351
|
Han Y, Zhu L, Wu W, Zhang H, Hu W, Dai L, Yang Y. Small Molecular Immune Modulators as Anticancer Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:547-618. [PMID: 32185725 DOI: 10.1007/978-981-15-3266-5_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After decades of intense effort, immune checkpoint inhibitors have been conclusively demonstrated to be effective in cancer treatments and thus are revolutionizing the concepts in the treatment of cancers. Immuno-oncology has arrived and will play a key role in cancer treatment in the foreseeable future. However, efforts to find novel methods to improve the immune response to cancer have not ceased. Small-molecule approaches offer inherent advantages over biologic immunotherapies since they can cross cell membranes, penetrate into tumor tissue and tumor microenvironment more easily, and are amenable to be finely controlled than biological agents, which may help reduce immune-related adverse events seen with biologic therapies and provide more flexibility for the combination use with other therapies and superior clinical benefit. On the one hand, small-molecule therapies can modulate the immune response to cancer by restoring the antitumor immunity, promoting more effective cytotoxic lymphocyte responses, and regulating tumor microenvironment, either directly or epigenetically. On the other hand, the combination of different mechanisms of small molecules with antibodies and other biologics demonstrated admirable synergistic effect in clinical settings for cancer treatment and may expand antibodies' usefulness for broader clinical applications. This chapter provides an overview of small-molecule immunotherapeutic approaches either as monotherapy or in combination for the treatment of cancer.
Collapse
Affiliation(s)
- Yongxin Han
- Lapam Capital LLC., 17C1, Tower 2, Xizhimenwai Street, Xicheng District, Beijing, 100044, China.
| | - Li Zhu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Wei Wu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Hui Zhang
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Wei Hu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Liguang Dai
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Yanqing Yang
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| |
Collapse
|
352
|
Teijeira Á, Garasa S, Gato M, Alfaro C, Migueliz I, Cirella A, de Andrea C, Ochoa MC, Otano I, Etxeberria I, Andueza MP, Nieto CP, Resano L, Azpilikueta A, Allegretti M, de Pizzol M, Ponz-Sarvisé M, Rouzaut A, Sanmamed MF, Schalper K, Carleton M, Mellado M, Rodriguez-Ruiz ME, Berraondo P, Perez-Gracia JL, Melero I. CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity. Immunity 2020; 52:856-871.e8. [PMID: 32289253 DOI: 10.1016/j.immuni.2020.03.001] [Citation(s) in RCA: 480] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 12/14/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
Neutrophils are expanded and abundant in cancer-bearing hosts. Under the influence of CXCR1 and CXCR2 chemokine receptor agonists and other chemotactic factors produced by tumors, neutrophils, and granulocytic myeloid-derived suppressor cells (MDSCs) from cancer patients extrude their neutrophil extracellular traps (NETs). In our hands, CXCR1 and CXCR2 agonists proved to be the major mediators of cancer-promoted NETosis. NETs wrap and coat tumor cells and shield them from cytotoxicity, as mediated by CD8+ T cells and natural killer (NK) cells, by obstructing contact between immune cells and the surrounding target cells. Tumor cells protected from cytotoxicity by NETs underlie successful cancer metastases in mice and the immunotherapeutic synergy of protein arginine deiminase 4 (PAD4) inhibitors, which curtail NETosis with immune checkpoint inhibitors. Intravital microscopy provides evidence of neutrophil NETs interfering cytolytic cytotoxic T lymphocytes (CTLs) and NK cell contacts with tumor cells.
Collapse
Affiliation(s)
- Álvaro Teijeira
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain.
| | - Saray Garasa
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
| | - María Gato
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Carlos Alfaro
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Itziar Migueliz
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
| | - Assunta Cirella
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
| | - Carlos de Andrea
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain; Department of Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Carmen Ochoa
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Itziar Otano
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Iñaki Etxeberria
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Maria Pilar Andueza
- Department of Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Celia P Nieto
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
| | - Leyre Resano
- Department of Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Arantza Azpilikueta
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | | | - Mariano Ponz-Sarvisé
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain; Department of Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ana Rouzaut
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Miguel F Sanmamed
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Kurt Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Mario Mellado
- Chemokine Signaling Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - María E Rodriguez-Ruiz
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Pedro Berraondo
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Jose L Perez-Gracia
- Department of Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain.
| |
Collapse
|
353
|
Chang RB, Beatty GL. The interplay between innate and adaptive immunity in cancer shapes the productivity of cancer immunosurveillance. J Leukoc Biol 2020; 108:363-376. [PMID: 32272502 DOI: 10.1002/jlb.3mir0320-475r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
The immune system is a vital determinant of cancer and shapes its trajectory. Notably, the immune reaction to cancer harbors dual potential for suppressing or promoting cancer development and progression. This polarity of the immune response is determined, in part, by the character of the interplay between innate and adaptive immunity. On the one hand, the innate immune compartment is a necessary proponent of cancer immunity by supporting an immunostimulatory state that enables T cell immunosurveillance. However, in the setting of cancer, innate immune cells are commonly polarized with immune-suppressive properties and as a result, orchestrate a tolerogenic niche that interferes with the cytotoxic potential of tumor antigen-specific T cells. Here, we discuss the role of innate immunity as a positive and negative regulator of adaptive immunosurveillance; moreover, we highlight how tumor cells may skew leukocytes toward an immunosuppressive state and, as such, subvert the phenotypic plasticity of the immune compartment to advance disease progression. These observations establish the precedent for novel therapeutic strategies that aim to restore the tumor microenvironment to an immunoreactive state and, in doing so, condition and maintain the immunogenicity of tumors to yield deep and durable responses to immunotherapy.
Collapse
Affiliation(s)
- Renee B Chang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
354
|
Trojaniello C, Vitale MG, Scarpato L, Esposito A, Ascierto PA. Melanoma immunotherapy: strategies to overcome pharmacological resistance. Expert Rev Anticancer Ther 2020; 20:289-304. [PMID: 32195606 DOI: 10.1080/14737140.2020.1745634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Although checkpoint inhibitors have provided a breakthrough in how melanoma is treated, about half of patients still do not respond due to primary or acquired resistance. New strategies are, therefore, required to increase the number of patients benefiting from immunotherapy. This systematic review investigates novel combinations that may overcome immune resistance in patients with melanoma.Areas covered: We provide an overview of immune-related resistance mechanisms and the various therapeutic strategies that can be considered in attempting to overcome these barriers, including combined immunotherapy approaches and combinations with chemotherapy, radiotherapy, and targeted therapy.Expert opinion: The immune response is a dynamic process in which the tumor microenvironment and immune cells interact in a variety of ways. New treatment approaches aim to enrich the tumor microenvironment with immune-infiltrate and increase response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Claudia Trojaniello
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | | | - Luigi Scarpato
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Assunta Esposito
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Paolo A Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
355
|
Affiliation(s)
- Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute at the Beckman Research Institute, City of Hope National Medical Center, Duarte, CA .,Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
356
|
Brown AL, Conrad K, Allende DS, Gromovsky AD, Zhang R, Neumann CK, Owens AP, Tranter M, Helsley RN. Dietary Choline Supplementation Attenuates High-Fat-Diet-Induced Hepatocellular Carcinoma in Mice. J Nutr 2020; 150:775-783. [PMID: 31851339 DOI: 10.1093/jn/nxz315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death in the world. Choline deficiency has been well studied in the context of liver disease; however, less is known about the effects of choline supplementation in HCC. OBJECTIVE The objective of this study was to test whether choline supplementation could influence the progression of HCC in a high-fat-diet (HFD)-driven mouse model. METHODS Four-day-old male C57BL/6J mice were treated with the chemical carcinogen, 7,12-dimethylbenz[a]anthracene, and were randomly assigned at weaning to a cohort fed an HFD (60% kcal fat) or an HFD with supplemental choline (60% kcal fat, 1.2% choline; HFD+C) for 30 wk. Blood was isolated at 15 and 30 wk to measure immune cells by flow cytometry, and glucose-tolerance tests were performed 2 wk prior to killing. Overall tumor burden was quantified, hepatic lipids were measured enzymatically, and phosphatidylcholine species were measured by targeted MS methods. Gene expression and mitochondrial DNA were quantified by quantitative PCR. RESULTS HFD+C mice exhibited a 50-90% increase in both circulating choline and betaine concentrations in the fed state (P ≤ 0.05). Choline supplementation resulted in a 55% decrease in total tumor numbers, a 67% decrease in tumor surface area, and a 50% decrease in hepatic steatosis after 30 wk of diet (P ≤ 0.05). Choline supplementation increased the abundance of mitochondria and the relative expression of β-oxidation genes by 21% and ∼75-100%, respectively, in the liver. HFD+C attenuated circulating myeloid-derived suppressor cells at 15 wk of feeding (P ≤ 0.05). CONCLUSIONS Choline supplementation attenuated HFD-induced HCC and hepatic steatosis in male C57BL/6J mice. These results suggest a therapeutic benefit of choline supplementation in blunting HCC progression.
Collapse
Affiliation(s)
- Amanda L Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kelsey Conrad
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniela S Allende
- Department of Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anthony D Gromovsky
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Renliang Zhang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chase K Neumann
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - A Phillip Owens
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Tranter
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert N Helsley
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
357
|
Chen X, Xu C, Hong S, Xia X, Cao Y, McDermott J, Mu Y, Han JDJ. Immune Cell Types and Secreted Factors Contributing to Inflammation-to-Cancer Transition and Immune Therapy Response. Cell Rep 2020; 26:1965-1977.e4. [PMID: 30759403 DOI: 10.1016/j.celrep.2019.01.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/17/2018] [Accepted: 01/22/2019] [Indexed: 12/23/2022] Open
Abstract
Although chronic inflammation increases many cancers' risk, how inflammation facilitates cancer development is still not well studied. Recognizing whether and when inflamed tissues transition to cancerous tissues is of utmost importance. To unbiasedly infer molecular events, immune cell types, and secreted factors contributing to the inflammation-to-cancer (I2C) transition, we develop a computational package called "SwitchDetector" based on liver, gastric, and colon cancer I2C data. Using it, we identify angiogenesis associated with a common critical transition stage for multiple I2C events. Furthermore, we infer infiltrated immune cell type composition and their secreted or suppressed extracellular proteins to predict expression of important transition stage genes. This identifies extracellular proteins that may serve as early-detection biomarkers for pre-cancer and early-cancer stages. They alone or together with I2C hallmark angiogenesis genes are significantly related to cancer prognosis and can predict immune therapy response. The SwitchDetector and I2C database are publicly available at www.inflammation2cancer.org.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chi Xu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengjun Hong
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Xia
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqiang Cao
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joseph McDermott
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yonglin Mu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
358
|
Takeyama Y, Kato M, Tamada S, Azuma Y, Shimizu Y, Iguchi T, Yamasaki T, Gi M, Wanibuchi H, Nakatani T. Myeloid-derived suppressor cells are essential partners for immune checkpoint inhibitors in the treatment of cisplatin-resistant bladder cancer. Cancer Lett 2020; 479:89-99. [PMID: 32200039 DOI: 10.1016/j.canlet.2020.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the key players that contribute to immune evasion. The purpose of the present study was to investigate whether MDSCs could be a novel target for the treatment of cisplatin-resistant bladder cancer. We established cisplatin-resistant bladder cancer cell lines (MB49R, MBT-2R, and T24R) and evaluated chemokine expression and MDSC expansion. We also assessed the antitumor effect by depleting MDSCs with or without a α-PD-L1 antibody using MB49R xenograft models. The chemokine expression of CXCL1, CXCL2, and CCL2 increased in cisplatin-resistant cells compared to those in their parent strains. Monocytic MDSCs (Mo-MDSCs) were observed more frequently compared to polymorphonuclear MDSCs (PMN-MDSCs) in MB49R tumors. The immunosuppressive genes arginase 1 and iNOS were comparably expressed in each MDSC subtype. In vivo, combination therapy targeting both PMN- and Mo-MDSCs using α-Gr1 and α-Ly6C antibodies significantly reduced tumor volume with increased infiltration of CD8 T cells in the tumor. Finally, co-targeting pan-MDSCs and PD-L1 remarkably reduced the tumor growth. These findings suggest that targeting MDSCs might enhance the therapeutic effect of immune checkpoint inhibitors in cisplatin-resistant bladder cancers.
Collapse
Affiliation(s)
- Yuji Takeyama
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Minoru Kato
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Satoshi Tamada
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Yukari Azuma
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Yasuomi Shimizu
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Taro Iguchi
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Takeshi Yamasaki
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Min Gi
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Hideki Wanibuchi
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Tatsuya Nakatani
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
359
|
Kim KH, Sim NS, Chang JS, Kim YB. Tumor immune microenvironment in cancer patients with leukocytosis. Cancer Immunol Immunother 2020; 69:1265-1277. [PMID: 32170377 DOI: 10.1007/s00262-020-02545-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Tumor-related leukocytosis (TRL) is correlated with poor survival in various types of cancers, but the microenvironment of TRL-associated human tumors has not been fully elucidated. Here, we aimed to characterize the immune microenvironment of cancer patients with TRL. The transcriptional signatures of tumor tissues obtained from cervical cancer patients with (TRLpos) and without TRL (TRLneg) were compared. As a surrogate for TRL diagnosis, a leukocytosis signature (LS) score was derived using genes differentially expressed between TRLpos and TRLneg tumors. The immunological profiles of patients in the TCGA database with high (LShigh) or low LS scores were compared. TRLpos tumors were transcriptionally distinct from TRLneg tumors, exhibiting up-regulation of radioresistance and down-regulation of adaptive immune response-related genes. In the TCGA cervical cancer cohort (n = 303), patients with high LS had inferior survival rates compared to those with low LS (P = 0.023). LShigh tumors were enriched in radioresistance, wound healing, and myeloid-derived suppressor cell (MDSC) signatures and had a higher infiltration of M2 macrophages and a lower infiltration of M1 macrophages and lymphocytes. LShigh tumors also expressed higher levels of CXCR2 chemokines, CSF2, and CSF3. In the pan-cancer cohort (n = 9984), LShigh tumors also exhibited poor survival, signatures of a suppressive immune microenvironment, and higher expression of CXCR2 chemokines. Our data provide evidence for a suppressive immune microenvironment in patients with TRL and suggest promising targets, such as the CXCR2 axis, for its therapeutic intervention.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nam Suk Sim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jee Suk Chang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
360
|
Horn LA, Riskin J, Hempel HA, Fousek K, Lind H, Hamilton DH, McCampbell KK, Maeda DY, Zebala JA, Su Z, Schlom J, Palena C. Simultaneous inhibition of CXCR1/2, TGF-β, and PD-L1 remodels the tumor and its microenvironment to drive antitumor immunity. J Immunother Cancer 2020; 8:e000326. [PMID: 32188703 PMCID: PMC7078948 DOI: 10.1136/jitc-2019-000326] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Despite the success of immune checkpoint blockade therapy in the treatment of certain cancer types, only a small percentage of patients with solid malignancies achieve a durable response. Consequently, there is a need to develop novel approaches that could overcome mechanisms of tumor resistance to checkpoint inhibition. Emerging evidence has implicated the phenomenon of cancer plasticity or acquisition of mesenchymal features by epithelial tumor cells, as an immune resistance mechanism. METHODS Two soluble factors that mediate tumor cell plasticity in the context of epithelial-mesenchymal transition are interleukin 8 (IL-8) and transforming growth factor beta (TGF-β). In an attempt to overcome escape mechanisms mediated by these cytokines, here we investigated the use of a small molecule inhibitor of the IL-8 receptors CXCR1/2, and a bifunctional agent that simultaneously blocks programmed death ligand 1 (PD-L1) and traps soluble TGF-β. RESULTS We demonstrate that simultaneous inhibition of CXCR1/2, TGF-β, and PD-L1 signaling synergizes to reduce mesenchymal tumor features in murine models of breast and lung cancer, and to markedly increase expression of tumor epithelial E-cadherin while reducing infiltration with suppressive granulocytic myeloid-derived suppressor cells, significantly enhancing T-cell infiltration and activation in tumors, and leading to improved antitumor activity. CONCLUSIONS This study highlights the potential benefit of combined blockade of CXCR1/2 and TGF-β signaling for modulation of tumor plasticity and potential enhancement of tumor responses to PD-L1 blockade. The data provide rationale for the evaluation of this novel approach in the clinic.
Collapse
Affiliation(s)
- Lucas A Horn
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey Riskin
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Heidi A Hempel
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Kristen Fousek
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Hanne Lind
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Kristen K McCampbell
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Dean Y Maeda
- Syntrix Pharmaceuticals, Auburn, Washington, USA
| | | | - Zhen Su
- EMD Serono Research and Development Institute, Billerica, Massachusetts, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
361
|
Kang C, Jeong SY, Song SY, Choi EK. The emerging role of myeloid-derived suppressor cells in radiotherapy. Radiat Oncol J 2020; 38:1-10. [PMID: 32229803 PMCID: PMC7113146 DOI: 10.3857/roj.2019.00640] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT) has been used for decades as one of the main treatment modalities for cancer patients. The therapeutic effect of RT has been primarily ascribed to DNA damage leading to tumor cell death. Besides direct tumoricidal effect, RT affects antitumor responses through immune-mediated mechanism, which provides a rationale for combining RT and immunotherapy for cancer treatment. Thus far, for the combined treatment with RT, numerous studies have focused on the immune checkpoint inhibitors and have shown promising results. However, treatment resistance is still common, and one of the main resistance mechanisms is thought to be due to the immunosuppressive tumor microenvironment where myeloid-derived suppressor cells (MDSCs) play a crucial role. MDSCs are immature myeloid cells with a strong immunosuppressive activity. MDSC frequency is correlated with tumor progression, recurrence, negative clinical outcome, and reduced efficacy of immunotherapy. Therefore, increasing efforts to target MDSCs have been made to overcome the resistance in cancer treatments. In this review, we focus on the role of MDSCs in RT and highlight growing evidence for targeting MDSCs in combination with RT to improve cancer treatment.
Collapse
Affiliation(s)
- Changhee Kang
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong-Yun Jeong
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Si Yeol Song
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Kyung Choi
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
362
|
Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020; 9:cells9030561. [PMID: 32121014 PMCID: PMC7140518 DOI: 10.3390/cells9030561] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of immunotherapy has been an astounding breakthrough in cancer treatments. In particular, immune checkpoint inhibitors, targeting PD-1 and CTLA-4, have shown remarkable therapeutic outcomes. However, response rates from immunotherapy have been reported to be varied, with some having pronounced success and others with minimal to no clinical benefit. An important aspect associated with this discrepancy in patient response is the immune-suppressive effects elicited by the tumour microenvironment (TME). Immune suppression plays a pivotal role in regulating cancer progression, metastasis, and reducing immunotherapy success. Most notably, myeloid-derived suppressor cells (MDSC), a heterogeneous population of immature myeloid cells, have potent mechanisms to inhibit T-cell and NK-cell activity to promote tumour growth, development of the pre-metastatic niche, and contribute to resistance to immunotherapy. Accumulating research indicates that MDSC can be a therapeutic target to alleviate their pro-tumourigenic functions and immunosuppressive activities to bolster the efficacy of checkpoint inhibitors. In this review, we provide an overview of the general immunotherapeutic approaches and discuss the characterisation, expansion, and activities of MDSCs with the current treatments used to target them either as a single therapeutic target or synergistically in combination with immunotherapy.
Collapse
Affiliation(s)
- Andrew M. K. Law
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| | - Fatima Valdes-Mora
- Histone Variants Group, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| | - David Gallego-Ortega
- Tumour Development Group, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2052, Australia
- Correspondence: (A.M.K.L.); (F.V.-M.); (D.G.-O.); Tel.: +61-(0)2-9355-5894 (A.M.K.L); +61-(0)2-9385-0143 (F.V.-M); +61-(0)2-9355-5776 (D.G.-O)
| |
Collapse
|
363
|
Lu Z, Zou J, Li S, Topper MJ, Tao Y, Zhang H, Jiao X, Xie W, Kong X, Vaz M, Li H, Cai Y, Xia L, Huang P, Rodgers K, Lee B, Riemer JB, Day CP, Yen RWC, Cui Y, Wang Y, Wang Y, Zhang W, Easwaran H, Hulbert A, Kim K, Juergens RA, Yang SC, Battafarano RJ, Bush EL, Broderick SR, Cattaneo SM, Brahmer JR, Rudin CM, Wrangle J, Mei Y, Kim YJ, Zhang B, Wang KKH, Forde PM, Margolick JB, Nelkin BD, Zahnow CA, Pardoll DM, Housseau F, Baylin SB, Shen L, Brock MV. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 2020; 579:284-290. [PMID: 32103175 DOI: 10.1038/s41586-020-2054-x] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
Abstract
Cancer recurrence after surgery remains an unresolved clinical problem1-3. Myeloid cells derived from bone marrow contribute to the formation of the premetastatic microenvironment, which is required for disseminating tumour cells to engraft distant sites4-6. There are currently no effective interventions that prevent the formation of the premetastatic microenvironment6,7. Here we show that, after surgical removal of primary lung, breast and oesophageal cancers, low-dose adjuvant epigenetic therapy disrupts the premetastatic microenvironment and inhibits both the formation and growth of lung metastases through its selective effect on myeloid-derived suppressor cells (MDSCs). In mouse models of pulmonary metastases, MDSCs are key factors in the formation of the premetastatic microenvironment after resection of primary tumours. Adjuvant epigenetic therapy that uses low-dose DNA methyltransferase and histone deacetylase inhibitors, 5-azacytidine and entinostat, disrupts the premetastatic niche by inhibiting the trafficking of MDSCs through the downregulation of CCR2 and CXCR2, and by promoting MDSC differentiation into a more-interstitial macrophage-like phenotype. A decreased accumulation of MDSCs in the premetastatic lung produces longer periods of disease-free survival and increased overall survival, compared with chemotherapy. Our data demonstrate that, even after removal of the primary tumour, MDSCs contribute to the development of premetastatic niches and settlement of residual tumour cells. A combination of low-dose adjuvant epigenetic modifiers that disrupts this premetastatic microenvironment and inhibits metastases may permit an adjuvant approach to cancer therapy.
Collapse
Affiliation(s)
- Zhihao Lu
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.,Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Jianling Zou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Shuang Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Michael J Topper
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Yong Tao
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xi Jiao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Wenbing Xie
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Xiangqian Kong
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Michelle Vaz
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Huili Li
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Yi Cai
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Limin Xia
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| | - Peng Huang
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kristen Rodgers
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Beverly Lee
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joanne B Riemer
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ray-Whay Chiu Yen
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ying Cui
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Yujiao Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanni Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Weiqiang Zhang
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Thoracic Surgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Hariharan Easwaran
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Alicia Hulbert
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Surgery, University of Illinois College of Medicine, Chicago, IL, USA
| | - KiBem Kim
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Rosalyn A Juergens
- Division of Medical Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario, Canada
| | - Stephen C Yang
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard J Battafarano
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Errol L Bush
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen R Broderick
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Julie R Brahmer
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Charles M Rudin
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Wrangle
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Yuping Mei
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Young J Kim
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University, Nashville, TN, USA
| | - Bin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA.,School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick M Forde
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Barry D Nelkin
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Cynthia A Zahnow
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Franck Housseau
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA. .,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Stephen B Baylin
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.
| | - Malcolm V Brock
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
364
|
Zemek RM, Chin WL, Nowak AK, Millward MJ, Lake RA, Lesterhuis WJ. Sensitizing the Tumor Microenvironment to Immune Checkpoint Therapy. Front Immunol 2020; 11:223. [PMID: 32133005 PMCID: PMC7040078 DOI: 10.3389/fimmu.2020.00223] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment, providing remarkable clinical responses in some patients. However, the majority of patients do not respond. It is therefore crucial both to identify predictive biomarkers of response and to increase the response rates to immune checkpoint therapy. In this review we explore the current literature about the predictive characteristics of the tumor microenvironment and discuss therapeutic approaches that aim to change this toward a milieu that is conducive to response. We propose a personalized biomarker-based adaptive approach to immunotherapy, whereby a sensitizing therapy is tailored to the patient's specific tumor microenvironment, followed by on-treatment verification of a change in the targeted biomarker, followed by immune checkpoint therapy. By incorporating detailed knowledge of the immunological tumor microenvironment, we may be able to sensitize currently non-responsive tumors to respond to immune checkpoint therapy.
Collapse
Affiliation(s)
- Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, West Perth, WA, Australia
| | - Wee Loong Chin
- National Centre for Asbestos Related Diseases, Nedlands, WA, Australia.,Medical School, University of Western Australia, Crawley, WA, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, Nedlands, WA, Australia.,Medical School, University of Western Australia, Crawley, WA, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Michael J Millward
- Medical School, University of Western Australia, Crawley, WA, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, Nedlands, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - W Joost Lesterhuis
- Telethon Kids Institute, University of Western Australia, West Perth, WA, Australia.,National Centre for Asbestos Related Diseases, Nedlands, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
365
|
Fu C, Lu Y, Williams MA, Brantly ML, Ventetuolo CE, Morel LM, Mehrad B, Scott EW, Bryant AJ. Emergency myelopoiesis contributes to immune cell exhaustion and pulmonary vascular remodelling. Br J Pharmacol 2020; 178:187-202. [PMID: 31793661 PMCID: PMC8240454 DOI: 10.1111/bph.14945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/04/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary hypertension (PH) secondary to chronic lung disease (World Health Organization Group 3 PH) is deadly, with lung transplant being the only available long-term treatment option. Myeloid-derived cells are known to affect progression of both pulmonary fibrosis and PH, although the mechanism of action is unknown. Therefore, we investigated the effect of myeloid cell proliferation induced by emergency myelopoiesis on development of PH and therapy directed against programmed death-ligand 1 (PD-L1), expressed by myeloid cells in prevention of pulmonary vascular remodelling. EXPERIMENTAL APPROACH LysM.Cre-DTR ("mDTR") mice were injected with bleomycin (0.018 U·g-1 , i.p.) while receiving either vehicle or diphtheria toxin (DT; 100 ng, i.p.) to induce severe PH. Approximately 4 weeks after initiation of bleomycin protocol, right ventricular pressure measurements were performed and tissue samples collected for histologic assessment. In a separate experiment, DT-treated mice were given anti-PD-L1 antibody (αPD-L1; 500 μg, i.p.) preventive treatment before bleomycin administration. KEY RESULTS Mice undergoing induction of emergency myelopoiesis displayed more severe PH, right ventricular remodelling and pulmonary vascular muscularization compared to controls, without a change in lung fibrosis. This worsening of PH was associated with increased pulmonary myeloid-derived suppressor cell (MDSC), particularly polymorphonuclear MDSC (PMN-MDSC). Treatment with αPD-L1 normalized pulmonary pressures. PD-L1 expression was likewise found to be elevated on circulating PMN-MDSC from patients with interstitial lung disease and PH. CONCLUSIONS AND IMPLICATIONS PD-L1 is a viable therapeutic target in PH, acting through a signalling axis involving MDSC. LINKED ARTICLES This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Chunhua Fu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Yuanqing Lu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Mason A Williams
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Mark L Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Laurence M Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, University of Florida, Gainesville, Florida
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Edward W Scott
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, University of Florida, Gainesville, Florida
| | - Andrew J Bryant
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
366
|
Ren D, Hua Y, Yu B, Ye X, He Z, Li C, Wang J, Mo Y, Wei X, Chen Y, Zhou Y, Liao Q, Wang H, Xiang B, Zhou M, Li X, Li G, Li Y, Zeng Z, Xiong W. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol Cancer 2020; 19:19. [PMID: 32000802 PMCID: PMC6993488 DOI: 10.1186/s12943-020-1144-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
Immune checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic efficacy in a variety of tumors, but resistance during treatment is a major issue. In this review, we describe the utility of PD-L1 expression levels, mutation burden, immune cell infiltration, and immune cell function for predicting the efficacy of PD-1/PD-L1 blockade therapy. Furthermore, we explore the mechanisms underlying immunotherapy resistance caused by PD-L1 expression on tumor cells, T cell dysfunction, and T cell exhaustion. Based on these mechanisms, we propose combination therapeutic strategies. We emphasize the importance of patient-specific treatment plans to reduce the economic burden and prolong the life of patients. The predictive indicators, resistance mechanisms, and combination therapies described in this review provide a basis for improved precision medicine.
Collapse
Affiliation(s)
- Daixi Ren
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuze Hua
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boyao Yu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Ye
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ziheng He
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chunwei Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiaoxu Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yunhua Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
367
|
Wattenberg MM, Beatty GL. Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle. Semin Cancer Biol 2020; 65:38-50. [PMID: 31954172 DOI: 10.1016/j.semcancer.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a hallmark of cancer and supports tumor growth, proliferation, and metastasis, but also inhibits T cell immunosurveillance and the efficacy of immunotherapy. The biology of cancer inflammation is defined by a cycle of distinct immunological steps that begins during disease conception with the release of inflammatory soluble factors. These factors communicate with host organs to trigger bone marrow mobilization of myeloid cells, trafficking of myeloid cells to the tumor, and differentiation of myeloid cells within the tumor bed. Tumor-infiltrating myeloid cells then orchestrate an immunosuppressive microenvironment and assist in sustaining a vicious cycle of inflammation that co-evolves with tumor cells. This Cancer-Inflammation Cycle acts as a rheostat or "inflammostat" that impinges upon T cell immunosurveillance and prevents the development of productive anti-tumor immunity. Here, we define the major nodes of the Cancer-Inflammation Cycle and describe their impact on T cell immunosurveillance in cancer. Additionally, we discuss emerging pre-clinical and clinical data suggesting that intervening upon the Cancer-Inflammation Cycle will be a necessary step for broadening the potential of immunotherapy in cancer.
Collapse
Affiliation(s)
- Max M Wattenberg
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
| |
Collapse
|
368
|
Upadhyaya C, Jiao X, Ashton A, Patel K, Kossenkov AV, Pestell RG. The G protein coupled receptor CCR5 in cancer. Adv Cancer Res 2020; 145:29-47. [PMID: 32089164 PMCID: PMC7755305 DOI: 10.1016/bs.acr.2019.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The G coupled protein receptor CC chemokine receptor type 5 (CCR5) has the unusual characteristic in humans of being a developmentally non-essential gene that participates in several pathological processes including infection with HIV (Dean et al., 1996; Gupta et al., 2019; Samson et al., 1996), progression of stroke (Joy et al., 2019), osteoporosis (Xie et al., 2019) and the metastasis of cancer (Jiao et al., 2018; Velasco-Velazquez et al., 2012, 2014) (Reviewed in: Jiao, Nawab, et al., 2019; Jiao, Wang, & Pestell, 2019). The importance of CCR5 in HIV led to recent genetic engineering of humans to recreate a non-functional CCR5 gene. Thus, although the application of gene-editing tools, to manipulate human embryos is prohibited in the United States, and China. at the Second International Summit on Human Genome Editing in Hong Kong (http://www.nationalacademies.org/), it was claimed that CRISPR-Cas9 systems had been used to edit the CCR5 gene in twin baby girls. The importance of CCR5 in stroke has led to clinical trials using maraviroc (NCT03172026). The key function of CCR5 in cancer metastasis and homing (Jiao et al., 2018; Jiao, Nawab, et al., 2019; Velasco-Velazquez et al., 2012, 2014) has led to three active clinical trials for metastatic cancer using CCR5 antagonists (Jiao, Nawab, et al., 2019; Jiao, Wang, & Pestell, 2019). Thus, it was surprising to find that the all-cause mortality rate in individuals who are homozygous for the CCR5△32 allele in the United Kingdom normal population was increased >20% increase, with an almost 2 year reduction overall lifespan (Wei & Nielsen, 2019). The current review herein discusses the distinct functions of CCR5 in human disease and potential avenues for further research.
Collapse
Affiliation(s)
- Chandan Upadhyaya
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, United States; Xavier University School of Medicine, Woodbury, NY, United States
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, United States
| | - Anthony Ashton
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, United States; Division of Perinatal Research, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Kishan Patel
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, United States; Xavier University School of Medicine, Woodbury, NY, United States
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, United States; Wistar Institute, Philadelphia, PA, United States; Xavier University School of Medicine, Woodbury, NY, United States.
| |
Collapse
|
369
|
Li S, Wang Q, Shen Y, Hassan M, Shen J, Jiang W, Su Y, Chen J, Bai L, Zhou W, Wang Y. Pseudoneutrophil Cytokine Sponges Disrupt Myeloid Expansion and Tumor Trafficking to Improve Cancer Immunotherapy. NANO LETTERS 2020; 20:242-251. [PMID: 31790598 DOI: 10.1021/acs.nanolett.9b03753] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumor immune escape through multiple mechanisms including suppressing antitumor activities of T lymphocytes. However, therapeutic abrogation of MDSCs often causes severe adverse effects, compensatory recruitment of alternative cell populations, and the multiplicity and complexity of relevant cytokines/receptors. Alternatively, suppressing the expansion and tumor trafficking of MDSCs may be a proficient and safe way for cancer treatment. Here we report that pseudoneutrophil cytokine sponges (pCSs) can disrupt expansion and tumor trafficking of MDSCs and reverse immune tolerance. Coated with plasma membranes of neutrophils phenotypically and morphologically similar to polymorphonuclear MDSCs (PMN-MDSCs), the nanosized pCSs inherited most membrane receptors from the "parental" neutrophils, enabling the neutralization of MDSC-related cytokines. Upon pCSs administration, the expansion of MDSCs and their enrichment in peripheral lymphoid organs and tumors were reduced without the compensatory influx of alternative myeloid subsets. In murine breast cancer and melanoma syngeneic models, pCSs treatment dramatically increased the number of tumor-infiltrating T lymphocytes and restored their antitumor functions. In addition, when pCSs were combined with the programmed cell death protein 1 (PD-1), the immune checkpoint blockade synergistically suppressed tumor progression and prolonged animal survival. Overall, the pseudocell nanoplatform opens up new paths toward effective cancer immunotherapy.
Collapse
Affiliation(s)
- Shuya Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , People's Republic of China
| | - Qin Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , People's Republic of China
| | - Yanqiong Shen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , People's Republic of China
| | - Muhammad Hassan
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , People's Republic of China
| | - Jizhou Shen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , People's Republic of China
| | - Wei Jiang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , People's Republic of China
| | - Yitan Su
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , People's Republic of China
| | - Jing Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , People's Republic of China
| | - Li Bai
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , People's Republic of China
| | - Wenchao Zhou
- Institute of Intelligent Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine , University of Science and Technology of China , Hefei , Anhui 230001 , People's Republic of China
| | - Yucai Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei 230027 , People's Republic of China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory , Guangzhou , Guangdong 510005 , People's Republic of China
| |
Collapse
|
370
|
Lin YX, Wang Y, Blake S, Yu M, Mei L, Wang H, Shi J. RNA Nanotechnology-Mediated Cancer Immunotherapy. Theranostics 2020; 10:281-299. [PMID: 31903120 PMCID: PMC6929632 DOI: 10.7150/thno.35568] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
RNA molecules (e.g., siRNA, microRNA, and mRNA) have shown tremendous potential for immunomodulation and cancer immunotherapy. They can activate both innate and adaptive immune system responses by silencing or upregulating immune-relevant genes. In addition, mRNA-based vaccines have recently been actively pursued and tested in cancer patients, as a form of treatment. Meanwhile, various nanomaterials have been developed to enhance RNA delivery to the tumor and immune cells. In this review article, we summarize recent advances in the development of RNA-based therapeutics and their applications in cancer immunotherapy. We also highlight the variety of nanoparticle platforms that have been used for RNA delivery to elicit anti-tumor immune responses. Finally, we provide our perspectives of potential challenges and opportunities of RNA-based nanotherapeutics in clinical translation towards cancer immunotherapy.
Collapse
Affiliation(s)
- Yao-Xin Lin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yi Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sara Blake
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Tufts University, Medford, MA 02155, USA
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
371
|
Dysthe M, Parihar R. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:117-140. [PMID: 32036608 DOI: 10.1007/978-3-030-35723-8_8] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
372
|
Primary and acquired resistance mechanisms to immune checkpoint inhibition in Hodgkin lymphoma. Cancer Treat Rev 2020; 82:101931. [DOI: 10.1016/j.ctrv.2019.101931] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/03/2019] [Indexed: 12/31/2022]
|
373
|
Myeloid-driven mechanisms as barriers to antitumor CD8 + T cell activity. Mol Immunol 2019; 118:165-173. [PMID: 31884388 DOI: 10.1016/j.molimm.2019.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
The adaptive immune system is essential for host defense against pathogenic challenges, and a major constituent is the CD8+ cytotoxic T cell. Ordinarily, CD8+ T cells are endowed with a unique ability to specifically recognize and destroy their targets. However, in cases where disease emerges, especially in cancer, the efficacy of the CD8+ T cell response is frequently counterbalanced in a 'tug-of-war' by networks of tumor-driven mechanisms of immune suppression. As a result, antitumor CD8+ T cell activity is hampered, which contributes to clinical manifestations of disease. It is now well-recognized that prominent elements of that network include myeloid-derived suppressor cells (MDSC) and macrophages which assume tumor-supportive phenotypes. Both myeloid populations are thought to arise as consequences of chronic inflammatory cues produced during the neoplastic process. Numerous preclinical studies have now shown that inhibiting the production, trafficking and/or function of these immune suppressive myeloid populations restore antitumor CD8+ T cell responses during both immune surveillance or in response to immune-targeted interventions. Correlative studies in cancer patients support these preclinical findings and, thus, have laid the foundation for ongoing clinical trials in patients receiving novel agents that target such myeloid elements alone or in combination with immunotherapy to potentially improve cancer patient outcomes. Accordingly, this review focuses on how and why it is important to study the myeloid-T cell interplay as an innovative strategy to boost or reinvigorate the CD8+ T cell response as a critical weapon in the battle against malignancy.
Collapse
|
374
|
Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol 2019; 117:201-215. [PMID: 31835202 DOI: 10.1016/j.molimm.2019.11.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) expand in tumor-bearing host. They suppress anti-tumor immune response and promote tumor growth. Chemokines play a vital role in recruiting MDSCs into tumor tissue. They can also induce the generation of MDSCs in the bone marrow, maintain their suppressive activity, and promote their proliferation and differentiation. Here, we review CCL2/CCL12-CCR2, CCL3/4/5-CCR5, CCL15-CCR1, CX3CL1/CCL26-CX3CR1, CXCL5/2/1-CXCR2, CXCL8-CXCR1/2, CCL21-CCR7, CXCL13-CXCR5 signaling pathways, their role in MDSCs recruitment to tumor tissue, and their correlation with tumor development, metastasis and prognosis. Targeting chemokines and their receptors may serve as a promising strategy in immunotherapy, especially combined with other strategies such as chemotherapy, cyclin-dependent kinase or immune checkpoints inhibitors.
Collapse
|
375
|
Gobbini E, Charles J, Toffart AC, Leccia MT, Moro-Sibilot D, Giaj Levra M. Current opinions in immune checkpoint inhibitors rechallenge in solid cancers. Crit Rev Oncol Hematol 2019; 144:102816. [DOI: 10.1016/j.critrevonc.2019.102816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/28/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022] Open
|
376
|
Li R, Dubinett SM. Myeloid-derived suppressor cell-dependent inhibition of B cell responses in non-small cell lung cancer. Transl Lung Cancer Res 2019; 8:S331-S333. [PMID: 32038908 DOI: 10.21037/tlcr.2019.04.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rui Li
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Steven M Dubinett
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
377
|
Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, Wang X, Peng C, Zhou C, Zhou L, Li X, Shi H, Wu W, Long X, Wu C, Liao W. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun 2019; 10:5421. [PMID: 31780645 PMCID: PMC6883042 DOI: 10.1038/s41467-019-13204-3] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Radiofrequency ablation (RFA) promotes tumor antigen-specific T cell responses and enhances the effect of immunotherapy in preclinical settings. Here we report that the existence of remnant tumor masses due to incomplete RFA (iRFA) is associated with earlier new metastases and poor survival in patients with colorectal cancer liver metastases (CRCLM). Using mouse models, we demonstrate that iRFA promotes tumor progression and hinders the efficacy of anti-PD-1 therapy. Immune analysis reveals that iRFA induces sustained local inflammation with predominant myeloid suppressor cells, which inhibit T cell function in tumors. Mechanistically, tumor cell-derived CCL2 is critical for the accumulation of monocytes and tumor-associated macrophages (TAMs). The crosstalk between TAMs and tumor cells enhances the CCL2 production by tumor cells. Furthermore, we find that administration of a CCR2 antagonist or the loss of CCL2 expression in tumor cells enhances the antitumor activity of PD-1 blockade, providing a salvage alternative for residual tumors after iRFA. Radiofrequency ablation is used to treat metastatic colorectal cancer. In this study, the authors show that incomplete ablation of tumours results in metastases and show in mouse models that the chemokine CCL2 recruits myeloid cells to the partially ablated tumours, which can block T cell function.
Collapse
Affiliation(s)
- Liangrong Shi
- Radiological Intervention Center, Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China.,Center for Molecular Imaging, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China
| | - Junjun Wang
- Department of Oncology, the Third Affiliated Hospital, Soochow University, Changzhou, 213003, Jiangsu, China
| | - Nianhua Ding
- Radiological Intervention Center, Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China.,Center for Molecular Imaging, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China
| | - Yi Zhang
- Dept. of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yibei Zhu
- Institute of Biotechnology, Key Laboratory of Clinical Immunology of Jiangsu Province, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shunli Dong
- Dept. of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiaohui Wang
- Dept. of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Changli Peng
- Radiological Intervention Center, Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China
| | - Chunhui Zhou
- Radiological Intervention Center, Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China
| | - Ledu Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China
| | - Xiaodong Li
- Department of Oncology, the Third Affiliated Hospital, Soochow University, Changzhou, 213003, Jiangsu, China
| | - Hongbing Shi
- Department of Oncology, the Third Affiliated Hospital, Soochow University, Changzhou, 213003, Jiangsu, China
| | - Wei Wu
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China
| | - Xueyin Long
- Radiological Intervention Center, Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China.,Center for Molecular Imaging, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China
| | - Changping Wu
- Department of Oncology, the Third Affiliated Hospital, Soochow University, Changzhou, 213003, Jiangsu, China.
| | - Weihua Liao
- Radiological Intervention Center, Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China. .,Center for Molecular Imaging, Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China.
| |
Collapse
|
378
|
Unmasking the Many Faces of Tumor-Associated Neutrophils and Macrophages: Considerations for Targeting Innate Immune Cells in Cancer. Trends Cancer 2019; 5:789-798. [PMID: 31813456 DOI: 10.1016/j.trecan.2019.10.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
Immunotherapy has emerged at the forefront of cancer therapy; however, patient survival remains low for many cancer types. In consideration of this, non-T cell immune populations, such as innate immune cells, have been identified as potential immunotherapeutic targets. In noncancerous settings, neutrophils are first responders to injury and infection, and work in a partnership with macrophages to regulate inflammation. However, the diversity of tumor-associated neutrophils (TANs) remains elusive. Furthermore, it is likely that TANs and tumor-associated macrophages (TAMs) act in tandem within tumors and contribute both contrasting and synergistic roles in tumor progression. In this Opinion, we discuss the complexity of TAN and TAM functions, the interplay between TANs and TAMs, and major considerations required for implementing TAN/TAM-based therapies.
Collapse
|
379
|
The Crucial Role of CXCL8 and Its Receptors in Colorectal Liver Metastasis. DISEASE MARKERS 2019; 2019:8023460. [PMID: 31827643 PMCID: PMC6886345 DOI: 10.1155/2019/8023460] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
CXCL8 (also known as IL-8) can produce different biological effects by binding to its receptors: CXCR1, CXCR2, and the Duffy antigen receptor for chemokines (DARC). CXCL8 and its receptors are associated with the development of various tumor types, especially colorectal cancer and its liver metastases. In addition to promoting angiogenesis, proliferation, invasion, migration, and the survival of colorectal cancer (CRC) cells, CXCL8 and its receptors have also been known to induce the epithelial-mesenchymal transition (EMT) of CRC cells, to help them to escape host immunosurveillance as well as to enhance resistance to anoikis, which promotes the formation of circulating tumor cells (CTCs) and their colonization of distant organs. In this paper, we will review the established roles of CXCL8 signaling in CRC and discuss the possible strategies of targeting CXCL8 signaling for overcoming CRC drug resistance and cancer progression, including direct targeting of CXCL8/CXCR1/2 or indirect targeting through the inhibition of CXCL8-CXCR1/2 signaling.
Collapse
|
380
|
Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, Li J, Li F, Tan HB. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett 2019; 470:126-133. [PMID: 31730903 DOI: 10.1016/j.canlet.2019.11.009] [Citation(s) in RCA: 910] [Impact Index Per Article: 151.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
Abstract
The immune cells within the tumor microenvironment (TME) play important roles in tumorigenesis. It has been known that these tumor associated immune cells may possess tumor-antagonizing or tumor-promoting functions. Although the tumor-antagonizing immune cells within TME tend to target and kill the cancer cells in the early stage of tumorigenesis, the cancer cells seems to eventually escape from immune surveillance and even inhibit the cytotoxic function of tumor-antagonizing immune cells through a variety of mechanisms. The immune evasion capability, as a new hallmark of cancer, accidently provides opportunities for new strategies of cancer therapy, namely harnessing the immune cells to battle the cancer cells. Recently, the administrations of immune checkpoint modulators (represented by anti-CTLA4 and anti-PD antibodies) and adoptive immune cells (represented by CAR-T) have exhibited unexpected antitumor effect in multiple types of cancer, bringing a new era for cancer therapy. Here, we review the biological functions of immune cells within TME and their roles in cancer immunotherapy, and discuss the perspectives of the basic studies for improving the effectiveness of the clinical use.
Collapse
Affiliation(s)
- Xu Lei
- Department of Infectious Diseases and Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yu Lei
- Department of Infectious Diseases and Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Department of Infectious Diseases, People's Hospital of Fang County, Shiyan, Hubei, 442000, China
| | - Jin-Ke Li
- Department of Infectious Diseases and Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Wei-Xing Du
- Department of Infectious Diseases and Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Ru-Gui Li
- Department of Infectious Diseases and Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Jing Yang
- Department of Infectious Diseases and Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Jian Li
- Department of Infectious Diseases and Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Fang Li
- Department of Infectious Diseases and Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Hua-Bing Tan
- Department of Infectious Diseases and Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
381
|
Targeting CXCR1/2: The medicinal potential as cancer immunotherapy agents, antagonists research highlights and challenges ahead. Eur J Med Chem 2019; 185:111853. [PMID: 31732253 DOI: 10.1016/j.ejmech.2019.111853] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Immune suppression in the tumor microenvironment (TME) is an intractable issue in anti-cancer immunotherapy. The chemokine receptors CXCR1 and CXCR2 recruit immune suppressive cells such as the myeloid derived suppressor cells (MDSCs) to the TME. Therefore, CXCR1/2 antagonists have aroused pharmaceutical interest in recent years. In this review, the medicinal chemistry of CXCR1/2 antagonists and their relevance in cancer immunotherapy have been summarized. The development of the drug candidates, along with their design rationale, clinical status and current challenges have also been discussed.
Collapse
|
382
|
Zhao T, Feng Y, Guo M, Zhang C, Wu Q, Chen J, Guo S, Liu S, Zhou Q, Wang Z, Fan W, Zhang Y, Jia H, Feng Z. Combination of attenuated
Salmonella
carrying PD‐1 siRNA with nifuroxazide for colon cancer therapy. J Cell Biochem 2019; 121:1973-1985. [DOI: 10.1002/jcb.29432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Tiesuo Zhao
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy Xinxiang Medical University Xinxiang Henan China
- Department of Immunology Xinxiang Medical University Xinxiang Henan China
| | - Yuchen Feng
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
- Department of Immunology Xinxiang Medical University Xinxiang Henan China
- Department of Interventional Radiology The First Hospital of Handan Handan China
| | - Mengmeng Guo
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
- Department of Pathology Xinxiang Medical University Xinxiang Henan China
| | - Chaohui Zhang
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
| | - Qiang Wu
- Department of Pathology Xinxiang Medical University Xinxiang Henan China
| | - Jian Chen
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
| | - Sheng Guo
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
- Department of Immunology Xinxiang Medical University Xinxiang Henan China
| | - Shenzhen Liu
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
| | - Qingsa Zhou
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
| | - Zizhong Wang
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
| | - Wenyan Fan
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
| | - Yongxi Zhang
- Department of Oncology The Third Affiliated Hospital of Xinxiang Medical University Xinxiang Henan China
| | - Huijie Jia
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy Xinxiang Medical University Xinxiang Henan China
- Department of Pathology Xinxiang Medical University Xinxiang Henan China
| | - Zhiwei Feng
- Institute of Precision Medicine Xinxiang Medical University Xinxiang Henan China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy Xinxiang Medical University Xinxiang Henan China
- Department of Immunology Xinxiang Medical University Xinxiang Henan China
| |
Collapse
|
383
|
Thyagarajan A, Alshehri MSA, Miller KLR, Sherwin CM, Travers JB, Sahu RP. Myeloid-Derived Suppressor Cells and Pancreatic Cancer: Implications in Novel Therapeutic Approaches. Cancers (Basel) 2019; 11:1627. [PMID: 31652904 PMCID: PMC6893814 DOI: 10.3390/cancers11111627] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/07/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a devastating human malignancy with poor prognosis and low survival rates. Several cellular mechanisms have been linked with pancreatic carcinogenesis and also implicated in inducing tumor resistance to known therapeutic regimens. Of various factors, immune evasion mechanisms play critical roles in tumor progression and impeding the efficacy of cancer therapies including PDAC. Among immunosuppressive cell types, myeloid-derived suppressor cells (MDSCs) have been extensively studied and demonstrated to not only support PDAC development but also hamper the anti-tumor immune responses elicited by therapeutic agents. Notably, recent efforts have been directed in devising novel approaches to target MDSCs to limit their effects. Multiple strategies including immune-based approaches have been explored either alone or in combination with therapeutic agents to target MDSCs in preclinical and clinical settings of PDAC. The current review highlights the roles and mechanisms of MDSCs as well as the implications of this immunomodulatory cell type as a potential target to improve the efficacy of therapeutic regimens for PDAC.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH 45435, USA.
| | - Mamdouh Salman A Alshehri
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH 45435, USA.
- Department of Pharmacology and Toxicology, Pharmacy College, Taibah University, Medina 42353, Saudi Arabia.
| | - Kelly L R Miller
- Department of Internal Medicine, Boonshoft School of Medicine Wright State University, Dayton, OH 45435, USA.
| | - Catherine M Sherwin
- Department of Pediatrics, Boonshoft School of Medicine Wright State University/Dayton Children's Hospital, Dayton, OH 45404, USA.
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH 45435, USA.
- Dayton Veteran's Administration Medical Center, Dayton, OH 45435, USA.
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
384
|
Xu Y, Fang F, Jiao H, Zheng X, Huang L, Yi X, Zhao W. Activated hepatic stellate cells regulate MDSC migration through the SDF-1/CXCR4 axis in an orthotopic mouse model of hepatocellular carcinoma. Cancer Immunol Immunother 2019; 68:1959-1969. [PMID: 31641797 DOI: 10.1007/s00262-019-02414-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
Hepatic stellate cells (HSCs) are important stromal cells and pivotal mediators involved in the pathogenesis and immunosuppression of hepatocellular carcinoma (HCC). The liver has been demonstrated to be a site for accumulation of tumor-induced myeloid-derived suppressor cells (MDSCs). We previously reported that HSCs induced an increase in the number of MDSCs in HCC. However, how MDSCs are recruited in HCC remains largely unclear. In the present study, we found that HSC-conditioned medium (HSC-CM) induced bone marrow-derived cell and splenocyte migration, especially MDSC migration. Using chemokine-neutralizing antibodies and chemokine receptor inhibitors, we found that HSCs promoted MDSC migration through the SDF-1/CXCR4 axis. Subsequently, we used an orthotopic mouse liver tumor model to determine how HSCs mediated MDSC migration to HCC in vivo. The in vivo results indicated that pretreatment of MDSCs with a CXCR4 inhibitor or injection with SDF-1-knocked down HSCs inhibited MDSC migration to the spleen and liver of the tumor-bearing mice. Together, our findings indicate a central role for HSCs in MDSC migration mediated by the SDF-1/CXCR4 axis, thus revealing a potentially effective approach for modulating the tumor microenvironment by targeting HSCs in HCC.
Collapse
Affiliation(s)
- Yaping Xu
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Physiology, Xiamen Medical College, Xiamen, 361023, China.,Xiamen Key Laboratory of Respiratory Diseases, Xiamen, 361023, China
| | - Fei Fang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, Xiamen, 361004, China
| | - Hui Jiao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, Xiamen, 361004, China
| | - Xiaohui Zheng
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Physiology, Xiamen Medical College, Xiamen, 361023, China
| | - Liyue Huang
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Physiology, Xiamen Medical College, Xiamen, 361023, China
| | - Xue Yi
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Physiology, Xiamen Medical College, Xiamen, 361023, China.,Xiamen Key Laboratory of Respiratory Diseases, Xiamen, 361023, China
| | - Wenxiu Zhao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, Xiamen, 361004, China.
| |
Collapse
|
385
|
Li J, Van Valkenburgh J, Hong X, Conti PS, Zhang X, Chen K. Small molecules as theranostic agents in cancer immunology. Theranostics 2019; 9:7849-7871. [PMID: 31695804 PMCID: PMC6831453 DOI: 10.7150/thno.37218] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
With further research into the molecular mechanisms and roles linking immune suppression and restraint of (pre)malignancies, immunotherapies have revolutionized clinical strategies in the treatment of cancer. However, nearly 70% of patients who received immune checkpoint therapeutics showed no response. Complementary and/or synergistic effects may occur when extracellular checkpoint antibody blockades combine with small molecules targeting intracellular signal pathways up/downstream of immune checkpoints or regulating the innate and adaptive immune response. After radiolabeling with radionuclides, small molecules can also be used for estimating treatment efficacy of immune checkpoint blockades. This review not only highlights some significant intracellular pathways and immune-related targets such as the kynurenine pathway, purinergic signaling, the kinase signaling axis, chemokines, etc., but also summarizes some attractive and potentially immunosuppression-related small molecule agents, which may be synergistic with extracellular immune checkpoint blockade. In addition, opportunities for small molecule-based theranostics in cancer immunology will be discussed.
Collapse
Affiliation(s)
- Jindian Li
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Juno Van Valkenburgh
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| | - Xingfang Hong
- Laboratory of Pathogen Biology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Peter S. Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| |
Collapse
|
386
|
Loeuillard E, Conboy CB, Gores GJ, Ilyas SI. Immunobiology of cholangiocarcinoma. JHEP Rep 2019; 1:297-311. [PMID: 32039381 PMCID: PMC7001542 DOI: 10.1016/j.jhepr.2019.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 02/08/2023] Open
Abstract
Cholangiocarcinoma (CCA) represents a heterogeneous group of epithelial tumours that are classified according to anatomical location as intrahepatic (iCCA), perihilar (pCCA), or distal (dCCA). Although surgical resection and liver transplantation following neoadjuvant therapy are potentially curative options for a subset of patients with early-stage disease, the currently available medical therapies for CCA have limited efficacy. Immunotherapeutic strategies such as immune checkpoint blockade (ICB) harness the host immune system to unleash an effective and durable antitumour response in a subset of patients with a variety of malignancies. However, response to ICB monotherapy has been relatively disappointing in CCA. CCAs are desmoplastic tumours with an abundant tumour immune microenvironment (TIME) that contains immunosuppressive innate immune cells such as tumour-associated macrophages and myeloid-derived suppressor cells. A subset of CCAs may be classified as immune 'hot' tumours with a high density of CD8+ T cells and enhanced expression of immune checkpoint molecules. Immune 'hot' tumour types are associated with higher response rates to ICB. However, the suboptimal response rates to ICB monotherapy in human clinical trials of CCA imply that the preponderance of CCAs are immune 'cold' tumours with a non-T cell infiltrated TIME. An enhanced comprehension of the immunobiology of CCA, particularly the innate immune response to CCA, is essential in the effort to develop effective combination immunotherapeutic strategies that can target a larger subset of CCAs.
Collapse
Affiliation(s)
- Emilien Loeuillard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
387
|
Lin C, He H, Liu H, Li R, Chen Y, Qi Y, Jiang Q, Chen L, Zhang P, Zhang H, Li H, Zhang W, Sun Y, Xu J. Tumour-associated macrophages-derived CXCL8 determines immune evasion through autonomous PD-L1 expression in gastric cancer. Gut 2019; 68:1764-1773. [PMID: 30661053 DOI: 10.1136/gutjnl-2018-316324] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Our previous studies have identified CXCL8 as the crucial chemokine responsible for gastric cancer metastasis mediated by loss of RACK1. However, the regulatory effect of CXCL8 on immune surveillance in gastric cancer remains obscure. DESIGN Flow cytometry analyses were performed to examine major source of CXCL8 and phenotypes of immune cells in fresh tumour tissues from 76 patients with gastric cancer. Real-time PCR was performed to analyse CXCL8 mRNA level in gastric cancer tissues. For immunohistochemical analyses, a total of 420 patients with gastric cancer undergoing curative resection were enrolled. In vitro culture of fresh tumour tissue was performed to evaluate the potential therapeutic effect of blocking CXCL8 pathway in gastric cancer. RESULTS Increased level of CXCL8 indicates poor clinical outcome and tumour progression in patients with gastric cancer. In gastric cancer tissues, CXCL8 is predominantly secreted by macrophages and colony stimulating factor 2 (CSF-2) facilitates macrophage-derived CXCL8 secretion. High level of CXCL8 is associated with decreased CD8+ T cells infiltration and Ki67+ CD8+ T cells proportion. Moreover, CXCL8 also inhibits CD8+ T cells function by inducing the expression of PD-L1 on macrophages. Finally, we show that a small-molecule CXCR2 inhibitor, reparixin, drives the decreased programmed death-ligand 1 (PD-L1+) macrophages and promotes antitumour immunity. Accordingly, high levels of CXCL8+ macrophages are positively correlated with poor prognosis in patients with gastric cancer. CONCLUSIONS CXCL8 is predominantly secreted by macrophages and contributes to the immunosuppressive microenvironment by inducing PD-L1+ macrophages in gastric cancer. CXCL8 inhibitors may drive antitumour response, providing potential therapeutic effects for patients with gastric cancer.
Collapse
Affiliation(s)
- Chao Lin
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yifan Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yangyang Qi
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Jiang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peipei Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
388
|
Oliveira AC, Fu C, Lu Y, Williams MA, Pi L, Brantly ML, Ventetuolo CE, Raizada MK, Mehrad B, Scott EW, Bryant AJ. Chemokine signaling axis between endothelial and myeloid cells regulates development of pulmonary hypertension associated with pulmonary fibrosis and hypoxia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L434-L444. [PMID: 31364370 PMCID: PMC6842914 DOI: 10.1152/ajplung.00156.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension complicates the care of many patients with chronic lung diseases (defined as Group 3 pulmonary hypertension), yet the mechanisms that mediate the development of pulmonary vascular disease are not clearly defined. Despite being the most prevalent form of pulmonary hypertension, to date there is no approved treatment for patients with disease. Myeloid-derived suppressor cells (MDSCs) and endothelial cells in the lung express the chemokine receptor CXCR2, implicated in the evolution of both neoplastic and pulmonary vascular remodeling. However, precise cellular contribution to lung disease is unknown. Therefore, we used mice with tissue-specific deletion of CXCR2 to investigate the role of this receptor in Group 3 pulmonary hypertension. Deletion of CXCR2 in myeloid cells attenuated the recruitment of polymorphonuclear MDSCs to the lungs, inhibited vascular remodeling, and protected against pulmonary hypertension. Conversely, loss of CXCR2 in endothelial cells resulted in worsened vascular remodeling, associated with increased MDSC migratory capacity attributable to increased ligand availability, consistent with analyzed patient sample data. Taken together, these data suggest that CXCR2 regulates MDSC activation, informing potential therapeutic application of MDSC-targeted treatments.
Collapse
Affiliation(s)
- Aline C Oliveira
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida
| | - Chunhua Fu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Yuanqing Lu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Mason A Williams
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Liya Pi
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Mark L Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Edward W Scott
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida
| | - Andrew J Bryant
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida
| |
Collapse
|
389
|
Jiao X, Nawab O, Patel T, Kossenkov AV, Halama N, Jaeger D, Pestell RG. Recent Advances Targeting CCR5 for Cancer and Its Role in Immuno-Oncology. Cancer Res 2019; 79:4801-4807. [PMID: 31292161 PMCID: PMC6810651 DOI: 10.1158/0008-5472.can-19-1167] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/20/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
Experiments of nature have revealed the peculiar importance of the G-protein-coupled receptor, C-C chemokine receptor type 5 (CCR5), in human disease since ancient times. The resurgence of interest in heterotypic signals in the onset and progression of tumorigenesis has led to the current focus on CCR5 as an exciting new therapeutic target for metastatic cancer with clinical trials now targeting breast and colon cancer. The eutopic expression of CCR5 activates calcium signaling and thereby augments regulatory T cell (Treg) differentiation and migration to sites of inflammation. The misexpression of CCR5 in epithelial cells, induced upon oncogenic transformation, hijacks this migratory phenotype. CCR5 reexpression augments resistance to DNA-damaging agents and is sufficient to induce cancer metastasis and "stemness". Recent studies suggest important cross-talk between CCR5 signaling and immune checkpoint function. Because CCR5 on Tregs serves as the coreceptor for human immunodeficiency virus (HIV) entry, CCR5-targeted therapeutics used in HIV, [small molecules (maraviroc and vicriviroc) and a humanized mAb (leronlimab)], are now being repositioned in clinical trials as cancer therapeutics. As CCR5 is expressed on a broad array of tumors, the opportunity for therapeutic repositioning and the rationale for combination therapy approaches are reviewed herein.
Collapse
Affiliation(s)
- Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, Pennsylvania
| | - Omar Nawab
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, Pennsylvania
- Xavier University School of Medicine, Woodbury, New York
| | - Tejal Patel
- Xavier University School of Medicine, Woodbury, New York
| | | | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Jaeger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor-Immunity, Heidelberg, Germany
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, Pennsylvania.
- Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
390
|
Hsu SY, Yu HY, Lee WC, Hsiao CE, Wu CL, Cheng HT, Lin LJ, Li F, Chou YT, Cheng JW. A novel CXCL8 analog is effective in inhibiting the growth via cell cycle arrest and attenuating invasion of Lewis lung carcinoma. Onco Targets Ther 2019; 12:7611-7621. [PMID: 31571912 PMCID: PMC6754332 DOI: 10.2147/ott.s215824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/09/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose Lung cancer and other solid tumors contain not only tumor cells but various types of stromal cells, such as fibroblasts and endothelial cells. In addition, tumors are infiltrated by inflammatory cells (neutrophils, macrophages, and lymphocytes). Tumor cells, stromal cells, and the tumor-associated leukocytes are responsible for the production of chemokines inside the tumor and the maintenance of systemic circulating chemokine levels. CXCL8 and its receptors, CXCR1 and CXCR2, were found to play important roles in tumor proliferation, migration, survival, and growth. We have developed a novel ELR-CXC chemokine antagonist CXCL8-IP10 based on the structure of CXCL8 and IP10. Patients and methods We assessed the anticancer efficacies of the blockade of CXCL8-CXCR1/2 axis in the Lewis lung carcinoma (LL/2) model using CXCL8-IP10. Results We found that CXCL8-IP10 markedly reduced LL/2 cell anchorage-independent growth and invasion. Moreover, we demonstrated that CXCL8-IP10 could significantly suppress tumor growth and improve survival rate as well as lifespan of C57BL/6 mice inoculated with LL/2 cells. Conclusion Our results suggest that ELR-CXC chemokine antagonism would potentially be a useful therapeutic approach in patients with lung cancer.
Collapse
Affiliation(s)
- Su-Ya Hsu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Yuan Yu
- Division of Cancer Research, Rise Biopharmaceuticals Inc., Zhongguancun Shangdi Bio-medical Park, Beijing 100085, People's Republic of China
| | - Wei-Chen Lee
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chia-En Hsiao
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Lung Wu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hsi-Tsung Cheng
- Division of Cancer Research, Rise Biopharmaceuticals Inc., Zhongguancun Shangdi Bio-medical Park, Beijing 100085, People's Republic of China
| | - Li-Jin Lin
- Division of Cancer Research, Rise Biopharmaceuticals Inc., Zhongguancun Shangdi Bio-medical Park, Beijing 100085, People's Republic of China
| | - Fang Li
- Department of Immunology, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Yu-Ting Chou
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Jya-Wei Cheng
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
391
|
Bilusic M, Heery CR, Collins JM, Donahue RN, Palena C, Madan RA, Karzai F, Marté JL, Strauss J, Gatti-Mays ME, Schlom J, Gulley JL. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J Immunother Cancer 2019; 7:240. [PMID: 31488216 PMCID: PMC6729083 DOI: 10.1186/s40425-019-0706-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/07/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND HuMax-IL8 (now known as BMS-986253) is a novel, fully human monoclonal antibody that inhibits interleukin-8 (IL-8), a chemokine that promotes tumor progression, immune escape, epithelial-mesenchymal transition, and recruitment of myeloid-derived suppressor cells. Studies have demonstrated that high serum IL-8 levels correlate with poor prognosis in many malignant tumors. Preclinical studies have shown that IL-8 blockade may reduce mesenchymal features in tumor cells, making them less resistant to treatment. METHODS Fifteen patients with metastatic or unresectable locally advanced solid tumors were enrolled in this 3 + 3 dose-escalation trial at four dose levels (4, 8, 16, or 32 mg/kg). HuMax-IL8 was given IV every 2 weeks, and patients were followed for safety and immune monitoring at defined intervals up to 52 weeks. RESULTS All enrolled patients (five chordoma, four colorectal, two prostate, and one each of ovarian, papillary thyroid, chondrosarcoma, and esophageal) received at least one dose of HuMax-IL8. Eight patients had received three or more prior lines of therapy and five patients had received prior immunotherapy. Treatment-related adverse events occurred in five patients (33%), mostly grade 1. Two patients receiving the 32 mg/kg dose had grade 2 fatigue, hypophosphatemia, and hypersomnia. No dose-limiting toxicities were observed, and maximum tolerated dose was not reached. Although no objective tumor responses were observed, 11 patients (73%) had stable disease with median treatment duration of 24 weeks (range, 4-54 weeks). Serum IL-8 was significantly reduced on day 3 of HuMax-IL8 treatment compared to baseline (p = 0.0004), with reductions in IL-8 seen at all dose levels. CONCLUSIONS HuMax-IL8 is safe and well-tolerated. Ongoing studies are evaluating the combination of IL-8 blockade and other immunotherapies. TRIAL REGISTRATION NCTN, NCT02536469. Registered 23 August 2015, https://clinicaltrials.gov/ct2/show/NCT02536469?term=NCT02536469&rank=1 .
Collapse
Affiliation(s)
- Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Precision Biosciences, Durham, NC, USA
| | - Julie M Collins
- Medical Oncology Service, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer L Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Margaret E Gatti-Mays
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
392
|
Puttmann K, Duggan M, Mortazavi A, Diaz DA, Carson III WE, Sundi D. The Role of Myeloid Derived Suppressor Cells in Urothelial Carcinoma Immunotherapy. Bladder Cancer 2019. [DOI: 10.3233/blc-190219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kathleen Puttmann
- Department of Urology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Megan Duggan
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Amir Mortazavi
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Dayssy Alexandra Diaz
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - William E. Carson III
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Debasish Sundi
- Department of Urology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
393
|
Fumagalli C, Guerini-Rocco E, Vacirca D, Passaro A, Marinis FD, Barberis M. The immune profile of EGFR-mutated non-small-cell lung cancer at disease onset and progression after tyrosine kinase inhibitors therapy. Immunotherapy 2019; 10:1041-1045. [PMID: 30185137 DOI: 10.2217/imt-2018-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Caterina Fumagalli
- Division of Pathology & Laboratory Medicine, European Institute of Oncology, Via Ripamonti 451, 20141 Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology & Laboratory Medicine, European Institute of Oncology, Via Ripamonti 451, 20141 Milan, Italy.,Department of Oncology & Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Davide Vacirca
- Division of Pathology & Laboratory Medicine, European Institute of Oncology, Via Ripamonti 451, 20141 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology, Via Ripamonti 451, 20141 Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology, Via Ripamonti 451, 20141 Milan, Italy
| | - Massimo Barberis
- Division of Pathology & Laboratory Medicine, European Institute of Oncology, Via Ripamonti 451, 20141 Milan, Italy
| |
Collapse
|
394
|
Hoffmann SHL, Reck DI, Maurer A, Fehrenbacher B, Sceneay JE, Poxleitner M, Öz HH, Ehrlichmann W, Reischl G, Fuchs K, Schaller M, Hartl D, Kneilling M, Möller A, Pichler BJ, Griessinger CM. Visualization and quantification of in vivo homing kinetics of myeloid-derived suppressor cells in primary and metastatic cancer. Am J Cancer Res 2019; 9:5869-5885. [PMID: 31534525 PMCID: PMC6735369 DOI: 10.7150/thno.33275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immunosuppressive cells of the myeloid compartment and major players in the tumor microenvironment (TME). With increasing numbers of studies describing MDSC involvement in cancer immune escape, cancer metastasis and the dampening of immunotherapy responses, MDSCs are of high interest in current cancer therapy research. Although heavily investigated in the last decades, the in vivo migration dynamics of MDSC subpopulations in tumor- or metastases-bearing mice have not yet been studied extensively. Therefore, we have modified our previously reported intracellular cell labeling method and applied it to in vitro generated MDSCs for the quantitative in vivo monitoring of MDSC migration in primary and metastatic cancer. MDSC migration to primary cancers was further correlated to the frequency of endogenous MDSCs. Methods: Utilizing a 64Cu-labeled 1,4,7-triazacyclononane-triacetic acid (NOTA)-modified CD11b-specific monoclonal antibody (mAb) (clone M1/70), we were able to label in vitro generated polymorphonuclear (PMN-) and monocytic (M-) MDSCs for positron emission tomography (PET) imaging. Radiolabeled PMN- and M-MDSCs ([64Cu]PMN-MDSCs and [64Cu]M-MDSCs, respectively) were then adoptively transferred into primary and metastatic MMTV-PyMT-derived (PyMT-) breast cancer- and B16F10 melanoma-bearing experimental animals, and static PET and anatomical magnetic resonance (MR) images were acquired 3, 24 and 48 h post cell injection. Results: The internalization of the [64Cu]NOTA-mAb-CD11b-complex was completed within 3 h, providing moderately stable radiolabeling with little detrimental effect on cell viability and function as determined by Annexin-V staining and T cell suppression in flow cytometric assays. Further, we could non-invasively and quantitatively monitor the migration and tumor homing of both [64Cu]NOTA-αCD11b-mAb-labeled PMN- and M-MDSCs in mouse models of primary and metastatic breast cancer and melanoma by PET. We were able to visualize and quantify an increased migration of adoptively transferred [64Cu]M-MDSCs than [64Cu]PMN-MDSCs to primary breast cancer lesions. The frequency of endogenous MDSCs in the PyMT breast cancer and B16F10 melanoma model correlated to the uptake values of adoptively transferred MDSCs with higher frequencies of PMN- and M-MDSCs in the more aggressive B16F10 melanoma tumors. Moreover, aggressively growing melanomas and melanoma-metastatic lesions recruited higher percentages of both [64Cu]PMN- and [64Cu]M-MDSCs than primary and metastatic breast cancer lesions as early as 24 h post adoptive MDSC transfer, indicating an overall stronger recruitment of cancer-promoting immunosuppressive MDSCs. Conclusion: Targeting of the cell surface integrin CD11b with a radioactive mAb is feasible for labeling of murine MDSCs for PET imaging. Fast internalization of the [64Cu]NOTA-αCD11b-mAb provides presumably enhanced stability while cell viability and functionality was not significantly affected. Moreover, utilization of the CD11b-specific mAb allows for straightforward adaptation of the labeling approach for in vivo molecular imaging of other myeloid cells of interest in cancer therapy, including monocytes, macrophages or neutrophils.
Collapse
|
395
|
Moreno-Vicente J, Beers SA, Gray JC. PD-1/PD-L1 blockade in paediatric cancers: What does the future hold? Cancer Lett 2019; 457:74-85. [PMID: 31055109 DOI: 10.1016/j.canlet.2019.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/28/2022]
Abstract
Checkpoint blockade (CPB) immunotherapy has shown unprecedented success in a wide range of adult malignancies, and is increasingly being employed in the treatment of advanced cancers. However, the experience in the paediatric population remains limited and the small number of single agent studies reported have shown disappointing response rates. Paediatric cancers offer unique challenges that can hinder the translation of CPB into the paediatric clinic, and combinational therapies are likely to be needed to achieve therapeutic success. As the number of paediatric trials using CPB rapidly increases, understanding the challenges that these agents may encounter in this population is of special significance to allow the design of optimal combinatorial strategies for each tumour type. Here, we offer an overview of the unique biological and immunological features of paediatric cancers as compared to adult malignancies, and how these might impact the overall success of CPB in the paediatric population. We review the growing body of pre-clinical and clinical experiences to date, and discuss future strategies involving the combination of CPB with traditionally used therapies (chemotherapy and radiotherapy) or with other newly developed immunotherapies.
Collapse
Affiliation(s)
- Julia Moreno-Vicente
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Department of Paediatric Oncology, Southampton, Hants, SO16 6YD, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Department of Paediatric Oncology, Southampton, Hants, SO16 6YD, UK
| | - Juliet C Gray
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Department of Paediatric Oncology, Southampton, Hants, SO16 6YD, UK.
| |
Collapse
|
396
|
Chen JY, Lai YS, Chu PY, Chan SH, Wang LH, Hung WC. Cancer-Derived VEGF-C Increases Chemokine Production in Lymphatic Endothelial Cells to Promote CXCR2-Dependent Cancer Invasion and MDSC Recruitment. Cancers (Basel) 2019; 11:cancers11081120. [PMID: 31390756 PMCID: PMC6721484 DOI: 10.3390/cancers11081120] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 12/19/2022] Open
Abstract
Breast cancer-derived vascular endothelial growth factor-C (VEGF-C) has been shown to enhance lymphangiogenesis in lymph nodes to accelerate cancer metastasis. However, the remodeling of lymph node microenvironments by VEGF-C remains elusive. By in vivo selection, we established a subline (named as “LC”) with strong lymphatic tropism and high VEGF-C expression from the human MDA-MB-231 breast cancer cell line. Co-culture with LC cells or treatment with LC-conditioned medium upregulated the expression of CXC chemokines in lymphatic endothelial cells (LECs), which could be inhibited by pre-incubation with VEGF-C-neutralizing antibodies and VEGFR3 inhibitors. The chemokines produced by LECs enhanced recruitment of myeloid-derived suppressor cells (MDSCs) to tumor-draining and distant lymph nodes in tumor-bearing mice. Treatment with a CXCR2 inhibitor after tumor cell inoculation dramatically decreased the number of MDSCs in lymph nodes, suggesting the importance of the chemokine/CXCR2 signaling axis in MDSC recruitment. In addition, LEC-released chemokines also stimulated the expression of serum amyloid A1 (SAA1) in cancer cells, enhancing their lymphatic invasion by increasing VE-cadherin phosphorylation, junction disruption, and vascular permeability of LECs. Clinical sample validation confirmed that SAA1 expression was associated with increased lymph node metastasis. Collectively, we reveal a novel mechanism by which cancer cell-derived VEGF-C remodels lymphovascular microenvironments by regulating chemokine production in LECs to promote cancer invasion and MDSC recruitment. Our results also suggest that inhibition of CXCR2 is effective in treating lymphatic metastasis.
Collapse
Affiliation(s)
- Jing-Yi Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - You-Syuan Lai
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City 500, Taiwan
| | - Shih-Hsuan Chan
- Chinese Medicine Research Center and Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
| | - Lu-Hai Wang
- Chinese Medicine Research Center and Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
397
|
Gardiner P, Cox RJ, Grime K. Plasma Protein Binding as an Optimizable Parameter for Acidic Drugs. Drug Metab Dispos 2019; 47:865-873. [PMID: 31113795 DOI: 10.1124/dmd.119.087163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/17/2019] [Indexed: 02/13/2025] Open
Abstract
The low volume of distribution associated with acidic molecules means that clearance (CL) must also be very low to achieve an effective half-life commensurate with once or twice daily dosing. Plasma protein binding (PPB) should not usually be considered a parameter for optimization, but in the particular case of acidic molecules, raising the PPB above a certain level can result in distribution volume becoming a constant low value equal to the distribution volume of albumin while acting to reduce CL through restricting hepatic and renal access of unbound drug. Thus effective half-life can be increased. Here we detail the approaches and lessons learned at AstraZeneca during the optimization of acidic CXC chemokine receptor 2 (CXCR2) antagonists for the oral drug treatment of inflammatory diseases, resulting in discovery and clinical testing of N-[2-[(2,3-difluorophenyl)methylsulfanyl]-6-[(2R,3S)-3,4-dihydroxybutan-2-yl]oxypyrimidin-4-yl]azetidine-1-sulfonamide (AZD5069) and AZD4721, orally bioavailable acidic molecules with PPB of <1%, human hepatocyte intrinsic clearance values <5 µl/min per 106 cells and predicted human volume of distribution at steady state (V ss) <0.3 l/kg, resulting in effective half-lives in humans of 4 and 17 hours, respectively. SIGNIFICANCE STATEMENT: Provided that the pharmacologic potency is high enough, modulation of plasma protein binding can form part of a viable strategy in drug discovery to optimize the effective half-life of drug candidates in humans.
Collapse
Affiliation(s)
- Philip Gardiner
- Clinical Pharmacology & Safety Sciences, Medicinal Chemistry and DMPK, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Rhona J Cox
- Clinical Pharmacology & Safety Sciences, Medicinal Chemistry and DMPK, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Ken Grime
- Clinical Pharmacology & Safety Sciences, Medicinal Chemistry and DMPK, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
398
|
Ding AS, Routkevitch D, Jackson C, Lim M. Targeting Myeloid Cells in Combination Treatments for Glioma and Other Tumors. Front Immunol 2019; 10:1715. [PMID: 31396227 PMCID: PMC6664066 DOI: 10.3389/fimmu.2019.01715] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells constitute a significant part of the immune system in the context of cancer, exhibiting both immunostimulatory effects, through their role as antigen presenting cells, and immunosuppressive effects, through their polarization to myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages. While they are rarely sufficient to generate potent anti-tumor effects on their own, myeloid cells have the ability to interact with a variety of immune populations to aid in mounting an appropriate anti-tumor immune response. Therefore, myeloid therapies have gained momentum as a potential adjunct to current therapies such as immune checkpoint inhibitors (ICIs), dendritic cell vaccines, oncolytic viruses, and traditional chemoradiation to enhance therapeutic response. In this review, we outline critical pathways involved in the recruitment of the myeloid population to the tumor microenvironment and in their polarization to immunostimulatory or immunosuppressive phenotypes. We also emphasize existing strategies of modulating myeloid recruitment and polarization to improve anti-tumor immune responses. We then summarize current preclinical and clinical studies that highlight treatment outcomes of combining myeloid targeted therapies with other immune-based and traditional therapies. Despite promising results from reports of limited clinical trials thus far, there remain challenges in optimally harnessing the myeloid compartment as an adjunct to enhancing anti-tumor immune responses. Further large Phase II and ultimately Phase III clinical trials are needed to elucidate the treatment benefit of combination therapies in the fight against cancer.
Collapse
Affiliation(s)
| | | | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
399
|
Sody S, Uddin M, Grüneboom A, Görgens A, Giebel B, Gunzer M, Brandau S. Distinct Spatio-Temporal Dynamics of Tumor-Associated Neutrophils in Small Tumor Lesions. Front Immunol 2019; 10:1419. [PMID: 31293583 PMCID: PMC6603174 DOI: 10.3389/fimmu.2019.01419] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
Across a majority of cancer types tumor-associated neutrophils (TAN) are linked with poor prognosis. However, the underlying mechanisms, especially the intratumoral behavior of TAN, are largely unknown. Using intravital multiphoton imaging on a mouse model with neutrophil-specific fluorescence, we measured the migration of TAN in distinct compartments of solid tumor cell lesions in vivo. By longitudinally quantifying the infiltration and persistence of TAN into growing tumors in the same animals, we observed cells that either populated the peripheral stromal zone of the tumor (peritumoral TAN) or infiltrated into the tumor core (intratumoral TAN). Intratumoral TAN showed prolonged tumor-associated persistence and reduced motility compared to peritumoral TAN, whose velocity increased with tumor progression. Selective pharmacological blockade of CXCR2 receptors using AZD5069 profoundly inhibited recruitment of TAN into peritumoral regions, while intratumoral infiltration was only transiently attenuated and rebounded at later time points. Our findings unravel distinct spatial dynamics of TAN that are partially and differentially regulated via the CXCR2 signaling pathway.
Collapse
Affiliation(s)
- Simon Sody
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mohib Uddin
- Respiratory Global Medicines Development (GMD), AstraZeneca, Gothenburg, Sweden
| | - Anika Grüneboom
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
400
|
Kather JN, Hörner C, Weis CA, Aung T, Vokuhl C, Weiss C, Scheer M, Marx A, Simon-Keller K. CD163+ immune cell infiltrates and presence of CD54+ microvessels are prognostic markers for patients with embryonal rhabdomyosarcoma. Sci Rep 2019; 9:9211. [PMID: 31239476 PMCID: PMC6592899 DOI: 10.1038/s41598-019-45551-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/07/2019] [Indexed: 01/06/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are rare and often lethal diseases. It is assumed that the tumor microenvironment (TME) of RMS exerts an immunosuppressive function, but there is currently no systematic analysis of the immune cells infiltrating sarcoma tissue. Focusing on two common types of RMS (alveolar [RMA] and embryonal [RME]), we performed a comprehensive immunohistochemical analysis of tumor-infiltrating immune cells in the TME. We performed a qualitative estimation of infiltrating immune cells in the tumor microenvironment by an experienced pathologist as well as a quantitative digital pathology analysis. We found that (1) manual and automatic quantification of tumor-infiltrating immune cells were consistent; (2) RME tumors showed a higher degree of immune cell infiltration than RMA tumors but (3) the number of tumor infiltrating lymphocytes was low compared to other solid tumor types; (4) microvascular density correlated with immune cell infiltration and (5) CD163 positive macrophages as well as CD54 positive microvessels were more often detected in RME than in RMA and correlated with patient overall and event free survival. Our systematic analysis provides a comprehensive view of the immune landscape of RMS which needs to be taken into account for developing immunotherapies for this rare type of cancer.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Applied Tumor Immunity, German Cancer Research Center, Heidelberg, Germany.,Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Hörner
- Institute of Pathology, University Medical Center Mannheim, Mannheim, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Center Mannheim, Mannheim, Germany
| | - Thiha Aung
- Center of Plastic-, Hand- and Reconstructive Surgery, University of Regensburg, Regensburg, Germany
| | - Christian Vokuhl
- Institute of Pathology, Paidopathology, University Medical Center Kiel, Kiel, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, University Medical Centre Mannheim, Mannheim, Germany
| | - Monika Scheer
- Pediatrics 5 (Oncology, Hematology, Immunology), Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Mannheim, Mannheim, Germany
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|