351
|
Alsharafi WA, Xiao B, Abuhamed MM, Bi FF, Luo ZH. Correlation Between IL-10 and microRNA-187 Expression in Epileptic Rat Hippocampus and Patients with Temporal Lobe Epilepsy. Front Cell Neurosci 2015; 9:466. [PMID: 26696826 PMCID: PMC4667084 DOI: 10.3389/fncel.2015.00466] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/16/2015] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence is emerging that microRNAs (miRNAs) are key regulators in controlling neuroinflammatory responses that are known to play a potential role in the pathogenesis of temporal lobe epilepsy (TLE). The aim of the present study was to investigate the dynamic expression pattern of interleukin (IL)-10 as an anti-inflammatory cytokine and miR-187 as a post-transcriptional inflammation-related miRNA in the hippocampus of a rat model of status epilepticus (SE) and patients with TLE. We performed a real-time quantitative PCR and western blot on rat hippocampus 2 h, 7 days, 21 days and 60 days following pilocarpine-induced SE, and on hippocampus obtained from TLE patients and normal controls. To detect the relationship between IL-10 and miR-187 on neurons, lipopolysaccharide (LPS) and IL-10-stimulated neurons were performed. Furthermore, we identified the effect of antagonizing miR-187 by its antagomir on IL-10 secretion. Here, we reported that IL-10 secretion and miR-187 expression levels are inversely correlated after SE. In patients with TLE, the expression of IL-10 was also significantly upregulated, whereas miR-187 expression was significantly downregulated. Moreover, miR-187 expression was significantly reduced following IL-10 stimulation in an IL-10-dependent manner. On the other hand, antagonizing miR-187 promoted the production of IL-10 in hippocampal tissues of rat model of SE. Our findings demonstrate a critical role of miR-187 in the physiological regulation of IL-10 anti-inflammatory responses and elucidate the role of neuroinflammation in the pathogenesis of TLE. Therefore, modulation of the IL-10 / miR-187 axis may be a new therapeutic approach for TLE.
Collapse
Affiliation(s)
- Walid A Alsharafi
- Department of Neurology, Xiangya Hospital, Central South University Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University Changsha, Hunan, China
| | | | - Fang-Fang Bi
- Department of Neurology, Xiangya Hospital, Central South University Changsha, Hunan, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University Changsha, Hunan, China
| |
Collapse
|
352
|
Vieira ÉLM, de Oliveira GNM, Lessa JMK, Gonçalves AP, Sander JW, Cendes F, Teixeira AL. Interleukin-1β plasma levels are associated with depression in temporal lobe epilepsy. Epilepsy Behav 2015; 53:131-4. [PMID: 26575253 DOI: 10.1016/j.yebeh.2015.09.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022]
Abstract
Inflammatory mediators such as cytokines are likely to contribute to the pathophysiology of epilepsy. Proinflammatory cytokines are also associated with mood disorders, such as major depression. As people with temporal lobe epilepsy (TLE) are at an increased risk of mood disorders, we attempted to evaluate peripheral levels of IL-1β in people with TLE with depression and people with TLE without depression and in healthy controls. In a cross-sectional study, we compared three groups: 21 people with TLE without depression (TLE D-), 18 people with TLE with depression (TLE D+), and 31 controls without depression. A structured clinical interview (MINI-Plus) was used to diagnose current depression, and the Hamilton Depression Rating Scale (HAM-D) was used to quantify depressive symptoms. Plasma levels of IL-1β were significantly higher in people with TLE with depression than in controls (p=0.004) or people with TLE without depression (p=0.006). Interleukin-1beta levels positively correlated with HAM-D scores (Spearman's rho=0.381, p=0.017) in people with TLE. Higher levels of IL-1β in TLE seem to be associated with depression.
Collapse
Affiliation(s)
- Érica L M Vieira
- Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Guilherme N M de Oliveira
- Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil; Medicine School, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - João Marcelo K Lessa
- Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Gonçalves
- Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands; NIHR University College London Hospitals, Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Epilepsy Society, Chalfont St Peter SL9 0RJ, UK
| | | | - Antônio Lúcio Teixeira
- Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
353
|
Yan BC, Jeon YH, Park JH, Kim IH, Cho JH, Ahn JH, Chen BH, Tae HJ, Lee JC, Ahn JY, Kim DW, Cho JH, Won MH, Hong S. Increased cyclooxygenase-2 and nuclear factor-κB/p65 expression in mouse hippocampi after systemic administration of tetanus toxin. Mol Med Rep 2015; 12:7837-44. [PMID: 26498481 PMCID: PMC4758276 DOI: 10.3892/mmr.2015.4490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 10/01/2015] [Indexed: 12/21/2022] Open
Abstract
Brain inflammation has a crucial role in various diseases of the central nervous system. The hippocampus in the mammalian brain exerts an important memory function, which is sensitive to various insults, including inflammation induced by exo/endotoxin stimuli. Tetanus toxin (TeT) is an exotoxin with the capacity for neuronal binding and internalization. The present study investigated changes in inflammatory mediators in the mouse hippocampus proper (CA1‑3 regions) and dentate gyrus (DG) after TeT treatment. The experimental mice were intraperitoneally injected with TeT at a low dosage (100 ng/kg), while the control mice were injected with the same volume of saline. At 6, 12 and 24 h after TeT treatment, changes in the hippocampal levels of inflammatory mediators cyclooxygenase‑2 (COX‑2) and nuclear factor kappa‑B (NF‑κB/p65) were assessed using immunohistochemical and western blot analysis. In the control group, moderate COX‑2 immunoreactivity was observed in the stratum pyramidal (SP) of the CA2‑3 region, while almost no expression was identified in the CA1 region and the DG. COX‑2 immunoreactivity was increased by TeT in the SP and granule cell layer (GCL) of the DG in a time‑dependent manner. At 24 h post‑treatment, COX‑2 immunoreactivity in the SP of the CA1 region and in the GCL of the DG was high, and COX‑2 immunoreactivity in the SP of the CA2/3 region was highest. Furthermore, the present study observed that NF‑κB/p65 immunoreactivity was obviously increased in the SP and GCL at 6, 12 and 24 h after TeT treatment. In conclusion, the present study demonstrated that systemic treatment with TeT significantly increased the expression of COX-2 and NF-κB/p65 in the mouse hippocampus, suggesting that increased COX‑2 and NF-κB/65 expression may be associated with inflammation in the brain induced by exotoxins.
Collapse
Affiliation(s)
- Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, P.R. China
| | - Yong Hwan Jeon
- Department of Radiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Yun Ahn
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Gyeonggi 431‑796, Republic of Korea
| | - Dong Won Kim
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| |
Collapse
|
354
|
Srivastava A, Dixit AB, Banerjee J, Tripathi M, Sarat Chandra P. Role of inflammation and its miRNA based regulation in epilepsy: Implications for therapy. Clin Chim Acta 2015; 452:1-9. [PMID: 26506013 DOI: 10.1016/j.cca.2015.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
Abstract
There is a need to develop innovative therapeutic strategies to counteract epilepsy, a common disabling neurological disorder. Despite the recent advent of additional antiepileptic drugs and respective surgery, the treatment of epilepsy remains a major challenge. The available therapies are largely based on symptoms, and these approaches do not affect the underlying disease processes and are also associated frequently with severe side effects. This is mainly because of the lack of well-defined targets in epilepsy. The discovery that inflammatory mediators significantly contribute to the onset and recurrence of seizures in experimental seizure models, as well as the presence of inflammatory molecules in human epileptogenic tissue, highlights the possibility of targeting specific inflammation related pathways to control seizures that are otherwise resistant to the available AEDs. Emerging studies suggest that miRNAs have a significant role in regulating inflammatory pathways shown to be involved in epilepsy. These miRNAs can possibly be used as novel therapeutic targets in the treatment of epilepsy as well as serve as diagnostic biomarkers of epileptogenesis. This review highlights the immunological features underlying the pathogenesis of epileptic seizures and the possible miRNA mediated approaches for drug resistant epilepsies that modulate the immune-mediated pathogenesis.
Collapse
Affiliation(s)
- Arpna Srivastava
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India
| | - Jyotirmoy Banerjee
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
355
|
Alsharafi WA, Xiao B, Abuhamed MM, Luo Z. miRNAs: biological and clinical determinants in epilepsy. Front Mol Neurosci 2015; 8:59. [PMID: 26528124 PMCID: PMC4602137 DOI: 10.3389/fnmol.2015.00059] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
Recently, microRNAs (miRNAs) are reported to be crucial modulators in the pathogenesis and potential treatment of epilepsies. To date, several miRNAs have been demonstrated to be significantly expressed in the epileptic tissues and strongly associated with the development of epilepsy. Specifically, miRNAs regulate synaptic strength, inflammation, neuronal and glial function, ion channels, and apoptosis. Furthermore, peripheral blood miRNAs can also be utilized as diagnostic biomarkers to assess disease risk and treatment responses. Here, we will summarize the recent available literature regarding the role of miRNAs in the pathogenesis and treatment of epilepsy. Moreover, we will provide brief insight into the potential of miRNA as diagnostic biomarkers for early diagnosis and prognosis of epilepsy.
Collapse
Affiliation(s)
- Walid A Alsharafi
- Department of Neurology, Xiangya Hospital, Central South University Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University Changsha, China
| | | | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University Changsha, China
| |
Collapse
|
356
|
Neuropharmacological Potential of Gastrodia elata Blume and Its Components. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:309261. [PMID: 26543487 PMCID: PMC4620291 DOI: 10.1155/2015/309261] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/06/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023]
Abstract
Research has been conducted in various fields in an attempt to develop new therapeutic agents for incurable neurodegenerative diseases. Gastrodia elata Blume (GE), a traditional herbal medicine, has been used in neurological disorders as an anticonvulsant, analgesic, and sedative medication. Several neurodegenerative models are characterized by oxidative stress and inflammation in the brain, which lead to cell death via multiple extracellular and intracellular signaling pathways. The blockade of certain signaling cascades may represent a compensatory therapy for injured brain tissue. Antioxidative and anti-inflammatory compounds isolated from natural resources have been investigated, as have various synthetic chemicals. Specifically, GE rhizome extract and its components have been shown to protect neuronal cells and recover brain function in various preclinical brain injury models by inhibiting oxidative stress and inflammatory responses. The present review discusses the neuroprotective potential of GE and its components and the related mechanisms; we also provide possible preventive and therapeutic strategies for neurodegenerative disorders using herbal resources.
Collapse
|
357
|
Sonmez FM, Donmez A, Namuslu M, Canbal M, Orun E. Vitamin D Deficiency in Children With Newly Diagnosed Idiopathic Epilepsy. J Child Neurol 2015; 30:1428-32. [PMID: 25637647 DOI: 10.1177/0883073814566627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 12/03/2014] [Indexed: 11/17/2022]
Abstract
Several studies have shown a link between vitamin D deficiency and epilepsy. This study includes 60 newly diagnosed idiopathic epilepsy patients and 101 healthy controls (between the ages of 5 and 16). Each group was also divided into two subgroups according to seasonal changes in terms of months of longer versus shorter daylight. We retrospectively evaluated the levels of calcium, phosphorus, alkaline phosphatase, parathyroid hormone, and 25-OH vitamin-D3 in the study participants. Levels below 20 ng/ml were defined as vitamin D deficiency and levels of 20-30 ng/ml as insufficiency. There were no significant differences in age, gender distribution and levels of calcium, phosphorus, alkaline phosphatase and parathyroid hormone between the groups. The level of 25-OH vitamin-D3 in the patient group was significantly lower when compared to the control group (p < 0.05) (14.07 ± 8.12 and 23.38 ± 12.80 ng/ml, respectively). This difference also held true when evaluation was made according to seasonal evaluation (12.38 ± 6.53 and 17.64 ± 1.14 in shorter daylight and 18.71 ± 9.87 and 30.82 ± 1.04 in longer daylight).
Collapse
Affiliation(s)
| | - Ahsen Donmez
- Department of Pediatrics, Turgut Ozal University, Ankara, Turkey
| | - Mehmet Namuslu
- Department of Biochemistry, Turgut Ozal University, Ankara, Turkey
| | - Metin Canbal
- Department of Family Medicine, Turgut Ozal University, Ankara, Turkey
| | - Emel Orun
- Department of Pediatrics, Turgut Ozal University, Ankara, Turkey
| |
Collapse
|
358
|
High serum levels of proinflammatory markers during epileptogenesis. Can omega-3 fatty acid administration reduce this process? Epilepsy Behav 2015; 51:300-5. [PMID: 26318793 DOI: 10.1016/j.yebeh.2015.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 01/10/2023]
Abstract
During the epileptogenic process, several events may occur, such as an important activation of the immune system in the central nervous system. The response to seizure activity results in an inflammation in the brain as well as in the periphery. Moreover, CRP and cytokines may be able to interact with numerous ligands in response to cardiac injury caused by sympathetic stimulation in ictal and postictal states. Based on this, we measured the serum levels of C-reactive protein (CRP) and cytokines during acute, silent, and chronic phases of rats submitted to the pilocarpine model of epilepsy. We have also analyzed the effect of a chronic treatment of these rats with omega-3 fatty acid in CRP and cytokine levels, during an epileptic focus generation. C-reactive protein and cytokines such as IL-1β, IL-6, and TNF-α presented high concentration in the blood of rats, even well after the occurrence of SE. We found reduced levels of CRP and all proinflammatory cytokines in the blood of animals with chronic seizures, treated with omega-3, when compared with those treated with vehicle solution. Taken together, our results strongly suggest that the omega-3 is an effective treatment to prevent SUDEP occurrence due to its capability to act as an anti-inflammatory compound, reducing the systemic inflammatory parameters altered by seizures.
Collapse
|
359
|
Bennani-Baiti B, Toegel S, Viernstein H, Urban E, Noe CR, Bennani-Baiti IM. Inflammation Modulates RLIP76/RALBP1 Electrophile-Glutathione Conjugate Transporter and Housekeeping Genes in Human Blood-Brain Barrier Endothelial Cells. PLoS One 2015; 10:e0139101. [PMID: 26406496 PMCID: PMC4583384 DOI: 10.1371/journal.pone.0139101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022] Open
Abstract
Endothelial cells are often present at inflammation sites. This is the case of endothelial cells of the blood-brain barrier (BBB) of patients afflicted with neurodegenerative disorders such as Alzheimer's, Parkinson's, or multiple sclerosis, as well as in cases of bacterial meningitis, trauma, or tumor-associated ischemia. Inflammation is a known modulator of gene expression through the activation of transcription factors, mostly NF-κB. RLIP76 (a.k.a. RALBP1), an ATP-dependent transporter of electrophile-glutathione conjugates, modulates BBB permeability through the regulation of tight junction function, cell adhesion, and exocytosis. Genes and pathways regulated by RLIP76 are transcriptional targets of tumor necrosis factor alpha (TNF-α) pro-inflammatory molecule, suggesting that RLIP76 may also be an inflammation target. To assess the effects of TNF-α on RLIP76, we faced the problem of choosing reference genes impervious to TNF-α. Since such genes were not known in human BBB endothelial cells, we subjected these to TNF-α, and measured by quantitative RT-PCR the expression of housekeeping genes commonly used as reference genes. We find most to be modulated, and analysis of several inflammation datasets as well as a metaanalysis of more than 5000 human tissue samples encompassing more than 300 cell types and diseases show that no single housekeeping gene may be used as a reference gene. Using three different algorithms, however, we uncovered a reference geneset impervious to TNF-α, and show for the first time that RLIP76 expression is induced by TNF-α and follows the induction kinetics of inflammation markers, suggesting that inflammation can influence RLIP76 expression at the BBB. We also show that MRP1 (a.k.a. ABCC1), another electrophile-glutathione transporter, is not modulated in the same cells and conditions, indicating that RLIP76 regulation by TNF-α is not a general property of glutathione transporters. The reference geneset uncovered herein should aid in future gene expression studies in inflammatory conditions of the BBB.
Collapse
Affiliation(s)
- Barbara Bennani-Baiti
- Department for Medicinal Chemistry, Institute of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital (AKH), Medical University of Vienna, Waehringer-Guertel 18–20, 1090 Vienna, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopaedics, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ernst Urban
- Department for Medicinal Chemistry, Institute of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Christian R. Noe
- Department for Medicinal Chemistry, Institute of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | |
Collapse
|
360
|
Youn YA, Kim JH, Yum SK, Moon CJ, Lee IG, Sung IK. The hospital outcomes compared between the early and late hypothermia-treated groups in neonates. J Matern Fetal Neonatal Med 2015; 29:2288-92. [PMID: 26364841 DOI: 10.3109/14767058.2015.1083548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND OBJECTIVE The incidence of hypoxic ischemic encephalopathy (HIE) in developed countries is estimated to be 1.5 per 1000 live births. The primary aim of this study was to analyze whether earlier hypothermia (≤1 h) improves hospital outcomes in survivors who underwent therapeutic hypothermia (TH) when compared with late TH (>1 h). METHOD Forty-nine (70%) newborns received TH for 72 h, within 6 h of birth; the remaining 21 received standard care. We divided the TH-treated newborns into early and late groups; early cooling was considered when TH was started ≤1 h after birth; late cooling was considered when started >1 h. RESULTS The early TH group consisted of 20 of 49 (41%) infants; the late TH group consisted of 29 (59%) infants. Apgar score at 1 min and the initial calcium level was significantly lower in the early (≤1 h) TH infants; there were significantly more inborns in the early TH group (p = 0.008). Infants in the late TH group manifested more clinical seizures followed by more abnormal EEG findings, longer ventilator care and longer hospitalization (p = 0.001). TH-related complications and mortality were not significantly different between the two groups. CONCLUSIONS Early TH (≤1 h) had lower Apgar score at 1 min and initial calcium level, but had decreased incidence of clinico-electrical seizures among HIE infants. Also, ventilator support and hospitalization period were longer in the late TH group.
Collapse
Affiliation(s)
- Young-Ah Youn
- a Department of Pediatrics , College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital , Seoul , Korea
| | - Ji Hoon Kim
- a Department of Pediatrics , College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital , Seoul , Korea
| | - Sook-Kyung Yum
- a Department of Pediatrics , College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital , Seoul , Korea
| | - Cheong-Jun Moon
- a Department of Pediatrics , College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital , Seoul , Korea
| | - In-Goo Lee
- a Department of Pediatrics , College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital , Seoul , Korea
| | - In Kyung Sung
- a Department of Pediatrics , College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital , Seoul , Korea
| |
Collapse
|
361
|
Association of Tag SNPs and Rare CNVs of the MIR155HG/miR-155 Gene with Epilepsy in the Chinese Han Population. BIOMED RESEARCH INTERNATIONAL 2015; 2015:837213. [PMID: 26425555 PMCID: PMC4575730 DOI: 10.1155/2015/837213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/28/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND miR-155 likely acts as an important modulator in the inflammatory mechanism of epilepsy, and this study investigated its association with epilepsy from the perspective of molecular genetics. METHODS This study enrolled 249 epileptic patients and 289 healthy individuals of the Chinese Han population; 4 tag single-nucleotide polymorphisms (SNPs: rs969885, rs12483428, rs987195, and rs4817027) of the MIR155HG/miR-155 gene were selected, and their association with epilepsy was investigated. Additionally, this study determined the copy numbers of the MIR155HG/miR-155 gene. RESULTS The TCA haplotype (rs12483428-rs987195-rs4817027) and the AA genotype at rs4817027 conferred higher vulnerability to epilepsy in males. Stratification by age of onset revealed that the CC haplotype (rs969885-rs987195) was a genetic susceptibility factor for early-onset epilepsy. Further stratification by drug-resistant status indicated the CC haplotype (rs969885-rs987195) and the AA genotype at rs4817027 were genetic susceptibility factors for drug-resistant epilepsy (DRE) but the CG haplotype (rs987195-rs969885) was a genetically protective factor against DRE. Besides, 3 epileptic patients with copy number variants of the MIR155HG/miR-155 gene were observed. CONCLUSIONS This study first demonstrates the association of MIR155HG/miR-155 tag SNPs with epilepsy and shows that rare CNVs were found exclusively in epileptic patients, clarifying the genetic role of miR-155 in epilepsy.
Collapse
|
362
|
Horta WG, Paradela E, Figueiredo A, Meira ID, Pereira VCSR, Rego CC, Oliveira R, Andraus MEC, Lacerda GCBD, Moura P, Souza JPMD, Paiva CLA, Alves-Leon SV. Genetic association study of the HLA class II alleles DRB1, DQA1, and DQB1 in patients with pharmacoresistant temporal lobe epilepsy associated with mesial hippocampal sclerosis. Seizure 2015; 31:7-11. [DOI: 10.1016/j.seizure.2015.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 10/24/2022] Open
|
363
|
Bakker DP, Catsman-Berrevoets CE, Neuteboom RF. Effectiveness of a hybrid corticosteroid treatment regimen on refractory childhood seizures and a review of other corticosteroid treatments. Eur J Paediatr Neurol 2015; 19:553-60. [PMID: 25976064 DOI: 10.1016/j.ejpn.2015.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/20/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Many different corticosteroid treatment schedules have been used in order to treat refractory epileptic seizures with encouraging effects on seizure reduction in many epileptic syndromes. OBJECTIVE The objective is to report our experience with a hybrid treatment regimen for refractory seizures in children with epilepsies other than West and Landau-Kleffner syndrome. We hypothesized that a pulse of corticosteroids effectively reduces seizures while low-dosage maintenance treatment reduces side effects. The results are compared with results from a review of reported corticosteroid and ACTH treatments. METHODS In this retrospective observational study, 26 children diagnosed with epilepsy with refractory seizures other than West syndrome and Landau-Kleffner syndrome were eligible for a treatment regimen consisting of three days intravenous methylprednisolone (20 mg per kilogram per day) followed by twelve weeks oral prednisolone (0.5 mg per kilogram on alternate days), concluded with a taper phase. Data on effectiveness and side effects were obtained. End-points were the percentages of patients who became seizure free or responded well. RESULTS Twenty-one patients received the study treatment. Nine (43%) responded well and 6 (29%) became seizure free. All but one patient had a relapse of seizures. Four patients had reversible adverse effects. Data extracted from the literature were consistent with a good response in 48% of 192 children treated with different corticosteroids and in 69% of 103 patients treated with ACTH. CONCLUSION This new hybrid therapy of a pulse of intravenous methylprednisolone and alternate day oral prednisolone is effective with a favourable side effect profile. Results on efficacy and safety justify a randomized controlled trial.
Collapse
Affiliation(s)
- Dewi P Bakker
- Erasmus University Hospital-Sophia Children's Hospital, The Netherlands
| | | | - Rinze F Neuteboom
- Erasmus University Hospital-Sophia Children's Hospital, The Netherlands.
| |
Collapse
|
364
|
Modulatory effects of inosine, guanosine and uridine on lipopolysaccharide-evoked increase in spike-wave discharge activity in Wistar Albino Glaxo/Rijswijk rats. Brain Res Bull 2015; 118:46-57. [DOI: 10.1016/j.brainresbull.2015.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022]
|
365
|
Patel N, Duffy BA, Badar A, Lythgoe MF, Årstad E. Bimodal Imaging of Inflammation with SPECT/CT and MRI Using Iodine-125 Labeled VCAM-1 Targeting Microparticle Conjugates. Bioconjug Chem 2015; 26:1542-9. [PMID: 26218622 DOI: 10.1021/acs.bioconjchem.5b00380] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Upregulation of cell adhesion molecules on endothelial cells is a hallmark of inflammation and an early feature of several neurological conditions. Here, we describe bimodal in vivo imaging of this inflammatory event in the brain using functionalized micron-sized particles of iron oxide. The particles were conjugated to anti-VCAM-1 antibodies and subsequently labeled with iodine-125. Radiolabeling of the antibody-coated particles was straightforward and proceeded in high radiochemical yields using commercially available iodination tubes. The corresponding contrast agent was evaluated in a rat model of cerebral inflammation based on intracerebral injection of tumor necrosis factor alpha and a rat model of status epilepticus. Biodistribution studies and phosphorimaging of cryosections were used to verify in vivo imaging data obtained with single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). The contrast agent showed rapid and highly localized binding to the vasculature of inflamed brain tissue, and was effectively cleared from the blood pool within 2 min postinjection. Overall, the pattern of hypointensities observed with MRI was in good agreement with the distribution of the contrast agent as determined with SPECT and phosphorimaging; however, conspicuous differences in the signal intensities were observed. The results demonstrate that radiolabeled micron-sized particles of iron oxide enable multimodal in vivo imaging with MRI and nuclear techniques, and highlight the value of validating different imaging methods against one another.
Collapse
Affiliation(s)
- N Patel
- †Centre for Advanced Biomedical Imaging (CABI) and ‡Division of Medicine and Department of Chemistry and Institute of Nuclear Medicine, University College London, London NW1 2BU, United Kingdom
| | - B A Duffy
- †Centre for Advanced Biomedical Imaging (CABI) and ‡Division of Medicine and Department of Chemistry and Institute of Nuclear Medicine, University College London, London NW1 2BU, United Kingdom
| | - A Badar
- †Centre for Advanced Biomedical Imaging (CABI) and ‡Division of Medicine and Department of Chemistry and Institute of Nuclear Medicine, University College London, London NW1 2BU, United Kingdom
| | - M F Lythgoe
- †Centre for Advanced Biomedical Imaging (CABI) and ‡Division of Medicine and Department of Chemistry and Institute of Nuclear Medicine, University College London, London NW1 2BU, United Kingdom
| | - E Årstad
- †Centre for Advanced Biomedical Imaging (CABI) and ‡Division of Medicine and Department of Chemistry and Institute of Nuclear Medicine, University College London, London NW1 2BU, United Kingdom
| |
Collapse
|
366
|
Suchomelova L, Lopez-Meraz ML, Niquet J, Kubova H, Wasterlain CG. Hyperthermia aggravates status epilepticus-induced epileptogenesis and neuronal loss in immature rats. Neuroscience 2015; 305:209-24. [PMID: 26259902 DOI: 10.1016/j.neuroscience.2015.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/20/2015] [Accepted: 08/03/2015] [Indexed: 01/16/2023]
Abstract
This study tightly controlled seizure duration and severity during status epilepticus (SE) in postnatal day 10 (P10) rats, in order to isolate hyperthermia as the main variable and to study its consequences. Body temperature was maintained at 39 ± 1 °C in hyperthermic SE rats (HT+SE) or at 35 ± 1 °C in normothermic SE animals (NT+SE) during 30 min of SE, which was induced by lithium-pilocarpine (3 mEq/kg, 60 mg/kg) and terminated by diazepam and cooling to NT. All video/EEG measures of SE severity were similar between HT+SE and NT+SE pups. At 24h, neuronal injury was present in the amygdala in the HT+SE group only, and was far more severe in the hippocampus in HT+SE than NT+SE pups. Separate groups of animals were monitored four months later for spontaneous recurrent seizures (SRS). Only HT+SE animals developed convulsive SRS. Both HT+SE and NT+SE animals developed electrographic SRS (83% vs. 55%), but SRS frequency and severity were higher in hyperthermic animals (12.5 ± 3.5 vs. 4.2 ± 2.0 SRS/day). The density of hilar neurons was lower, thickness of the amygdala and perirhinal cortex was reduced, and lateral ventricles were enlarged in HT+SE over NT+SE littermates and HT/NT controls. In this model, hyperthermia greatly increased the epileptogenicity of SE and its neuropathological sequelae.
Collapse
Affiliation(s)
- L Suchomelova
- Veterans Administration Greater Los Angeles Healthcare System, Epilepsy Research (151), 11 301 Wilshire Boulevard, Building 114, Room 139, Los Angeles, CA 90073, USA.
| | - M L Lopez-Meraz
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Veracruz 91190, Mexico
| | - J Niquet
- Veterans Administration Greater Los Angeles Healthcare System, Epilepsy Research (151), 11 301 Wilshire Boulevard, Building 114, Room 139, Los Angeles, CA 90073, USA
| | - H Kubova
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 14220, Czech Republic
| | - C G Wasterlain
- Department of Neurology, David Geffen School of Medicine at UCLA, VA Medical Center (127), 11 301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| |
Collapse
|
367
|
Kosonowska E, Janeczko K, Setkowicz Z. Inflammation induced at different developmental stages affects differently the range of microglial reactivity and the course of seizures evoked in the adult rat. Epilepsy Behav 2015; 49:66-70. [PMID: 25989877 DOI: 10.1016/j.yebeh.2015.04.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND In the brain, inflammation occurs following a variety of types of brain damage, including epileptic seizures. Proinflammatory cytokines, like IL-1β or TNFα, can increase neuronal excitability and initiate spontaneous seizures or epileptogenesis. Recent studies indicate that the effects can be attenuated or even abolished in animals subjected to inflammation-inducing treatments at earlier developmental stages, termed "preconditioning". Immunocompetent microglial cells display particular sensitivity to subtle brain pathologies showing a morphological continuum from resting to reactive forms. Following inflammation, multiple ramified processes of resting microglia become gradually shorter, and the cells transform into macrophages. Parameters of the morphological variations were used here as indicators of the nervous tissue reactivity to seizures in adult rats experiencing inflammation at earlier stages of postnatal development. METHODS Systemic inflammation was induced with lipopolysaccharide (LPS) in 6-day-old or 30-day-old rats. In two-month-old survivors of the inflammatory status, seizures were evoked with pilocarpine injection. The seizure intensity was scored during a six-hour continuous observation period following the injection. Brain sections were immunostained for Iba1 to visualize microglia. Thereafter, morphology of microglial cells located in the hippocampal formation was analyzed using parameters such as solidity, circularity, ramification index, and area. RESULTS In naïve rats, seizure-induced transformations of microglial cells were reflected by strong changes in the parameters of their morphology. However, in the adult rats pretreated with LPS on their 6th or 30th postnatal days, the seizure-induced changes were significantly reduced, and microglial morphology remained significantly closer to normal. Significant amelioration of the acute phase of seizures was observed only when inflammation was induced in 30-day-old, but not in 6-day-old, rats. CONCLUSIONS The results confirm previous reports that moderate inflammation protects the nervous tissue from subsequent damage by reducing influences of proinflammatory factors on reactive glial cells. The young-age inflammation may have age-dependent effects on susceptibility to seizures induced in adulthood. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- Emilia Kosonowska
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Krzysztof Janeczko
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, 9 Gronostajowa St., 30-387 Kraków, Poland.
| | - Zuzanna Setkowicz
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, 9 Gronostajowa St., 30-387 Kraków, Poland
| |
Collapse
|
368
|
Jensen FE. Developmental factors in the pathogenesis of neonatal seizures. JOURNAL OF PEDIATRIC NEUROLOGY 2015; 7:5-12. [PMID: 20191097 DOI: 10.3233/jpn-2009-0270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neonatal seizures are inherently different from seizures in the child and the adult. The phenotype, often exhibiting electroclinical dissociation, is unique: neonatal seizures can be refractory to antiepileptic drugs otherwise effect for older patients. Recent experimental and human-based research reveals that the mechanism of neonatal seizures, as well as their long-term sequelae on later brain development, appears to involve a large number of age-specific factors. These observations help explain the resistance of neonatal seizures to conventional therapy as well as identify potential areas of risk for later neurocognitive development. Emerging targets from this research may suggest new therapies for this unique population of patients.
Collapse
Affiliation(s)
- Frances E Jensen
- Department of Neurology, Children's Hospital, and Program in Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
369
|
Rodriguez RV, Dorce VAC, de Freitas LA, Dorce ALC, Lebrun I, Sobral ACM, Portaro FCV, Kuniyoshi AK, Carvalho DC, Nencioni ALA. Intrahippocampal injection of TsTX-I increases the levels of INF-γ in the cerebral tissue but not the levels of glutamate. Toxicon 2015; 103:155-9. [PMID: 26163314 DOI: 10.1016/j.toxicon.2015.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
Abstract
TsTX-I, isolated from Tityus serrulatus scorpion venom, causes epileptic-like discharges when injected into the central nervous system. The involvement of excitatory amino acids and cytokines in this activity was investigated. Our results have demonstrated that TsTX-I increases the release of IFN-γ but does not alter the intracerebral concentration of the excitatory amino acids in rats. Thus, this cytokine seems to be more important in the convulsive process than glutamate.
Collapse
Affiliation(s)
- Renan Volner Rodriguez
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil; Post-Graduation Program in Toxinology of Butantan Institute, São Paulo, Brazil
| | | | | | | | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
370
|
Tao AF, Xu ZH, Chen B, Wang Y, Wu XH, Zhang J, Tang YS, Xu CL, Zhao HW, Hu WW, Shi LY, Zhang SH, Chen Z. The Pro-inflammatory Cytokine Interleukin-1β is a Key Regulatory Factor for the Postictal Suppression in Mice. CNS Neurosci Ther 2015; 21:642-50. [PMID: 26096304 DOI: 10.1111/cns.12416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 01/18/2023] Open
Abstract
AIMS The postictal suppression (PS) is a common and important period following an epileptic seizure but has not been well studied. This study was designed to determine whether interleukin-1β (IL-1β) is involved in the PS. METHODS The effects of IL-1β on the PS were tested in three independent seizure models induced by hippocampal kindling, maximal electroshock seizure (MES), and 4-aminopyridine, respectively. RESULTS IL-1R1 knockout or IL-1RA enhanced the seizure refractory phenomenon without influencing the baseline seizure threshold in intermittent MES model. IL-1β attenuated the seizure refractory phenomenon without affecting the severity of the preceding seizures in hippocampal kindling model, while IL-1RA enhanced it. Besides, IL-1β reduced the postictal EEG suppression period, while IL-1RA prolonged it. And IL-1β showed no further effect on the postictal EEG suppression and seizure refractory phenomenon in IL-1R1 knockout mice. In addition, 30 min after intrahippocampal injection of 4-aminopyridine, IL-1β increased the incidence of SE, while IL-1RA prolonged the intervals between recurrent seizures. CONCLUSIONS This study provides the first direct evidence that IL-1β is key regulatory factor for the PS, and its receptor IL-1R1 may be a potential target for adjuvant treatment of postictal problems.
Collapse
Affiliation(s)
- An-Feng Tao
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheng-Hao Xu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bin Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Hua Wu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang-Shun Tang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ceng-Lin Xu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua-Wei Zhao
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Wei Hu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li-Yun Shi
- Department of Basic Medical Science, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shi-Hong Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China and Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
371
|
Naringin Attenuates Autophagic Stress and Neuroinflammation in Kainic Acid-Treated Hippocampus In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:354326. [PMID: 26124853 PMCID: PMC4466392 DOI: 10.1155/2015/354326] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/27/2015] [Indexed: 01/21/2023]
Abstract
Kainic acid (KA) is well known as a chemical compound to study epileptic seizures and neuronal excitotoxicity. KA-induced excitotoxicity causes neuronal death by induction of autophagic stress and microglia-derived neuroinflammation, suggesting that the control of KA-induced effects may be important to inhibit epileptic seizures with neuroprotection. Naringin, a flavonoid in grapefruit and citrus fruits, has anti-inflammatory and antioxidative activities, resulting in neuroprotection in animal models from neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. In the present study, we examined its beneficial effects involved in antiautophagic stress and antineuroinflammation in the KA-treated hippocampus. Our results showed that naringin treatment delayed the onset of KA-induced seizures and decreased the occurrence of chronic spontaneous recurrent seizures (SRS) in KA-treated mice. Moreover, naringin treatment protected hippocampal CA1 neurons in the KA-treated hippocampus, ameliorated KA-induced autophagic stress, confirmed by the expression of microtubule-associated protein light chain 3 (LC3), and attenuated an increase in tumor necrosis factor-α (TNFα) in activated microglia. These results suggest that naringin may have beneficial effects of preventing epileptic events and neuronal death through antiautophagic stress and antineuroinflammation in the hippocampus in vivo.
Collapse
|
372
|
Fukuda M, Ito M, Yano Y, Takahashi H, Motoie R, Yano A, Suzuki Y, Ishii E. Postnatal interleukin-1β administration after experimental prolonged febrile seizures enhances epileptogenesis in adulthood. Metab Brain Dis 2015; 30:813-9. [PMID: 25575695 DOI: 10.1007/s11011-014-9648-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/29/2014] [Indexed: 01/31/2023]
Abstract
It remains unclear whether prolonged febrile seizures (pFS) in childhood facilitate mesial temporal lobe epilepsy (MTLE) in adulthood. Interleukin (IL)-1β is associated with seizures in children and immature animal models. Here, we use a rat model of pFS to study the effects of IL-1β on adult epileptogenesis, hippocampal damage, and cognition. We produced prolonged hyperthermia-induced seizures on postnatal days (P) 10-11 and administered IL-1β or saline intranasally immediately after the seizures. Motor and cognitive functions were assessed at P85 using rotarod and passive avoidance tests. Electroencephalogram recordings were conducted at P90 and P120. Hippocampal CA1 and CA3 neurons and gliosis were quantified at the end of the experiment. Spontaneous seizure incidence was significantly greater in rats that had received IL-1β than in those that had received saline or those without hyperthermia-induced seizures (p < 0.05). Seizure frequency did not differ significantly between the three groups and no motor deficits were observed. Passive avoidance learning was impaired in rats that received IL-1β compared with controls (p < 0.05), but was not different from that in rats that received saline. Hippocampal cell numbers and gliosis did not differ between the three groups. These results indicate that neuronal loss and gliosis are not prerequisites for the epileptogenic process that follows pFS. Our results suggest that infantile pFS combined with IL-1β overproduction can enhance adulthood epileptogenesis, and might contribute to the development of MTLE.
Collapse
Affiliation(s)
- Mitsumasa Fukuda
- Department of Pediatrics, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
373
|
Lee CH, Yi MH, Chae DJ, Zhang E, Oh SH, Kim DW. Effect of pioglitazone on excitotoxic neuronal damage in the mouse hippocampus. Biomol Ther (Seoul) 2015; 23:261-7. [PMID: 25995825 PMCID: PMC4428719 DOI: 10.4062/biomolther.2014.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 11/05/2022] Open
Abstract
Pioglitazone (PGZ), a synthetic peroxisome proliferator-activated receptor γ agonist, is known to regulate inflammatory process and to have neuroprotective effects against neurological disorders. In the present study, we examined the effects of 30 mg/kg PGZ on excitotoxic neuronal damage and glial activation in the mouse hippocampus following intracerebroventricular injection of kainic acid (KA). PGZ treatment significantly reduced seizure-like behavior. PGZ had the neuroprotective effect against KA-induced neuronal damage and attenuated the activations of astrocytes and microglia in the hippocampal CA3 region. In addition, MPO and NFκB immunoreactivities in the glial cells were also decreased in the PGZ-treated group. These results indicate that PGZ had anticonvulsant and neuroprotective effects against KA-induced excitotocix injury, and that neuroprotective effect of PGZ might be due to the attenuation of KA-induced activation in astrocytes and microglia as well as KA-induced increases in MPO and NFκB.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 330-714
| | - Min-Hee Yi
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747
| | - Dong Jin Chae
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747
| | - Enji Zhang
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747
| | - Sang-Ha Oh
- Department of Plastic Surgery, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747
| |
Collapse
|
374
|
The mast cell stabilizer sodium cromoglycate reduces histamine release and status epilepticus-induced neuronal damage in the rat hippocampus. Neuropharmacology 2015; 92:49-55. [DOI: 10.1016/j.neuropharm.2014.12.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 01/17/2023]
|
375
|
Xiao Z, Peng J, Yang L, Kong H, Yin F. Interleukin-1β plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons. J Neuroimmunol 2015; 282:110-7. [DOI: 10.1016/j.jneuroim.2015.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 12/11/2022]
|
376
|
Citraro R, Leo A, Marra R, De Sarro G, Russo E. Antiepileptogenic effects of the selective COX-2 inhibitor etoricoxib, on the development of spontaneous absence seizures in WAG/Rij rats. Brain Res Bull 2015; 113:1-7. [DOI: 10.1016/j.brainresbull.2015.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 11/25/2022]
|
377
|
Role for pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic acid-induced status epilepticus. Neurochem Res 2015; 40:621-7. [PMID: 25708016 DOI: 10.1007/s11064-014-1504-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
In general, pro-inflammatory cytokines (PICs) contribute to regulation of epilepsy-associated pathophysiological processes in the central nerve system. In this report, we examined the specific activation of PICs, namely IL-1β, IL-6 and TNF-α in rat brain after kainic acid (KA)-induced status epilepticus (SE). Also, we examined the role played by PICs in regulating expression of GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively), which are the two important subtypes of GATs responsible for the regulation of extracellular GABA levels in the brain. Our results show that IL-1β, IL-6 and TNF-α were significantly increased in the parietal cortex, hippocampus and amygdala of KA-rats as compared with sham control animals (P < 0.05, KA rats vs. control rats). KA-induced SE also significantly increased (P < 0.05 vs. controls) the protein expression of GAT-1 and GAT-3 in those brain regions. In addition, central administration of antagonists to IL-1β and TNF-α receptors significantly attenuated amplified GAT-1 and GAT-3 (P < 0.05 vs. vehicle control for each antagonist group). However, antagonist to IL-6 receptor failed to attenuate enhancement in expression of GAT-1 and GAT-3 induced by KA-induced SE. Overall, our data demonstrate that PIC pathways are activated in the specific brain regions during SE which thereby selectively leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA system is increased in the brain. This support a role for PICs in engagement of the adaptive mechanisms associated with epileptic activity, and has pharmacological implications to target specific PICs for neuronal dysfunction and vulnerability related to epilepsy.
Collapse
|
378
|
Fleck J, Marafiga JR, Jesse AC, Ribeiro LR, Rambo LM, Mello CF. Montelukast potentiates the anticonvulsant effect of phenobarbital in mice: an isobolographic analysis. Pharmacol Res 2015; 94:34-41. [PMID: 25684626 DOI: 10.1016/j.phrs.2015.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 11/24/2022]
Abstract
Although leukotrienes have been implicated in seizures, no study has systematically investigated whether the blockade of CysLT1 receptors synergistically increases the anticonvulsant action of classic antiepileptics. In this study, behavioral and electroencephalographic methods, as well as isobolographic analysis, are used to show that the CysLT1 inverse agonist montelukast synergistically increases the anticonvulsant action of phenobarbital against pentylenetetrazole-induced seizures. Moreover, it is shown that LTD4 reverses the effect of montelukast. The experimentally derived ED50mix value for a fixed-ratio combination (1:1 proportion) of montelukast plus phenobarbital was 0.06±0.02 μmol, whereas the additively calculated ED50add value was 0.49±0.03 μmol. The calculated interaction index was 0.12, indicating a synergistic interaction. The association of montelukast significantly decreased the antiseizure ED50 for phenobarbital (0.74 and 0.04 μmol in the absence and presence of montelukast, respectively) and, consequently, phenobarbital-induced sedation at equieffective doses. The demonstration of a strong synergism between montelukast and phenobarbital is particularly relevant because both drugs are already used in the clinics, foreseeing an immediate translational application for epileptic patients who have drug-resistant seizures.
Collapse
Affiliation(s)
- Juliana Fleck
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; University Hospital of Santa Maria, Federal University of Santa Maria, Santa Maria, RS, Brazil; Pharmacy Department, Center of Health Sciences, Franciscan University Center, RS, Brazil
| | - Joseane Righes Marafiga
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ana Cláudia Jesse
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leandro Rodrigo Ribeiro
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leonardo Magno Rambo
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carlos Fernando Mello
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
379
|
Benson MJ, Thomas NK, Talwar S, Hodson MP, Lynch JW, Woodruff TM, Borges K. A novel anticonvulsant mechanism via inhibition of complement receptor C5ar1 in murine epilepsy models. Neurobiol Dis 2015; 76:87-97. [PMID: 25681535 DOI: 10.1016/j.nbd.2015.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/21/2015] [Accepted: 02/04/2015] [Indexed: 12/24/2022] Open
Abstract
The role of complement system-mediated inflammation is of key interest in seizure and epilepsy pathophysiology, but its therapeutic potential has not yet been explored. We observed that the pro-inflammatory C5a receptor, C5ar1, is upregulated in two mouse models after status epilepticus; the pilocarpine model and the intrahippocampal kainate model. The C5ar1 antagonist, PMX53, was used to assess potential anticonvulsant actions of blocking this receptor pathway. PMX53 was found to be anticonvulsant in several acute models (6Hz and corneal kindling) and one chronic seizure model (intrahippocampal kainate model). The effects in the 6Hz model were not found in C5ar1-deficient mice, or with an inactive PMX53 analogue suggesting that the anticonvulsant effect of PMX53 is C5ar1-specific. In the pilocarpine model, inhibition or absence of C5ar1 during status epilepticus lessened seizure power and protected hippocampal neurons from degeneration as well as halved SE-associated mortality. C5ar1-deficiency during pilocarpine-induced status epilepticus also was accompanied by attenuation of TNFα upregulation by microglia, suggesting that C5ar1 activation results in TNFα release contributing to disease. Patch clamp studies showed that C5a-induced microglial K(+) outward currents were also inhibited with PMX53 providing a potential mechanism to explain acute anticonvulsant effects. In conclusion, our data indicate that C5ar1 activation plays a role in seizure initiation and severity, as well as neuronal degeneration following status epilepticus. The widespread anticonvulsant activity of PMX53 suggests that C5ar1 represents a novel target for improved anti-epileptic drug development which may be beneficial for pharmaco-resistant patients.
Collapse
Affiliation(s)
- Melissa J Benson
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building, St Lucia, Queensland 4072, Australia
| | - Nicola K Thomas
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building, St Lucia, Queensland 4072, Australia
| | - Sahil Talwar
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Mark P Hodson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Trent M Woodruff
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building, St Lucia, Queensland 4072, Australia
| | - Karin Borges
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
380
|
Increased interleukin-6 and high-sensitivity C-reactive protein levels in pediatric epilepsy patients with frequent, refractory generalized motor seizures. Seizure 2015; 25:136-40. [DOI: 10.1016/j.seizure.2014.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 02/01/2023] Open
|
381
|
Johnson MR, Behmoaras J, Bottolo L, Krishnan ML, Pernhorst K, Santoscoy PLM, Rossetti T, Speed D, Srivastava PK, Chadeau-Hyam M, Hajji N, Dabrowska A, Rotival M, Razzaghi B, Kovac S, Wanisch K, Grillo FW, Slaviero A, Langley SR, Shkura K, Roncon P, De T, Mattheisen M, Niehusmann P, O'Brien TJ, Petrovski S, von Lehe M, Hoffmann P, Eriksson J, Coffey AJ, Cichon S, Walker M, Simonato M, Danis B, Mazzuferi M, Foerch P, Schoch S, De Paola V, Kaminski RM, Cunliffe VT, Becker AJ, Petretto E. Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nat Commun 2015; 6:6031. [PMID: 25615886 DOI: 10.1038/ncomms7031] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/04/2014] [Indexed: 01/20/2023] Open
Abstract
Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo.
Collapse
Affiliation(s)
- Michael R Johnson
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Leonardo Bottolo
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK
| | - Michelle L Krishnan
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, St Thomas' Hospital, King's College London, London SE1 7EH, UK
| | - Katharina Pernhorst
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Sigmund Freud Street 25, Bonn D-53127, Germany
| | - Paola L Meza Santoscoy
- Department of Biomedical Science, Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Tiziana Rossetti
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Doug Speed
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Prashant K Srivastava
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK.,Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health, MRC/PHE Centre for Environment and Health, Imperial College London, St Mary's Hospital, Norfolk Place, W21PG London, UK
| | - Nabil Hajji
- Department of Medicine, Centre for Pharmacology and Therapeutics, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Aleksandra Dabrowska
- Department of Medicine, Centre for Pharmacology and Therapeutics, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Maxime Rotival
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Banafsheh Razzaghi
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Stjepana Kovac
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Klaus Wanisch
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Federico W Grillo
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Anna Slaviero
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Sarah R Langley
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK.,Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Kirill Shkura
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK.,Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Paolo Roncon
- Department of Medical Sciences, Section of Pharmacology and Neuroscience Center, University of Ferrara, 44121 Ferrara, Italy.,National Institute of Neuroscience, 44121 Ferrara, Italy
| | - Tisham De
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Manuel Mattheisen
- Department of Genomics, Life and Brain Center, University of Bonn, D-53127 Bonn, Germany.,Institute of Human Genetics, University of Bonn, D-53127 Bonn, Germany.,Institute for Genomic Mathematics, University of Bonn, D-53127 Bonn, Germany
| | - Pitt Niehusmann
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Sigmund Freud Street 25, Bonn D-53127, Germany
| | - Terence J O'Brien
- Department of Medicine, RMH, University of Melbourne, Royal Melbourne Hospital, Royal Parade, Parkville, Victoria 3050, Australia
| | - Slave Petrovski
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Parkville, Victoria 3050, Australia
| | - Marec von Lehe
- Department of Neurosurgery, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany.,Department of Biomedicine, University of Basel, Hebelstrasse 20, 4056 Basel, Switzerland
| | - Johan Eriksson
- Folkhälsan Research Centre, Topeliusgatan 20, 00250 Helsinki, Finland.,Helsinki University Central Hospital, Unit of General Practice, Haartmaninkatu 4, Helsinki 00290, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, 407, PO Box 20, Tukholmankatu 8 B, Helsinki 00014, Finland
| | - Alison J Coffey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany.,Department of Biomedicine, University of Basel, Hebelstrasse 20, 4056 Basel, Switzerland
| | - Matthew Walker
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Michele Simonato
- Department of Medical Sciences, Section of Pharmacology and Neuroscience Center, University of Ferrara, 44121 Ferrara, Italy.,National Institute of Neuroscience, 44121 Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Bénédicte Danis
- Neuroscience TA, UCB Biopharma SPRL, Avenue de l'industrie, R9, B-1420 Braine l'Alleud, Belgium
| | - Manuela Mazzuferi
- Neuroscience TA, UCB Biopharma SPRL, Avenue de l'industrie, R9, B-1420 Braine l'Alleud, Belgium
| | - Patrik Foerch
- Neuroscience TA, UCB Biopharma SPRL, Avenue de l'industrie, R9, B-1420 Braine l'Alleud, Belgium
| | - Susanne Schoch
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Sigmund Freud Street 25, Bonn D-53127, Germany.,Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, Bonn D-53127, Germany
| | - Vincenzo De Paola
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Rafal M Kaminski
- Neuroscience TA, UCB Biopharma SPRL, Avenue de l'industrie, R9, B-1420 Braine l'Alleud, Belgium
| | - Vincent T Cunliffe
- Department of Biomedical Science, Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Albert J Becker
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Sigmund Freud Street 25, Bonn D-53127, Germany
| | - Enrico Petretto
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.,Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
382
|
Faggioli R, Mazzoni E, Borgna-Pignatti C, Corallini A, Turlà G, Taronna AP, Fiumana E, Martini F, Tognon M. Serum antibodies from epileptic patients react, at high prevalence, with simian virus 40 mimotopes. Eur J Neurol 2015; 22:789-95, e51-2. [PMID: 25598431 DOI: 10.1111/ene.12652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/12/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE It has been demonstrated that inflammation may contribute to epileptogenesis and cause neuronal injury in epilepsy. In this study, the prevalence of antibodies to simian virus 40 (SV40), a kidney and neurotropic polyomavirus, was investigated in serum samples from 88 epileptic children/adolescents/young adults. METHODS Serum antibodies reacting to specific SV40 peptides were analysed by indirect enzyme-linked immunosorbent assay. Synthetic peptides corresponding to the epitopes of viral capsid proteins 1-3 were used as SV40 antigens. RESULTS A significantly higher prevalence of antibodies against SV40 was detected in sera from epileptic patients compared to controls (41% vs. 19%). Specifically, the highest significant difference was revealed in the cohort of patients from 1.1 to 10 years old (54% vs. 21%), with a peak in the sub-cohort of 3.1-6 years old (65% vs. 18%). CONCLUSION Our immunological data suggest a strong association between epilepsy and the SV40 infection.
Collapse
Affiliation(s)
- R Faggioli
- Department of Medical Sciences, Section of Pediatrics, School of Medicine, University of Ferrara, Ferrara, Italy; Pediatric Unit, University Hospital of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
383
|
Early Use of the NMDA Receptor Antagonist Ketamine in Refractory and Superrefractory Status Epilepticus. Crit Care Res Pract 2015; 2015:831260. [PMID: 25649724 PMCID: PMC4306366 DOI: 10.1155/2015/831260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022] Open
Abstract
Refractory status epilepticus (RSE) and superrefractory status epilepticus (SRSE) pose a difficult clinical challenge. Multiple cerebral receptor and transporter changes occur with prolonged status epilepticus leading to pharmacoresistance patterns unfavorable for conventional antiepileptics. In particular, n-methyl-d-aspartate (NMDA) receptor upregulation leads to glutamate mediated excitotoxicity. Targeting these NMDA receptors may provide a novel approach to otherwise refractory seizures. Ketamine has been utilized in RSE. Recent systematic review indicates 56.5% and 63.5% cessation in seizures in adults and pediatrics, respectively. No complications were described. We should consider earlier implementation of ketamine or other NMDA receptor antagonists, for RSE. Prospective study of early implementation of ketamine should shed light on the role of such medications in RSE.
Collapse
|
384
|
Immune System Related Markers: Changes in childhood Neuropsychiatry Disorders Cause and Consequence. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-13602-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
385
|
Soluble epoxide hydrolase activity regulates inflammatory responses and seizure generation in two mouse models of temporal lobe epilepsy. Brain Behav Immun 2015; 43:118-29. [PMID: 25135858 DOI: 10.1016/j.bbi.2014.07.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 07/15/2014] [Accepted: 07/28/2014] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation is known to be involved in epileptogenesis with unclear mechanisms. Inhibition of soluble epoxide hydrolase (sEH) seems to offer anti-inflammatory protection to ischemic brain injury in rodents. Thus, it is hypothesized that sEH inhibition might also affect the neuroinflammatory responses caused by epileptic seizures. In the present study, we investigated the involvement of sEH in neuroinflammation, seizure generation and subsequent epileptogenesis using two mouse models of temporal lobe epilepsy. Experimental epileptic seizures were induced by either pilocarpine or electrical amygdala kindling in both wild-type (WT) C57BL/6 mice and sEH knockout (sEH KO) mice. The sEH expression in the hippocampus was detected by immunohistochemistry and Western blot analysis. The effects of the sEH hydrolase inhibitors, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) and N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy) phenyl)-urea (TPPU), and of the genetic deletion of sEH on seizure-induced neuroinflammatory responses and the development of epilepsy were evaluated. In the hippocampus of WT mice, sEH was mainly expressed in astrocytes (GFAP(+)), neurons (NeuN(+)) and scattered microglia (Iba-1(+)) in the regions of CA1, CA3 and dentate gyrus. Expression of sEH was significantly increased on day 7, 14, 21 and 28 after pilocarpine-induced status epilepticus (SE). Administration with sEH inhibitors attenuated the SE-induced up-regulation of interleukin-1β (IL-1β) and interleukin-6 (IL-6), the degradation of EETs, as well as IκB phosphorylation. Following treatment with AUDA, the frequency and duration of spontaneous motor seizures in the pilocarpine-SE mice were decreased and the seizure-induction threshold of the fully kindled mice was increased. Up-regulation of hippocampal IL-1β and IL-6 was found in both WT and sEH KO mice after successful induction of SE. Notably, sEH KO mice were more susceptible to seizures than WT mice. Seizure related neuroinflammation and ictogenesis were attenuated by pharmacological inhibition of sEH enzymatic activity but not by sEH genetic deletion. Therefore, sEH may play an important role in the generation of epilepsy. Furthermore, the effectiveness of AUDA in terms of anti-inflammatory and anti-ictogenesis properties suggests that it may have clinical therapeutic implication for epilepsy in the future, particularly when treating temporal lobe epilepsy.
Collapse
|
386
|
Abstract
Epilepsy is a common, serious neurological disease characterized by recurring seizures. Such abnormal, excessive synchronous firing of neurons arises in part because of imbalances in excitation and inhibition in the brain. The process of epileptogenesis, during which the normal brain is transformed after injury to one capable of generating spontaneous seizures, is associated with large-scale changes in gene expression. These contribute to the remodelling of brain networks that permanently alters excitability. Components of the microRNA (miRNA) biogenesis pathway have been found to be altered in brain tissue from epilepsy patients and experimental epileptogenic insults result in select changes to miRNAs regulating neuronal microstructure, cell death, inflammation, and ion channels. Targeting key miRNAs has been shown to alter brain excitability and suppress or exacerbate seizures, indicating potential for miRNA-based therapeutics in epilepsy. Altered miRNA profiles in biofluids may be potentially useful biomarkers of epileptogenesis. In summary, miRNAs represent an important layer of gene expression control in epilepsy with therapeutic and biomarker potential.
Collapse
|
387
|
Dubois LG, Campanati L, Righy C, D'Andrea-Meira I, Spohr TCLDSE, Porto-Carreiro I, Pereira CM, Balça-Silva J, Kahn SA, DosSantos MF, Oliveira MDAR, Ximenes-da-Silva A, Lopes MC, Faveret E, Gasparetto EL, Moura-Neto V. Gliomas and the vascular fragility of the blood brain barrier. Front Cell Neurosci 2014; 8:418. [PMID: 25565956 PMCID: PMC4264502 DOI: 10.3389/fncel.2014.00418] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022] Open
Abstract
Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB). By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM), characterized by a highly heterogeneous cell population (including tumor stem cells), extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the BBB and the concerns that arise when this barrier is affected.
Collapse
Affiliation(s)
- Luiz Gustavo Dubois
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil
| | - Loraine Campanati
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas da, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Cassia Righy
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil
| | | | | | | | - Claudia Maria Pereira
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde (ECS), Universidade do Grande Rio (UNIGRANRIO) Duque de Caxias, Brazil
| | - Joana Balça-Silva
- Centro de Neurociência e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra Coimbra, Portugal
| | - Suzana Assad Kahn
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil
| | - Marcos F DosSantos
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas da, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | - Adriana Ximenes-da-Silva
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió Alagoas, Brazil
| | - Maria Celeste Lopes
- Centro de Neurociência e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra Coimbra, Portugal
| | - Eduardo Faveret
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil
| | | | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Rua do Rezende Rio de Janeiro, Brazil ; Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas da, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
388
|
Abstract
Much of the research for intravenous immunoglobulins (IVIG) use in epilepsy has focused on childhood epilepsies and the results have been inconclusive. As evidence for inflammation in epilepsy and epileptogenesis is accumulating, IVIG might have a role to play in adult epilepsy. Our literature review focuses on the purported mechanisms of IVIG, the link between inflammation and the various causes of adult epilepsy and the different steps of epileptogenesis at which inflammation might play a role. We also review the current clinical evidence supporting IVIG as a treatment for epilepsy in the adult population. Though there is interesting theoretical potential for treatment of refractory epilepsy in adults with IVIG, insufficient evidence exists to support its standard use. The question remains if IVIG should still be considered as an end-of-the-line option for patients with epilepsy poorly responsive to all other treatments.
Collapse
|
389
|
Abstract
PURPOSE OF REVIEW There is a long-standing hypothesis that febrile status epilepticus (FSE) can cause brain injury, particularly to the hippocampus. This review will evaluate recent evidence on the relationships between FSE and later epilepsy and cognitive impairments. Potential strategies for minimizing adverse outcomes will be discussed. RECENT FINDINGS There are two major longitudinal studies evaluating the outcomes for FSE. These studies provide evidence of acute hippocampal edema that evolves to mesial temporal sclerosis in a small number of children (∼7%). However, none of these children have developed temporal lobe epilepsy. There is also evidence of more global white matter injury. Development is affected, with a loss of about 10 developmental quotient points and there is evidence for accelerated forgetting. These findings do not correlate with MRI parameters. Therefore, FSE can cause a wide spectrum of injury, but the relationship between this and clinically relevant adverse outcomes remains uncertain. SUMMARY Although there is accumulating evidence that FSE can cause brain injury, the strategies to minimize the impact remain uncertain. Imaging requires sedation, with inherent risks, and may not be appropriate for all children with FSE, given the small number with significant hippocampal edema that could be a biomarker. The alternative of treating all children requires a very safe drug which currently does not exist.
Collapse
|
390
|
Falsaperla R, Pavone P, Miceli Sopo S, Mahmood F, Scalia F, Corsello G, Lubrano R, Vitaliti G. Epileptic seizures as a manifestation of cow's milk allergy: a studied relationship and description of our pediatric experience. Expert Rev Clin Immunol 2014; 10:1597-1609. [PMID: 25394911 DOI: 10.1586/1744666x.2014.977259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse reactions after ingestion of cow's milk proteins can occur at any age, from birth and even amongst exclusively breast-fed infants, although not all of these are hypersensitivity reactions. The most common presentations related to cow's milk protein allergy are skin reactions, failure to thrive, anaphylaxis as well as gastrointestinal and respiratory disorders. In addition, several cases of cow's milk protein allergy in the literature have documented neurological involvement, manifesting with convulsive seizures in children. This may be due to CNS spread of a peripheral inflammatory response. Furthermore, there is evidence that pro-inflammatory cytokines are responsible for disrupting the blood-brain barrier, causing focal CNS inflammation thereby triggering seizures, although further studies are needed to clarify the pathogenic relationship between atopy and its neurological manifestations. This review aims to analyze current published data on the link between cow's milk protein allergy and epileptic events, highlighting scientific evidence for any potential pathogenic mechanism and describing our clinical experience in pediatrics.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Paediatric Acute and Emergency Department and Operative Unit, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Via Plebiscito n. 628, 95100, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
391
|
Golechha M, Sarangal V, Bhatia J, Chaudhry U, Saluja D, Arya DS. Naringin ameliorates pentylenetetrazol-induced seizures and associated oxidative stress, inflammation, and cognitive impairment in rats: possible mechanisms of neuroprotection. Epilepsy Behav 2014; 41:98-102. [PMID: 25461197 DOI: 10.1016/j.yebeh.2014.09.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/22/2014] [Accepted: 09/20/2014] [Indexed: 11/26/2022]
Abstract
Oxidative stress and cognitive impairment are associated with PTZ-induced convulsions. Naringin is a bioflavonoid present in the grapefruit. It is a potent antioxidant, and we evaluated its effect on PTZ-induced convulsions. Rats were pretreated with normal saline, naringin (20, 40, and 80 mg/kg, i.p.), or diazepam (5mg/kg, i.p.) 30 min prior to the administration of PTZ. The administration of PTZ induced myoclonic jerks and generalized tonic-clonic seizures (GTSs). We observed that naringin significantly prolonged the induction of myoclonic jerks dose-dependently. Naringin (80 mg/kg, i.p.) pretreatment protected all rats, and this protective effect was annulled by the GABAA receptor antagonist, flumazenil. In addition, naringin reduced brain MDA and TNF-α levels and conserved GSH. The pretreatment also enhanced the performance of rats in the passive avoidance task. Our observations highlight the antioxidant, antiinflammatory, and anticonvulsant potential of naringin. Also, naringin modulates the GABAA receptor to produce anticonvulsant effects and to ameliorate cognitive impairment.
Collapse
Affiliation(s)
- Mahaveer Golechha
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India; Public Health Foundation of India, New Delhi 110070, India
| | - Vikas Sarangal
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Uma Chaudhry
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Dharmveer Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
392
|
Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: evidence in support of the excitatory/inhibitory imbalance hypothesis. Mol Psychiatry 2014; 19:1314-25. [PMID: 25048006 DOI: 10.1038/mp.2014.62] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/28/2014] [Accepted: 05/12/2014] [Indexed: 12/27/2022]
Abstract
Over the last few years, awareness of autism spectrum disorder (ASD) in adults has increased. The precise etiology of ASD is still unresolved. Animal research, genetic and postmortem studies suggest that the glutamate (Glu) system has an important role, possibly related to a cybernetic imbalance between neuronal excitation and inhibition. To clarify the possible disruption of Glu metabolism in adults with high-functioning autism, we performed a magnetic resonance spectroscopy (MRS) study investigating the anterior cingulate cortex (ACC) and the cerebellum in adults with high-functioning ASD. Twenty-nine adult patients with high-functioning ASD and 29 carefully matched healthy volunteers underwent MRS scanning of the pregenual ACC and the left cerebellar hemisphere. Metabolic data were compared between groups and were correlated with psychometric measures of autistic features. We found a significant decrease in the cingulate N-acetyl-aspartate (NAA) and the combined Glu and glutamine (Glx) signals in adults with ASD, whereas we did not find other metabolic abnormalities in the ACC or the cerebellum. The Glx signal correlated significantly with psychometric measures of autism, particularly with communication deficits. Our data support the hypothesis that there is a link between disturbances of the cingulate NAA and Glx metabolism, and autism. The findings are discussed in the context of the hypothesis of excitatory/inhibitory imbalance in autism. Further research should clarify the specificity and dynamics of these findings regarding other neuropsychiatric disorders and other brain areas.
Collapse
|
393
|
Merbl Y, Sommer A, Chai O, Aroch I, Zimmerman G, Friedman A, Soreq H, Shamir M. Tumor necrosis factor-α and interleukin-6 concentrations in cerebrospinal fluid of dogs after seizures. J Vet Intern Med 2014; 28:1775-81. [PMID: 25308784 PMCID: PMC4895630 DOI: 10.1111/jvim.12462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 06/06/2014] [Accepted: 08/21/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Idiopathic and acquired epilepsy are common in dogs. Up to 30% of these dogs are refractory to pharmacological treatment. Accumulating experimental evidence indicates that brain immune response and presence of inflammatory mediators decrease the threshold for individual seizures and contribute to epileptogenesis. HYPOTHESIS Dogs with seizures have higher cerebrospinal interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) concentrations compared to dogs with no seizures. METHODS A prospective double blinded study; cerebrospinal fluid (CSF) and serum IL-6, TNF-α and total protein (TP) concentrations were measured by a blinded investigator for the study group and CSF IL-6 and TNF-α levels and TP concentrations were measured in the control group (CG). ANIMALS Dogs presented with seizures that had enough CSF collected to allow analysis were included in the study group. Twelve apparently healthy, quarantined, stray dogs served as control (CG). RESULTS Cerebrospinal fluid TNF-α and IL-6 concentrations were significantly higher (P = .011, P = .039) in dogs with seizures (0 ± 70.66, 0.65 ± 10.93 pg/mL) compared to the CG (0 ± 19, 0.73 ± 0.55 pg/mL). When assessing cytokine concentrations of specifically the idiopathic epilepsy (IE) dogs compared to the CG, only TNF-α concentrations (8.66 ± 62, 0 ± 19 pg/mL) were significantly higher (P = .01). CSF TP concentrations were not significantly higher in the study dogs compared to the CG. CONCLUSIONS AND CLINICAL IMPORTANCE Higher TNF-α and IL-6 concentration in the CSF of dogs with naturally occurring seizures. The higher supports the hypothesis that inflammatory processes through certain mediators play a role in the pathogenesis of seizures in dogs.
Collapse
Affiliation(s)
- Y. Merbl
- Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| | - A. Sommer
- Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| | - O. Chai
- Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| | - I. Aroch
- Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| | - G. Zimmerman
- Edmond and Lily Safra Center of Brain ScienceHebrew University of JerusalemJerusalemIsrael
| | - A. Friedman
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - H. Soreq
- Edmond and Lily Safra Center of Brain ScienceHebrew University of JerusalemJerusalemIsrael
- Department of Biological ChemistryAlexander Silberman Institute of Life SciencesHebrew University of JerusalemJerusalemIsrael
| | - M.H. Shamir
- Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| |
Collapse
|
394
|
Wang CH, Hsiao CJ, Lin YN, Wu JW, Kuo YC, Lee CK, Hsiao G. Carbamazepine attenuates inducible nitric oxide synthase expression through Akt inhibition in activated microglial cells. PHARMACEUTICAL BIOLOGY 2014; 52:1451-1459. [PMID: 25026355 DOI: 10.3109/13880209.2014.898074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
UNLABELLED Abstract Background: Carbamazepine, which was developed primarily for the treatment of epilepsy, is now also useful for the treatment of non-epileptic disorders and inflammatory hyperalgesia. However, the mechanism of its anti-neuroinflammatory action remains poorly understood. OBJECTIVE This study elucidates the anti-neuroinflammatory capacity of carbamazepine on microglial activation and the relative mechanisms involved. MATERIALS AND METHODS The microglial BV-2 cells were pretreated with carbamazepine for 15 min before activation by lipopolysaccharide (LPS). After LPS stimulation, the expression of inducible nitric oxide synthase (iNOS) was analyzed by Western blotting (WB) and reverse transcription-polymerase chain reaction. Signaling proteins and cyclooxygenase (COX)-2 were also evaluated by WB. The levels of nitrate and tumor necrosis factor (TNF)-α were analyzed by the Griess method and enzyme-linked immunosorbant assay, respectively. The formation of intracellular reactive oxygen species (ROS) was examined by fluorescent analysis. RESULTS Carbamazepine strongly attenuated LPS-induced production of NO and iNOS protein at concentrations of 5, 10, and 20 μM. Consistently, it could markedly suppress iNOS mRNA expression stimulated by LPS. Among the signaling pathways, LPS-mediated IκBα degradation or JNK MAPK phosphorylation was not affected by carbamazepine. Interestingly, it was found that carbamazepine could concentration-dependently inhibit LPS-activated phospho-Akt expression. Nevertheless, LPS-induced ROS production was not affected by carbamazepine. Carbamazepine (20 μM) affected either COX-2 expression or TNF-α production induced by LPS with approximately 70% and 51% inhibition, respectively. DISCUSSION AND CONCLUSION Our findings showed that carbamazepine exerted selective inhibition on LPS-induced microglial iNOS expression through the down-regulation of Akt activation, and thus may play a pivotal role of anti-neuroinflammation in its therapeutic efficacy.
Collapse
Affiliation(s)
- Chen-Hsu Wang
- Medical Intensive Care Unit, Cathay General Hospital , Taipei , Taiwan
| | | | | | | | | | | | | |
Collapse
|
395
|
Liang Y, Lei Z, Zhang H, Xu Z, Cui Q, Xu ZC. Toll-like receptor 4 is associated with seizures following ischemia with hyperglycemia. Brain Res 2014; 1590:75-84. [DOI: 10.1016/j.brainres.2014.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/06/2014] [Indexed: 12/26/2022]
|
396
|
Medel-Matus JS, Álvarez-Croda DM, Martínez-Quiroz J, Beltrán-Parrazal L, Morgado-Valle C, López-Meraz ML. IL-1β increases necrotic neuronal cell death in the developing rat hippocampus after status epilepticus by activating type I IL-1 receptor (IL-1RI). Int J Dev Neurosci 2014; 38:232-40. [PMID: 25449684 DOI: 10.1016/j.ijdevneu.2014.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/27/2014] [Accepted: 09/30/2014] [Indexed: 12/21/2022] Open
Abstract
Interleukin-1β (IL-1β) is associated with seizure-induced neuronal cell death in the adult brain. The contribution of IL-1β to neuronal injury induced by status epilepticus (SE) in the immature brain remains unclear. In the present study, we investigated the effects of IL-1β administration on hippocampal neuronal cell death associated with SE in the immature brain, and the role of the type I receptor of IL-1β (IL-1RI). SE was induced with lithium-pilocarpine in 14-days-old (P14) rat pups. Six hours after SE onset, pups were i.c.v. injected in the right ventricle with IL-1β (0, 0.3, 3, 30, or 300 ng), 30 ng of IL-1RI antagonist (IL-1Ra) alone, or 30 ng of IL-1Ra plus 3ng of IL-1β. As control groups, pups without seizures were injected with 3 ng of IL-1β or vehicle. Twenty-four hours after SE onset, neuronal cell death in the CA1 field of dorsal hippocampus was assessed by hematoxylin-eosin, Fluoro-Jade B and in vivo propidium iodide (PI) staining; expression of active caspase-3 (aCas-3) was also determined, using immunohistochemistry. The concentration-response curve of IL-1β showed a bell-shape. Only pups injected with 3 ng of IL-1β after SE showed a significant increase in the number of cells with eosinophilic cytoplasm and pyknotic nuclei, as well as F-JB positive cells with respect to the vehicle group. This effect was prevented when IL-1β was injected with IL-1Ra. Injection of 3 ng of IL-1β increased the number of PI-positive cells in CA1 area after SE. Injection of 3 ng of IL-1β did not produce hippocampal cell death in rats without seizures. Active caspase-3 expression was not observed after treatments in hippocampus. The activation of the IL-1β/IL-1RI system increases necrotic neuronal cell death caused by SE in rat pups.
Collapse
Affiliation(s)
- Jesús-Servando Medel-Matus
- Doctorado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Av. Luis Castelazo s/n Carr. Xalapa-Veracruz, Km. 3.5 Col. Industrial-Ánimas, C.P. 91190 Xalapa, Veracruz, Mexico; Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, C.P. 91010 Xalapa, Veracruz, Mexico
| | - Dulce-Mariely Álvarez-Croda
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, C.P. 91010 Xalapa, Veracruz, Mexico
| | - Joel Martínez-Quiroz
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas-IPN, Wilfrido Massieu s/n Unidad Profesional Adolfo López Mateos, Gustavo A. Madero, C.P. 07738 México D.F., Mexico
| | - Luis Beltrán-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, C.P. 91010 Xalapa, Veracruz, Mexico
| | - Consuelo Morgado-Valle
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, C.P. 91010 Xalapa, Veracruz, Mexico
| | - María-Leonor López-Meraz
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, C.P. 91010 Xalapa, Veracruz, Mexico.
| |
Collapse
|
397
|
Uchida Y, Ohtsuki S, Terasaki T. Pharmacoproteomics-based reconstruction of in vivo P-glycoprotein function at blood-brain barrier and brain distribution of substrate verapamil in pentylenetetrazole-kindled epilepsy, spontaneous epilepsy, and phenytoin treatment models. Drug Metab Dispos 2014; 42:1719-26. [PMID: 25061162 DOI: 10.1124/dmd.114.059055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The purpose of this study was to demonstrate experimentally that alterations of in vivo transporter function at the blood-brain barrier (BBB) in disease and during pharmacotherapy can be reconstructed from in vitro data based on our established pharmacoproteomic concept of reconstructing in vivo function by integrating intrinsic transport activity per transporter molecule and absolute protein expression level at the BBB. Pentylenetetrazole (PTZ)-kindled and spontaneous model of epilepsy (EL) mice were used as models of chemically induced and spontaneous epilepsy, respectively. A mouse model of antiepileptic drug treatment was prepared by consecutive 5-week administration of phenytoin (PHT). Quantitative targeted absolute proteomic analysis of 31 membrane proteins showed that P-glycoprotein (P-gp/mdr1a) protein expression levels were significantly increased in brain capillaries of PTZ (129%), EL (143%), and PHT mice (192%) compared with controls. The brain-to-plasma concentration ratios (Kp brain) of P-gp/mdr1a substrate verapamil were 0.563, 0.394, 0.432, and 0.234 in control, PTZ, EL, and PHT mice, respectively. In vivo P-gp/mdr1a function at the BBB was reconstructed from the measured P-gp/mdr1a protein expression levels and intrinsic transport activity for verapamil per P-gp/mdr1a previously reported by our group. Then, the reconstructed P-gp/mdr1a functional activities were integrated with unbound fractions of verapamil in plasma and brain to reconstruct Kp brain of verapamil. In all mice, reconstructed Kp brain values agreed well with the observed values within a 1.21-fold range. These results demonstrate that altered P-gp functions at the BBB in epilepsy and during pharmacotherapy can be reconstructed from in vitro data by means of our pharmacoproteomic approach.
Collapse
Affiliation(s)
- Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.U., T.T.); and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.)
| | - Sumio Ohtsuki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.U., T.T.); and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.)
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.U., T.T.); and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.)
| |
Collapse
|
398
|
Luo L, Jin Y, Kim ID, Lee JK. Glycyrrhizin suppresses HMGB1 inductions in the hippocampus and subsequent accumulation in serum of a kainic acid-induced seizure mouse model. Cell Mol Neurobiol 2014; 34:987-97. [PMID: 24919651 PMCID: PMC11488902 DOI: 10.1007/s10571-014-0075-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/17/2014] [Indexed: 01/15/2023]
Abstract
Glycyrrhizin (GL), a triterpene present in the roots and rhizomes of licorice (Glycyrrhiza glabra), has been shown to have anti-inflammatory and anti-viral effects. In our previous reports, we demonstrated the neuroprotective effects of GL in the postischemic brain and in kainic acid (KA)-induced seizure animal model. In this KA-induced seizure model, the systemic administration of GL 30 min before KA administration significantly suppressed neuronal cell death and markedly suppressed gliosis and proinflammatory marker inductions. In the present study, we showed that high-mobility group box 1 (HMGB1), an endogenous danger signal, was induced in hippocampal CA1 and CA3 regions of the same KA-induced model, and peaked at ~3 h and at 6 days post-KA. HMGB1 was transiently induced in neurons and astrocyte at 3 h post-KA, and it was released from dying neurons and accumulated in serum at 12 h post-KA. Furthermore, after ~4 days of almost undetectable levels in the hippocampus, delayed and marked HMGB1 induction was detected at 6 days post-KA, mainly in astrocytes and endothelial cells, in which HMGB1 was localized in nuclei, and not secreted into serum. Interestingly, GL suppressed HMGB1 inductions in hippocampus and also suppressed its release into serum in KA-treated mice. Since we established previously that GL has anti-inflammatory and anti-excitotoxic effects in this KA-induced seizure model, these results indicate that the neuroprotective effect of GL in the KA-injected mouse brain might be attributable to the inhibitions of HMGB1 induction and release, which in turn, mitigates the inflammatory process.
Collapse
Affiliation(s)
- Lidan Luo
- Department of Anatomy, Inha University School of Medicine, Jung-Gu Shinheung-Dong 3rd. St. 7-241, Incheon, 400-712 Republic of Korea
| | - Yinchuan Jin
- Department of Anatomy, Inha University School of Medicine, Jung-Gu Shinheung-Dong 3rd. St. 7-241, Incheon, 400-712 Republic of Korea
| | - Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, Jung-Gu Shinheung-Dong 3rd. St. 7-241, Incheon, 400-712 Republic of Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Jung-Gu Shinheung-Dong 3rd. St. 7-241, Incheon, 400-712 Republic of Korea
| |
Collapse
|
399
|
Abstract
Convulsive status epilepticus is the most common neurological emergency in children and is associated with significant morbidity and mortality. The morbidities include later development of epilepsy, cognitive impairment, and psychiatric impairments. There has been a long-standing hypothesis that these outcomes are, at least in part, a function of brain injury induced by the status epilepticus. There is evidence from animal models and prospective human studies that the hippocampus may be injured during febrile status epilepticus although this pathophysiological sequence remains uncommon. Potential mechanisms include excitotoxicity, ischaemia, and inflammation. Neuroprotective drugs reduce brain injury but have little impact on epileptogenesis or cognitive impairments. Anti-inflammatory treatments have given mixed results to date. Broad-spectrum anti-inflammatory agents, such as steroids, are potentially harmful, whereas prevention of leucocyte diapedesis across the blood brain barrier appears to have a positive outcome. Therefore, more studies dissecting the inflammatory process are required to establish the most effective strategies for translation into clinical practice. In addition to neuronal loss, cognitive impairments are related to neuronal re-organisation and disruption of neural networks underpinning cognition. Further understanding of these mechanisms may lead to novel therapies that prevent brain injury, but also therapies that may improve outcomes even if injury has occurred.
Collapse
Affiliation(s)
- Rod C Scott
- Department of Neurological Science, University of Vermont College of Medicine, Burlington, VT 05405, USA
- Neurosciences Unit, UCL Institute of Child Health, London, UK
| |
Collapse
|
400
|
Amhaoul H, Staelens S, Dedeurwaerdere S. Imaging brain inflammation in epilepsy. Neuroscience 2014; 279:238-52. [DOI: 10.1016/j.neuroscience.2014.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 01/15/2023]
|