351
|
Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA. Genetic rescue to the rescue. Trends Ecol Evol 2015; 30:42-9. [DOI: 10.1016/j.tree.2014.10.009] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/26/2023]
|
352
|
Miller EJ, Eldridge MDB, Morris K, Thomas N, Herbert CA. Captive management and the maintenance of genetic diversity in a vulnerable marsupial, the greater bilby. AUSTRALIAN MAMMALOGY 2015. [DOI: 10.1071/am14009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The endemic Australian greater bilby (Macrotis lagotis) is a vulnerable and iconic species. It has declined significantly due to habitat loss, as well as competition and predation from introduced species. Conservation measures include a National Recovery Plan that incorporates several captive breeding programs. Two of these programs were established within 12 months of one another (1997/98), with the same number and sex ratio of founding individuals, but executed different breeding strategies: (1) unmanipulated mating in semi–free range natural habitat versus (2) minimising mean kinship in large enclosures, with the supplementation of new individuals into both populations. This study evaluates the long-term genetic impact of these programs and examines the congruency between the pedigree studbook estimates of diversity and molecular data. Our data demonstrate that genetic diversity was maintained in both populations, with the supplementation of new individuals contributing to the gene pool. The studbook estimates of diversity and inbreeding are not consistent with the microsatellite data and should not solely be relied upon to evaluate the genetic health of captive populations. Our analyses suggest that captive breeding programs may not require costly and intensive management to effectively maintain long-term genetic diversity in a promiscuous species.
Collapse
|
353
|
|
354
|
Hess JE, Caudill CC, Keefer ML, McIlraith BJ, Moser ML, Narum SR. Genes predict long distance migration and large body size in a migratory fish, Pacific lamprey. Evol Appl 2014; 7:1192-208. [PMID: 25558280 PMCID: PMC4275091 DOI: 10.1111/eva.12203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/17/2014] [Indexed: 12/20/2022] Open
Abstract
Elucidation of genetic mechanisms underpinning migratory behavior could help predict how changes in genetic diversity may affect future spatiotemporal distribution of a migratory species. This ability would benefit conservation of one such declining species, anadromous Pacific lamprey (Entosphenus tridentatus). Nonphilopatric migration of adult Pacific lamprey has homogenized population-level neutral variation but has maintained adaptive variation that differentiates groups based on geography, run-timing and adult body form. To investigate causes for this adaptive divergence, we examined 647 adult lamprey sampled at a fixed location on the Columbia River and radiotracked during their subsequent upstream migration. We tested whether genetic variation [94 neutral and adaptive single nucleotide polymorphisms (SNPs) previously identified from a genomewide association study] was associated with phenotypes of migration distance, migration timing, or morphology. Three adaptive markers were strongly associated with morphology, and one marker also correlated with upstream migration distance and timing. Genes physically linked with these markers plausibly influence differences in body size, which is also consistently associated with migration distance in Pacific lamprey. Pacific lamprey conservation implications include the potential to predict an individual's upstream destination based on its genotype. More broadly, the results suggest a genetic basis for intrapopulation variation in migration distance in migratory species.
Collapse
Affiliation(s)
- Jon E Hess
- Columbia River Inter-Tribal Fish Commission Hagerman, ID, USA
| | - Christopher C Caudill
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho Moscow, ID, USA
| | - Matthew L Keefer
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho Moscow, ID, USA
| | | | - Mary L Moser
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Seattle, WA, USA
| | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission Hagerman, ID, USA
| |
Collapse
|
355
|
Mijangos JL, Pacioni C, Spencer PBS, Craig MD. Contribution of genetics to ecological restoration. Mol Ecol 2014; 24:22-37. [DOI: 10.1111/mec.12995] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/17/2014] [Accepted: 11/01/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Jose Luis Mijangos
- School of Veterinary and Life Sciences; Murdoch University; Murdoch WA 6150 Australia
| | - Carlo Pacioni
- School of Veterinary and Life Sciences; Murdoch University; Murdoch WA 6150 Australia
| | - Peter B. S. Spencer
- School of Veterinary and Life Sciences; Murdoch University; Murdoch WA 6150 Australia
| | - Michael D. Craig
- School of Veterinary and Life Sciences; Murdoch University; Murdoch WA 6150 Australia
- School of Plant Biology; University of Western Australia; Crawley WA 6009 Australia
| |
Collapse
|
356
|
Aiello CM, Nussear KE, Walde AD, Esque TC, Emblidge PG, Sah P, Bansal S, Hudson PJ. Disease dynamics during wildlife translocations: disruptions to the host population and potential consequences for transmission in desert tortoise contact networks. Anim Conserv 2014. [DOI: 10.1111/acv.12147] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. M. Aiello
- Western Ecological Research Center; U.S. Geological Survey; Henderson NV USA
- Center for Infectious Disease Dynamics; Pennsylvania State University; University Park PA USA
| | - K. E. Nussear
- Western Ecological Research Center; U.S. Geological Survey; Henderson NV USA
| | - A. D. Walde
- Walde Research & Environmental Consulting; Atascadero CA USA
| | - T. C. Esque
- Western Ecological Research Center; U.S. Geological Survey; Henderson NV USA
| | - P. G. Emblidge
- Center for Infectious Disease Dynamics; Pennsylvania State University; University Park PA USA
| | - P. Sah
- Department of Biology; Georgetown University; Washington DC USA
| | - S. Bansal
- Department of Biology; Georgetown University; Washington DC USA
- Fogarty International Center; National Institutes of Health; Bethesda MD USA
| | - P. J. Hudson
- Center for Infectious Disease Dynamics; Pennsylvania State University; University Park PA USA
| |
Collapse
|
357
|
Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P. Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 2014; 7:1008-25. [PMID: 25553064 PMCID: PMC4231592 DOI: 10.1111/eva.12149] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/10/2014] [Indexed: 12/16/2022] Open
Abstract
Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework.
Collapse
Affiliation(s)
| | - Alexandra Pavlova
- School of Biological Sciences, Monash UniversityMelbourne, Vic., Australia
| | | | - Paul Sunnucks
- School of Biological Sciences, Monash UniversityMelbourne, Vic., Australia
| |
Collapse
|
358
|
Carroll SP, Jørgensen PS, Kinnison MT, Bergstrom CT, Denison RF, Gluckman P, Smith TB, Strauss SY, Tabashnik BE. Applying evolutionary biology to address global challenges. Science 2014; 346:1245993. [PMID: 25213376 PMCID: PMC4245030 DOI: 10.1126/science.1245993] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens, and pests that evolve too quickly and the second, from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This Review highlights both progress and gaps in genetic, developmental, and environmental manipulations across the life sciences that either target the rate and direction of evolution or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development.
Collapse
Affiliation(s)
- Scott P Carroll
- Department of Entomology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA. Institute for Contemporary Evolution, Davis, CA 95616, USA.
| | - Peter Søgaard Jørgensen
- Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark. Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Michael T Kinnison
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Carl T Bergstrom
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN 55108, USA
| | - Peter Gluckman
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Thomas B Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA. Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, 619 Charles E. Young Drive East, Los Angeles, 90095-1496, CA
| | - Sharon Y Strauss
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, One Shields Avenue, CA 95616, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
359
|
Li Y, Lancaster ML, Cooper SJB, Taylor AC, Carthew SM. Population structure and gene flow in the endangered southern brown bandicoot (Isoodon obesulus obesulus) across a fragmented landscape. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0661-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
360
|
Millar MA, Coates DJ, Byrne M. Extensive long-distance pollen dispersal and highly outcrossed mating in historically small and disjunct populations of Acacia woodmaniorum (Fabaceae), a rare banded iron formation endemic. ANNALS OF BOTANY 2014; 114:961-971. [PMID: 25100675 PMCID: PMC4171076 DOI: 10.1093/aob/mcu167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/30/2014] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Understanding patterns of pollen dispersal and variation in mating systems provides insights into the evolutionary potential of plant species and how historically rare species with small disjunct populations persist over long time frames. This study aims to quantify the role of pollen dispersal and the mating system in maintaining contemporary levels of connectivity and facilitating persistence of small populations of the historically rare Acacia woodmaniorum. METHODS Progeny arrays of A. woodmaniorum were genotyped with nine polymorphic microsatellite markers. A low number of fathers contributed to seed within single pods; therefore, sampling to remove bias of correlated paternity was implemented for further analysis. Pollen immigration and mating system parameters were then assessed in eight populations of varying size and degree of isolation. KEY RESULTS Pollen immigration into small disjunct populations was extensive (mean minimum estimate 40 % and mean maximum estimate 57 % of progeny) and dispersal occurred over large distances (≤1870m). Pollen immigration resulted in large effective population sizes and was sufficient to ensure adaptive and inbreeding connectivity in small disjunct populations. High outcrossing (mean tm = 0·975) and a lack of apparent inbreeding suggested that a self-incompatibility mechanism is operating. Population parameters, including size and degree of geographic disjunction, were not useful predictors of pollen dispersal or components of the mating system. CONCLUSIONS Extensive long-distance pollen dispersal and a highly outcrossed mating system are likely to play a key role in maintaining genetic diversity and limiting negative genetic effects of inbreeding and drift in small disjunct populations of A. woodmaniorum. It is proposed that maintenance of genetic connectivity through habitat and pollinator conservation will be a key factor in the persistence of this and other historically rare species with similar extensive long-distance pollen dispersal and highly outcrossed mating systems.
Collapse
Affiliation(s)
- Melissa A Millar
- Science and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Bentley, WA 6983, Australia
| | - David J Coates
- Science and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Bentley, WA 6983, Australia
| | - Margaret Byrne
- Science and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Bentley, WA 6983, Australia
| |
Collapse
|
361
|
Williams AV, Nevill PG, Krauss SL. Next generation restoration genetics: applications and opportunities. TRENDS IN PLANT SCIENCE 2014; 19:529-537. [PMID: 24767982 DOI: 10.1016/j.tplants.2014.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/18/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Restoration ecology is a young scientific discipline underpinning improvements in the rapid global expansion of ecological restoration. The application of molecular tools over the past 20 years has made an important contribution to understanding genetic factors influencing ecological restoration success. Here we illustrate how recent advances in next generation sequencing (NGS) methods are revolutionising the practical contribution of genetics to restoration. Novel applications include a dramatically enhanced capacity to measure adaptive variation for optimal seed sourcing, high-throughput assessment and monitoring of natural and restored biological communities aboveground and belowground, and gene expression analysis as a measure of genetic resilience of restored populations. Challenges remain in data generation, handling and analysis, and how best to apply NGS for practical outcomes in restoration.
Collapse
Affiliation(s)
- Anna V Williams
- School of Plant Biology, The University of Western Australia, Crawley, WA 6009, Australia; Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, West Perth, WA 6005, Australia
| | - Paul G Nevill
- School of Plant Biology, The University of Western Australia, Crawley, WA 6009, Australia; Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, West Perth, WA 6005, Australia
| | - Siegfried L Krauss
- School of Plant Biology, The University of Western Australia, Crawley, WA 6009, Australia; Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, West Perth, WA 6005, Australia.
| |
Collapse
|
362
|
Su J, Ji W, Wei Y, Zhang Y, Gleeson DM, Lou Z, Ren J. Genetic Structure and Demographic History of the Endangered and Endemic Schizothoracine FishGymnodiptychus pachycheilusin Qinghai-Tibetan Plateau. Zoolog Sci 2014; 31:515-22. [DOI: 10.2108/zs130238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
363
|
James EA, McDougall KL. Spatial genetic structure reflects extensive clonality, low genotypic diversity and habitat fragmentation in Grevillea renwickiana (Proteaceae), a rare, sterile shrub from south-eastern Australia. ANNALS OF BOTANY 2014; 114:413-23. [PMID: 24737718 PMCID: PMC4111381 DOI: 10.1093/aob/mcu049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/19/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS The association of clonality, polyploidy and reduced fecundity has been identified as an extinction risk for clonal plants. Compromised sexual reproduction limits both their ability to adapt to new conditions and their capacity to disperse to more favourable environments. Grevillea renwickiana is a prostrate, putatively sterile shrub reliant on asexual reproduction. Dispersal is most likely limited by the rate of clonal expansion via rhizomes. The nine localized populations constituting this species provide an opportunity to examine the extent of clonality and spatial genotypic diversity to evaluate its evolutionary prospects. METHODS Ten microsatellite loci were used to compare genetic and genotypic diversity across all sites with more intensive sampling at four locations (n = 185). The spatial distribution of genotypes and chloroplast DNA haplotypes based on the trnQ-rps16 intergenic spacer region were compared. Chromosome counts provided a basis for examining genetic profiles inconsistent with diploidy. KEY RESULTS Microsatellite analysis identified 46 multilocus genotypes (MLGs) in eight multilocus clonal lineages (MLLs). MLLs are not shared among sites, with two exceptions. Spatial autocorrelation was significant to 1·6 km. Genotypic richness ranged from 0 to 0·33. Somatic mutation is likely to contribute to minor variation between MLGs within clonal lineages. The eight chloroplast haplotypes identified were correlated with eight MLLs defined by ordination and generally restricted to single populations. Triploidy is the most likely reason for tri-allelic patterns. CONCLUSIONS Grevillea renwickiana comprises few genetic individuals. Sterility has most likely been induced by triploidy. Extensive lateral suckering in long-lived sterile clones facilitates the accumulation of somatic mutations, which contribute to the measured genetic diversity. Genetic conservation value may not be a function of population size. Despite facing evolutionary stagnation, sterile clonal species can play a vital role in mitigating ecological instability as floras respond to rapid environmental change.
Collapse
Affiliation(s)
- Elizabeth A James
- Royal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Victoria 3141, Australia School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Keith L McDougall
- NSW Office of Environment and Heritage, PO Box 733, Queanbeyan, NSW 2620, Australia Department of Environmental Management & Ecology, La Trobe University, PO Box 821, Wodonga, Victoria 3689, Australia
| |
Collapse
|
364
|
Miller AD, Sweeney OF, Whiterod NS, Van Rooyen AR, Hammer M, Weeks AR. Critically low levels of genetic diversity in fragmented populations of the endangered Glenelg spiny freshwater crayfish Euastacus bispinosus. ENDANGER SPECIES RES 2014. [DOI: 10.3354/esr00609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
365
|
Averill-Murray RC, Hagerty BE. Translocation Relative to Spatial Genetic Structure of the Mojave Desert Tortoise,Gopherus agassizii. CHELONIAN CONSERVATION AND BIOLOGY 2014. [DOI: 10.2744/ccb-1050.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
366
|
Clulow J, Trudeau VL, Kouba AJ. Amphibian Declines in the Twenty-First Century: Why We Need Assisted Reproductive Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:275-316. [DOI: 10.1007/978-1-4939-0820-2_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
367
|
Senn H, Banfield L, Wacher T, Newby J, Rabeil T, Kaden J, Kitchener AC, Abaigar T, Silva TL, Maunder M, Ogden R. Splitting or lumping? A conservation dilemma exemplified by the critically endangered dama gazelle (Nanger dama). PLoS One 2014; 9:e98693. [PMID: 24956104 PMCID: PMC4067283 DOI: 10.1371/journal.pone.0098693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/02/2014] [Indexed: 01/07/2023] Open
Abstract
Managers of threatened species often face the dilemma of whether to keep populations separate to conserve local adaptations and minimize the risk of outbreeding, or whether to manage populations jointly to reduce loss of genetic diversity and minimise inbreeding. In this study we examine genetic relatedness and diversity in three of the five last remaining wild populations of dama gazelle and a number of captive populations, using mtDNA control region and cytochrome b data. Despite the sampled populations belonging to the three putative subspecies, which are delineated according to phenotypes and geographical location, we find limited evidence for phylogeographical structure within the data and no genetic support for the putative subspecies. In the light of these data we discuss the relevance of inbreeding depression, outbreeding depression, adaptive variation, genetic drift, and phenotypic variation to the conservation of the dama gazelle and make some recommendations for its future conservation management. The genetic data suggest that the best conservation approach is to view the dama gazelle as a single species without subspecific divisions.
Collapse
Affiliation(s)
- Helen Senn
- WildGenes Laboratory, Royal Zoological Society of Scotland, Edinburgh, United Kingdom
| | - Lisa Banfield
- Conservation Department, Al Ain Zoo, Al Ain, Abu Dhabi, United Arab Emirates
| | - Tim Wacher
- Conservation Programmes, Zoologicial Society of London, Regents Park, London, United Kingdom
| | - John Newby
- Sahara Conservation Fund, L'Isle, Switzerland
| | | | - Jennifer Kaden
- WildGenes Laboratory, Royal Zoological Society of Scotland, Edinburgh, United Kingdom
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh, United Kingdom
- Institute of Geography, School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh, United Kingdom
| | - Teresa Abaigar
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (CSIC), Almería, Spain
| | - Teresa Luísa Silva
- CIBIO/InBIO, Centro de Investigção em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (CSIC), Almería, Spain
- Departamento de Biologia da, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Mike Maunder
- College of Arts and Sciences, Florida International University, Miami, Florida, United States of America
| | - Rob Ogden
- WildGenes Laboratory, Royal Zoological Society of Scotland, Edinburgh, United Kingdom
| |
Collapse
|
368
|
Senn H, Ogden R, Frosch C, Syrůčková A, Campbell-Palmer R, Munclinger P, Durka W, Kraus RHS, Saveljev AP, Nowak C, Stubbe A, Stubbe M, Michaux J, Lavrov V, Samiya R, Ulevicius A, Rosell F. Nuclear and mitochondrial genetic structure in the Eurasian beaver (Castor fiber) - implications for future reintroductions. Evol Appl 2014; 7:645-62. [PMID: 25067948 PMCID: PMC4105916 DOI: 10.1111/eva.12162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/01/2014] [Indexed: 12/24/2022] Open
Abstract
Many reintroduction projects for conservation fail, and there are a large number of factors that may contribute to failure. Genetic analysis can be used to help stack the odds of a reintroduction in favour of success, by conducting assessment of source populations to evaluate the possibility of inbreeding and outbreeding depression and by conducting postrelease monitoring. In this study, we use a panel of 306 SNP (single nucleotide polymorphism) markers and 487-489 base pairs of mitochondrial DNA control region sequence data to examine 321 individuals from possible source populations of the Eurasian beaver for a reintroduction to Scotland. We use this information to reassess the phylogenetic history of the Eurasian beavers, to examine the genetic legacy of past reintroductions on the Eurasian landmass and to assess the future power of the genetic markers to conduct ongoing monitoring via parentage analysis and individual identification. We demonstrate the capacity of medium density genetic data (hundreds of SNPs) to provide information suitable for applied conservation and discuss the difficulty of balancing the need for high genetic diversity against phylogenetic best fit when choosing source population(s) for reintroduction.
Collapse
Affiliation(s)
- Helen Senn
- WildGenes Laboratory, Royal Zoological Society of Scotland Edinburgh, UK
| | - Rob Ogden
- WildGenes Laboratory, Royal Zoological Society of Scotland Edinburgh, UK
| | - Christiane Frosch
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen, Germany
| | - Alena Syrůčková
- Department of Zoology, Faculty of Science, Charles University in Prague Prague, Czech Republic
| | | | - Pavel Munclinger
- Department of Zoology, Faculty of Science, Charles University in Prague Prague, Czech Republic
| | - Walter Durka
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ Halle, Germany
| | - Robert H S Kraus
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen, Germany
| | - Alexander P Saveljev
- Russian Research Institute of Game Management and Fur Farming, Russian Academy of Sciences Kirov, Russia
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen, Germany
| | - Annegret Stubbe
- Martin-Luther-Universität Halle-Wittenberg Institut für Biologie Bereich Zoologie/Molekulare Ökologie Hoher Weg 4 Halle/Saale, Germany
| | - Michael Stubbe
- Martin-Luther-Universität Halle-Wittenberg Institut für Biologie Domplatz 4 Halle/Saale, Germany
| | - Johan Michaux
- Conservation Genetics Unit, Institute of Botany (Bat. 22), University of Liège (Sart Tilman) Liège, Belgium
| | | | - Ravchig Samiya
- Department of Zoology, School of Biology and Biotechnology, National University of Mongolia Ulaanbaatar, Mongolia
| | - Alius Ulevicius
- Faculty of Natural Sciences, Vilnius University Vilnius, Lithuania
| | - Frank Rosell
- Telemark University College, Department of Environmental Sciences Telemark, Norway
| |
Collapse
|
369
|
Hess JE, Campbell NR, Docker MF, Baker C, Jackson A, Lampman R, McIlraith B, Moser ML, Statler DP, Young WP, Wildbill AJ, Narum SR. Use of genotyping by sequencing data to develop a high-throughput and multifunctional SNP panel for conservation applications in Pacific lamprey. Mol Ecol Resour 2014; 15:187-202. [PMID: 24842551 DOI: 10.1111/1755-0998.12283] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 11/29/2022]
Abstract
Next-generation sequencing data can be mined for highly informative single nucleotide polymorphisms (SNPs) to develop high-throughput genomic assays for nonmodel organisms. However, choosing a set of SNPs to address a variety of objectives can be difficult because SNPs are often not equally informative. We developed an optimal combination of 96 high-throughput SNP assays from a total of 4439 SNPs identified in a previous study of Pacific lamprey (Entosphenus tridentatus) and used them to address four disparate objectives: parentage analysis, species identification and characterization of neutral and adaptive variation. Nine of these SNPs are FST outliers, and five of these outliers are localized within genes and significantly associated with geography, run-timing and dwarf life history. Two of the 96 SNPs were diagnostic for two other lamprey species that were morphologically indistinguishable at early larval stages and were sympatric in the Pacific Northwest. The majority (85) of SNPs in the panel were highly informative for parentage analysis, that is, putatively neutral with high minor allele frequency across the species' range. Results from three case studies are presented to demonstrate the broad utility of this panel of SNP markers in this species. As Pacific lamprey populations are undergoing rapid decline, these SNPs provide an important resource to address critical uncertainties associated with the conservation and recovery of this imperiled species.
Collapse
Affiliation(s)
- Jon E Hess
- Columbia River Inter-Tribal Fish Commission, 3059-F National Fish Hatchery Rd, Hagerman, ID, 83332, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Gallagher RV, Makinson RO, Hogbin PM, Hancock N. Assisted colonization as a climate change adaptation tool. AUSTRAL ECOL 2014. [DOI: 10.1111/aec.12163] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Rachael V. Gallagher
- Department of Biological Sciences; Macquarie University; North Ryde NSW 2109 Australia
| | - Robert O. Makinson
- National Herbarium of NSW; Royal Botanic Gardens and Domain Trust; Sydney New South Wales Australia
| | | | - Nola Hancock
- Department of Biological Sciences; Macquarie University; North Ryde NSW 2109 Australia
| |
Collapse
|
371
|
McLean EH, Prober SM, Stock WD, Steane DA, Potts BM, Vaillancourt RE, Byrne M. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. PLANT, CELL & ENVIRONMENT 2014; 37:1440-51. [PMID: 24329726 DOI: 10.1111/pce.12251] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/30/2013] [Indexed: 05/08/2023]
Abstract
Widespread species often occur across a range of climatic conditions, through a combination of local genetic adaptations and phenotypic plasticity. Species with greater phenotypic plasticity are likely to be better positioned to cope with rapid anthropogenic climate changes, while those displaying strong local adaptations might benefit from translocations to assist the movement of adaptive genes as the climate changes. Eucalyptus tricarpa occurs across a climatic gradient in south-eastern Australia, a region of increasing aridity, and we hypothesized that this species would display local adaptation to climate. We measured morphological and physiological traits reflecting climate responses in nine provenances from sites of 460 to 1040 mm annual rainfall, in their natural habitat and in common gardens near each end of the gradient. Local adaptation was evident in functional traits and differential growth rates in the common gardens. Some traits displayed complex combinations of plasticity and genetic divergence among provenances, including clinal variation in plasticity itself. Provenances from drier locations were more plastic in leaf thickness, whereas leaf size was more plastic in provenances from higher rainfall locations. Leaf density and stomatal physiology (as indicated by δ(13)C and δ(18)O) were highly and uniformly plastic. In addition to variation in mean trait values, genetic variation in trait plasticity may play a role in climate adaptation.
Collapse
Affiliation(s)
- Elizabeth H McLean
- Science Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Western Australia, 6983, Australia; CSIRO Ecosystem Sciences, Private Bag 5, Wembley, Western Australia, 6913, Australia
| | | | | | | | | | | | | |
Collapse
|
372
|
Wright DJ, Spurgin LG, Collar NJ, Komdeur J, Burke T, Richardson DS. The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler. Mol Ecol 2014; 23:2165-77. [PMID: 24689851 PMCID: PMC4237152 DOI: 10.1111/mec.12740] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/10/2023]
Abstract
Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool.
Collapse
Affiliation(s)
- David J Wright
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK; NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
373
|
Costa e Silva J, Potts BM, Lopez GA. Heterosis may result in selection favouring the products of long-distance pollen dispersal in Eucalyptus. PLoS One 2014; 9:e93811. [PMID: 24751722 PMCID: PMC3994164 DOI: 10.1371/journal.pone.0093811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/27/2014] [Indexed: 12/11/2022] Open
Abstract
Using native trees from near the northern and southern extremities of the relatively continuous eastern distribution of Eucalyptus globulus in Tasmania, we compared the progenies derived from natural open-pollination (OP) with those generated from within-region and long-distance outcrossing. Controlled outcrossing amongst eight parents - with four parents from each of the northern and southern regions - was undertaken using a diallel mating scheme. The progeny were planted in two field trials located within the species native range in southern Tasmania, and their survival and diameter growth were monitored over a 13-year-period. The survival and growth performances of all controlled cross types exceeded those of the OP progenies, consistent with inbreeding depression due to a combination of selfing and bi-parental inbreeding. The poorer survival of the northern regional (♀N♂N) outcrosses compared with the local southern regional outcrosses (♀S♂S) indicated differential selection against the former. Despite this mal-adaptation of the non-local ♀N♂N crosses at both southern sites, the survival of the inter-regional hybrids (♀N♂S and ♀S♂N) was never significantly different from that of the local ♀S♂S crosses. Significant site-dependent heterosis was detected for the growth of the surviving long-distance hybrids. This was expressed as mid-parent heterosis, particularly at the more northern planting site. Heterosis increased with age, while the difference between the regional ♀N♂N and ♀S♂S crosses remained insignificant at any age at either site. Nevertheless, the results for growth suggest that the fitness of individuals derived from long-distance crossing may be better at the more northern of the planting sites. Our results demonstrate the potential for early-age assessments of pollen dispersal to underestimate realised gene flow, with local inbreeding under natural open-pollination resulting in selection favouring the products of longer-distance pollinations. Indeed, heterosis derived from long-distance pollinations may be sufficient to counter local mal-adaptation, at least in the first generation.
Collapse
Affiliation(s)
- João Costa e Silva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - Brad M. Potts
- School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Hobart, Tasmania, Australia
| | - Gustavo A. Lopez
- School of Biological Sciences and National Centre for Future Forest Industries, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
374
|
Population structure, inbreeding and local adaptation within an endangered riverine specialist: the nase (Chondrostoma nasus). CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0590-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
375
|
Rollinson N, Keith DM, Houde ALS, Debes PV, McBride MC, Hutchings JA. Risk assessment of inbreeding and outbreeding depression in a captive-breeding program. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2014; 28:529-540. [PMID: 24476089 DOI: 10.1111/cobi.12188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/07/2013] [Indexed: 06/03/2023]
Abstract
Captive-breeding programs can be implemented to preserve the genetic diversity of endangered populations such that the controlled release of captive-bred individuals into the wild may promote recovery. A common difficulty, however, is that programs are founded with limited wild broodstock, and inbreeding can become increasingly difficult to avoid with successive generations in captivity. Program managers must choose between maintaining the genetic purity of populations, at the risk of inbreeding depression, or interbreeding populations, at the risk of outbreeding depression. We evaluate these relative risks in a captive-breeding program for 3 endangered populations of Atlantic salmon (Salmo salar). In each of 2 years, we released juvenile F(1) and F(2) interpopulation hybrids, backcrosses, as well as inbred and noninbred within-population crosstypes into 9 wild streams. Juvenile size and survival was quantified in each year. Few crosstype effects were observed, but interestingly, the relative fitness consequences of inbreeding and outbreeding varied from year to year. Temporal variation in environmental quality might have driven some of these annual differences, by exacerbating the importance of maternal effects on juvenile fitness in a year of low environmental quality and by affecting the severity of inbreeding depression differently in different years. Nonetheless, inbreeding was more consistently associated with a negative effect on fitness, whereas the consequences of outbreeding were less predictable. Considering the challenges associated with a sound risk assessment in the wild and given that the effect of inbreeding on fitness is relatively predictable, we suggest that risk can be weighted more strongly in terms of the probable outcome of outbreeding. Factors such as genetic similarities between populations and the number of generations in isolation can sometimes be used to assess outbreeding risk, in lieu of experimentation.
Collapse
Affiliation(s)
- Njal Rollinson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | | | | | | | | | | |
Collapse
|
376
|
Moran EV, Alexander JM. Evolutionary responses to global change: lessons from invasive species. Ecol Lett 2014; 17:637-49. [DOI: 10.1111/ele.12262] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/23/2013] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Emily V. Moran
- ETH Zurich; Universitatstrasse 16 8092 Zurich Switzerland
| | | |
Collapse
|
377
|
Kubota H, Watanabe K. Loss of genetic diversity at an MHC locus in the endangered Tokyo bitterling Tanakia tanago (Teleostei: Cyprinidae). Zoolog Sci 2014; 30:1092-101. [PMID: 24320188 DOI: 10.2108/zsj.30.1092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetic diversity at a major histocompatibility complex (MHC) class II B gene was examined for two wild and three captive populations of the endangered Tokyo bitterling Tanakia tanago. A specific primer set was first developed to amplify the MHC II B exon 2 locus. Using single strand conformation polymorphism (SSCP) and sequencing analysis, 16 DAB3 alleles were detected with 56 nucleotide substitutions in the 276-bp region. In the putative antigen-binding sites of exon 2, the rate of nonsynonymous substitutions was significantly higher than that of synonymous substitutions (dN/dS = 2.79), indicating positive selection on the retention of polymorphism. The population from the Handa Natural Habitat Conservation Area and that from the Tone River system exhibited low variation (one and three alleles, respectively), whereas the captive population that originated from a mix of three distinct populations had the highest amounts of variation (14 alleles). The levels of heterozygosity at the MHC varied considerably among populations and showed significant correlations with those at putative neutral microsatellite markers, suggesting that genetic drift following a bottleneck has affected MHC variability in some populations. Comparisons between endangered and non-endangered fish species in previous reports and the present results indicate that the number of MHC alleles per population is on average 70% lower in endangered species than non-endangered species. Considering the functional consequence of this locus, attention should be paid to captive and wild endangered fish populations in terms of further loss of MHC alleles.
Collapse
Affiliation(s)
- Hitoshi Kubota
- 1 Tochigi PrefecturaI Fisheries Experimental Station, Sarado, Ohtawara, Tochigi 324-0404, Japan
| | | |
Collapse
|
378
|
Hancock N, Hughes L. Turning up the heat on the provenance debate: Testing the ‘local is best’ paradigm under heatwave conditions. AUSTRAL ECOL 2014. [DOI: 10.1111/aec.12122] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nola Hancock
- Department of Biological Sciences; Faculty of Science; Macquarie University; North Ryde NSW 2109 Australia
| | - Lesley Hughes
- Department of Biological Sciences; Faculty of Science; Macquarie University; North Ryde NSW 2109 Australia
| |
Collapse
|
379
|
Characterising genetic diversity and effective population size in one reservoir and two riverine populations of the threatened Macquarie perch. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0572-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
380
|
Molecular detection of intra-population structure in a threatened potoroid, Potorous tridactylus: conservation management and sampling implications. CONSERV GENET 2014. [DOI: 10.1007/s10592-013-0560-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
381
|
Seddon JM, Lee KE, Johnston SD, Nicolson VN, Pyne M, Carrick FN, Ellis WAH. Testing the regional genetic representativeness of captive koala populations in South-East Queensland. WILDLIFE RESEARCH 2014. [DOI: 10.1071/wr13103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Context Captive breeding for release back to the wild is an important component of ex situ conservation but requires genetic diversity that is representative of the wild population and has the ultimate goal of producing ecologically sustainable and resilient populations. However, defining and testing for representativeness of captive populations is difficult. Koalas (Phascolarctos cinereus) are bred for educational and tourism purposes in zoos and wildlife parks in South-East Queensland, but there are drastic declines evident in some wild koala populations in this region. Aim We compared genetic diversity at microsatellite loci and mitochondrial DNA in two captive koala populations with that of the local, wild koalas of South-East Queensland, determining the degree to which genetic diversity of neutral loci had been preserved and was represented in the captive populations. Key results The expected heterozygosity and the allelic richness was significantly greater in one captive colony than one wild South-East Queensland population. There was low but significant differentiation of the captive from wild populations using FST, with greater differentiation described by Jost’s Dest. In contrast, a newly introduced Kullback–Leibler divergence measure, which assesses similarity of allele frequencies, showed no significant divergence of colony and wild populations. The captive koalas lacked many of the mitochondrial haplotypes identified from South-East Queensland koalas and possessed seven other haplotypes. Conclusions Captive colonies of koalas have maintained levels of overall neutral genetic diversity similar to wild populations at microsatellite loci and low but significant differentiation likely resulted from drift and founder effects in small captive colonies or declining wild populations. Mitochondrial DNA suggests that captive founders were from a wider geographic source or that haplotypes have been lost locally. Implications Overall, tested captive koalas maintain sufficient microsatellite diversity to act as an in situ reservoir for neutral genetic diversity of regional populations.
Collapse
|
382
|
Li Y, Lancaster ML, Carthew SM, Packer JG, Cooper SJB. Delineation of conservation units in an endangered marsupial, the southern brown bandicoot (Isoodon obesulus obesulus), in South Australia/western Victoria, Australia. AUST J ZOOL 2014. [DOI: 10.1071/zo14038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conservation programs for threatened species are greatly benefiting from genetic data, for their power in providing knowledge of dispersal/gene flow across fragmented landscapes and for identifying populations of high conservation value. The endangered southern brown bandicoot (Isoodon obesulus obesulus) has a disjunct distribution range in South Australia, raising the possibility that populations of the subspecies may represent distinct conservation units. In the current study, we used a combination of 14 microsatellite and two mitochondrial sequence markers to investigate the phylogeography and population structure of I. o. obesulus in South Australia and south-western Victoria, with the aim of identifying any potential evolutionarily significant units and management units relevant to conservation management. Our phylogenetic/population analyses supported the presence of two distinct evolutionary lineages of I. o. obesulus. The first lineage comprised individuals from the Mount Lofty Ranges, Fleurieu Peninsula and Kangaroo Island. A second lineage comprised individuals from the south-east of South Australia and south-western Victoria. We propose that these two lineages represent distinct evolutionarily significant units and should be managed separately for conservation purposes. The findings also raise significant issues for the national conservation status of I. o. obesulus and suggest that the current subspecies classification needs further investigation.
Collapse
|
383
|
Scriber JM. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes. INSECTS 2013; 5:1-61. [PMID: 26462579 PMCID: PMC4592632 DOI: 10.3390/insects5010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 01/11/2023]
Abstract
Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become increasingly ecologically and evolutionarily predictable, but future conservation management programs are more likely to remain constrained by human behavior than by lack of academic knowledge.
Collapse
Affiliation(s)
- Jon Mark Scriber
- Department of Entomology, Michigan State University, East Lansing, Michigan, MI 48824, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
384
|
Brauer CJ, Unmack PJ, Hammer MP, Adams M, Beheregaray LB. Catchment-scale conservation units identified for the threatened Yarra pygmy perch (Nannoperca obscura) in highly modified river systems. PLoS One 2013; 8:e82953. [PMID: 24349405 PMCID: PMC3862729 DOI: 10.1371/journal.pone.0082953] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
Habitat fragmentation caused by human activities alters metapopulation dynamics and decreases biological connectivity through reduced migration and gene flow, leading to lowered levels of population genetic diversity and to local extinctions. The threatened Yarra pygmy perch, Nannoperca obscura, is a poor disperser found in small, isolated populations in wetlands and streams of southeastern Australia. Modifications to natural flow regimes in anthropogenically-impacted river systems have recently reduced the amount of habitat for this species and likely further limited its opportunity to disperse. We employed highly resolving microsatellite DNA markers to assess genetic variation, population structure and the spatial scale that dispersal takes place across the distribution of this freshwater fish and used this information to identify conservation units for management. The levels of genetic variation found for N. obscura are amongst the lowest reported for a fish species (mean heterozygosity of 0.318 and mean allelic richness of 1.92). We identified very strong population genetic structure, nil to little evidence of recent migration among demes and a minimum of 11 units for conservation management, hierarchically nested within four major genetic lineages. A combination of spatial analytical methods revealed hierarchical genetic structure corresponding with catchment boundaries and also demonstrated significant isolation by riverine distance. Our findings have implications for the national recovery plan of this species by demonstrating that N. obscura populations should be managed at a catchment level and highlighting the need to restore habitat and avoid further alteration of the natural hydrology.
Collapse
Affiliation(s)
- Chris J. Brauer
- Molecular Ecology Laboratory, School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Peter J. Unmack
- Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Basin Futures, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Michael P. Hammer
- School of Earth and Environmental Sciences, University of Adelaide, South Australia, Australia
- Curator of Fishes, Museum and Art Gallery of the Northern Territory, Darwin, Northern Territory, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
| | - Mark Adams
- School of Earth and Environmental Sciences, University of Adelaide, South Australia, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory, School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
385
|
Aitken SN, Whitlock MC. Assisted Gene Flow to Facilitate Local Adaptation to Climate Change. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135747] [Citation(s) in RCA: 549] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sally N. Aitken
- Department of Forest and Conservation Sciences,
- Center for Forest Conservation Genetics, and
| | - Michael C. Whitlock
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada;
| |
Collapse
|
386
|
Sex-linked and autosomal microsatellites provide new insights into island populations of the tammar wallaby. Heredity (Edinb) 2013; 112:333-42. [PMID: 24169646 DOI: 10.1038/hdy.2013.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/08/2022] Open
Abstract
The emerging availability of microsatellite markers from mammalian sex chromosomes provides opportunities to investigate both male- and female-mediated gene flow in wild populations, identifying patterns not apparent from the analysis of autosomal markers alone. Tammar wallabies (Macropus eugenii), once spread over the southern mainland, have been isolated on several islands off the Western Australian and South Australian coastlines for between 10,000 and 13,000 years. Here, we combine analyses of autosomal, Y-linked and X-linked microsatellite loci to investigate genetic variation in populations of this species on two islands (Kangaroo Island, South Australia and Garden Island, Western Australia). All measures of diversity were higher for the larger Kangaroo Island population, in which genetic variation was lowest at Y-linked markers and highest at autosomal markers (θ=3.291, 1.208 and 0.627 for autosomal, X-linked and Y-linked data, respectively). Greater relatedness among females than males provides evidence for male-biased dispersal in this population, while sex-linked markers identified genetic lineages not apparent from autosomal data alone. Overall genetic diversity in the Garden Island population was low, especially on the Y chromosome where most males shared a common haplotype, and we observed high levels of inbreeding and relatedness among individuals. Our findings highlight the utility of this approach for management actions, such as the selection of animals for translocation or captive breeding, and the ecological insights that may be gained by combining analyses of microsatellite markers on sex chromosomes with those derived from autosomes.
Collapse
|
387
|
Casas-Marce M, Soriano L, López-Bao JV, Godoy JA. Genetics at the verge of extinction: insights from the Iberian lynx. Mol Ecol 2013; 22:5503-15. [PMID: 24128177 DOI: 10.1111/mec.12498] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022]
Abstract
Population viability might become compromised by the loss of genetic diversity and the accumulation of inbreeding resulting from population decline and fragmentation. The Iberian lynx (Lynx pardinus) provides a paradigmatic example of a species at the verge of extinction, and because of the well-documented and different demographic histories of the two remaining populations (Doñana and Andújar), it provides the opportunity to evaluate the performance of analytical methods commonly applied to recently declined populations. We used mitochondrial sequences and 36 microsatellite markers to evaluate the current genetic status of the species and to assess the genetic signatures of its past history. Mitochondrial diversity was extremely low with only two haplotypes, alternatively fixed in each population. Both remnant populations have low levels of genetic diversity at microsatellite markers, particularly the population from Doñana, and genetic differentiation between the two populations is high. Bayesian coalescent-based methods suggest an earlier decline starting hundreds of years ago, while heterozygosity excess and M-ratio tests did not provide conclusive and consistent evidence for recent bottlenecks. Also, a model of gene flow received overwhelming support over a model of pure drift. Results that are in conflict with the known recent demography of the species call for caution in the use of these methods, especially when no information on previous demographic history is available. Overall, our results suggest that current genetic patterns in the Iberian lynx are mainly the result of its recent decline and fragmentation and alerts on possible genetic risks for its persistence. Conservation strategies should explicitly consider this threat and incorporate an integrated genetic management of wild, captive and re-introduced populations, including genetic restoration through translocations.
Collapse
Affiliation(s)
- M Casas-Marce
- Department of Integrative Ecology, Estación Biológica de Doñana (CSIC), C/ Américo Vespucio s/n, 41092, Sevilla, Spain
| | | | | | | |
Collapse
|
388
|
Limited structure and widespread diversity suggest potential buffers to genetic erosion in a threatened grassland shrub Pimelea spinescens (Thymelaeaceae). CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0539-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
389
|
Abstract
This paper attempts to explain circumstances under which local may be or may not be best. Natural selection may lead to local adaptation (LA), or it may be constrained by gene flow, founder effects, small population size, genetic drift, and archetype. ‘Specialist’ species display greater LA than ‘generalist’ species. Local genotypes are to a certain extent transient, being a consequence of past historical genetic patterns. Two recent meta-analyses found that while local performance exceeded the performance of a randomly chosen nonlocal population in 71% of comparisons, general adaptation across environments was as frequent as LA. Genotypes for restoration are most likely to be effective if they are adapted to current site conditions. As environmental change accelerates, both globally and locally, exceptions to ‘local is best’ may increase. For these reasons, ‘local is best’ may be better thought of as a testable hypothesis rather than as a general assumption. While either local or nonlocal plant material may be most effective for restoration practice depending on individual circumstances, local material will continue to be the first choice for restoration practitioners whenever this option is feasible and effective.
Collapse
Affiliation(s)
- Thomas A Jones
- USDA-Agricultural Research Service, Forage and Range Research Laboratory Logan, UT, USA
| |
Collapse
|
390
|
Smyser TJ, Johnson SA, Page LK, Hudson CM, Rhodes OE. Use of experimental translocations of Allegheny woodrat to decipher causal agents of decline. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2013; 27:752-762. [PMID: 23647164 DOI: 10.1111/cobi.12064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/21/2012] [Indexed: 06/02/2023]
Abstract
Translocations are an important tool for wildlife conservation, although progress in the field of reintroduction biology has been hindered by the ad hoc and opportunistic nature of many translocations. We used an experimental translocation to elucidate the role of raccoon roundworm (Baylisascaris procyonis) and inbreeding depression in the decline of the Allegheny woodrat (Neotoma magister), an endangered species. We translocated woodrats from genetically diverse populations in the core of the species range to 4 previously occupied sites (reintroductions) and 2 sites supporting genetically depauperate populations (reinforcements) in Indiana (U.S.A.). In 2 reintroduction sites and 1 reinforcement site, we distributed anthelmintic baits to passively deworm raccoons and reduce the risk of woodrat exposure to roundworms. The remaining sites served as controls. We used raccoon latrine surveys and fecal flotation to monitor temporal variability in roundworm prevalence and effect of treatment. We used live trapping and microsatellite genotyping to monitor the demographic and genetic response of translocated populations over the following 54 months. At the conclusion of the study, 4 of 6 translocations were successfully maintaining abundance through local recruitment. The distribution of anthelmintic baits reduced levels of roundworm contamination, but levels of contamination were also low in 2 of 3 control sites. Reintroductions failed at control sites, one of which was due to high roundworm exposure. The other failed control reintroduction was likely attributable to demographic stochasticity and limited reproductive potential following initial mortality within the first 4 months. In both control and treatment reinforcements, increases in both allelic richness and heterozygosity were accompanied by increases in abundance, which is suggestive of genetic rescue. Our results demonstrate that mitigation of roundworm exposure through the distribution of anthelmintic baits can facilitate woodrat recovery and that diversity within genetically depauperate populations can be restored through the introduction of a limited number of individuals.
Collapse
Affiliation(s)
- Timothy J Smyser
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN, USA.
| | | | | | | | | |
Collapse
|
391
|
Travis JMJ, Delgado M, Bocedi G, Baguette M, Bartoń K, Bonte D, Boulangeat I, Hodgson JA, Kubisch A, Penteriani V, Saastamoinen M, Stevens VM, Bullock JM. Dispersal and species’ responses to climate change. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.00399.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
392
|
A species in decline: genetic diversity and conservation of the Victorian eastern barred bandicoot, Perameles gunnii. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0512-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
393
|
Ramstad KM, Colbourne RM, Robertson HA, Allendorf FW, Daugherty CH. Genetic consequences of a century of protection: serial founder events and survival of the little spotted kiwi (Apteryx owenii). Proc Biol Sci 2013; 280:20130576. [PMID: 23677342 PMCID: PMC3673049 DOI: 10.1098/rspb.2013.0576] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/16/2013] [Indexed: 01/24/2023] Open
Abstract
We present the outcome of a century of post-bottleneck isolation of a long-lived species, the little spotted kiwi (Apteryx owenii, LSK) and demonstrate that profound genetic consequences can result from protecting few individuals in isolation. LSK were saved from extinction by translocation of five birds from South Island, New Zealand to Kapiti Island 100 years ago. The Kapiti population now numbers some 1200 birds and provides founders for new populations. We used 15 microsatellite loci to compare genetic variation among Kapiti LSK and the populations of Red Mercury, Tiritiri Matangi and Long Islands that were founded with birds from Kapiti. Two LSK native to D'Urville Island were also placed on Long Island. We found extremely low genetic variation and signatures of acute and recent genetic bottleneck effects in all four populations, indicating that LSK have survived multiple genetic bottlenecks. The Long Island population appears to have arisen from a single mating pair from Kapiti, suggesting there is no genetic contribution from D'Urville birds among extant LSK. The Ne/NC ratio of Kapiti Island LSK (0.03) is exceptionally low for terrestrial vertebrates and suggests that genetic diversity might still be eroding in this population, despite its large census size.
Collapse
Affiliation(s)
- Kristina M. Ramstad
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Rogan M. Colbourne
- Department of Conservation, Research and Development Group, PO Box 10-420, Wellington, New Zealand
| | - Hugh A. Robertson
- Department of Conservation, Research and Development Group, PO Box 10-420, Wellington, New Zealand
| | - Fred W. Allendorf
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Charles H. Daugherty
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| |
Collapse
|
394
|
Hedrick PW. Conservation genetics and the persistence and translocation of small populations: bighorn sheep populations as examples. Anim Conserv 2013. [DOI: 10.1111/acv.12064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- P. W. Hedrick
- School of Life Sciences; Arizona State University; Tempe AZ USA
| |
Collapse
|
395
|
Krauss SL, Sinclair EA, Bussell JD, Hobbs RJ. An ecological genetic delineation of local seed-source provenance for ecological restoration. Ecol Evol 2013; 3:2138-49. [PMID: 23919158 PMCID: PMC3728953 DOI: 10.1002/ece3.595] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/12/2013] [Accepted: 04/12/2013] [Indexed: 02/02/2023] Open
Abstract
An increasingly important practical application of the analysis of spatial genetic structure within plant species is to help define the extent of local provenance seed collection zones that minimize negative impacts in ecological restoration programs. Here, we derive seed sourcing guidelines from a novel range-wide assessment of spatial genetic structure of 24 populations of Banksia menziesii (Proteaceae), a widely distributed Western Australian tree of significance in local ecological restoration programs. An analysis of molecular variance (AMOVA) of 100 amplified fragment length polymorphism (AFLP) markers revealed significant genetic differentiation among populations (ΦPT = 0.18). Pairwise population genetic dissimilarity was correlated with geographic distance, but not environmental distance derived from 15 climate variables, suggesting overall neutrality of these markers with regard to these climate variables. Nevertheless, Bayesian outlier analysis identified four markers potentially under selection, although these were not correlated with the climate variables. We calculated a global R-statistic using analysis of similarities (ANOSIM) to test the statistical significance of population differentiation and to infer a threshold seed collection zone distance of ∼60 km (all markers) and 100 km (outlier markers) when genetic distance was regressed against geographic distance. Population pairs separated by >60 km were, on average, twice as likely to be significantly genetically differentiated than population pairs separated by <60 km, suggesting that habitat-matched sites within a 30-km radius around a restoration site genetically defines a local provenance seed collection zone for B. menziesii. Our approach is a novel probability-based practical solution for the delineation of a local seed collection zone to minimize negative genetic impacts in ecological restoration.
Collapse
Affiliation(s)
- Siegfried L Krauss
- Botanic Gardens and Parks Authority Fraser Avenue, West Perth, Western Australia, 6005, Australia ; School of Plant Biology, University of Western Australia Nedlands, Western Australia, 6009, Australia
| | | | | | | |
Collapse
|
396
|
Corlett RT, Westcott DA. Will plant movements keep up with climate change? Trends Ecol Evol 2013; 28:482-8. [PMID: 23721732 DOI: 10.1016/j.tree.2013.04.003] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 11/16/2022]
Abstract
In the face of anthropogenic climate change, species must acclimate, adapt, move, or die. Although some species are moving already, their ability to keep up with the faster changes expected in the future is unclear. 'Migration lag' is a particular concern with plants, because it could threaten both biodiversity and carbon storage. Plant movements are not realistically represented in models currently used to predict future vegetation and carbon-cycle feedbacks, so there is an urgent need to understand how much of a problem failure to track climate change is likely to be. Therefore, in this review, we compare how fast plants need to move with how fast they can move; that is, the velocity of climate change with the velocity of plant movement.
Collapse
Affiliation(s)
- Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| | | |
Collapse
|
397
|
Shirey PD, Kunycky BN, Chaloner DT, Brueseke MA, Lamberti GA. Commercial trade of federally listed threatened and endangered plants in the United States. Conserv Lett 2013. [DOI: 10.1111/conl.12031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Patrick D. Shirey
- Department of Biological Sciences, Galvin Life Sciences Building; University of Notre Dame; Notre Dame; IN; 46556-0369; USA
| | - Brianna N. Kunycky
- Department of Biological Sciences, Galvin Life Sciences Building; University of Notre Dame; Notre Dame; IN; 46556-0369; USA
| | - Dominic T. Chaloner
- Department of Biological Sciences, Galvin Life Sciences Building; University of Notre Dame; Notre Dame; IN; 46556-0369; USA
| | - Michael A. Brueseke
- Department of Biological Sciences, Galvin Life Sciences Building; University of Notre Dame; Notre Dame; IN; 46556-0369; USA
| | - Gary A. Lamberti
- Department of Biological Sciences, Galvin Life Sciences Building; University of Notre Dame; Notre Dame; IN; 46556-0369; USA
| |
Collapse
|
398
|
Harris S, Arnall S, Byrne M, Coates D, Hayward M, Martin T, Mitchell N, Garnett S. Whose backyard? Some precautions in choosing recipient sites for assisted colonisation of Australian plants and animals. ECOLOGICAL MANAGEMENT & RESTORATION 2013. [DOI: 10.1111/emr.12041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
399
|
The development of 10 novel polymorphic microsatellite markers through next generation sequencing and a preliminary population genetic analysis for the endangered Glenelg spiny crayfish, Euastacus bispinosus. Mol Biol Rep 2013; 40:4415-9. [DOI: 10.1007/s11033-013-2531-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
|
400
|
Miller AD, Versace VL, Matthews TG, Montgomery S, Bowie KC. Ocean currents influence the genetic structure of an intertidal mollusc in southeastern Australia - implications for predicting the movement of passive dispersers across a marine biogeographic barrier. Ecol Evol 2013; 3:1248-61. [PMID: 23762511 PMCID: PMC3678479 DOI: 10.1002/ece3.535] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/14/2013] [Indexed: 12/04/2022] Open
Abstract
Major disjunctions among marine communities in southeastern Australia have been well documented, although explanations for biogeographic structuring remain uncertain. Converging ocean currents, environmental gradients, and habitat discontinuities have been hypothesized as likely drivers of structuring in many species, although the extent to which species are affected appears largely dependent on specific life histories and ecologies. Understanding these relationships is critical to the management of native and invasive species, and the preservation of evolutionary processes that shape biodiversity in this region. In this study we test the direct influence of ocean currents on the genetic structure of a passive disperser across a major biogeographic barrier. Donax deltoides (Veneroida: Donacidae) is an intertidal, soft-sediment mollusc and an ideal surrogate for testing this relationship, given its lack of habitat constraints in this region, and its immense dispersal potential driven by year-long spawning and long-lived planktonic larvae. We assessed allele frequencies at 10 polymorphic microsatellite loci across 11 sample locations spanning the barrier region and identified genetic structure consistent with the major ocean currents of southeastern Australia. Analysis of mitochondrial DNA sequence data indicated no evidence of genetic structuring, but signatures of a species range expansion corresponding with historical inundations of the Bassian Isthmus. Our results indicate that ocean currents are likely to be the most influential factor affecting the genetic structure of D. deltoides and a likely physical barrier for passive dispersing marine fauna generally in southeastern Australia.
Collapse
Affiliation(s)
- Adam D Miller
- Department of Zoology, The University of Melbourne Parkville, Melbourne, Victoria, 3010, Australia ; School of Life and Environmental Sciences, Deakin University Warrnambool, Victoria, 3280, Australia
| | | | | | | | | |
Collapse
|