351
|
Rampioni G, Bertani I, Zennaro E, Polticelli F, Venturi V, Leoni L. The quorum-sensing negative regulator RsaL of Pseudomonas aeruginosa binds to the lasI promoter. J Bacteriol 2006; 188:815-9. [PMID: 16385073 PMCID: PMC1347304 DOI: 10.1128/jb.188.2.815-819.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutation in the rsaL gene of Pseudomonas aeruginosa produces dramatically higher amounts of N-acyl homoserine lactone with respect to the wild type, highlighting the key role of this negative regulator in controlling quorum sensing (QS) in this opportunistic pathogen. The DNA binding site of the RsaL protein on the rsaL-lasI bidirectional promoter partially overlaps the binding site of the LasR protein, consistent with the hypothesis that RsaL and LasR could be in binding competition on this promoter. This is the first direct demonstration that RsaL acts as a QS negative regulator by binding to the lasI promoter.
Collapse
Affiliation(s)
- Giordano Rampioni
- Department of Biology, University Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | | | | | | | | | | |
Collapse
|
352
|
Atkinson S, Chang CY, Sockett RE, Cámara M, Williams P. Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. J Bacteriol 2006; 188:1451-61. [PMID: 16452428 PMCID: PMC1367215 DOI: 10.1128/jb.188.4.1451-1461.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 11/22/2005] [Indexed: 11/20/2022] Open
Abstract
The Yersinia enterocolitica LuxI homologue YenI directs the synthesis of N-3-(oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL). In a Y. enterocolitica yenI mutant, swimming motility is temporally delayed while swarming motility is abolished. Since both swimming and swarming are flagellum dependent, we purified the flagellin protein from the parent and yenI mutant. Electrophoresis revealed that in contrast to the parent strain, the yenI mutant grown for 17 h at 26 degrees C lacked the 45-kDa flagellin protein FleB. Reverse transcription-PCR indicated that while mutation of yenI had no effect on yenR, flhDC (the motility master regulator) or fliA (the flagellar sigma factor) expression, fleB (the flagellin structural gene) was down-regulated. Since 3-oxo-C6-HSL and C6-HSL did not restore swimming or swarming in the yenI mutant, we reexamined the N-acylhomoserine lactone (AHL) profile of Y. enterocolitica. Using AHL biosensors and mass spectrometry, we identified three additional AHLs synthesized via YenI: N-(3-oxodecanoyl)homoserine lactone, N-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL), and N-(3-oxotetradecanoyl)homoserine lactone. However, none of the long-chain AHLs either alone or in combination with the short-chain AHLs restored swarming or swimming in the yenI mutant. By investigating the transport of radiolabeled 3-oxo-C12-HSL and by introducing an AHL biosensor into the yenI mutant we demonstrate that the inability of exogenous AHLs to restore motility to the yenI mutant is not related to a lack of AHL uptake. However, both AHL synthesis and motility were restored by complementation of the yenI mutant with a plasmid-borne copy of yenI.
Collapse
Affiliation(s)
- Steve Atkinson
- Institute of Infections, Immunity and Inflammation, Centre for Biomolecular Science, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| | | | | | | | | |
Collapse
|
353
|
Gao M, Chen H, Eberhard A, Gronquist MR, Robinson JB, Rolfe BG, Bauer WD. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti. J Bacteriol 2005; 187:7931-44. [PMID: 16291666 PMCID: PMC1291280 DOI: 10.1128/jb.187.23.7931-7944.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Quorum sensing (QS) in Sinorhizobium meliloti, the N-fixing bacterial symbiont of Medicago host plants, involves at least half a dozen different N-acyl homoserine lactone (AHL) signals and perhaps an equal number of AHL receptors. The accumulation of 55 proteins was found to be dependent on SinI, the AHL synthase, and/or on ExpR, one of the AHL receptors. Gas chromatography-mass spectrometry and electrospray ionization tandem mass spectrometry identified 3-oxo-C(14)-homoserine lactone (3-oxo-C(14)-HSL), C(16)-HSL, 3-oxo-C(16)-HSL, C(16:1)-HSL, and 3-oxo-C(16:1)-HSL as the sinI-dependent AHL QS signals accumulated by the 8530 expR(+) strain under the conditions used for proteome analysis. The 8530 expR(+) strain secretes additional, unidentified QS-active compounds. Addition of 200 nM C(14)-HSL or C(16:1)-HSL, two of the known SinI AHLs, affected the levels of 75% of the proteins, confirming that their accumulation is QS regulated. A number of the QS-regulated proteins have functions plausibly related to symbiotic interactions with the host, including ExpE6, IdhA, MocB, Gor, PckA, LeuC, and AglE. Seven of 10 single-crossover beta-glucuronidase (GUS) transcriptional reporters in genes corresponding to QS-regulated proteins showed significantly different activities in the sinI and expR mutant backgrounds and in response to added SinI AHLs. The sinI mutant and several of the single-crossover strains were significantly delayed in the ability to initiate nodules on the primary root of the host plant, Medicago truncatula, indicating that sinI-dependent QS regulation and QS-regulated proteins contribute importantly to the rate or efficiency of nodule initiation. The sinI and expR mutants were also defective in surface swarming motility. The sinI mutant was restored to normal swarming by 5 nM C(16:1)-HSL.
Collapse
Affiliation(s)
- Mengsheng Gao
- Department of Horticulture and Crop Science, Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | |
Collapse
|
354
|
Fernandez-Lopez R, Machón C, Longshaw CM, Martin S, Molin S, Zechner EL, Espinosa M, Lanka E, de la Cruz F. Unsaturated fatty acids are inhibitors of bacterial conjugation. Microbiology (Reading) 2005; 151:3517-3526. [PMID: 16272375 DOI: 10.1099/mic.0.28216-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This report describes a high-throughput assay to identify substances that reduce the frequency of conjugation in Gram-negative bacteria. Bacterial conjugation is largely responsible for the spread of multiple antibiotic resistances in human pathogens. Conjugation inhibitors may provide a means to control the spread of antibiotic resistance. An automated conjugation assay was developed that used plasmid R388 and a laboratory strain of Escherichia coli as a model system, and bioluminescence as a reporter for conjugation activity. Frequencies of conjugation could be measured continuously in real time by the amount of light produced, and thus the effects of inhibitory compounds could be determined quantitatively. A control assay, run in parallel, allowed elimination of compounds affecting cell growth, plasmid stability or gene expression. The automated conjugation assay was used to screen a database of more than 12 000 microbial extracts known to contain a wide variety of bioactive compounds (the NatChem library). The initial hit rate was 1·4 %. From these, 48 extracts containing active compounds and representing a variety of organisms and extraction conditions were subjected to fractionation (24 fractions per extract). The 52 most active fractions were subjected to a secondary analysis to determine the range of plasmid inhibition. Plasmids R388, R1 and RP4 were used as representatives of a variety of plasmid transfer systems. Only one fraction (of complex composition) affected transfer of all three plasmids, while four other fractions were active against two of them. Two separate compounds were identified from these fractions: linoleic acid and dehydrocrepenynic acid. Downstream analysis showed that the chemical class of unsaturated fatty acids act as true inhibitors of conjugation.
Collapse
Affiliation(s)
- Raul Fernandez-Lopez
- Departamento de Biología Molecular (Unidad asociada al CIB, CSIC), Universidad de Cantabria, C. Herrera Oria s/n, E-39011 Santander, Spain
| | - Cristina Machón
- Departamento de Biología Molecular (Unidad asociada al CIB, CSIC), Universidad de Cantabria, C. Herrera Oria s/n, E-39011 Santander, Spain
| | | | - Steve Martin
- Cubist Pharmaceuticals (UK) Ltd, 545 Ipswich Road, Slough SL1 4EQ, UK
| | - Soren Molin
- Department of Molecular Microbiology, BioCentrum-DTU, DK-2800 Lyngby, Denmark
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Erich Lanka
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Dahlem, D-14195 Berlin, Germany
| | - Fernando de la Cruz
- Departamento de Biología Molecular (Unidad asociada al CIB, CSIC), Universidad de Cantabria, C. Herrera Oria s/n, E-39011 Santander, Spain
| |
Collapse
|
355
|
Bazire A, Dheilly A, Diab F, Morin D, Jebbar M, Haras D, Dufour A. Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa. FEMS Microbiol Lett 2005; 253:125-31. [PMID: 16239086 DOI: 10.1016/j.femsle.2005.09.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/19/2005] [Accepted: 09/19/2005] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas aeruginosa, rhamnolipid production is controlled by the quorum-sensing system RhlRI, which itself depends on LasRI. These systems use cell-to-cell signal molecules: N-butyryl-l-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3OC(12)-HSL), respectively. Whereas both HSLs were produced in M63 medium, rhamnolipid synthesis was not achieved. Phosphate limitation reduced the HSL concentrations, while allowing rhamnolipid production. Hyperosmotic shock applied during the exponential growth phase stopped the accumulation of 3OC(12)-HSL, and prevented C4-HSL and rhamnolipid production. These defects result from lower expression of genes involved in C4-HSL and rhamnolipid syntheses. The osmoprotectant glycine betaine partially restored C4-HSL and rhamnolipid production.
Collapse
Affiliation(s)
- Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, BP 92116, 56321 Lorient, France
| | | | | | | | | | | | | |
Collapse
|
356
|
Abstract
Many gram-negative bacteria synthesize N-acylhomoserine lactones (AHLs) and then use transcription factors of the LuxR family to sense and respond to AHL accumulation in the environment; this phenomenon is termed quorum sensing. Bacteria produce a variety of AHLs, and numerous bacterial reporter strains, or biosensors, that can detect subsets of these molecules have been constructed. Many of these are based on Escherichia coli because this species does not produce AHLs. However, both Escherichia and Salmonella spp. contain a LuxR homolog named SdiA that can detect exogenous AHL synthesized by other microbial species. In this study we have determined that sdiA of E. coli and Salmonella spp. can activate an RhlR-based biosensor plasmid in response to AHLs other than what the biosensor was designed to detect. SdiA does not activate LuxR-, LasR-, or AhyR-based biosensor plasmids, although the presence of sdiA in E. coli does interfere with the function of the AhyR-based biosensor. Because sdiA interferes with the function of two of the four reporters, we have constructed a set of E. coli biosensor strains that lack sdiA. The set includes control reporters that allow the luxR dependence of responses to be determined.
Collapse
Affiliation(s)
- Amber Lindsay
- Department of Microbiology, Ohio State University, Columbus, 43210-1292, USA
| | | |
Collapse
|
357
|
Uroz S, Chhabra SR, Cámara M, Williams P, Oger P, Dessaux Y. N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology (Reading) 2005; 151:3313-3322. [PMID: 16207914 DOI: 10.1099/mic.0.27961-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Rhodococcus erythropolis strain W2 has been shown previously to degrade the N-acylhomoserine lactone (AHL) quorum-sensing signal molecule N-hexanoyl-l-homoserine lactone, produced by other bacteria. Data presented here indicate that this Gram-positive bacterium is also capable of using various AHLs as the sole carbon and energy source. The enzymic activities responsible for AHL inactivation were investigated in R. erythropolis cell extracts and in whole cells. R. erythropolis cells rapidly degraded AHLs with 3-oxo substituents but exhibited relatively poor activity against the corresponding unsubstituted AHLs. Investigation of the mechanism(s) by which R. erythropolis cells degraded AHLs revealed that 3-oxo compounds with N-acyl side chains ranging from C8 to C14 were initially converted to their corresponding 3-hydroxy derivatives. This oxidoreductase activity was not specific to 3-oxo-AHLs but also allowed the reduction of compounds such as N-(3-oxo-6-phenylhexanoyl)homoserine lactone (which contains an aromatic acyl chain substituent) and 3-oxododecanamide (which lacks the homoserine lactone ring). It also reduced both the d- and l-isomers of n-(3-oxododecanoyl)-l-homoserine lactone. A second AHL-degrading activity was observed when R. erythropolis cell extracts were incubated with N-(3-oxodecanoyl)-l-homoserine lactone (3O,C10-HSL). This activity was both temperature- and pH-dependent and was characterized as an amidolytic activity by HPLC analysis of the reaction mixture treated with dansyl chloride. This revealed the accumulation of dansylated homoserine lactone, indicating that the 3O,C10-HSL amide had been cleaved to yield homoserine lactone. R. erythropolis is therefore capable of modifying and degrading AHL signal molecules through both oxidoreductase and amidolytic activities.
Collapse
Affiliation(s)
- Stéphane Uroz
- Interactions Plantes et Micro-organismes de la Rhizosphère, Institut des Sciences du Végétal, CNRS, Bâtiment 23, Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX, France
| | - Siri Ram Chhabra
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Miguel Cámara
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Phil Oger
- Laboratoire des Sciences de la Terre, École Normale Supérieure de Lyon, 43 Allée D'Italie, 69364 Lyon CEDEX 07, France
| | - Yves Dessaux
- Interactions Plantes et Micro-organismes de la Rhizosphère, Institut des Sciences du Végétal, CNRS, Bâtiment 23, Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX, France
| |
Collapse
|
358
|
Belas R, Suvanasuthi R. The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein. J Bacteriol 2005; 187:6789-803. [PMID: 16166542 PMCID: PMC1251568 DOI: 10.1128/jb.187.19.6789-6803.2005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 07/05/2005] [Indexed: 01/27/2023] Open
Abstract
Proteus mirabilis is a urinary tract pathogen that differentiates from a short swimmer cell to an elongated, highly flagellated swarmer cell. Swarmer cell differentiation parallels an increased expression of several virulence factors, suggesting that both processes are controlled by the same signal. The molecular nature of this signal is not known but is hypothesized to involve the inhibition of flagellar rotation. In this study, data are presented supporting the idea that conditions inhibiting flagellar rotation induce swarmer cell differentiation and implicating a rotating flagellar filament as critical to the sensing mechanism. Mutations in three genes, fliL, fliF, and fliG, encoding components of the flagellar basal body, result in the inappropriate development of swarmer cells in noninducing liquid media or hyperelongated swarmer cells on agar media. The fliL mutation was studied in detail. FliL- mutants are nonmotile and fail to synthesize flagellin, while complementation of fliL restores wild-type cell elongation but not motility. Overexpression of fliL+ in wild-type cells prevents swarmer cell differentiation and motility, a result also observed when P. mirabilis fliL+ was expressed in Escherichia coli. These results suggest that FliL plays a role in swarmer cell differentiation and implicate FliL as critical to transduction of the signal inducing swarmer cell differentiation and virulence gene expression. In concert with this idea, defects in fliL up-regulate the expression of two virulence genes, zapA and hpmB. These results support the hypothesis that P. mirabilis ascertains its location in the environment or host by assessing the status of its flagellar motors, which in turn control swarmer cell gene expression.
Collapse
Affiliation(s)
- Robert Belas
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Suite 236, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA.
| | | |
Collapse
|
359
|
Burmølle M, Hansen LH, Sørensen SJ. Use of a whole-cell biosensor and flow cytometry to detect AHL production by an indigenous soil community during decomposition of litter. MICROBIAL ECOLOGY 2005; 50:221-9. [PMID: 16195831 DOI: 10.1007/s00248-004-0113-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 10/29/2004] [Indexed: 05/04/2023]
Abstract
Quorum sensing, mediated by acylated homoserine lactones (AHLs), is well described for pure culture bacteria, but few studies report detection of AHL compounds in natural bacterial habitats. In this study, we detect AHL production during a degradation process in soil by use of whole-cell biosensor technology and flow cytometry analysis. An indigenous soil bacterium, belonging to the family of Enterobacteriaceae, was isolated and transformed with a low-copy plasmid harboring a gene encoding an unstable variant of the green fluorescent protein (gfpASV) fused to the AHL-regulated P(luxI) promoter originating from Vibrio fischeri. This resulted in a whole-cell biosensor, responding to the presence of AHL compounds. The biosensor was introduced to compost soil microcosms amended with nettle leaves. After 3 days of incubation, cells were extracted and analyzed by flow cytometry. All microcosms contained induced biosensors. From these microcosms, AHL producers were isolated and further identified as species previously shown to produce AHLs. The results demonstrate that AHL compounds are produced during degradation of litter in soil, indicating the presence of AHL-mediated quorum sensing in this environment.
Collapse
Affiliation(s)
- Mette Burmølle
- Department of Microbiology, University of Copenhagen, Sølvgade 83H, 1307 Copenhagen K, Denmark
| | | | | |
Collapse
|
360
|
Burns-Guydish SM, Olomu IN, Zhao H, Wong RJ, Stevenson DK, Contag CH. Monitoring age-related susceptibility of young mice to oral Salmonella enterica serovar Typhimurium infection using an in vivo murine model. Pediatr Res 2005; 58:153-8. [PMID: 15774831 DOI: 10.1203/01.pdr.0000157725.44213.c4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonates and young children are acutely susceptible to infections by gastrointestinal bacterial pathogens, such as Salmonella enterica serovar Typhimurium (S. typhimurium). To reveal age-related differences in susceptibility to this pathogen, we used in vivo bioluminescence imaging (BLI) to monitor the progression of infection in neonatal (1-wk-old), suckling (2-wk-old), juvenile (4-wk-old), and adult (6-wk-old) BALB/c mice. Mice were orally infected with various doses of a bioluminescent-labeled wild-type or mutant S. typhimurium strain, and progression of infection was monitored by BLI for 2 wks. We found that neonatal and suckling mice were more susceptible to the wild-type strain at inoculum sizes 4 and 2 log(10)'s lower for neonatal and suckling mice, respectively, than those for adult mice. At the lower inocula, newborn mice showed disseminated systemic infection as indicated by the pattern of photon emission assessed by BLI, whereas no bioluminescent signals were detectable in adult mice. In addition, an orgA(-) mutant strain of S. typhimurium with reduced virulence in adult mice produced systemic infection in newborn, suckling, and juvenile mice. Furthermore, as low as 3 log(10) CFU could be detected by BLI in tissue. The present study demonstrates that susceptibility to S. typhimurium infection decreases with age. Also, we established that BLI can be used to monitor the progression of infection in mice. Thus, this model of age-related susceptibility to S. typhimurium using BLI can be used to advance our understanding of the mechanisms involved in newborn susceptibility to infection.
Collapse
Affiliation(s)
- Stacy M Burns-Guydish
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
361
|
Lai HC, Soo PC, Wei JR, Yi WC, Liaw SJ, Horng YT, Lin SM, Ho SW, Swift S, Williams P. The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. J Bacteriol 2005; 187:3407-14. [PMID: 15866926 PMCID: PMC1112010 DOI: 10.1128/jb.187.10.3407-3414.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serratia marcescens swarms at 30 degrees C but not at 37 degrees C on a nutrient-rich (LB) agar surface. Mini-Tn5 mutagenesis of S. marcescens CH-1 yielded a mutant (WC100) that swarms not only vigorously at 37 degrees C but also earlier and faster than the parent strain swarms at 30 degrees C. Analysis of this mutant revealed that the transposon was inserted into a gene (rssA) predicted to encode a bacterial two-component signal transduction sensor kinase, upstream of which a potential response regulator gene (rssB) was located. rssA and rssB insertion-deletion mutants were constructed through homologous recombination, and the two mutants exhibited similar swarming phenotypes on LB swarming agar, in which swarming not only occurred at 37 degrees C but also initiated at a lower cell density, on a surface with a higher agar concentration, and more rapidly than the swarming of the parent strain at 30 degrees C. Both mutants also exhibited increased hemolysin activity and altered cell surface topologies compared with the parent CH-1 strain. Temperature and certain saturated fatty acids (SFAs) were found to negatively regulate S. marcescens swarming via the action of RssA-RssB. Analysis of the fatty acid profiles of the parent and the rssA and rssB mutants grown at 30 degrees C or 37 degrees C and under different nutrition conditions revealed a relationship between cellular fatty acid composition and swarming phenotypes. The cellular fatty acid profile was also observed to be affected by RssA and RssB. SFA-dependent inhibition of swarming was also observed in Proteus mirabilis, suggesting that either SFAs per se or the modulation of cellular fatty acid composition and hence homeostasis of membrane fluidity may be a conserved mechanism for regulating swarming motility in gram-negative bacteria.
Collapse
Affiliation(s)
- Hsin-Chih Lai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
362
|
Garske LA, Beatson SA, Leech AJ, Walsh SL, Bell SC. Sub-inhibitory concentrations of ceftazidime and tobramycin reduce the quorum sensing signals of Pseudomonas aeruginosa. Pathology 2005; 36:571-5. [PMID: 15841693 DOI: 10.1080/00313020400011300] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIM Concentrations of antimicrobials below minimum inhibitory concentration (subMIC) may reduce the production by Pseudomonas aeruginosa of virulence factors such as elastase. We sought to determine whether the reduction in elastase production may be mediated by a reduction in acyl-homoserine lactones. METHODS Pseudomonas aeruginosa in broth was exposed to three conditions for ceftazidime and tobramycin: control, 6% MIC and 25% MIC. Elastase was assayed using elastin congo red. N-(3-Oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl-homoserine lactone (C4-HSL) were assayed using biosensor Escherichia coli. RESULTS Elastase was unchanged with ceftazidime. Elastase was reduced by 16% at 6% MIC tobramycin and reduced by 70% at 25% MIC tobramycin (P<0.0001). As a percentage of control, C12-HSL was mean 69.4% (SEM 7.3%) at 6% MIC tobramycin, and 31.7% (3.3%) at 25% MIC tobramycin (P=0.0001). C12-HSL was 78.9% (5.3%) at 6% MIC ceftazidime and was 29.7% (1.8%) at 25% MIC ceftazidime (P=0.0001). Both ceftazidime and tobramycin were associated with reduced C4-HSL at 6% MIC and 25% MIC (P<0.03). CONCLUSIONS SubMIC tobramycin but not ceftazidime reduced elastase production by P. aeruginosa. In contrast, subMIC concentrations of both antimicrobials reduced C12-HSL and C4-HSL. It is unlikely that reduced HSL is the sole explanation for the reduction in elastase.
Collapse
Affiliation(s)
- Luke A Garske
- Adult Cystic Fibrosis Unit, The Prince Charles Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
363
|
McGowan SJ, Barnard AML, Bosgelmez G, Sebaihia M, Simpson NJL, Thomson NR, Todd DE, Welch M, Whitehead NA, Salmond GPC. Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing-dependent control pathway. Mol Microbiol 2005; 55:526-45. [PMID: 15659168 DOI: 10.1111/j.1365-2958.2004.04397.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Erwinia carotovora produces the beta-lactam antibiotic, carbapenem, in response to a quorum sensing signalling molecule, N-(3-oxohexanoyl)-L-homoserine lactone (OHHL). We have mapped the OHHL-dependent promoter upstream of the first of the biosynthetic genes, carA. We have also analysed the effect on this promoter of the known genetic regulators of carbapenem expression, carR, carI (encoding homologues of LuxR and LuxI respectively) and hor (encoding a SlyA/MarR-like transcriptional regulator). We describe a previously unknown promoter located within the carA-H operon. This promoter does not respond to CarR and is required for quorum sensing-independent expression of the carbapenem resistance determinants encoded by the carFG genes. We have mapped the carR, carI and hor transcription start points, shown that CarR is positively autoregulated in the presence of OHHL, and have demonstrated negative feedback affecting transcription of carI. In addition, various environmental and physiological factors were shown to impinge on the transcription of the car biosynthetic genes. The nature of the carbon source and the temperature of growth influence carbapenem production by modulating the level of the OHHL signalling molecule, and thereby physiologically fine-tune the quorum sensing regulatory system.
Collapse
Affiliation(s)
- Simon J McGowan
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Aendekerk S, Diggle SP, Song Z, Høiby N, Cornelis P, Williams P, Cámara M. The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. MICROBIOLOGY (READING, ENGLAND) 2005; 151:1113-1125. [PMID: 15817779 DOI: 10.1099/mic.0.27631-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Pseudomonas aeruginosa the production of multiple virulence factors depends on cell-to-cell communication through the integration of N-acylhomoserine lactone (AHL)- and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS)- dependent signalling. Mutation of genes encoding the efflux protein MexI and the porin OpmD from the MexGHI-OpmD pump resulted in the inability to produce N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-c12-hsl) and pqs and a marked reduction in n-butanoyl-L-homoserine lactone levels. Both pump mutants were impaired in growth and exhibited enhanced rather than reduced antibiotic resistance. Provision of exogenous PQS improved growth and restored AHL and virulence factor production as well as antibiotic susceptibility, indicating that the pump mutants retained their capacity to respond to PQS. RT-PCR analysis indicated that expression of the PQS biosynthetic genes, phnA and pqsA, was inhibited when the mutants reached stationary phase, suggesting that the pleiotropic phenotype observed may be due to intracellular accumulation of a toxic PQS precursor. To explore this hypothesis, double mexI phnA (unable to produce anthranilate, the precursor of PQS) and mexI pqsA mutants were constructed; the improved growth of the former suggested that the toxic compound is likely to be anthranilate or a metabolite of it. Mutations in mexI and opmD also resulted in the attenuation of virulence in rat and plant infection models. In plants, addition of PQS restored the virulence of mexI and opmD mutants. Collectively, these results demonstrate an essential function for the MexGHI-OpmD pump in facilitating cell-to-cell communication, antibiotic susceptibility and promoting virulence and growth in P. aeruginosa.
Collapse
Affiliation(s)
- Séverine Aendekerk
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Building E, Room 6.6, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Stephen P Diggle
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zhijun Song
- Dept Clinical Microbiology 9301, University Hospital of Copenhagen, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Niels Høiby
- Dept Clinical Microbiology 9301, University Hospital of Copenhagen, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Pierre Cornelis
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Building E, Room 6.6, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Miguel Cámara
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
365
|
Novotny LA, Mason KM, Bakaletz LO. Development of a chinchilla model to allow direct, continuous, biophotonic imaging of bioluminescent nontypeable Haemophilus influenzae during experimental otitis media. Infect Immun 2005; 73:609-11. [PMID: 15618201 PMCID: PMC538955 DOI: 10.1128/iai.73.1.609-611.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We transformed a nontypeable Haemophilus influenzae clinical isolate with a plasmid containing the luxCDABE operon driven by the H. influenzae outer membrane protein P2 promoter. Herein, we demonstrate the ability to detect bioluminescence and to monitor infection within the nasopharynges, eustachian tubes, and middle ears of chinchillas after intranasal and transbullar challenges.
Collapse
Affiliation(s)
- Laura A Novotny
- Center for Microbial Pathogenesis, Columbus Children's Research Institute, The Ohio State University College of Medicine and Public Health, Rm. W591, 700 Children's Dr., Columbus, OH 43205-2696, USA
| | | | | |
Collapse
|
366
|
Venturi V, Venuti C, Devescovi G, Lucchese C, Friscina A, Degrassi G, Aguilar C, Mazzucchi U. The plant pathogenErwinia amylovoraproduces acyl-homoserine lactone signal molecules in vitro and in planta. FEMS Microbiol Lett 2004; 241:179-83. [PMID: 15598530 DOI: 10.1016/j.femsle.2004.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 09/23/2004] [Accepted: 10/08/2004] [Indexed: 11/16/2022] Open
Abstract
We report for the first time the production of acyl homoserine lactones (AHLs) by Erwina amylovora, an important quarantine bacterial pathogen that causes fire blight in plants. E. amylovora produces one N-acyl homoserine lactone [a N-(3-oxo-hexanoyl)-homoserine lactone or a N-(3-hydroxy-hexanoyl)-homoserine lactone] quorum sensing signal molecule both in vitro and in planta (pear plant). Given the involvement of AHLs in plant pathogenesis, we speculate that AHL-dependent quorum sensing could play an important role in the regulation of E. amylovora virulence.
Collapse
Affiliation(s)
- Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
367
|
Bertani I, Venturi V. Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 2004; 70:5493-502. [PMID: 15345437 PMCID: PMC520884 DOI: 10.1128/aem.70.9.5493-5502.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing is a cell population-density dependent regulatory system which in gram-negative bacteria often involves the production and detection of N-acyl homoserine lactones (AHLs). Some Pseudomonas putida strains have been reported to produce AHLs, and one quorum-sensing locus has been identified. However, it appears that the majority of strains do not produce AHLs. In this study we report the identification and regulation of the AHL-dependent system of rhizosphere P. putida WCS358. This system is identical to the recently identified system of P. putida strain IsoF and very similar to the las system of Pseudomonas aeruginosa. It is composed of three genes, the luxI family member ppuI, the putative repressor rsaL, and the luxR family member ppuR. A genomic ppuR::Tn5 mutant of strain WCS358 was identified by its inability to produce AHLs when it was cross-streaked in close proximity to an AHL biosensor, whereas an rsaL::Tn5 genomic mutant was identified by its ability to overproduce AHL molecules. Using transcriptional promoter fusions, we studied expression profiles of the rsaL, ppuI, and ppuR promoters in various genetic backgrounds. At the onset of the stationary phase, the autoinducer synthase ppuI gene expression is under positive regulation by PpuR-AHL and under negative regulation by RsaL, indicating that the molecules could be in competition for binding at the ppuI promoter. In genomic rsaL::Tn5 mutants ppuI expression and production of AHL levels increased dramatically; however, both processes were still under growth phase regulation, indicating that RsaL is not involved in repressing AHL production at low cell densities. The roles of the global response regulator GacA and the stationary-phase sigma factor RpoS in the regulation of the AHL system at the onset of the stationary phase were also investigated. The P. putida WCS358 gacA gene was cloned and inactivated in the genome. It was determined that the three global regulatory systems are closely linked, with quorum sensing and RpoS regulating each other and GacA positively regulating ppuI expression. Studies of the regulation of AHL quorum-sensing systems have lagged behind other studies and are important for understanding how these systems are integrated into the overall growth phase and metabolic status of the cells.
Collapse
Affiliation(s)
- Iris Bertani
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy
| | | |
Collapse
|
368
|
Castang S, Chantegrel B, Deshayes C, Dolmazon R, Gouet P, Haser R, Reverchon S, Nasser W, Hugouvieux-Cotte-Pattat N, Doutheau A. N-Sulfonyl homoserine lactones as antagonists of bacterial quorum sensing. Bioorg Med Chem Lett 2004; 14:5145-9. [PMID: 15380216 DOI: 10.1016/j.bmcl.2004.07.088] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 07/20/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
A series of 11 new analogues of N-acylhomoserine lactones in which the carboxamide bond was replaced by a sulfonamide one, has been synthesised. These compounds were evaluated for their ability to competitively inhibit the action of 3-oxohexanoyl-L-homoserine lactone, the natural ligand of the quorum sensing transcriptional regulator LuxR, which in turn activates expression of bioluminescence in the model bacterium Vibrio fischeri. Several compounds were found to display antagonist activity. Molecular modeling suggests that the latter prevent a cascade of structural rearrangements necessary for the formation of the active LuxR dimer.
Collapse
Affiliation(s)
- Sandra Castang
- Unité de Microbiologie et Génétique, UMR CNRS-INSA-UCB 5122, Bât. A. Lwoff, UCB, 69622 Villeurbanne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Denkin SM, Nelson DR. Regulation of Vibrio anguillarum empA metalloprotease expression and its role in virulence. Appl Environ Microbiol 2004; 70:4193-204. [PMID: 15240301 PMCID: PMC444792 DOI: 10.1128/aem.70.7.4193-4204.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atlantic salmon (Salmo salar) were challenged with Vibrio anguillarum strains M93Sm and NB10 and empA null mutants M99 and NB12. Both wild types were virulent when administered by intraperitoneal (i.p.) injection or anal intubation. NB12 was avirulent via either route of infection. M99 virulence was attenuated when delivered by intubation, but fully virulent by i.p. injection. Northern blot analysis revealed empA expression in M93Sm and NB10 cells incubated in mucus, while incubation in Luria-Bertani broth plus 2% NaCl (LB20) induced empA expression only in NB10. Nucleotide differences between M93Sm and NB10 empA sequences were found in regions located 207 and 229 bp upstream of the empA translational start. Reverse transcription-PCR and 5' rapid amplification of cDNA ends revealed the empA transcriptional start site 85 bp upstream of the translational start for both strains. A putative sigma(S)-dependent promoter was identified upstream of the transcriptional start in both strains. Site-directed mutagenesis was used to create rpoS mutants of M93Sm and NB10. Neither rpoS mutant exhibited protease activity. Since empA is expressed during stationary phase, the effects of conditioned medium on protease activity were examined. M99 conditioned LB20 supernatants stimulated protease activity in NB10 while allowing M93Sm to produce protease in LB20. Neither acyl homoserine lactones nor AI-2 induced protease activity. Conditioned LB20 supernatant from a V. anguillarum luxS mutant caused a more rapid induction of protease activity in wild-type cells. Our data show that expression of empA is differentially regulated in V. anguillarum strains NB10 and M93Sm and requires sigma(S), quorum-sensing molecules, and gastrointestinal mucus.
Collapse
Affiliation(s)
- Steven M Denkin
- Department of Cell and Molecular Biology, 117 Morrill Hall, University of Rhode Island, Kingston, RI 02881, USA
| | | |
Collapse
|
370
|
Ovadis M, Liu X, Gavriel S, Ismailov Z, Chet I, Chernin L. The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J Bacteriol 2004; 186:4986-93. [PMID: 15262936 PMCID: PMC451636 DOI: 10.1128/jb.186.15.4986-4993.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biocontrol activity of various fluorescent pseudomonads towards plant-pathogenic fungi is dependent upon the GacA/GacS-type two-component system of global regulators and the RpoS transcription sigma factor. In particular, these components are required for the production of antifungal antibiotics and exoenzymes. To investigate the effects of these global regulators on the expression of biocontrol factors by plant-associated bacteria other than Pseudomonas spp., gacA/gacS and rpoS homologues were cloned from biocontrol strain IC1270 of Serratia plymuthica, which produces a set of antifungal compounds, including chitinolytic enzymes and the antibiotic pyrrolnitrin. The nucleotide and deduced protein sequence alignments of the cloned gacA/gacS-like genes-tentatively designated grrA (global response regulation activator) and grrS (global response regulation sensor) and of the cloned rpoS gene revealed 64 to 93% identity with matching genes and proteins of the enteric bacteria Escherichia coli, Pectobacterium carotovora subsp. carotovora, and Serratia marcescens. grrA, grrS, and rpoS gene replacement mutants of strain IC1270 were deficient in the production of pyrrolnitrin, an exoprotease, and N-acylhomoserine lactone quorum-sensing signal molecules. However, neither mutant appeared to differ from the parental strain in the production of siderophores, and only grrA and grrS mutants were deficient in the production of a 58-kDa endochitinase, representing the involvement of other sigma factors in the regulation of strain IC1270's chitinolytic activity. Compared to the parental strain, the grrA, grrS, and rpoS mutants were markedly less capable of suppressing Rhizoctonia solani and Pythium aphanidermatum under greenhouse conditions, indicating the dependence of strain IC1270's biocontrol property on the GrrA/GrrS and RpoS global regulators.
Collapse
Affiliation(s)
- Marianna Ovadis
- Otto Warburg Center for Biotechnology in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
371
|
Llamas I, Keshavan N, González JE. Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl homoserine lactones. Appl Environ Microbiol 2004; 70:3715-23. [PMID: 15184178 PMCID: PMC427785 DOI: 10.1128/aem.70.6.3715-3723.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Population-density-dependent gene expression in gram-negative bacteria involves the production of signal molecules characterized as N-acyl homoserine lactones (AHLs). The synthesis of AHLs by numerous microorganisms has been identified by using biosensor strains based on the Agrobacterium tumefaciens and Chromobacterium violaceum quorum-sensing systems. The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti is rapidly becoming a model organism for the study of quorum sensing. This organism harbors at least three different quorum-sensing systems (Sin, Mel, and Tra), which play a role in its symbiotic relationship with its host plant, alfalfa. The Sin system is distinguished among them for the production of long-chain AHLs, including C(18)-HL, the longest AHL reported so far. In this work, we show that construction of a sinI::lacZ transcriptional fusion results in a strain that detects long-chain AHLs with exquisite sensitivity. Overexpression of the SinR regulator protein from a vector promoter increases its sensitivity without loss of specificity. We also show that the resulting indicator strain can recognize long-chain AHLs produced by unrelated bacteria such as Paracoccus denitrificans and Rhodobacter capsulatus. This S. meliloti indicator strain should serve as a tool for the specific detection of long-chain AHLs in new systems.
Collapse
Affiliation(s)
- Inmaculada Llamas
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | |
Collapse
|
372
|
Toth IK, Newton JA, Hyman LJ, Lees AK, Daykin M, Ortori C, Williams P, Fray RG. Potato plants genetically modified to produce N-acylhomoserine lactones increase susceptibility to soft rot erwiniae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:880-7. [PMID: 15305609 DOI: 10.1094/mpmi.2004.17.8.880] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Many gram-negative bacteria employ N-acylhomoserine lactones (AHL) to regulate diverse physiological processes in concert with cell population density (quorum sensing [QS]). In the plant pathogen Erwinia carotovora, the AHL synthesized via the carI/expI genes are responsible for regulating the production of secreted plant cell wall-degrading exoenzymes and the antibiotic carbapen-3-em carboxylic acid. We have previously shown that targeting the product of an AHL synthase gene (yenI) from Yersinia enterocolitica to the chloroplasts of transgenic tobacco plants caused the synthesis in planta of the cognate AHL signaling molecules N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL), which in turn, were able to complement a carI-QS mutant. In the present study, we demonstrate that transgenic potato plants containing the yenI gene are also able to express AHL and that the presence and level of these AHL in the plant increases susceptibility to infection by E. carotovora. Susceptibility is further affected by both the bacterial level and the plant tissue under investigation.
Collapse
Affiliation(s)
- I K Toth
- School of Biological Sciences, Nottingham University, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
373
|
Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, Cámara M, Williams P, Haas D. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 2004; 186:2936-45. [PMID: 15126453 PMCID: PMC400603 DOI: 10.1128/jb.186.10.2936-2945.2004] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas aeruginosa, the small RNA-binding, regulatory protein RsmA is a negative control element in the formation of several extracellular products (e.g., pyocyanin, hydrogen cyanide, PA-IL lectin) as well as in the production of N-acylhomoserine lactone quorum-sensing signal molecules. RsmA was found to control positively the ability to swarm and to produce extracellular rhamnolipids and lipase, i.e., functions contributing to niche colonization by P. aeruginosa. An rsmA null mutant was entirely devoid of swarming but produced detectable amounts of rhamnolipids, suggesting that factors in addition to rhamnolipids influence the swarming ability of P. aeruginosa. A small regulatory RNA, rsmZ, which antagonized the effects of RsmA, was identified in P. aeruginosa. Expression of the rsmZ gene was dependent on both the global regulator GacA and RsmA, increased with cell density, and was subject to negative autoregulation. Overexpression of rsmZ and a null mutation in rsmA resulted in quantitatively similar, negative or positive effects on target genes, in agreement with a model that postulates titration of RsmA protein by RsmZ RNA.
Collapse
Affiliation(s)
- Karin Heurlier
- Institut de Microbiologie Fondamentale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Jafra S, van der Wolf JM. Fast screening method for detection of acyl-HSL-degrading soil isolates. J Microbiol Methods 2004; 57:415-20. [PMID: 15134889 DOI: 10.1016/j.mimet.2004.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 01/23/2004] [Accepted: 01/23/2004] [Indexed: 11/17/2022]
Abstract
A reliable method was developed for screening of bacteria isolates capable of degrading acyl-HSLs, the signal molecules in quorum-sensing-mediated processes of many Proteobacteria. The microtiter assay was based on the use of a GFP-marked Escherichia coli strain, which fluoresces upon the presence of acyl-HSLs. Measurement of GFP fluorescence with a Molecular Imager FX scanner (fluorometer) detected isolates capable of degrading acyl-HSLs. The potential of this method was demonstrated by isolation of different bacteria from a potato rhizosphere able to inactivate synthetic and natural acyl HSLs produced by Pectobacterium carotovorum subsp. carotovorum (Pcc) (Erwinia carotovora subsp. carotovora (Ecc)).
Collapse
Affiliation(s)
- Sylwia Jafra
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | | |
Collapse
|
375
|
Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ. Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci U S A 2004; 101:8414-9. [PMID: 15159530 PMCID: PMC420408 DOI: 10.1073/pnas.0402940101] [Citation(s) in RCA: 394] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel cellular behaviors and characteristics can be obtained by coupling engineered gene networks to the cell's natural regulatory circuitry through appropriately designed input and output interfaces. Here, we demonstrate how an engineered genetic circuit can be used to construct cells that respond to biological signals in a predetermined and programmable fashion. We employ a modular design strategy to create Escherichia coli strains where a genetic toggle switch is interfaced with: (i) the SOS signaling pathway responding to DNA damage, and (ii) a transgenic quorum sensing signaling pathway from Vibrio fischeri. The genetic toggle switch endows these strains with binary response dynamics and an epigenetic inheritance that supports a persistent phenotypic alteration in response to transient signals. These features are exploited to engineer cells that form biofilms in response to DNA-damaging agents and cells that activate protein synthesis when the cell population reaches a critical density. Our work represents a step toward the development of "plug-and-play" genetic circuitry that can be used to create cells with programmable behaviors.
Collapse
Affiliation(s)
- Hideki Kobayashi
- Department of Biomedical Engineering, Center for BioDynamics, and Center for Advanced Biotechnology, Boston University, 44 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
376
|
van Rij ET, Wesselink M, Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:557-566. [PMID: 15141960 DOI: 10.1094/mpmi.2004.17.5.557] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pseudomonas chlororaphis PCL1391 produces the secondary metabolite phenazine-1-carboxamide (PCN), which is an antifungal metabolite required for biocontrol activity of the strain. Identification of conditions involved in PCN production showed that some carbon sources and all amino acids tested promote PCN levels. Decreasing the pH from 7 to 6 or decreasing the growth temperature from 21 to 16 degrees C decreased PCN production dramatically. In contrast, growth at 1% oxygen as well as low magnesium concentrations increased PCN levels. Salt stress, low concentrations of ferric iron, phosphate, sulfate, and ammonium ions reduced PCN levels. Fusaric acid, a secondary metabolite produced by the soilborne Fusarium spp. fungi, also reduced PCN levels. Different nitrogen sources greatly influenced PCN levels. Analysis of autoinducer levels at conditions of high and low PCN production demonstrated that, under all tested conditions, PCN levels correlate with autoinducer levels, indicating that the regulation of PCN production by environmental factors takes place at or before autoinducer production. Moreover, the results show that autoinducer production not only is induced by a high optical density but also can be induced by certain environmental conditions. We discuss our findings in relation to the success of biocontrol in the field.
Collapse
Affiliation(s)
- E Tjeerd van Rij
- Leiden University, Institute of Biology, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
377
|
Medina G, Juárez K, Díaz R, Soberón-Chávez G. Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. MICROBIOLOGY-SGM 2004; 149:3073-3081. [PMID: 14600219 DOI: 10.1099/mic.0.26282-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Pseudomonas aeruginosa rhlR gene encodes the transcriptional regulator RhlR which has a central role in the quorum-sensing response. Different gene products involved in bacterial pathogenesis are regulated at the transcriptional level by two quorum-sensing response systems, Las and Rhl. The expression of rhlR has been reported to be under the control of the Las system, but its transcriptional regulation has not been studied in detail. Here, the rhlR promoter region has been characterized and shown to present four different transcription start sites, two of which are included in the upstream gene (rhlB) coding region. It was found that rhlR expression is not only dependent on LasR but also on different regulatory proteins such as Vfr and RhlR itself, and also on the alternative sigma factor sigma(54). It is reported that rhlR expression is partially LasR-independent under certain culture conditions and is strongly influenced by environmental factors.
Collapse
Affiliation(s)
- Gerardo Medina
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Katy Juárez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Rafael Díaz
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| |
Collapse
|
378
|
Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD. Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. PLANT PHYSIOLOGY 2004; 134:137-46. [PMID: 14671013 PMCID: PMC316294 DOI: 10.1104/pp.103.029918] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 08/04/2003] [Accepted: 09/15/2003] [Indexed: 05/20/2023]
Abstract
The unicellular soil-freshwater alga Chlamydomonas reinhardtii was found to secrete substances that mimic the activity of the N-acyl-L-homoserine lactone (AHL) signal molecules used by many bacteria for quorum sensing regulation of gene expression. More than a dozen chemically separable but unidentified substances capable of specifically stimulating the LasR or CepR but not the LuxR, AhyR, or CviR AHL bacterial quorum sensing reporter strains were detected in ethyl acetate extracts of C. reinhardtii culture filtrates. Colonies of C. reinhardtii and Chlorella spp. stimulated quorum sensing-dependent luminescence in Vibrio harveyi, indicating that these algae may produce compounds that affect the AI-2 furanosyl borate diester-mediated quorum sensing system of Vibrio spp. Treatment of the soil bacterium Sinorhizobium meliloti with a partially purified LasR mimic from C. reinhardtii affected the accumulation of 16 of the 25 proteins that were altered in response to the bacterium's own AHL signals, providing evidence that the algal mimic affected quorum sensing-regulated functions in this wild-type bacterium. Peptide mass fingerprinting identified 32 proteins affected by the bacterium's AHLs or the purified algal mimic, including GroEL chaperonins, the nitrogen regulatory protein PII, and a GTP-binding protein. The algal mimic was able to cancel the stimulatory effects of bacterial AHLs on the accumulation of seven of these proteins, providing evidence that the secretion of AHL mimics by the alga could be effective in disruption of quorum sensing in naturally encountered bacteria.
Collapse
Affiliation(s)
- Max Teplitski
- ARC Centre of Excellence for Integrative Legume Research Genomics Interaction Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capitol Territory 2601, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Jacobi CA, Bach A, Eberl L, Steidle A, Heesemann J. Detection of N-(3-oxohexanoyl)-L-homoserine lactone in mice infected with Yersinia enterocolitica serotype O8. Infect Immun 2003; 71:6624-6. [PMID: 14573686 PMCID: PMC219576 DOI: 10.1128/iai.71.11.6624-6626.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica synthesizes N-acyl-L-homoserine lactone (AHL) signal molecules via the LuxR-LuxI homologues YenR-YenI. In this study we checked two prototypes of mouse-virulent Y. enterocolitica serotype O8 strains WA-314 and 8081 for AHL production in vitro and in vivo (mouse infection model). We used thin-layer chromatography in combination with the Escherichia coli AHL biosensor to identify the AHL species produced. We detected only OHHL [N-(3-oxohexanoyl)-L-homoserine lactone] and not HHL (N-hexanoyl-L-homoserine lactone) produced by Y. enterocolitica O8 in culture supernatant or infected mouse tissue. This is the first report demonstrating AHL production by yersiniae during infection.
Collapse
Affiliation(s)
- Christoph A Jacobi
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximillian University Munich, D-80336 Munich, Germany.
| | | | | | | | | |
Collapse
|
380
|
Gao M, Teplitski M, Robinson JB, Bauer WD. Production of substances by Medicago truncatula that affect bacterial quorum sensing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:827-34. [PMID: 12971606 DOI: 10.1094/mpmi.2003.16.9.827] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Earlier work showed that higher plants produce unidentified compounds that specifically stimulate or inhibit quorum sensing (QS) regulated responses in bacteria. The ability of plants to produce substances that affect QS regulation may provide plants with important tools to manipulate gene expression and behavior in the bacteria they encounter. In order to examine the kinds of QS active substances produced by the model legume M. truncatula, young seedlings and seedling exudates were systematically extracted with various organic solvents, and the extracts were fractionated by reverse phase C18 high-performance liquid chromatography. M. truncatula appears to produce at least 15 to 20 separable substances capable of specifically stimulating or inhibiting responses in QS reporter bacteria, primarily substances that affect QS regulation dependent on N-acyl homoserine lactone (AHL) signals. The secretion of AHL QS mimic activities by germinating seeds and seedlings was found to change substantially with developmental age. The secretion of some mimic activities may be dependent upon prior exposure of the plants to bacteria.
Collapse
Affiliation(s)
- Mengsheng Gao
- Department of Horticulture and Crop Science, 2021 Coffey Rd., Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
381
|
Chen H, Teplitski M, Robinson JB, Rolfe BG, Bauer WD. Proteomic analysis of wild-type Sinorhizobium meliloti responses to N-acyl homoserine lactone quorum-sensing signals and the transition to stationary phase. J Bacteriol 2003; 185:5029-36. [PMID: 12923075 PMCID: PMC180974 DOI: 10.1128/jb.185.17.5029-5036.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteome analysis revealed that two long-chain N-acyl homoserine lactones (AHLs) produced by Sinorhizobium meliloti 1021 induced significant differences in the accumulation of more than 100 polypeptides in early-log-phase cultures of the wild type. Fifty-six of the corresponding proteins have been identified by peptide mass fingerprinting. The proteins affected by addition of these two AHLs had diverse functions in carbon and nitrogen metabolism, energy cycles, metabolite transport, DNA synthesis, and protein turnover. Two hours of exposure to 3-oxo-C(16:1)-homoserine lactone (3-oxo-C(16:1)-HL) affected the accumulation of 40 of the 56 identified proteins, whereas comparable exposure to C(14)-HL affected 13 of the 56 proteins. Levels of four proteins were affected by both AHLs. Exposure to 3-oxo-C(16:1)-HL for 8 h affected the accumulation of 17 proteins, 12 of which had reduced accumulation. Of the 80 proteins identified as differing in accumulation between early-log- and early-stationary-phase cultures, only 13 were affected by exposure to 3-oxo-C(16:1)-HL or C(14)-HL. These results provide a foundation for future studies of the functions regulated by AHL quorum sensing in S. meliloti and help to establish proteomic analysis as a powerful global approach to the identification of quorum-sensing regulatory patterns in wild-type bacteria.
Collapse
Affiliation(s)
- Hancai Chen
- Genomic Interactions Group, Research School for Biological Sciences, Australian National University, Canberra, Australia
| | | | | | | | | |
Collapse
|
382
|
Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ. Phenazines and their role in biocontrol by Pseudomonas bacteria. THE NEW PHYTOLOGIST 2003; 157:503-523. [PMID: 33873412 DOI: 10.1046/j.1469-8137.2003.00686.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Various rhizosphere bacteria are potential (micro)biological pesticides which are able to protect plants against diseases and improve plant yield. Knowledge of the molecular mechanisms that govern these beneficial plant-microbe interactions enables optimization, enhancement and identification of potential synergistic effects in plant protection. The production of antifungal metabolites, induction of systemic resistance, and the ability to compete efficiently with other resident rhizobacteria are considered to be important prerequisites for the optimal performance of biocontrol agents. Intriguing aspects in the molecular mechanisms of these processes have been discovered recently. Phenazines and phloroglucinols are major determinants of biological control of soilborne plant pathogens by various strains of fluorescent Pseudomonas spp. This review focuses on the current state of knowledge on biocontrol by phenazine-producing Pseudomonas strains and the action, biosynthesis, and regulation mechanisms of the production of microbial phenazines.
Collapse
Affiliation(s)
| | - Guido V Bloemberg
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | - Ben J J Lugtenberg
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| |
Collapse
|
383
|
Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A 2003; 100:1444-9. [PMID: 12511600 PMCID: PMC298792 DOI: 10.1073/pnas.262672599] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bacteria use N-acyl homoserine lactone (AHL) signals to coordinate the behavior of individual cells in a local population. The successful infection of eukaryotic hosts by bacteria seems to depend particularly on such AHL-mediated "quorum-sensing" regulation. We have used proteome analysis to show that a eukaryotic host, the model legume Medicago truncatula, is able to detect nanomolar to micromolar concentrations of bacterial AHLs from both symbiotic (Sinorhizobium meliloti) and pathogenic (Pseudomonas aeruginosa) bacteria, and that it responds in a global manner by significant changes in the accumulation of over 150 proteins, 99 of which have been identified by peptide mass fingerprinting. The accumulation of specific proteins and isoforms depended on AHL structure, concentration, and time of exposure. AHLs were also found to induce tissue-specific activation of beta-glucuronidase (GUS) reporter fusions to an auxin-responsive and three chalcone synthase promoters, consistent with AHL-induced changes in the accumulation of auxin-responsive and flavonoid synthesis proteins. In addition, exposure to AHLs was found to induce changes in the secretion of compounds by the plants that mimic quorum-sensing signals and thus have the potential to disrupt quorum sensing in associated bacteria. Our results indicate that eukaryotes have an extensive range of functional responses to AHLs that may play important roles in the beneficial or pathogenic outcomes of eukaryote-prokaryote interactions.
Collapse
Affiliation(s)
- Ulrike Mathesius
- Genomic Interactions Group, Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
384
|
Smith JN, Ahmer BMM. Detection of other microbial species by Salmonella: expression of the SdiA regulon. J Bacteriol 2003; 185:1357-66. [PMID: 12562806 PMCID: PMC142872 DOI: 10.1128/jb.185.4.1357-1366.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella, Escherichia, and Klebsiella do not encode any recognized type of N-acylhomoserine lactone (AHL) synthase, and consistent with this, they do not synthesize AHLs under any conditions tested. However, they do encode an AHL receptor of the LuxR family, named SdiA. MudJ fusions in four loci are known to respond to plasmid-encoded sdiA in Salmonella, but only the rck locus has been described. Here we report the location and sequence analysis of the remaining three loci. The srg-6::MudJ is within gtgA of the gifsy-2 prophage, and the srg-7::MudJ is within PSLT61 of the virulence plasmid. Both fusions are in the antisense orientation. The third fusion, srgE5::MudJ, is within a horizontally acquired gene of unknown function at 33.6 centisomes that we have named srgE. Previously, sdiA expressed from its natural position in the chromosome was demonstrated to activate a plasmid-based transcriptional fusion to the rck promoter in response to AHL production by other bacterial species. However, the MudJ fusions did not respond to chromosomal sdiA. Here we report that MudJ fusions to three of the four loci (not srg-6) are activated by AHL in an sdiA-dependent manner during growth in motility agar (0.25% agar) but not during growth in top agar (0.7% agar) or on agar plates (1.2% agar). In motility agar, the srgE promoter responds to sdiA at 30 degrees C and higher while the rck and srg-7 promoters respond only at 37 or 42 degrees C. Substantial AHL-independent SdiA activity was observed at 30 degrees C but not at 37 degrees C.
Collapse
Affiliation(s)
- Jenée N Smith
- Department of Microbiology, The Ohio State University, Columbus Ohio 43210, USA
| | | |
Collapse
|
385
|
Christensen AB, Riedel K, Eberl L, Flodgaard LR, Molin S, Gram L, Givskov M. Quorum-sensing-directed protein expression in Serratia proteamaculans B5a. MICROBIOLOGY (READING, ENGLAND) 2003; 149:471-483. [PMID: 12624209 DOI: 10.1099/mic.0.25575-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
N-Acyl-L-homoserine-lactone-producing Serratia species are frequently encountered in spoiling foods of vegetable and protein origin. The role of quorum sensing in the food spoiling properties of these bacteria is currently being investigated. A set of luxR luxI homologous genes encoding a putative quorum sensor was identified in the N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL)-producing Serratia proteamaculans strain B5a. The 3-oxo-C6-HSL synthase SprI showed 79 % similarity with EsaI from Pantoea stewartii and the putative regulatory protein SprR was 86 % similar to the SpnR of Serratia marcescens. Proteome analysis suggested that the presence of at least 39 intracellular proteins was affected by the 3-oxo-C6-HSL-based quorum sensing system. The lipB-encoded secretion system was identified as one target gene of the quorum sensing system. LipB was required for the production of extracellular lipolytic and proteolytic activities, thus rendering the production of food-deterioration-relevant exoenzymes indirectly under the control of quorum sensing. Strain B5a caused quorum-sensing-controlled spoilage of milk. Furthermore, chitinolytic activity was controlled by quorum sensing. This control appeared to be direct and not mediated via LipB. The data presented here demonstrate that quorum-sensing-controlled exoenzymic activities affect food quality.
Collapse
Affiliation(s)
- Allan B Christensen
- Section of Molecular Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Kathrin Riedel
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, D-85350 Freising, Germany
| | - Leo Eberl
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, D-85350 Freising, Germany
| | - Lars R Flodgaard
- Danish Institute for Fisheries Research, Department of Seafood Research, Building 221, c/o Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Søren Molin
- Section of Molecular Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Lone Gram
- Danish Institute for Fisheries Research, Department of Seafood Research, Building 221, c/o Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Michael Givskov
- Section of Molecular Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
386
|
Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A 2002; 99:17025-30. [PMID: 12482953 PMCID: PMC139263 DOI: 10.1073/pnas.252607699] [Citation(s) in RCA: 382] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2002] [Accepted: 10/08/2002] [Indexed: 11/18/2022] Open
Abstract
Antibiotics such as erythromycin and rifampicin, at low concentrations, alter global bacterial transcription patterns as measured by the stimulation or inhibition of a variety of promoter-lux reporter constructs in a Salmonella typhimurium library. Analysis of a 6,500-clone library indicated that as many as 5% of the promoters may be affected, comprising genes for a variety of functions, as well as a significant fraction of genes with no known function. Studies of a selection of the reporter clones showed that stimulation varied depending on the nature of the antibiotic, the promoter, and what culture medium was used; the response differed on solid as compared with liquid media. Transcription was markedly reduced in antibiotic-resistant hosts, but the presence of mutations deficient in stress responses such as SOS or universal stress did not prevent antibiotic-induced modulation. The results show that small molecules may have contrasting effects on bacteria depending on their concentration: either the modulation of bacterial metabolism by altering transcription patterns or the inhibition of growth by the inhibition of specific target functions. Both activities could play important roles in the regulation of microbial communities. These studies indicate that the detection of pharmaceutically useful natural product inhibitors could be effectively achieved by measuring activation of transcription at low concentrations in high-throughput assays using appropriate bacterial promoter-reporter constructs.
Collapse
Affiliation(s)
- Ee-Been Goh
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | |
Collapse
|
387
|
Steidle A, Allesen-Holm M, Riedel K, Berg G, Givskov M, Molin S, Eberl L. Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 2002; 68:6371-82. [PMID: 12450862 PMCID: PMC134430 DOI: 10.1128/aem.68.12.6371-6382.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent reports have shown that several strains of Pseudomonas putida produce N-acylhomoserine lactones (AHLs). These signal molecules enable bacteria to coordinately express certain phenotypic traits in a density-dependent manner in a process referred to as quorum sensing. In this study we have cloned a genomic region of the plant growth-promoting P. putida strain IsoF that, when present in trans, provoked induction of a bioluminescent AHL reporter plasmid. Sequence analysis identified a gene cluster consisting of four genes: ppuI and ppuR, whose predicted amino acid sequences are highly similar to proteins of the LuxI-LuxR family, an open reading frame (ORF) located in the intergenic region between ppuI and ppuR with significant homology to rsaL from Pseudomonas aeruginosa, and a gene, designated ppuA, present upstream of ppuR, the deduced amino acid sequence of which shows similarity to long-chain fatty acid coenzyme A ligases from various organisms. Using a transcriptional ppuA::luxAB fusion we demonstrate that expression of ppuA is AHL dependent. Furthermore, transcription of the AHL synthase ppuI is shown to be subject to quorum-sensing regulation, creating a positive feedback loop. Sequencing of the DNA regions flanking the ppu gene cluster indicated that the four genes form an island in the suhB-PA3819 intergenic region of the currently sequenced P. putida strain KT2440. Moreover, we provide evidence that the ppu genes are not present in other AHL-producing P. putida strains, indicating that this gene cluster is so far unique for strain IsoF. While the wild-type strain formed very homogenous biofilms, both a ppuI and a ppuA mutant formed structured biofilms with characteristic microcolonies and water-filled channels. These results suggest that the quorum-sensing system influences biofilm structural development.
Collapse
Affiliation(s)
- Anette Steidle
- Department of Microbiology, TUM, D-85350 Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
388
|
Huber B, Riedel K, Köthe M, Givskov M, Molin S, Eberl L. Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Mol Microbiol 2002; 46:411-26. [PMID: 12406218 DOI: 10.1046/j.1365-2958.2002.03182.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Burkholderia cepacia and Pseudomonas aeruginosa often co-exist as mixed biofilms in the lungs of patients suffering from cystic fibrosis (CF). Here, we report the isolation of 13 random mini-Tn5 insertion mutants of B. cepacia H111 that are defective in biofilm formation on a polystyrene surface. We show that the screening procedure used in this study is biased towards mutants defective in the late stages of biofilm development. A detailed quantitative analysis of the biofilm structures formed by wild-type and mutant strains revealed that the isolated mutants are impaired in their abilities to develop a typical three-dimensional biofilm structure. Molecular investigations showed that the genes required for biofilm maturation fall into several classes: (i). genes encoding for surface proteins; (ii). genes involved in the biogenesis and maintenance of an integral outer membrane; and (iii). genes encoding regulatory factors. It is shown that three of the regulatory mutants produce greatly reduced amounts of N-octanoylhomoserine lactone (C8-HSL). This compound serves as the major signal molecule of the cep quorum-sensing system. As this density-dependent regulatory system is involved in the regulation of biofilm maturation, we investigated the interplay between the three regulatory genes and the quorum-sensing cascade. The results of these investigations show that the identified genes encode for regulatory elements that are positioned upstream of the cep system, indicating that the quorum-sensing system of B. cepacia is a major checkpoint for biofilm formation.
Collapse
Affiliation(s)
- Birgit Huber
- Lehrstuhl für Mikrobiologie, Technische Universität München, Freisburg, Germany
| | | | | | | | | | | |
Collapse
|
389
|
Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Cámara M, Smith H, Williams P. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 2002; 70:5635-46. [PMID: 12228292 PMCID: PMC128322 DOI: 10.1128/iai.70.10.5635-5646.2002] [Citation(s) in RCA: 434] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacterial pathogens, such as Pseudomonas aeruginosa and Yersinia pseudotuberculosis, cell-to-cell communication via the N-acylhomoserine lactone (AHL) signal molecules is involved in the cell population density-dependent control of genes associated with virulence. This phenomenon, termed quorum sensing, relies upon the accumulation of AHLs to a threshold concentration at which target structural genes are activated. By using biosensors capable of detecting a range of AHLs we observed that, in cultures of Y. pseudotuberculosis and P. aeruginosa, AHLs accumulate during the exponential phase but largely disappear during the stationary phase. When added to late-stationary-phase, cell-free culture supernatants of the respective pathogen, the major P. aeruginosa [N-butanoylhomoserine lactone (C4-HSL) and N-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL)] and Y. pseudotuberculosis [N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL)] AHLs were inactivated. Short-acyl-chain compounds (e.g., C4-HSL) were turned over more extensively than long-chain molecules (e.g., 3-oxo-C12-HSL). Little AHL inactivation occurred with cell extracts, and no evidence for inactivation by specific enzymes was apparent. This AHL turnover was discovered to be due to pH-dependent lactonolysis. By acidifying the growth media to pH 2.0, lactonolysis could be reversed. By using carbon-13 nuclear magnetic resonance spectroscopy, we found that the ring opening of homoserine lactone (HSL), N-propionyl HSL (C3-HSL), and C4-HSL increased as pH increased but diminished as the N-acyl chain was lengthened. At low pH levels, the lactone rings closed but not via a simple reversal of the ring opening reaction mechanism. Ring opening of C4-HSL, C6-HSL, 3-oxo-C6-HSL, and N-octanoylhomoserine lactone (C8-HSL), as determined by the reduction of pH in aqueous solutions with time, was also less rapid for AHLs with more electron-donating longer side chains. Raising the temperature from 22 to 37 degrees C increased the rate of ring opening. Taken together, these data show that (i) to be functional under physiological conditions in mammalian tissue fluids, AHLs require an N-acyl side chain of at least four carbons in length and (ii) that the longer the acyl side chain the more stable the AHL signal molecule.
Collapse
Affiliation(s)
- Edwin A Yates
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
390
|
Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC. A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J Bacteriol 2002; 184:5067-76. [PMID: 12193623 PMCID: PMC135333 DOI: 10.1128/jb.184.18.5067-5076.2002] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of complex extracellular polysaccharides (EPSs) by the nitrogen-fixing soil bacterium Sinorhizobium meliloti is required for efficient invasion of root nodules on the host plant alfalfa. Any one of three S. meliloti polysaccharides, succinoglycan, EPS II, or K antigen, can mediate infection thread initiation and extension (root nodule invasion) on alfalfa. Of these three polysaccharides, the only symbiotically active polysaccharide produced by S. meliloti wild-type strain Rm1021 is succinoglycan. The expR101 mutation is required to turn on production of symbiotically active forms of EPS II in strain Rm1021. In this study, we have determined the nature of the expR101 mutation in S. meliloti. The expR101 mutation, a spontaneous dominant mutation, results from precise, reading frame-restoring excision of an insertion sequence from the coding region of expR, a gene whose predicted protein product is highly homologous to the Rhizobium leguminosarum bv. viciae RhiR protein and a number of other homologs of Vibrio fischeri LuxR that function as receptors for N-acylhomoserine lactones (AHLs) in quorum-sensing regulation of gene expression. S. meliloti ExpR activates transcription of genes involved in EPS II production in a density-dependent fashion, and it does so at much lower cell densities than many quorum-sensing systems. High-pressure liquid chromatographic fractionation of S. meliloti culture filtrate extracts revealed at least three peaks with AHL activity, one of which activated ExpR-dependent expression of the expE operon.
Collapse
Affiliation(s)
- Brett J Pellock
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
391
|
Horng YT, Deng SC, Daykin M, Soo PC, Wei JR, Luh KT, Ho SW, Swift S, Lai HC, Williams P. The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol Microbiol 2002; 45:1655-71. [PMID: 12354232 DOI: 10.1046/j.1365-2958.2002.03117.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serratia marcescens SS-1 produces at least four N-acylhomoserine lactones (AHLs) which were identified using high-resolution mass spectrometry and chemical synthesis, as N-(3-oxohexanoyl) homo-serine lactone (3-oxo-C6-HSL), N-hexanoyl- (C6-HSL), N-heptanoyl (C7-HSL) and N-octanoyl- (C8-HSL) homoserine lactone. These AHLs are synthesized via the LuxI homologue SpnI, and regulate via the LuxR homologue SpnR, the production of the red pigment, prodigiosin, the nuclease, NucA, and a biosurfactant which facilitates surface translocation. spnR overexpression and spnR gene deletion show that SpnR, in contrast to most LuxR homologues, acts as a negative regulator. spnI overexpression, the provision of exogenous AHLs and spnI gene deletion suggest that SpnR is de-repressed by 3-oxo-C6-HSL. In addition, long chain AHLs antagonize the biosurfactant-mediated surface translocation of S. marcescens SS-1. Upstream of spnI there is a gene which we have termed spnT. spnI and spnT form an operon and although database searches failed to reveal any spnT homologues, overexpression of this novel gene negatively affected both sliding motility and prodigiosin production.
Collapse
Affiliation(s)
- Yu-Tze Horng
- School and Graduate Institute of Medical Technology, College of Medicine, National Taiwan University, Taipei, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 2002; 68:3328-38. [PMID: 12089011 PMCID: PMC126805 DOI: 10.1128/aem.68.7.3328-3338.2002] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2001] [Accepted: 04/11/2002] [Indexed: 11/20/2022] Open
Abstract
To study the effect of plant species on the abundance and diversity of bacterial antagonists, the abundance, the phenotypic diversity, and the genotypic diversity of rhizobacteria isolated from potato, oilseed rape, and strawberry and from bulk soil which showed antagonistic activity towards the soilborne pathogen Verticillium dahliae Kleb. were analyzed. Rhizosphere and soil samples were taken five times over two growing seasons in 1998 and 1999 from a randomized field trial. Bacterial isolates were obtained after plating on R2A (Difco, Detroit, Mich.) or enrichment in microtiter plates containing high-molecular-weight substrates followed by plating on R2A. A total of 5,854 bacteria isolated from the rhizosphere of strawberry, potato, or oilseed rape or bulk soil from fallow were screened by dual testing for in vitro antagonism towards VERTICILLIUM: The proportion of isolates with antagonistic activity was highest for strawberry rhizosphere (9.5%), followed by oilseed rape (6.3%), potato (3.7%), and soil (3.3%). The 331 Verticillium antagonists were identified by their fatty acid methyl ester profiles. They were characterized by testing their in vitro antagonism against other pathogenic fungi; their glucanolytic, chitinolytic, and proteolytic activities; and their BOX-PCR fingerprints. The abundance and composition of Verticillium antagonists was plant species dependent. A rather high proportion of antagonists from the strawberry rhizosphere was identified as Pseudomonas putida B (69%), while antagonists belonging to the Enterobacteriaceae (Serratia spp., Pantoea agglomerans) were mainly isolated from the rhizosphere of oilseed rape. For P. putida A and B plant-specific genotypes were observed, suggesting that these bacteria were specifically enriched in each rhizosphere.
Collapse
Affiliation(s)
- Gabriele Berg
- Department of Microbiology, Institute for Molecular Physiology and Biotechnology, University of Rostock, D-18055 Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
393
|
Taminiau B, Daykin M, Swift S, Boschiroli ML, Tibor A, Lestrate P, De Bolle X, O'Callaghan D, Williams P, Letesson JJ. Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect Immun 2002; 70:3004-11. [PMID: 12010991 PMCID: PMC128001 DOI: 10.1128/iai.70.6.3004-3011.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2001] [Revised: 01/15/2002] [Accepted: 03/21/2002] [Indexed: 11/20/2022] Open
Abstract
Brucella melitensis is a gram-negative alpha2-proteobacterium responsible for abortion in goats and for Malta fever in humans. This facultative intracellular pathogen invades and survives within both professional and nonprofessional phagocytes. A dichloromethane extract of spent culture supernatant from B. melitensis induces bioluminescence in an Escherichia coli acyl-homoserine lactone (acyl-HSL) biosensor strain based upon the activity of the LasR protein of Pseudomonas aeruginosa. HPLC fractionation of the extract, followed by mass spectrometry, identified the major active molecule as N-dodecanoylhomoserine lactone (C12-HSL). This is the first report of the production of an acyl-HSL by an intracellular pathogen. The addition of synthetic C12-HSL to an early log phase culture of either B. melitensis or Brucella suis 1330 reduces the transcription of the virB operon, which contains virulence genes known to be required for intracellular survival. This mimics events seen during the stationary phase of growth and suggests that quorum sensing may play a role in the control of virulence in Brucella.
Collapse
Affiliation(s)
- Bernard Taminiau
- Unité de Recherche en Biologie Moléculaire (URBM), Laboratoire d'Immunologie et Microbiologie, Facultés Universitaires Notre-Dame de la Paix, 5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
394
|
Diggle SP, Winzer K, Lazdunski A, Williams P, Cámara M. Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 2002; 184:2576-86. [PMID: 11976285 PMCID: PMC135012 DOI: 10.1128/jb.184.10.2576-2586.2002] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa regulates the production of many exoproteins and secondary metabolites via a hierarchical quorum-sensing cascade through LasR and RhlR and their cognate signal molecules N-(3-oxododecanoyl)-L-homoserine lactone (3O-C12-HSL) and N-(butanoyl)-L-homoserine lactone (C4-HSL). In this study, we found that transcription of the quorum sensing-regulated genes lecA (coding for PA-IL lectin), lasB (coding for elastase), and rpoS appeared to be growth phase dependent and their expression could not be advanced to the logarithmic phase in cells growing in batch culture by the addition of exogenous C4-HSL and 3O-C12-HSL. To identify novel regulators responsible for this growth phase dependency, a P. aeruginosa lecA::lux reporter strain was subjected to random transposon mutagenesis. A number of mutants affected in lecA expression were found that exhibited altered production of multiple quorum sensing-dependent phenotypes. While some mutations were mapped to new loci such as clpA and mvaT and a putative efflux system, a number of mutations were also mapped to known regulators such as lasR, rhlR, and rpoS. MvaT was identified as a novel global regulator of virulence gene expression, as a mutation in mvaT resulted in enhanced lecA expression and pyocyanin production. This mutant also showed altered swarming ability and production of the LasB and LasA proteases, 3O-C12-HSL, and C4-HSL. Furthermore, addition of exogenous 3O-C12-HSL and C4-HSL to the mvaT mutant significantly advanced lecA expression, suggesting that MvaT is involved in the growth phase-dependent regulation of the lecA gene.
Collapse
Affiliation(s)
- Stephen P Diggle
- School of Pharmaceutical Sciences. Institute of Infections and Immunity, University Park, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | |
Collapse
|
395
|
Reverchon S, Chantegrel B, Deshayes C, Doutheau A, Cotte-Pattat N. New synthetic analogues of N-acyl homoserine lactones as agonists or antagonists of transcriptional regulators involved in bacterial quorum sensing. Bioorg Med Chem Lett 2002; 12:1153-7. [PMID: 11934577 DOI: 10.1016/s0960-894x(02)00124-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of 22 novel synthetic N-acyl-homoserine lactone analogues has been evaluated for both their inducing activity and their ability to competitively inhibit the action of 3-oxo-hexanoyl-L-homoserine lactone, the natural inducer of bioluminescence in the bacterium Vibrio fischeri. In the newly synthesized analogues, the extremity of the acyl chain was modified by introducing ramified alkyl, cycloalkyl or aryl substituents at the C-4 position. Most of the analogues bearing either acyclic or cyclic alkyl substituents showed inducing activity. In contrast, the phenyl substituted analogues displayed significant antagonist activity. We hypothesized that the antagonist activity of the phenyl compounds may result from the interaction between the aryl group and aromatic amino acids of the LuxR receptor, preventing it from adopting the active dimeric form.
Collapse
Affiliation(s)
- Sylvie Reverchon
- Unité de Microbiologie et Génétique CNRS-INSA-UCB UMR 5122, INSA, Batiment Louis Pasteur, 11 Avenue Jean Capelle, 69621, Villeurbanne, France.
| | | | | | | | | |
Collapse
|
396
|
Croxatto A, Chalker VJ, Lauritz J, Jass J, Hardman A, Williams P, Cámara M, Milton DL. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum. J Bacteriol 2002; 184:1617-29. [PMID: 11872713 PMCID: PMC134878 DOI: 10.1128/jb.184.6.1617-1629.2002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio anguillarum possesses at least two N-acylhomoserine lactone (AHL) quorum-sensing circuits, one of which is related to the luxMN system of Vibrio harveyi. In this study, we have cloned an additional gene of this circuit, vanT, encoding a V. harveyi LuxR-like transcriptional regulator. A V. anguillarum Delta vanT null mutation resulted in a significant decrease in total protease activity due to loss of expression of the metalloprotease EmpA, but no changes in either AHL production or virulence. Additional genes positively regulated by VanT were identified from a plasmid-based gene library fused to a promoterless lacZ. Three lacZ fusions (serA::lacZ, hpdA-hgdA::lacZ, and sat-vps73::lacZ) were identified which exhibited decreased expression in the Delta vanT strain. SerA is similar to 3-phosphoglycerate dehydrogenases and catalyzes the first step in the serine-glycine biosynthesis pathway. HgdA has identity with homogentisate dioxygenases, and HpdA is homologous to 4-hydroxyphenylpyruvate dioxygenases (HPPDs) involved in pigment production. V. anguillarum strains require an active VanT to produce high levels of an L-tyrosine-induced brown color via HPPD, suggesting that VanT controls pigment production. Vps73 and Sat are related to Vibrio cholerae proteins encoded within a DNA locus required for biofilm formation. A V. anguillarum Delta vanT mutant and a mutant carrying a polar mutation in the sat-vps73 DNA locus were shown to produce defective biofilms. Hence, a new member of the V. harveyi LuxR transcriptional activator family has been characterized in V. anguillarum that positively regulates serine, metalloprotease, pigment, and biofilm production.
Collapse
Affiliation(s)
- Antony Croxatto
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
397
|
Burgess NA, Kirke DF, Williams P, Winzer K, Hardie KR, Meyers NL, Aduse-Opoku J, Curtis MA, Cámara M. LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. MICROBIOLOGY (READING, ENGLAND) 2002; 148:763-772. [PMID: 11882711 DOI: 10.1099/00221287-148-3-763] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis is a Gram-negative black-pigmented obligate anaerobe implicated in the aetiology of human periodontal disease. The virulence of P. gingivalis is associated with the elaboration of the cysteine proteases Arg-gingipain (Rgp) and Lys-gingipain (Kgp), which are produced at high bacterial cell densities. To determine whether quorum sensing plays a role in the regulation of Rgp and Kgp, biosensors capable of detecting either N-acylhomoserine lactone (AHLs) or the luxS-dependent autoinducer (AI-2) quorum-sensing signalling molecules in spent culture supernatants were first employed. While no AHLs could be detected, the Vibrio harveyi BB170 biosensor was activated by spent P. gingivalis W50 culture supernatants. The P. gingivalis luxS gene was cloned and demonstrated to restore AI-2 production in the Escherichia coli luxS mutant DH5alpha. Mutation of luxS abolished AI-2 production in P. gingivalis. Western blotting using antibodies raised against the recombinant protein revealed that LuxS levels increased throughout growth even though AI-2 activity was only maximally detected at the mid-exponential phase of growth and disappeared by the onset of stationary phase. Similar results were obtained with E. coli DH5alpha transformed with luxS, suggesting that AI-2 production is not limited by a lack of LuxS protein. Analysis of Rgp and Kgp protease activities revealed that the P. gingivalis luxS mutant produced around 45% less Rgp and 30% less Kgp activity than the parent strain. In addition, the luxS mutant exhibited a fourfold reduction in haemagglutinin titre. However, these reductions in virulence determinant levels were insufficient to attenuate the luxS mutant in a murine lesion model of P. gingivalis infection.
Collapse
Affiliation(s)
- Nicola A Burgess
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| | - David F Kirke
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| | - Paul Williams
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| | - Klaus Winzer
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
| | - Kim R Hardie
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| | | | - Joseph Aduse-Opoku
- MRC Molecular Pathogenesis Group, Department of Oral Microbiology, St Bartholomews and the Royal London School of Dentistry, 32 Newark St, London E1 2AA, UK4
| | - Michael A Curtis
- MRC Molecular Pathogenesis Group, Department of Oral Microbiology, St Bartholomews and the Royal London School of Dentistry, 32 Newark St, London E1 2AA, UK4
| | - Miguel Cámara
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| |
Collapse
|
398
|
Nasser W, Reverchon S. H-NS-dependent activation of pectate lyases synthesis in the phytopathogenic bacterium Erwinia chrysanthemi is mediated by the PecT repressor. Mol Microbiol 2002; 43:733-48. [PMID: 11929528 DOI: 10.1046/j.1365-2958.2002.02782.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Production of the main virulence determinant pectate lyases (Pels) of the phytopathogenic bacterium Erwinia chrysanthemi is modulated by a complex regulatory network involving the repressor proteins KdgR, PecS and PecT and the activator systems Pir, ExpI-ExpR and CRP. Of these regulators, CRP and PecT are particularly important since the absence of CRP or a slight overproduction of PecT leads to a drastic reduction in synthesis of Pel species. Recently, it has been shown that production of Pel species is strongly reduced in an E. chrysanthemi hns mutant, suggesting an activator function of the nucleoid-associated protein H-NS in the expression of the pel genes. Here, we report that the reduced synthesis of Pel species in the hns mutant results from a negative control, exerted by H-NS, on the transcription of the regulatory gene pecT. This H-NS/PecT cascade regulation is one of the first elucidations of a positive effect of H-NS on target gene expression. Moreover, we found that H-NS also represses the expression of expI, expR and pel genes. H-NS control is the result of H-NS binding to extended regions within the pecT, expI, expR and pel genes. Investigation of the simultaneous binding of CRP, RNA polymerase (RNAP) and H-NS on the pelD gene revealed that these three proteins form a nucleoprotein com-plex. Together, these data indicate that, by exerting a negative control at multiple levels, H-NS plays a crucial role in the E. chrysanthemi pel regulatory network.
Collapse
Affiliation(s)
- William Nasser
- Unité de Microbiologie et Génétique, UMR-CNRS 5122, INSA, Batiment Louis Pasteur, 11 Avenue Jean Capelle, F-69621 Villeurbanne Cedex, France.
| | | |
Collapse
|
399
|
Byers JT, Lucas C, Salmond GPC, Welch M. Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J Bacteriol 2002; 184:1163-71. [PMID: 11807077 PMCID: PMC134803 DOI: 10.1128/jb.184.4.1163-1171.2002] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Accepted: 11/09/2001] [Indexed: 11/20/2022] Open
Abstract
The production of virulence factors and carbapenem antibiotic in the phytopathogen Erwinia carotovora is under the control of quorum sensing. The quorum-sensing signaling molecule, N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), accumulates in log-phase culture supernatants of E. carotovora but diminishes in concentration during the stationary phase. In this study, we show that the diminution in OHHL was not due to sequestration of the ligand by the cells, although some partitioning did occur. Rather, it was caused by degradation of the molecule. The rate of stationary-phase degradation of OHHL was as rapid as the rate of log-phase accumulation of the ligand, but it was nonenzymatic and led to a decrease in the expression of selected genes known to be under the control of quorum sensing. The degradation of OHHL was dependent on the pH of the supernatant, which increased as the growth curve progressed in cultures grown in Luria-Bertani medium from pH 7 to approximately 8.5. OHHL became unstable over a narrow pH range (pH 7 to 8). Instability was increased at high temperatures even at neutral pH but could be prevented at the growth temperature (30 degrees C) by buffering the samples at pH 6.8. These results may provide a rationale for the observation that an early response of plants which are under attack by Erwinia is to activate a proton pump which alkalizes the site of infection to a pH of >8.2.
Collapse
Affiliation(s)
- Joseph T Byers
- Department of Biochemistry, Cambridge University, CB2 1QW, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
400
|
Middleton B, Rodgers HC, Cámara M, Knox AJ, Williams P, Hardman A. Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiol Lett 2002; 207:1-7. [PMID: 11886742 DOI: 10.1111/j.1574-6968.2002.tb11019.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas aeruginosa and Burkholderia cepacia cause destructive lung disease in cystic fibrosis (CF) patients. Both pathogens employ 'quorum sensing', i.e. cell-to-cell communication, via diffusible N-acyl-L-homoserine lactone (AHL) signal molecules, to regulate the production of a number of virulence determinants in vitro. However, to date, evidence that quorum sensing systems are functional and play a role in vivo is lacking. This study presents the first direct evidence for the presence of AHLs in CF sputum. A total of 42 samples from 25 CF patients were analysed using lux-based Escherichia coli AHL biosensors. AHLs were detected in sputum from patients colonised by P. aeruginosa or B. cepacia but not Staphylococcus aureus. Furthermore, using liquid chromatography-mass spectrometry and thin layer chromatography, we confirmed the presence of N-hexanoylhomoserine lactone and N-(3-oxododecanoyl)homoserine lactone respectively in sputum samples from patients colonised by P. aeruginosa.
Collapse
Affiliation(s)
- Barry Middleton
- School of Pharmaceutical Sciences, University of Nottingham, University Park, NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|