351
|
Jørgensen R, Purdy AE, Fieldhouse RJ, Kimber MS, Bartlett DH, Merrill AR. Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J Biol Chem 2008; 283:10671-8. [PMID: 18276581 DOI: 10.1074/jbc.m710008200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC(50) = 4.6 +/- 0.4 ng/ml) and crustaceans (Artemia nauplii LD(50) = 10 +/- 2 mug/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-A resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.
Collapse
Affiliation(s)
- René Jørgensen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
352
|
Leveau JHJ, Preston GM. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. THE NEW PHYTOLOGIST 2008; 177:859-876. [PMID: 18086226 DOI: 10.1111/j.1469-8137.2007.02325.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive nutrition from fungi: necrotrophy, extracellular biotrophy and endocellular biotrophy. Each is characterized by a set of uniquely sequential and differently overlapping interactions with the fungal target. We offer a detailed analysis of the nature of these interactions, as well as a comprehensive overview of methodologies for assessing and quantifying their individual contributions to the mycophagy phenotype. Furthermore, we discuss future prospects for the study and exploitation of bacterial mycophagy, including the need for appropriate tools to detect bacterial mycophagy in situ in order to be able to understand, predict and possibly manipulate the way in which mycophagous bacteria affect fungal activity, turnover, and community structure in soils and other ecosystems.
Collapse
Affiliation(s)
- Johan H J Leveau
- Netherlands Institute of Ecology (NIOO-KNAW), Heteren, the Netherlands
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
353
|
Abstract
Some bacterial species engage in two well-documented social behaviors: the formation of surface-associated communities known as biofilms, and intercellular signaling, or quorum sensing. Recent studies have begun to reveal how these two social behaviors are related in different species. This chapter will review the role quorum sensing plays in biofilm formation for different species. In addition, different aspects of quorum sensing in the context of multispecies biofilms will be discussed.
Collapse
|
354
|
Lowery CA, Dickerson TJ, Janda KD. Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem Soc Rev 2008; 37:1337-46. [DOI: 10.1039/b702781h] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
355
|
THEIN ZM, SAMARANAYAKE YH, SAMARANAYAKE LP. Dietary sugars, serum and the biocide chlorhexidine digluconate modify the population and structural dynamics of mixedCandida albicansandEscherichia colibiofilms. APMIS 2007; 115:1241-51. [DOI: 10.1111/j.1600-0643.2007.00735.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
356
|
Preoperative sterilization and disinfection of drill guide templates. Clin Oral Investig 2007; 12:179-87. [DOI: 10.1007/s00784-007-0153-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 09/03/2007] [Indexed: 11/26/2022]
|
357
|
Cugini C, Calfee MW, Farrow JM, Morales DK, Pesci EC, Hogan DA. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 2007; 65:896-906. [PMID: 17640272 DOI: 10.1111/j.1365-2958.2007.05840.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Farnesol is a sesquiterpene produced by many organisms, including the fungus Candida albicans. Here, we report that the addition of farnesol to cultures of Pseudomonas aeruginosa, an opportunistic human bacterial pathogen, leads to decreased production of the Pseudomonas quinolone signal (PQS) and the PQS-controlled virulence factor, pyocyanin. Within 15 min of farnesol addition, decreased transcript levels of pqsA, the first gene in the PQS biosynthetic operon, were observed. Transcript levels of pqsR (mvfR), which encodes the transcription factor that positively regulates pqsA, were unaffected. An Escherichia coli strain producing PqsR and containing the pqsA promoter fused to lacZ similarly showed that farnesol inhibited PQS-stimulated transcription. Electrophoretic mobility shift assays showed that, like PQS, farnesol stimulated PqsR binding to the pqsA promoter at a previously characterized LysR binding site, suggesting that farnesol promoted a non-productive interaction between PqsR and the pqsA promoter. Growth with C. albicans leads to decreased production of PQS and pyocyanin by P. aeruginosa, suggesting that the amount of farnesol produced by the fungus is sufficient to impact P. aeruginosa PQS signalling. Related isoprenoid compounds, but not other long-chain alcohols, also inhibited PQS production at micromolar concen-trations, suggesting that related compounds may participate in interspecies interactions with P. aeruginosa.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | |
Collapse
|
358
|
|
359
|
Kawarai T, Furukawa S, Ogihara H, Yamasaki M. Mixed-species biofilm formation by lactic acid bacteria and rice wine yeasts. Appl Environ Microbiol 2007; 73:4673-6. [PMID: 17526778 PMCID: PMC1932814 DOI: 10.1128/aem.02891-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found that species combinations such as Lactobacillus casei subsp. rhamnosus IFO3831 and Saccharomyces cerevisiae Kyokai-10 can form a mixed-species biofilm in coculture. Moreover, the Kyokai-10 yeast strain can form a biofilm in monoculture in the presence of conditioned medium (CM) from L. casei IFO3831. The active substance(s) in bacterial CM is heat sensitive and has a molecular mass of between 3 and 5 kDa. In biofilms from cocultures or CM monocultures, yeast cells had a distinct morphology, with many hill-like protrusions on the cell surface.
Collapse
Affiliation(s)
- Taketo Kawarai
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, 6F, Ichigaya Tokyu Building, 4-2-1 Kudan-kita, Chiyoda-ku, Tokyo 102-0073, Japan
| | | | | | | |
Collapse
|
360
|
Montes LR, Ibarguren M, Goñi FM, Stonehouse M, Vasil ML, Alonso A. Leakage-free membrane fusion induced by the hydrolytic activity of PlcHR(2), a novel phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2365-72. [PMID: 17560896 DOI: 10.1016/j.bbamem.2007.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/24/2007] [Accepted: 04/26/2007] [Indexed: 11/29/2022]
Abstract
PlcHR(2) is the paradigm member of a novel phospholipase C/phosphatase superfamily, with members in a variety of bacterial species. This paper describes the phospholipase C and sphingomyelinase activities of PlcHR(2) when the substrate is in the form of large unilamellar vesicles, and the subsequent effects of lipid hydrolysis on vesicle and bilayer stability, including vesicle fusion. PlcHR(2) cleaves phosphatidylcholine and sphingomyelin at equal rates, but is inactive on phospholipids that lack choline head groups. Calcium in the millimolar range does not modify in any significant way the hydrolytic activity of PlcHR(2) on choline-containing phospholipids. The catalytic activity of the enzyme induces vesicle fusion, as demonstrated by the concomitant observation of intervesicular total lipid mixing, inner monolayer-lipid mixing, and aqueous contents mixing. No release of vesicular contents is detected under these conditions. The presence of phosphatidylserine in the vesicle composition does not modify significantly PlcHR(2)-induced liposome aggregation, as long as Ca(2+) is present, but completely abolishes fusion, even in the presence of the cation. Each of the various enzyme-induced phenomena have their characteristic latency periods, that increase in the order lipid hydrolysis<vesicle aggregation<total lipid mixing<inner lipid mixing<contents mixing. Concomitant measurements of the threshold diacylglyceride+ceramide concentrations in the bilayer show that late events, e.g. lipid mixing, require a higher concentration of PlcHR(2) products than early ones, e.g. aggregation. When the above results are examined in the context of the membrane effects of other phospholipid phosphocholine hydrolases it can be concluded that aggregation is necessary, but not sufficient for membrane fusion to occur, that diacylglycerol is far more fusogenic than ceramide, and that vesicle membrane permeabilization occurs independently from vesicle fusion.
Collapse
Affiliation(s)
- L-Ruth Montes
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
361
|
Ikeda R, Saito F, Matsuo M, Kurokawa K, Sekimizu K, Yamaguchi M, Kawamoto S. Contribution of the mannan backbone of cryptococcal glucuronoxylomannan and a glycolytic enzyme of Staphylococcus aureus to contact-mediated killing of Cryptococcus neoformans. J Bacteriol 2007; 189:4815-26. [PMID: 17483230 PMCID: PMC1913461 DOI: 10.1128/jb.00412-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungal pathogen Cryptococcus neoformans is killed by the bacterium Staphylococcus aureus, and the killing is inhibited by soluble capsular polysaccharides. To investigate the mechanism of killing, cells in coculture were examined by scanning and transmission electron microscopy. S. aureus attached to the capsule of C. neoformans, and the ultrastructure of the attached C. neoformans cells was characteristic of dead cells. To identify the molecules that contributed to the fungal-bacterial interaction, we treated each with NaIO(4) or protease. Treatment of C. neoformans with NaIO(4) promoted adherence. It was inferred that cleavage of xylose and glucuronic acid side chains of glucuronoxylomannan (GXM) allowed S. aureus to recognize mannose residues in the backbone, which resisted periodate oxidation. On the other hand, treatment of S. aureus with protease decreased adherence, suggesting that protein contributed to attachment in S. aureus. In confirmation, side chain-cleaved polysaccharide or defined alpha-(1-->3)-mannan inhibited the killing at lower concentrations than native GXM did. Also, these polysaccharides reduced the adherence of the two species and induced clumping of pure S. aureus cells. alpha-(1-->3)-Mannooligosaccharides with a degree of polymerization (DP) of >/=3 induced cluster formation of S. aureus in a dose-dependent manner. Surface plasmon resonance analyses showed interaction of GXM and surface protein from S. aureus; the interaction was inhibited by oligosaccharides with a DP of > or =3. Conformations of alpha-(1-->3) oligosaccharides were predicted. The three-dimensional structures of mannooligosaccharides larger than triose appeared curved and could be imagined to be recognized by a hypothetical staphylococcal lectin. Native polyacrylamide gel electrophoresis of staphylococcal protein followed by electroblotting, enzyme-linked immunolectin assay, protein staining, and N-terminal amino acid sequencing suggested that the candidate protein was triosephosphate isomerase (TPI). The enzymatic activities were confirmed by using whole cells of S. aureus. TPI point mutants of S. aureus decreased the ability to interact with C. neoformans. Thus, TPI on S. aureus adheres to the capsule of C. neoformans by recognizing the structure of mannotriose units in the backbone of GXM; we suggest that this contact is required for killing of C. neoformans.
Collapse
Affiliation(s)
- Reiko Ikeda
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | | | | | | | | | | | | |
Collapse
|
362
|
Kaleli I, Cevahir N, Demir M, Yildirim U, Sahin R. Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens. Mycoses 2007; 50:74-8. [PMID: 17302753 DOI: 10.1111/j.1439-0507.2006.01322.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pseudomonads represent the major group of non-differentiating microorganisms that produce antibiotics. The antibiotic substances produced by this group of organisms are pyocyanin, pyrolnitrin and pseudomonic acid. This study was designed to investigate the in vivo and in vitro anticandidal activity of Pseudomonas aeruginosa strains against Candida species. Forty-four P. aeruginosa strains isolated from various specimens of intensive care patients were included in the study. All P. aeruginosa strains have pyocyanin pigment. Candida albicans ATCC 10231, Candida parapsilosis ATCC 22019, Candida krusei ATCC 6258 and a clinical isolate of Candida tropicalis were used to measure the anticandidal activity of Pseudomonas strains by Kerr's method. The total inhibition rates obtained by using blood agar of C. albicans, C. parapsilosis, C. krusei and C. tropicalis were 41%, 34%, 34% and 25% respectively. When Sabouraud dextrose agar (SDA) was used, the rates were detected as 45%, 39%, 48% and 25% respectively. In the mouse model of concomitant subcutaneous infection with Candida species and P. aeruginosa no yeast were recovered from skin cultures despite 100% detection of P. aeruginosa. Pseudomonas aeruginosa strains isolated from intensive care patients showed anticandidal activity against the Candida species in the present study and this point may be important in the following and treatment of patients.
Collapse
Affiliation(s)
- Ilknur Kaleli
- Department of Microbiology, Medical School, Pamukkale University, Denizli, Turkey
| | | | | | | | | |
Collapse
|
363
|
Straight PD, Fischbach MA, Walsh CT, Rudner DZ, Kolter R. A singular enzymatic megacomplex from Bacillus subtilis. Proc Natl Acad Sci U S A 2006; 104:305-10. [PMID: 17190806 PMCID: PMC1765455 DOI: 10.1073/pnas.0609073103] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPS), polyketide synthases (PKS), and hybrid NRPS/PKS are of particular interest, because they produce numerous therapeutic agents, have great potential for engineering novel compounds, and are the largest enzymes known. The predicted masses of known enzymatic assembly lines can reach almost 5 megadaltons, dwarfing even the ribosome (approximately 2.6 megadaltons). Despite their uniqueness and importance, little is known about the organization of these enzymes within the native producer cells. Here we report that an 80-kb gene cluster, which occupies approximately 2% of the Bacillus subtilis genome, encodes the subunits of approximately 2.5 megadalton active hybrid NRPS/PKS. Many copies of the NRPS/PKS assemble into a single organelle-like membrane-associated complex of tens to hundreds of megadaltons. Such an enzymatic megacomplex is unprecedented in bacterial subcellular organization and has important implications for engineering novel NRPS/PKSs.
Collapse
Affiliation(s)
| | - Michael A. Fischbach
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115; and
- Howard Hughes Medical Institute and Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Christopher T. Walsh
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115; and
- To whom correspondence may be addressed. E-mail:
or
| | | | - Roberto Kolter
- Departments of *Microbiology and Molecular Genetics and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
364
|
Hoffman LR, Déziel E, D'Argenio DA, Lépine F, Emerson J, McNamara S, Gibson RL, Ramsey BW, Miller SI. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2006; 103:19890-5. [PMID: 17172450 PMCID: PMC1750898 DOI: 10.1073/pnas.0606756104] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Opportunistic infections are often polymicrobial. Two of the most important bacterial opportunistic pathogens of humans, Pseudomonas aeruginosa and Staphylococcus aureus, frequently are coisolated from infections of catheters, endotracheal tubes, skin, eyes, and the respiratory tract, including the airways of people with cystic fibrosis (CF). Here, we show that suppression of S. aureus respiration by a P. aeruginosa exoproduct, 4-hydroxy-2-heptylquinoline-N-oxide (HQNO), protects S. aureus during coculture from killing by commonly used aminoglycoside antibiotics such as tobramycin. Furthermore, prolonged growth of S. aureus with either P. aeruginosa or with physiological concentrations of pure HQNO selects for typical S. aureus small-colony variants (SCVs), well known for stable aminoglycoside resistance and persistence in chronic infections, including those found in CF. We detected HQNO in the sputum of CF patients infected with P. aeruginosa, but not in uninfected patients, suggesting that this HQNO-mediated interspecies interaction occurs in CF airways. Thus, in all coinfections with P. aeruginosa, S. aureus may be underappreciated as a pathogen because of the formation of antibiotic-resistant and difficult to detect small-colony variants. Interspecies microbial interactions, analogous to those mediated by HQNO, commonly may alter not only the course of disease and the response to therapy, but also the population structure of bacterial communities that promote the health of host animals, plants, and ecosystems.
Collapse
Affiliation(s)
| | - Eric Déziel
- Institut National de la Recherche Scientifique–Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | | | - François Lépine
- Institut National de la Recherche Scientifique–Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | | | | | | | | | - Samuel I. Miller
- Microbiology
- Medicine, and
- Genome Sciences, University of Washington, Seattle, WA 98195; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
365
|
Abstract
Cryptococcus neoformans is a major cause of fungal meningoencephalitis in immunocompromised patients. Despite recent advances in the genetics and molecular biology of C. neoformans, and improved techniques for molecular epidemiology, aspects of the ecology, population structure, and mode of reproduction of this environmental pathogen remain to be established. Application of recent insights into the life cycle of C. neoformans and its different ways of engaging in sexual reproduction under laboratory conditions has just begun to affect research on the ecology and epidemiology of this human pathogenic fungus. The melding of these disparate disciplines should yield rich dividends in our understanding of the evolution of microbial pathogens, providing insights relevant to diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
366
|
Nseir S, Jozefowicz E, Cavestri B, Sendid B, Di Pompeo C, Dewavrin F, Favory R, Roussel-Delvallez M, Durocher A. Impact of antifungal treatment on Candida-Pseudomonas interaction: a preliminary retrospective case-control study. Intensive Care Med 2006; 33:137-42. [PMID: 17115135 PMCID: PMC7095372 DOI: 10.1007/s00134-006-0422-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 09/20/2006] [Indexed: 12/01/2022]
Abstract
Objective A pathogenic interaction between Candida albicans and Pseudomonas aeruginosa has recently been demonstrated. In addition, experimental and clinical studies identified Candida spp. tracheobronchial colonization as a risk factor for P. aeruginosa pneumonia. The aim of this study was to determine the impact of antifungal treatment on ventilator-associated pneumonia (VAP) or tracheobronchial colonization due to P. aeruginosa. Design and setting Retrospective observational case–control study conducted in a 30-bed ICU during a 1-year period. Patients and methods One hundred and two patients intubated and ventilated for longer than 48 h with tracheobronchial colonization by Candida spp. Routine screening for Candida spp. and P. aeruginosa was performed at ICU admission and weekly. Antifungal treatment was based on medical staff decisions. Patients with P. aeruginosa VAP or tracheobronchial colonization were matched (1:2) with patients without P. aeruginosa VAP or tracheobronchial colonization. In case and control patients, risk factors for P. aeruginosa VAP or tracheobronchial colonization were determined using univariate and multivariate analyses. Results Thirty-six patients (35%) received antifungal treatment. Nineteen patients (18%) developed a P. aeruginosa VAP or tracheobronchial colonization, and all were successfully matched. Antifungal treatment [31% vs 60%; p = 0.037, OR (95% CI) = 0.67 (0.45–0.90)], and duration of antifungal treatment (7 ± 11 vs 14 ± 14 days; p = 0.045, in case and control patients respectively) were significantly associated with reduced risk for P. aeruginosa VAP or tracheobronchial colonization. Antifungal treatment was the only variable independently associated with P. aeruginosa VAP or tracheobronchial colonization (OR = 0.68, 95% CI = 0.49–0.90, p = 0.046). Conclusion In patients with Candida spp. tracheobronchial colonization, antifungal treatment may be associated with reduced risk for P. aeruginosa VAP or tracheobronchial colonization. Electronic supplementary material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00134-006-0422-0 and is accessible for authorized users.
Collapse
Affiliation(s)
- Saad Nseir
- Intensive Care Unit, Calmette Hospital, University Hospital of Lille, boulevard du Pr Leclercq, 59037, Lille cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
367
|
Roux D, Ricard JD, Gaudry S, De Prost N, Dreyfuss D, Denamur E, Saumon G. 090 Influence de la colonisation des voies aériennes par Candida albicans sur l’émergence de pneumopathies à Pseudomonas aeruginosa chez le rat. Rev Mal Respir 2006. [DOI: 10.1016/s0761-8425(06)71918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
368
|
Abstract
Why do bacteria have shape? Is morphology valuable or just a trivial secondary characteristic? Why should bacteria have one shape instead of another? Three broad considerations suggest that bacterial shapes are not accidental but are biologically important: cells adopt uniform morphologies from among a wide variety of possibilities, some cells modify their shape as conditions demand, and morphology can be tracked through evolutionary lineages. All of these imply that shape is a selectable feature that aids survival. The aim of this review is to spell out the physical, environmental, and biological forces that favor different bacterial morphologies and which, therefore, contribute to natural selection. Specifically, cell shape is driven by eight general considerations: nutrient access, cell division and segregation, attachment to surfaces, passive dispersal, active motility, polar differentiation, the need to escape predators, and the advantages of cellular differentiation. Bacteria respond to these forces by performing a type of calculus, integrating over a number of environmental and behavioral factors to produce a size and shape that are optimal for the circumstances in which they live. Just as we are beginning to answer how bacteria create their shapes, it seems reasonable and essential that we expand our efforts to understand why they do so.
Collapse
Affiliation(s)
- Kevin D Young
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
369
|
Mukherjee PK, Mohamed S, Chandra J, Kuhn D, Liu S, Antar OS, Munyon R, Mitchell AP, Andes D, Chance MR, Rouabhia M, Ghannoum MA. Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect Immun 2006; 74:3804-16. [PMID: 16790752 PMCID: PMC1489753 DOI: 10.1128/iai.00161-06] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida biofilms formed on indwelling medical devices are increasingly associated with severe infections. In this study, we used proteomics and Western and Northern blotting analyses to demonstrate that alcohol dehydrogenase (ADH) is downregulated in Candida biofilms. Disruption of ADH1 significantly (P = 0.0046) enhanced the ability of Candida albicans to form biofilm. Confocal scanning laser microscopy showed that the adh1 mutant formed thicker biofilm than the parent strain (210 microm and 140 microm, respectively). These observations were extended to an engineered human oral mucosa and an in vivo rat model of catheter-associated biofilm. Inhibition of Candida ADH enzyme using disulfiram and 4-methylpyrazole resulted in thicker biofilm (P < 0.05). Moreover, biofilms formed by the adh1 mutant strain produced significantly smaller amounts of ethanol, but larger amounts of acetaldehyde, than biofilms formed by the parent and revertant strains (P < 0.0001), demonstrating that the effect of Adh1p on biofilm formation is mediated by its enzymatic activity. Furthermore, we found that 10% ethanol significantly inhibited biofilm formation in vitro, with complete inhibition of biofilm formation at ethanol concentrations of >/=20%. Similarly, using a clinically relevant rabbit model of catheter-associated biofilm, we found that ethanol treatment inhibited biofilm formation by C. albicans in vivo (P < 0.05) but not by Staphylococcus spp. (P > 0.05), indicating that ethanol specifically inhibits Candida biofilm formation. Taken together, our studies revealed that Adh1p contributes to the ability of C. albicans to form biofilms in vitro and in vivo and that the protein restricts biofilm formation through an ethanol-dependent mechanism. These results are clinically relevant and may suggest novel antibiofilm treatment strategies.
Collapse
Affiliation(s)
- Pranab K Mukherjee
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, 11100 Euclid Avenue, LKS-5028, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
370
|
Straight PD, Willey JM, Kolter R. Interactions between Streptomyces coelicolor and Bacillus subtilis: Role of surfactants in raising aerial structures. J Bacteriol 2006; 188:4918-25. [PMID: 16788200 PMCID: PMC1483000 DOI: 10.1128/jb.00162-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using mixed-species cultures, we have undertaken a study of interactions between two common spore-forming soil bacteria, Bacillus subtilis and Streptomyces coelicolor. Our experiments demonstrate that the development of aerial hyphae and spores by S. coelicolor is inhibited by surfactin, a lipopeptide surfactant produced by B. subtilis. Current models of aerial development by sporulating bacteria and fungi postulate a role for surfactants in reducing surface tension at air-liquid interfaces, thereby removing the major barrier to aerial growth. S. coelicolor produces SapB, an amphipathic peptide that is surface active and required for aerial growth on certain media. Loss of aerial hyphae in developmental mutants can be rescued by addition of purified SapB. While a surfactant from a fungus can substitute for SapB in a mutant that lacks aerial hyphae, not all surfactants have this effect. We show that surfactin is required for formation of aerial structures on the surface of B. subtilis colonies. However, in contrast to this positive role, our experiments reveal that surfactin acts antagonistically by arresting S. coelicolor aerial development and causing altered expression of developmental genes. Our observations support the idea that surfactants function specifically for a given organism regardless of their shared ability to reduce surface tension. Production of surfactants with antagonistic activity could provide a powerful competitive advantage during surface colonization and in competition for resources.
Collapse
Affiliation(s)
- Paul D Straight
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
371
|
Wargo MJ, Hogan DA. Fungal—bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol 2006; 9:359-64. [PMID: 16777473 DOI: 10.1016/j.mib.2006.06.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 06/06/2006] [Indexed: 11/16/2022]
Abstract
Fungi and bacteria co-inhabit a wide variety of environments, from soils and food products to plants and mammals. Interactions between bacteria and fungi can have dramatic effects on the survival, colonization and pathogenesis of these organisms. There are instances where bacteria provide fungi with compounds that enhance the production of fungal virulence determinants. Other bacteria produce factors that are likely to inhibit pathogenesis by repressing fungal filamentation. Furthermore, mixed bacterial-fungal biofilms can have properties that are distinct from their single-species counterparts. Clinical studies, in combination with in vitro model systems, are necessary to understand how bacterial-fungal interactions impact human health.
Collapse
Affiliation(s)
- Matthew J Wargo
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
372
|
Thein ZM, Samaranayake YH, Samaranayake LP. Effect of oral bacteria on growth and survival of Candida albicans biofilms. Arch Oral Biol 2006; 51:672-80. [PMID: 16620775 DOI: 10.1016/j.archoralbio.2006.02.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 02/07/2006] [Accepted: 02/13/2006] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to evaluate the effect of eight aerobic and anaerobic oral commensal bacterial species on in vitro Candida albicans biofilm development. A single isolate of C. albicans 2560 g, and eight different species of oral bacteria comprising, Actinomyces israelii, Lactobacillus acidophilus, Prevotella nigrescens, Porphyromonas gingivalis, Pseudomonas aeruginosa, Escherichia coli, Streptococcus mutans, and Streptococcus intermedius were studied using an in vitro biofilm assay. Biofilm formation was quantified in terms of the ability of Candida to grow on polystyrene plastic surfaces co-cultured with the foregoing bacteria. A viable cell count was used to quantify the sessile yeast growth and scanning electron microscopy was employed to confirm and visualize biofilm formation. Co-culture with differing concentrations of bacteria had variable effects on Candida biofilm formation. Co-culture with the highest concentrations of each of the foregoing bacteria resulted in a consistent reduction in the yeast counts in the candidal biofilm (P<0.05), except for L. acidophilus, S. mutans, and, S. intermedius co-cultures. Further, on regression analysis a significant negative correlation between the co-culture concentration of either P. gingivalis or E. coli and viable yeast counts in the biofilm was noted (P<0.05) although this was not evident for the other bacterial species. Taken together, our data indicate that, quantitative and qualitative nature of the bacteria modulate C. albicans biofilm formation in mixed species environments such as the oral cavity.
Collapse
Affiliation(s)
- Zaw M Thein
- Faculty of Dentistry, The University of Hong Kong, Oral Biosciences, 5/F, Prince Philip Dental Hospital, 34 Hospital Road, Hong Kong
| | | | | |
Collapse
|
373
|
Barnard AM, Salmond GP. Quorum Sensing: The Complexities of Chemical Communication between Bacteria. ACTA ACUST UNITED AC 2006. [DOI: 10.1159/000089986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
374
|
Frases S, Chaskes S, Dadachova E, Casadevall A. Induction by Klebsiella aerogenes of a melanin-like pigment in Cryptococcus neoformans. Appl Environ Microbiol 2006; 72:1542-50. [PMID: 16461709 PMCID: PMC1392915 DOI: 10.1128/aem.72.2.1542-1550.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While studying the interaction of Cryptococcus neoformans with Dictyostelium discoideum, we noticed that yeast colonies in agar with a feeder lawn of Klebsiella aerogenes were brown. This finding was intriguing because C. neoformans colonies are not pigmented unless they are provided with precursors for melanization. Strains of all C. neoformans serotypes produced brown pigment in response to K. aerogenes at 22, 30, and 37 degrees C. Pigment production required fungal laccase and was suppressed by high concentrations of glucose. Treatment of brown cells with guanidinium isothiocyanate and hot concentrated HCl yielded particulate material that had the physical and chemical characteristics of melanins. No pigment formation was observed when C. neoformans was exposed to live Escherichia coli or heat-killed K. aerogenes. Analysis of K. aerogenes supernatants revealed the presence of dopamine, which can be a substrate for melanin synthesis by C. neoformans. Our findings illustrate a remarkable interaction between a pathogenic fungus and a gram-negative bacterium, in which the bacterium produces a substrate that promotes fungal melanization. This observation provides a precedent that could explain the source of a substrate for C. neoformans melanization in the environment.
Collapse
Affiliation(s)
- Susana Frases
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
375
|
Saito F, Ikeda R. Killing of cryptococcus neoformans by Staphylococcus aureus: the role of cryptococcal capsular polysaccharide in the fungal-bacteria interaction. Med Mycol 2006; 43:603-12. [PMID: 16396245 DOI: 10.1080/13693780500078417] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Microbes compete for the environmental niche which is their host. To investigate the effects of a pathogenic bacterium on invasion and colonization by a pathogenic yeast, Cryptococcus neoformans was co-cultured with Staphylococcus aureus. We found that the number of colony forming units of C. neoformans was decreased by Staphylococcus aureus. In contrast, the viability of Candida albicans was not affected. Under the microscope, wild-type C. neoformans cells were shown to be surrounded by S. aureus, while cells of a capsuleless mutant of C. neoformans were not. C. neoformans was not killed when a membrane separated it from S. aureus in co-culture. Killing was confirmed by staining with cyanoditolyl tetrazolium chloride: S. aureus stained red, indicating viability, while C. neojormans did not stain, indicating lethality. The in situ terminal deoxynucleotidyl transferase-mediated dUTR nick end labeling (TUNEL) assay indicated cell death with fragmentation of DNA of C. neoformans. Capsular polysaccharide from C. neoformans inhibited the killing. Treatment of the crude polysaccharide with protease increased the inhibition. The protective activity resided in the glucuronoxylomannan (GXM) fraction, although the concentration required for the inhibition was high. These results suggest that S. aureus kills C. neoformans by a process that involves attachment to the cryptococcal capsule.
Collapse
Affiliation(s)
- Fumito Saito
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | | |
Collapse
|
376
|
Azoulay E, Timsit JF, Tafflet M, de Lassence A, Darmon M, Zahar JR, Adrie C, Garrouste-Orgeas M, Cohen Y, Mourvillier B, Schlemmer B. Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia. Chest 2006; 129:110-7. [PMID: 16424420 DOI: 10.1378/chest.129.1.110] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Recovery of Candida from the respiratory tract of a critically ill patient receiving mechanical ventilation (MV) usually indicates colonization rather than infection of the respiratory tract. However, interactions between Candida and bacteria, particularly Pseudomonas, have been reported. Thus, Candida colonization of the respiratory tract may predispose to bacterial ventilator-associated pneumonia (VAP). METHODS In a multicenter study of immunocompetent critically ill patients receiving MV for > 2 days, we compared the incidence of pneumonia in patients with and without (exposed/unexposed) respiratory-tract Candida colonization, matched on study center, admission year, and MV duration. RESULTS Over the 4-year study period, of the 803 patients meeting study inclusion criteria in the six study centers, 214 patients (26.6%) had respiratory tract Candida colonization. Candida albicans was the most common species (68.7%), followed by Candida glabrata (20.1%) and Candida tropicalis (13.1%). Extrapulmonary Candida colonization was more common in exposed patients (39.7% vs 8.3%, p = 0.01). Exposed patients had longer ICU and hospital stays but similar mortality to unexposed patients. The matched exposed/unexposed nested cohort study identified bronchial Candida colonization as an independent risk factor for pneumonia (24.1% vs 17.6%; adjusted odds ratio [OR], 1.58; 95% confidence interval [CI], 0.94 to 2.68; p = 0.0860); the risk increase was greatest for Pseudomonas pneumonia (9% vs 4.8%; adjusted OR, 2.22; 95% CI, 1.00 to 4.92; p = 0.049). CONCLUSIONS Candida colonization of the respiratory tract is common in patients receiving MV for > 2 days and is associated with prolonged ICU and hospital stays, and with an increased risk of Pseudomonas VAP.
Collapse
Affiliation(s)
- Elie Azoulay
- Medical ICU, Saint Louis Teaching Hospital, 1 Ave Claude Vellefaux, 75010 Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
P441 – P678. Clin Microbiol Infect 2006. [PMCID: PMC7128322 DOI: 10.1111/j.1470-9465.2006.12_4_1427.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
378
|
Martin SW, Douglas LM, Konopka JB. Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth. EUKARYOTIC CELL 2005; 4:1191-202. [PMID: 16002645 PMCID: PMC1168967 DOI: 10.1128/ec.4.7.1191-1202.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of morphogenesis in the human fungal pathogen Candida albicans is under investigation to better understand how the switch between budding and hyphal growth is linked to virulence. Therefore, in this study we examined the ability of C. albicans to undergo a distinct type of morphogenesis to form large thick-walled chlamydospores whose role in infection is unclear, but they act as a resting form in other species. During chlamydospore morphogenesis, cells switch to filamentous growth and then develop elongated suspensor cells that give rise to chlamydospores. These filamentous cells were distinct from true hyphae in that they were wider and were not inhibited by the quorum-sensing factor farnesol. Instead, farnesol increased chlamydospore production, indicating that quorum sensing can also have a positive role. Nuclear division did not occur across the necks of chlamydospores, as it does in budding. Interestingly, nuclei divided within the suspensor cells, and then one daughter nucleus subsequently migrated into the chlamydospore. Septins were not detected near mitotic nuclei but were localized at chlamydospore necks. At later stages, septins localized throughout the chlamydospore plasma membrane and appeared to form long filamentous structures. Deletion of the CDC10 or CDC11 septins caused greater curvature of cells growing in a filamentous manner and morphological defects in suspensor cells and chlamydospores. These studies identify aspects of chlamydospore morphogenesis that are distinct from bud and hyphal morphogenesis.
Collapse
Affiliation(s)
- Stephen W Martin
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
379
|
Stradomska TJ, Bobula-Milewska B, Bauer A, Mielniczuk Z, Dabkowska M, Syczewska M, Dzierzanowska D. Urinary D-arabinitol/L-arabinitol levels in infants undergoing long-term antibiotic therapy. J Clin Microbiol 2005; 43:5351-4. [PMID: 16208016 PMCID: PMC1248520 DOI: 10.1128/jcm.43.10.5351-5354.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-term antibiotic therapy is one of the main risk factors for mycosis. The urinary D-arabinitol/L-arabinitol (D-/L-ARA) ratio (a biomarker of several Candida species) was determined by gas chromatography with an electron capture detector in samples from 51 infants undergoing long-term antibiotic therapy. Although 47 of these children had higher D-/L-ARA ratios than healthy controls (P<0.0003), their values nonetheless remained within upper-normal limits (D-/L-ARA ratio of <3.6). Four children with suspected invasive candidiasis had above-normal ratios that normalized with fluconazole treatment.
Collapse
Affiliation(s)
- Teresa J Stradomska
- Department of Laboratory Diagnostics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-736 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
380
|
Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 2005; 71:3786-96. [PMID: 16000790 PMCID: PMC1169021 DOI: 10.1128/aem.71.7.3786-3796.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that xanthobaccin A from the rhizoplane bacterium Lysobacter sp. strain SB-K88 suppresses damping-off disease caused by Pythium sp. in sugar beet. In this study we focused on modes of Lysobacter sp. strain SB-K88 root colonization and antibiosis of the bacterium against Aphanomyces cochlioides, a pathogen of damping-off disease. Scanning electron microscopic analysis of 2-week-old sugar beet seedlings from seeds previously inoculated with SB-K88 revealed dense colonization on the root surfaces and a characteristic perpendicular pattern of Lysobacter colonization possibly generated via development of polar, brush-like fimbriae. In colonized regions a semitransparent film apparently enveloping the root and microcolonies were observed on the root surface. This Lysobacter strain also efficiently colonized the roots of several plants, including spinach, tomato, Arabidopsis thaliana, and Amaranthus gangeticus. Plants grown from both sugar beet and spinach seeds that were previously treated with Lysobacter sp. strain SB-K88 displayed significant resistance to the damping-off disease triggered by A. cochlioides. Interestingly, zoospores of A. cochlioides became immotile within 1 min after exposure to a SB-K88 cell suspension, a cell-free supernatant of SB-K88, or pure xanthobaccin A (MIC, 0.01 microg/ml). In all cases, lysis followed within 30 min in the presence of the inhibiting factor(s). Our data indicate that Lysobacter sp. strain SB-K88 has a direct inhibitory effect on A. cochlioides, suppressing damping-off disease. Furthermore, this inhibitory effect of Lysobacter sp. strain SB-K88 is likely due to a combination of antibiosis and characteristic biofilm formation at the rhizoplane of the host plant.
Collapse
Affiliation(s)
- Md Tofazzal Islam
- Laboratory of Ecological Chemistry, Graduate School of Agriculture, Hokkaido University, Kita-Ku, Sapporo 060-8589, Japan
| | | | | | | | | |
Collapse
|
381
|
Valdivia RH. Modeling the function of bacterial virulence factors in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 3:827-34. [PMID: 15302815 PMCID: PMC500883 DOI: 10.1128/ec.3.4.827-834.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Raphael H Valdivia
- Mailing address: Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
382
|
Affiliation(s)
- Gordon Ramage
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
383
|
Abstract
What are the genetic origins of human pathogens? An international group of scientists discussed this topic at a workshop that took place in late October 2004 in Baeza (Spain). Focusing primarily on bacterial pathogens, they examined the role that pathogenicity islands and bacteriophages play on determining the virulence properties that distinguish closely related members of a given species, such as host range and tissue specificity. They also discussed an instance in which closely related bacterial species differ in the production of a cell surface modification mediating resistance to an antibiotic as a result of the disparate regulation of homologous genes. In certain pathogens, genes normally carrying out housekeeping functions may adopt new functions, whereas in other organisms, genes that respond to stresses associated with non-host environments are silenced during infection to prevent the expression of products that interfere with the normal colonization process. The adaptive behaviour of certain pathogens relies on gene variation at certain loci that by virtue of containing polymeric repeats in regulatory or coding regions, can generate variants that may or may not express products that modify the cell surface of the organism. The meeting also addressed the properties of ORFan genes, which have no homologues in the sequence databases, as well as the creation of genes de novo by duplication and divergence.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Howard Hughes Medical Institute, Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave., St. Louis, Missouri 63110-1093, USA.
| | | |
Collapse
|
384
|
Gupta N, Haque A, Mukhopadhyay G, Narayan RP, Prasad R. Interactions between bacteria and Candida in the burn wound. Burns 2005; 31:375-8. [PMID: 15774298 DOI: 10.1016/j.burns.2004.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Accepted: 11/11/2004] [Indexed: 11/20/2022]
Abstract
In order to understand whether the presence of some bacterial species affects the growth of Candida sp. in the wounds of burn patients, we have studied the effect of various bacterial species, collected from burn wounds on the growth of Candida sp. on Sabouraud dextrose agar (SDA) slants. A total of 300 burn patient samples were analyzed over a period of 2 years. Results of this analysis revealed that Pseudomonas sp. when present alone or in combination with other bacterial species invariably inhibited Candida sp. growth. Thus, we conclude that the absence of Candida sp. in burn wounds, where Pseudomonas sp. is present, is due to the inhibition of Candida growth by this bacterial species.
Collapse
Affiliation(s)
- Nivedita Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
385
|
Abstract
Microbes often construct and live within surface-associated multicellular communities known as biofilms. The precise structure, chemistry and physiology of the biofilm all vary with the nature of its resident microbes and local environment. However, an important commonality among biofilms is that their structural integrity critically depends upon an extracellular matrix produced by their constituent cells. Extracellular matrices might be as diverse as biofilms, and they contribute significantly to the organization of the community. This review discusses recent advances in our understanding of the extracellular matrix and its role in biofilm biology.
Collapse
Affiliation(s)
- Steven S Branda
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
386
|
Pierce GE. Pseudomonas aeruginosa, Candida albicans, and device-related nosocomial infections: implications, trends, and potential approaches for control. J Ind Microbiol Biotechnol 2005; 32:309-18. [PMID: 15868157 DOI: 10.1007/s10295-005-0225-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Accepted: 03/19/2005] [Indexed: 11/28/2022]
Abstract
For many years, device-associated infections and particularly device-associated nosocomial infections have been of considerable concern. Recently, this concern was heightened as a result of increased antibiotic resistance among the common causal agents of nosocomial infections, the appearance of new strains which are intrinsically resistant to the antibiotics of choice, and the emerging understanding of the role biofilms may play in device-associated infections and the development of increased antibiotic resistance. Pseudomonas aeruginosa and Candida albicans are consistently identified as some of the more important agents of nosocomial infections. In light of the recent information regarding device-associated nosocomial infections, understanding the nature of P. aeruginosa and C. albicans infections is increasingly important. These two microorganisms demonstrate: (1) an ability to form biofilms on the majority of devices employed currently, (2) increased resistance/tolerance to antibiotics when associated with biofilms, (3) documented infections noted for virtually all indwelling devices, (4) opportunistic pathogenicity, and (5) persistence in the hospital environment. To these five demonstrated characteristics, two additional areas of interest are emerging: (a) the as yet unclear relationship of these two microorganisms to those species of highly resistant Pseudomonas spp and Candida spp that are of increasing concern with device-related infections, and (b) the recent research showing the dynamic interaction of P. aeruginosa and C. albicans in patients with cystic fibrosis. An understanding of these two opportunistic pathogens in the context of their ecosystems/biofilms also has significant potential for the development of novel and effective approaches for the control and treatment of device-associated infections.
Collapse
Affiliation(s)
- George E Pierce
- Department of Biology, Georgia State University, Atlanta, 30303, USA.
| |
Collapse
|
387
|
Hogan DA, Vik A, Kolter R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 2005; 54:1212-23. [PMID: 15554963 DOI: 10.1111/j.1365-2958.2004.04349.x] [Citation(s) in RCA: 434] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Candida albicans is an opportunistic pathogen that is commonly found as a member of the human microflora. The ability of C. albicans to alter its cellular morphology has been associated with its virulence; yeast cells are more prevalent in commensal interactions whereas filamentous cells appear important in opportunistic infections. C. albicans encounters a multitude of other microbial species in the host environment and it is likely that they impact the C. albicans transition between virulent and non-virulent states. Here, we report that C. albicans morphology is significantly affected by the presence of Pseudomonas aeruginosa, another opportunistic pathogen. In a screen using a C. albicans HWP1-lacZ strain to indicate regions of filamentous growth, we identified P. aeruginosa mutants incapable of inhibiting C. albicans filamentation. Through these studies, we found that 3-oxo-C12 homoserine lactone, a cell-cell signalling molecule produced by P. aeruginosa, was sufficient to inhibit C. albicans filamentation without affecting fungal growth rates. Both microscopic analysis and real-time reverse transcription polymerase chain reaction analysis of morphology-specific markers confirmed that filamentation was suppressed by 200 microM 3-oxo-C12 homoserine lactone. Structurally related compounds with a 12-carbon chain length, e.g. C12-acyl homoserine lactone and dodecanol also affected C. albicans filamentation at similar concentrations. In contrast, other acylated homoserine lactones of different chain lengths did not affect fungal morphology. The activity of 3OC12HSL is compared with that of farnesol, a C. albicans-produced molecule also with a C12-backbone. The effects that bacteria have on the morphology of C. albicans represents one of the ways by which bacteria can influence the behaviour of fungal cells.
Collapse
Affiliation(s)
- Deborah A Hogan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
388
|
Péchy-Tarr M, Bottiglieri M, Mathys S, Lejbølle KB, Schnider-Keel U, Maurhofer M, Keel C. RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:260-272. [PMID: 15782640 DOI: 10.1094/mpmi-18-0260] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pseudomonas fluorescens CHA0 is an effective biocontrol agent of root diseases caused by fungal pathogens. The strain produces the antibiotics 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) that make essential contributions to pathogen suppression. This study focused on the role of the sigma factor RpoN (sigma54) in regulation of antibiotic production and biocontrol activity in P. fluorescens. An rpoN in-frame-deletion mutant of CHAO had a delayed growth, was impaired in the utilization of several carbon and nitrogen sources, and was more sensitive to salt stress. The rpoN mutant was defective for flagella and displayed drastically reduced swimming and swarming motilities. Interestingly, the rpoN mutant showed a severalfold enhanced production of DAPG and expression of the biosynthetic gene phlA compared with the wild type and the mutant complemented with monocopy rpoN+. By contrast, loss of RpoN function resulted in markedly lowered PLT production and plt gene expression, suggesting that RpoN controls the balance of the two antibiotics in strain CHA0. In natural soil microcosms, the rpoN mutant was less effective in protecting cucumber from a root rot caused by Pythium ultimum. Remarkably, the mutant was not significantly impaired in its root colonization capacity, even at early stages of root infection by Pythium spp. Taken together, our results establish RpoN for the first time as a major regulator of biocontrol activity in Pseudomonas fluorescens.
Collapse
Affiliation(s)
- Maria Péchy-Tarr
- Department de Microbiologie Fondamentale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
389
|
Toutain CM, Zegans ME, O'Toole GA. Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. J Bacteriol 2005; 187:771-7. [PMID: 15629949 PMCID: PMC543560 DOI: 10.1128/jb.187.2.771-777.2005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium capable of twitching, swimming, and swarming motility. In this study, we present evidence that P. aeruginosa has two flagellar stators, conserved in all pseudomonads as well as some other gram-negative bacteria. Either stator is sufficient for swimming, but both are necessary for swarming motility under most of the conditions tested, suggesting that these two stators may have different roles in these two types of motility.
Collapse
Affiliation(s)
- Christine M Toutain
- Department of Microbiology and Immunology, Room 505, Vail Building, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
390
|
Boer WD, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 2004; 29:795-811. [PMID: 16102603 DOI: 10.1016/j.femsre.2004.11.005] [Citation(s) in RCA: 741] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 10/07/2004] [Accepted: 11/19/2004] [Indexed: 11/19/2022] Open
Abstract
The colonization of land by plants appears to have coincided with the appearance of mycorrhiza-like fungi. Over evolutionary time, fungi have maintained their prominent role in the formation of mycorrhizal associations. In addition, however, they have been able to occupy other terrestrial niches of which the decomposition of recalcitrant organic matter is perhaps the most remarkable. This implies that, in contrast to that of aquatic organic matter decomposition, bacteria have not been able to monopolize decomposition processes in terrestrial ecosystems. The emergence of fungi in terrestrial ecosystems must have had a strong impact on the evolution of terrestrial bacteria. On the one hand, potential decomposition niches, e.g. lignin degradation, have been lost for bacteria, whereas on the other hand the presence of fungi has itself created new bacterial niches. Confrontation between bacteria and fungi is ongoing, and from studying contemporary interactions, we can learn about the impact that fungi presently have, and have had in the past, on the ecology and evolution of terrestrial bacteria. In the first part of this review, the focus is on niche differentiation between soil bacteria and fungi involved in the decomposition of plant-derived organic matter. Bacteria and fungi are seen to compete for simple plant-derived substrates and have developed antagonistic strategies. For more recalcitrant organic substrates, e.g. cellulose and lignin, both competitive and mutualistic strategies appear to have evolved. In the second part of the review, bacterial niches with respect to the utilization of fungal-derived substrates are considered. Here, several lines of development can be recognized, ranging from mutualistic exudate-consuming bacteria that are associated with fungal surfaces to endosymbiotic and mycophagous bacteria. In some cases, there are indications of fungal specific selection in fungus-associated bacteria, and possible mechanisms for such selection are discussed.
Collapse
Affiliation(s)
- Wietse de Boer
- NIOO-Centre for Terrestrial Ecology, Department of Plant Microorganism Interactions, Heteren, The Netherlands.
| | | | | | | |
Collapse
|
391
|
Noverr MC, Huffnagle GB. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 2004; 72:6206-10. [PMID: 15501745 PMCID: PMC523025 DOI: 10.1128/iai.72.11.6206-6210.2004] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is an opportunistic dimorphic fungus that inhabits various host mucosal sites. Conversion from the yeast to the hyphal form has been associated with increased virulence and mucosal invasiveness. C. albicans morphogenesis is regulated by multiple signals and signaling pathways. However, signals that control morphogenesis in vivo are unknown. We investigated the effects of host long chain fatty acids, eicosanoids, and bacterial short chain fatty acids on control of germination. None of the C18 or C20 fatty acids tested had an effect on enhancing germ tube formation (arachidonic acid, oleic acid, linolenic acid, or gamma-linolenic acid). Among the different eicosanoids, both prostaglandin E2 and thromboxane B2 significantly enhanced serum-induced germination by C. albicans. Addition of antiprostaglandin or antithromboxane antibodies to serum alone inhibited germ tube formation by almost 30%, while control antibody had no effect, indicating that these eicosanoids are major morphogenic factors in the serum. Since these molecules also bind to albumin, this may also explain the hyphal transforming activity in serum that associates with albumin. Interestingly, short chain fatty acids (butyric acid), the product of lactic acid bacteria (LAB), inhibited germination. In addition, LAB culture supernatants as well as live LAB also inhibited C. albicans morphogenesis. Overall, these results indicate that fatty acid metabolites and fatty acid pathways can up-regulate and down-regulate germination in C. albicans.
Collapse
Affiliation(s)
- Mairi C Noverr
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109-0642, USA
| | | |
Collapse
|
392
|
Curvale-Fauchet N, Botterel F, Legrand P, Guillot J, Bretagne S. Frequency of intravascular catheter colonization by Malassezia spp. in adult patients. Haufigkeit der Besiedelung von intravaskularen Kathetern mit Malassezia spp. bei erwachsenen Patienten. Mycoses 2004; 47:491-4. [PMID: 15601455 DOI: 10.1111/j.1439-0507.2004.01047.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Colonization of intravascular catheters (IVCs) with lipid-dependent Malassezia spp. is rarely reported in adult patients probably because of the absence of additional lipids in routine culture media. Therefore, we systematically seeded 983 consecutive IVC onto Dixon medium compatible with the growth of Malassezia spp. Seven (0.7%) IVCs were positive. Six of them were from surgical patients. Four of them also yielded common bacteria. Identification using PCR-RFLP and restriction enzymes yielded M. furfur and M. sympodialis. Colonization of IVCs with Malassezia spp. does not appear negligible and warrants additional studies to evaluate the clinical relevance of such findings and the role of this yeast in biofilm formation.
Collapse
Affiliation(s)
- Nathalie Curvale-Fauchet
- Laboratoire de Parasitologie-Mycologie, Hôpital Henri Mondor (AP-HP), Université Paris XII, and UMR BIPAR 956, Créteil, France
| | | | | | | | | |
Collapse
|
393
|
Barker AP, Vasil AI, Filloux A, Ball G, Wilderman PJ, Vasil ML. A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol Microbiol 2004; 53:1089-98. [PMID: 15306013 DOI: 10.1111/j.1365-2958.2004.04189.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pseudomonas aeruginosa and other bacterial pathogens express one or more homologous extracellular phospholipases C (PLC) that are secreted through the inner membrane via the twin arginine translocase (TAT) pathway. Analysis of TAT mutants of P. aeruginosa uncovered a previously unidentified extracellular PLC that is secreted via the Sec pathway (PlcB). Whereas all presently known PLCs of P. aeruginosa (PlcH, PlcN and PlcB) hydrolyse phosphatidylcholine (PC), only PlcB is active on phosphatidylethanolamine (PE). plcB candidates were identified based on deductions made from bioinformatics data and extant DNA microarray data. Among these candidates, a gene (PA0026) required for the expression of an extracellular PE-PLC was identified. The protein encoded by PA0026 has limited, but significant similarity, over a short region (approximately 60aa of 328), to a class of zinc-dependent prokaryotic PLCs. A conserved His residue of PlcB (His216) that is required for coordinate binding of zinc in this class of PLCs was mutated. Analysis of this mutant established that the protein encoded by PA0026 is PlcB. Three in-dependent recently published reports indicate that homoserine lactone-mediated quorum sensing regulates the expression of PA0026 (i.e. plcB). PlcB, but not PlcH or PlcN, is required for directed twitching motility up a gradient of certain kinds of phospholipids. This response shows specificity for the fatty acid moiety of the phospholipid.
Collapse
Affiliation(s)
- Adam P Barker
- Department of Microbiology, 4200 East Ninth Ave., University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
394
|
Abstract
The human fungal pathogen Candida albicans has many morphological forms. Recent advances in genomics and cell biology are providing an improved understanding of the molecular regulation of cell shape, and providing insights into the relationships between morphogenesis and virulence. This understanding may improve our ability to develop strategies to combat Candida infections.
Collapse
Affiliation(s)
- Malcolm Whiteway
- Health Sector, Biotechnology Research Institute, 6100 Royalmount, Montreal, H4P 2R2, Canada.
| | | |
Collapse
|
395
|
Abstract
Although polymicrobial diseases are not a new concept for microbiologists, they are experiencing a resurgence of interest owing to the development of suitable animal models and new molecular techniques that allow these diseases to be studied effectively. This broad review provides an excellent introduction to this fascinating topic. Examples are included of each type of polymicrobial disease and the animal models that are used to study these diseases are discussed. In many instances, schematics for the animal model are presented. Viral co-infections including bovine viral diarrhoeal viruses, porcine reproductive and respiratory syndrome, mixed hepatitis virus infections and HIV co-infection with hepatitis virus are discussed, together with attempts to model these diseases in animals. Viral and bacterial co-infections are reviewed with a special focus on otitis media and the rodent models that have been used to probe this important childhood illness. Of the polybacterial diseases, periodontitis is one of the best understood and a clinically relevant rodent model is now available. This model, and the role of biofilm formation in periodontitis are examined. Fungal infections of humans are often referred to as 'opportunistic' but in fact these infections are often fungal co-infections with viruses such as HIV and fungal mixed co-infections. The roles of these infections in disease and the rodent models used to study them are discussed. Parasite co-infections are thought to have a role in the severity of malaria and the severity of Lyme arthritis. These diseases and attempts to model them are evaluated. Finally, co-infections that are associated with virus-induced immunosuppression are discussed, together with their animal models.
Polymicrobial diseases involve two or more microorganisms that act synergistically, or in succession, to mediate complex disease processes. Although polymicrobial diseases in animals and humans can be caused by similar organisms, these diseases are often also caused by organisms from different kingdoms, genera, species, strains, substrains and even by phenotypic variants of a single species. Animal models are often required to understand the mechanisms of pathogenesis, and to develop therapies and prevention regimes. However, reproducing polymicrobial diseases of humans in animal hosts presents significant challenges.
Collapse
Affiliation(s)
- Lauren O Bakaletz
- Center for Microbial Pathogenesis, Columbus Children's Research Institute, Department of Pediatrics, The Ohio State University College of Medicine & Public Health, 700 Children's Drive, Columbus, Ohio 43205-2696, USA.
| |
Collapse
|
396
|
Abstract
Biofilm formation by Pseudomonas aeruginosa is hypothesized to follow a developmental pattern initiated by attachment to a surface followed by microcolony formation and mature biofilm development. Swimming and twitching motility are important for attachment and biofilm development in P. aeruginosa. However, it is clear that many P. aeruginosa strains lacking swimming motility exist as biofilms in the lungs of cystic fibrosis patients. Consequently, we have developed a dynamic attachment assay to identify motility-independent attachment-defective mutants. Using transposon mutagenesis, we identified 14 novel dynamic attachment-deficient (dad) mutants including four mutants specific to dynamic assay conditions (dad specific). Two of the dad-specific mutants contain insertions in genes involved in sensing and responding to external stimuli, implying a significant impact of external factors on the biofilm developmental pathway. Observations of initial attachment and long-term biofilm formation characterized our dad mutants into two distinct classes: biofilm delayed and biofilm impaired. Biofilm-delayed mutants form wild-type biofilms but are delayed at least 24 h compared with the wild type, whereas biofilm-impaired mutants never form wild-type biofilms in our assays. We propose a dynamic model for attachment and biofilm formation in P. aeruginosa including these two classes.
Collapse
Affiliation(s)
- Matthew M Ramsey
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|
397
|
Wang LH, He Y, Gao Y, Wu JE, Dong YH, He C, Wang SX, Weng LX, Xu JL, Tay L, Fang RX, Zhang LH. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol 2004; 51:903-12. [PMID: 14731288 DOI: 10.1046/j.1365-2958.2003.03883.x] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular signals are the key components of microbial cell-cell communication systems. This report identified a diffusible signal factor (DSF), which regulates virulence in Xanthomonas campestris pv. campestris, as cis-11-methyl-2-dodecenoic acid, an alpha,beta unsaturated fatty acid. Analysis of DSF derivatives established the double bond at the alpha,beta positions as the most important structural feature for DSF biological activity. A range of bacterial pathogens, including several Mycobacterium species, also displayed DSF-like activity. Furthermore, DSF is structurally and functionally related to farnesoic acid (FA), which regulates morphological transition and virulence by Candida albicans, a fungal pathogen. Similar to FA, which is also an alpha,beta unsaturated fatty acid, DSF inhibits the dimorphic transition of C. albicans at a physiologically relevant concentration. We conclude that alpha,beta unsaturated fatty acids represent a new class of extracellular signals for bacterial and fungal cell-cell communications. As prokaryote-eukaryote interactions are ubiquitous, such cross-kingdom conservation in cell-cell communication systems might have significant ecological and economic importance.
Collapse
Affiliation(s)
- Lian-Hui Wang
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
398
|
Steenbergen JN, Nosanchuk JD, Malliaris SD, Casadevall A. Interaction of Blastomyces dermatitidis, Sporothrix schenckii, and Histoplasma capsulatum with Acanthamoeba castellanii. Infect Immun 2004; 72:3478-88. [PMID: 15155655 PMCID: PMC415723 DOI: 10.1128/iai.72.6.3478-3488.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several dimorphic fungi are important human pathogens, but the origin and maintenance of virulence in these organisms is enigmatic, since an interaction with a mammalian host is not a requisite for fungal survival. Recently, Cryptococcus neoformans was shown to interact with macrophages, slime molds, and amoebae in a similar manner, suggesting that fungal pathogenic strategies may arise from environmental interactions with phagocytic microorganisms. In this study, we examined the interactions of three dimorphic fungi with the soil amoeba Acanthameobae castellanii. Yeast forms of Blastomyces dermatitidis, Sporothrix schenckii, and Histoplasma capsulatum were each ingested by amoebae and macrophages, and phagocytosis of yeast cells resulted in amoeba death and fungal growth. H. capsulatum conidia were also cytotoxic to amoebae. For each fungal species, exposure of yeast cells to amoebae resulted in an increase in hyphal cells. Exposure of an avirulent laboratory strain of H. capsulatum to A. castellanii selected for, or induced, a phenotype of H. capsulatum that caused a persistent murine lung infection. These results are consistent with the view that soil amoebae may contribute to the selection and maintenance of certain traits in pathogenic dimorphic fungi that confer on these microbes the capacity for virulence in mammals.
Collapse
Affiliation(s)
- Judith N Steenbergen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
399
|
Guttman DS. Plants as models for the study of human pathogenesis. Biotechnol Adv 2004; 22:363-82. [PMID: 15063457 DOI: 10.1016/j.biotechadv.2003.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 11/20/2003] [Indexed: 12/29/2022]
Abstract
There are many common disease mechanisms used by bacterial pathogens of plants and humans. They use common means of attachment, secretion and genetic regulation. They share many virulence factors, such as extracellular polysaccharides and some type III secreted effectors. Plant and human innate immune systems also share many similarities. Many of these shared bacterial virulence mechanisms are homologous, but even more appear to have independently converged on a common function. This combination of homologous and analogous systems reveals conserved and critical steps in the disease process. Given these similarities, and the many experimental advantages of plant biology, including ease of replication, stringent genetic and reproductive control, and high throughput with low cost, it is proposed that plants would make excellent models for the study of human pathogenesis.
Collapse
Affiliation(s)
- David S Guttman
- Department of Botany, University of Toronto, 25 Willcocks St., Toronto, ON, Canada M5S 3B2.
| |
Collapse
|
400
|
Kus JV, Tullis E, Cvitkovitch DG, Burrows LL. Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolates from cystic fibrosis (CF) versus non-CF patients. Microbiology (Reading) 2004; 150:1315-1326. [PMID: 15133094 DOI: 10.1099/mic.0.26822-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type IV pili (TFP) are important colonization factors of the opportunistic pathogenPseudomonas aeruginosa, involved in biofilm formation and attachment to host cells. This study undertook a comprehensive analysis of TFP alleles in more than 290 environmental, clinical, rectal and cystic fibrosis (CF) isolates ofP. aeruginosa. Based on the results, a new system of nomenclature is proposed, in whichP. aeruginosaTFP are divided into five distinct phylogenetic groups. Each pilin allele is stringently associated with characteristic, distinct accessory genes that allow the identification of the allele by specific PCR. The invariant association of the pilin and accessory genes implies horizontal transfer of the entire locus. Analysis of pilin allele distribution among isolates from various sources revealed a striking bias in the prevalence of isolates with group I pilin genes from CF compared with non-CF human sources (P<0·0001), suggesting this particular pilin type, which can be post-translationally modified by glycosylation via the action of TfpO (PilO), may confer a colonization or persistence advantage in the CF host. This allele was also predominant in paediatric CF isolates (29 of 43; 67·4 %), showing that this bias is apparent early in colonization. Group I pilins were also the most common type found in environmental isolates tested. To the authors' knowledge, this is the first example of aP. aeruginosavirulence factor allele that is strongly associated with CF isolates.
Collapse
Affiliation(s)
- Julianne V Kus
- Department of Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Centre for Infection and Biomaterials Research, Hospital for Sick Children Research Institute and Department of Surgery, University of Toronto, 7142A Elm Wing, 555 University Avenue, Toronto, ON, Canada M5G 1X8
| | - Elizabeth Tullis
- Adult Cystic Fibrosis Clinic, St Michael's Hospital, Toronto, ON, Canada
| | - Dennis G Cvitkovitch
- Department of Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Lori L Burrows
- Department of Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Centre for Infection and Biomaterials Research, Hospital for Sick Children Research Institute and Department of Surgery, University of Toronto, 7142A Elm Wing, 555 University Avenue, Toronto, ON, Canada M5G 1X8
| |
Collapse
|