on hASCs differentiation was largely reversed by hypotaurine and β-alanine through promoting the downregulation of β-catenin. These results indicated that TauT regulate adipocyte formation through transported amino acids and may serve as a target for therapeutic intervention of obesity.
Collapse
Affiliation(s)
- Xiaodan Hou
- Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou215123, Jiangsu, China
| | - Zhixue Wang
- Department of Burn and Plastic Surgery, North District of Suzhou Municipal Hospital, Suzhou 215008, Jiangsu, China
| | - Fang Ding
- Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou215123, Jiangsu, China
| | - Yang He
- Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou215123, Jiangsu, China
| | - Pengyuan Wang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xia Liu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Feng Xu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Jun Wang
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou215123, Jiangsu, China
| |
Collapse
|
397
|
Ding Y, Zhang M, Wang L, Yin T, Wang N, Wu J, Zhi J, Chen W, Wu K, Gong W, Xiao W, Xu Z, Lu G. Association of the hypertriglyceridemic waist phenotype and severity of acute pancreatitis. Lipids Health Dis 2019; 18:93. [PMID: 30961653 PMCID: PMC6454768 DOI: 10.1186/s12944-019-1019-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/14/2019] [Indexed: 01/16/2023] Open
Abstract
Background The aim of this study was to evaluate the effect of a simple visceral obesity phenotype, known as the hypertriglyceridemic waist phenotype and its quantitative indicator waist circumference index on the severity of acute pancreatitis. Materials and methods Diagnosis and severity analysis of acute pancreatitis were determined according to the Atlanta classification guidelines, revised in 2012. We considered the hypertriglyceridemic waist phenotype as characterized by increased waist circumference and elevated triglyceride concentrations. We investigated the association between the acute pancreatitis severity and hypertriglyceridemic waist phenotype, including waist circumference index. Results The hypertriglyceridemic waist phenotype was significantly associated with systemic inflammatory response syndrome, organ failure, and severe acute pancreatitis. The median waist circumference index and demonstration of hypertriglyceridemic waist phenotype were positively correlated with acute pancreatitis severity. In addition, multivariate logistic analysis showed that patients with the hypertriglyceridemic waist phenotype had 1.664 times the risk of organ failure and 1.891 times the risk of systemic inflammatory response syndrome, compared with the other groups. Conclusion Upon admission, the hypertriglyceridemic waist phenotype was strongly associated with acute pancreatitis in patients. This phenotype, including waist circumference index, might be a simple method for evaluating individuals at high risk of severe acute pancreatitis. Electronic supplementary material The online version of this article (10.1186/s12944-019-1019-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China.,Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China
| | - Min Zhang
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China.,Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China
| | - Lisheng Wang
- Department of Gastroenterology, The second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518000, Guangdong, China
| | - Tao Yin
- Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China
| | - Ningzhi Wang
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China.,Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China
| | - Jian Wu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China.,Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China
| | - Jiehua Zhi
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China.,Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China
| | - Weiwei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Keyan Wu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China.,Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China
| | - Weijuan Gong
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China.,Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China.,Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China.,Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China
| | - Zhenglei Xu
- Department of Gastroenterology, The second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518000, Guangdong, China.
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China. .,Laboratory of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 386 Hanjiang Media Road, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
398
|
López-Vicario C, Titos E, Walker ME, Alcaraz-Quiles J, Casulleras M, Durán-Güell M, Flores-Costa R, Pérez-Romero N, Forné M, Dalli J, Clària J. Leukocytes from obese individuals exhibit an impaired SPM signature. FASEB J 2019; 33:7072-7083. [DOI: 10.1096/fj.201802587r] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cristina López-Vicario
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
| | - Esther Titos
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
- Department of Biomedical SciencesUniversity of BarcelonaBarcelonaSpain
| | - Mary E. Walker
- Lipid Mediator UnitBiochemical PharmacologyWilliam Harvey Research InstituteBarts and the London School of MedicineQueen Mary University of LondonLondonUnited Kingdom
- Centre for Inflammation and Therapeutic InnovationQueen Mary University of LondonLondonUnited Kingdom
| | - José Alcaraz-Quiles
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
| | - Mireia Casulleras
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
| | - Marta Durán-Güell
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
| | | | - Montserrat Forné
- Gastroenterology DepartmentHospital Universitari Mútua TerrassaTerrassaSpain
| | - Jesmond Dalli
- Lipid Mediator UnitBiochemical PharmacologyWilliam Harvey Research InstituteBarts and the London School of MedicineQueen Mary University of LondonLondonUnited Kingdom
- Centre for Inflammation and Therapeutic InnovationQueen Mary University of LondonLondonUnited Kingdom
| | - Joan Clària
- Biochemistry and Molecular Genetics ServiceHospital Clínic—Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
- Department of Biomedical SciencesUniversity of BarcelonaBarcelonaSpain
- European Foundation for the Study of Chronic Liver Failure (EF Clif)BarcelonaSpain
| |
Collapse
|
399
|
Raut PK, Kim SH, Choi DY, Jeong GS, Park PH. Growth of breast cancer cells by leptin is mediated via activation of the inflammasome: Critical roles of estrogen receptor signaling and reactive oxygen species production. Biochem Pharmacol 2019; 161:73-88. [PMID: 30633869 DOI: 10.1016/j.bcp.2019.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
|
400
|
Yu JY, Choi WJ, Lee HS, Lee JW. Relationship between inflammatory markers and visceral obesity in obese and overweight Korean adults: An observational study. Medicine (Baltimore) 2019; 98:e14740. [PMID: 30817629 PMCID: PMC6831265 DOI: 10.1097/md.0000000000014740] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity is now considered a state of chronic low-grade inflammation. We investigated the relationship between several inflammatory markers and body composition for identifying patients with an increased risk of visceral obesity and compared the predictive values of inflammatory indices in visceral obesity.Six hundred individuals who received health checkups for obesity-related risk factors in Severance Hospital between January 2008 and March 2017 were included in our study. Serum inflammatory markers, such as white blood cell (WBC), high-sensitivity C-reactive protein (hsCRP), neutrophil-lymphocyte ratio (NLR), and platelet-lymphocyte ratio (PLR) levels were assessed. Intra-abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) areas were measured with computed tomography. We performed analysis of covariance, trend analysis, Steiger's Z tests, and multiple linear regression analysis to investigate associations between abdominal adiposity indices and inflammatory markers.Pearson's correlation analysis revealed a stronger association of VAT with WBC counts (r = 0.157, P < .001) than with levels of NLR (r = 0.108, P = .11; Steiger's Z test, P = .04) and PLR (r = 0.036, P = .39; Steiger's Z test, P = .003). WBC and hsCRP levels linearly increased with VAT area (overall P < .001 and trend P < .001) and VAT/SAT ratio (overall P = .001 and trend P = .002; overall P < .001 and trend P < .001, respectively) but linearly decreased with SAT (overall P = .02 and trend P = .17; overall P = .03 and trend P = .01, respectively). Visceral adipose tissue area was more highly associated with WBC and hsCRP levels than with NLR and PLR. Only VAT area was significantly associated with WBC, hsCRP, and NLR levels after adjusting for confounding variables.We found that VAT, but not SAT area is independently associated with several inflammatory markers. WBC and hsCRP are more strongly correlated with VAT compared with NLR and PLR. Thus, WBC and hsCRP could be useful parameters for identifying individuals at risk for visceral obesity and cardiometabolic diseases.
Collapse
Affiliation(s)
- Ju-Yeon Yu
- Department of Family Medicine, Gangnam Severance Hospital
| | - Won-Jun Choi
- Department of Family Medicine, Gangnam Severance Hospital
| | - Hye-Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Won Lee
- Department of Family Medicine, Gangnam Severance Hospital
| |
Collapse
|