351
|
Chapter 30 Mitochondrial disorders. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1567-424x(09)70366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
352
|
|
353
|
Emelyanov VV. Phylogenetic affinity of a Giardia lamblia cysteine desulfurase conforms to canonical pattern of mitochondrial ancestry. FEMS Microbiol Lett 2003; 226:257-66. [PMID: 14553920 DOI: 10.1016/s0378-1097(03)00598-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among a few potential archezoan groups, only the Metamonada (diplomonads, retortamonads, and oxymonads) still retain the status of amitochondriate protists that diverged before the acquisition or retention of mitochondria. Indeed, finding that diplomonad genomes harbor a gene encoding a mitochondrial type chaperonin 60, the most compelling evidence for their secondarily amitochondriate nature, may be interpreted as an acquisition of this important general chaperone during some transient alpha-proteobacterial endosymbiosis. Recently published data on the cysteine desulfurase IscS demonstrated an alpha-proteobacterial origin of mitochondrial enzymes including a diplomonad Giardia lamblia homolog. An extended phylogenetic analysis of IscS is reported here that revealed a full canonical pattern of mitochondrial ancestry for the giardial enzyme. The above canonical pattern, a sister group relationship of mitochondria and rickettsiae exclusive of free-living alpha-proteobacteria, was robustly confirmed by a comprehensive analysis of Cob and Cox1 subunits of the respiratory chain encoded by resident mitochondrial genes. Given that Fe-S cluster assembly involving IscS represents an essential mitochondrial function, these data strongly suggest that diplomonads once harbored bona fide mitochondria.
Collapse
Affiliation(s)
- Victor V Emelyanov
- Department of General Microbiology, Gamaleya Institute of Epidemiology and Microbiology, 123098 Moscow, Russia.
| |
Collapse
|
354
|
Gilson PR, Yu XC, Hereld D, Barth C, Savage A, Kiefel BR, Lay S, Fisher PR, Margolin W, Beech PL. Two Dictyostelium orthologs of the prokaryotic cell division protein FtsZ localize to mitochondria and are required for the maintenance of normal mitochondrial morphology. EUKARYOTIC CELL 2003; 2:1315-26. [PMID: 14665465 PMCID: PMC326642 DOI: 10.1128/ec.2.6.1315-1326.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 08/13/2003] [Indexed: 11/20/2022]
Abstract
In bacteria, the protein FtsZ is the principal component of a ring that constricts the cell at division. Though all mitochondria probably arose through a single, ancient bacterial endosymbiosis, the mitochondria of only certain protists appear to have retained FtsZ, and the protein is absent from the mitochondria of fungi, animals, and higher plants. We have investigated the role that FtsZ plays in mitochondrial division in the genetically tractable protist Dictyostelium discoideum, which has two nuclearly encoded FtsZs, FszA and FszB, that are targeted to the inside of mitochondria. In most wild-type amoebae, the mitochondria are spherical or rod-shaped, but in fsz-null mutants they become elongated into tubules, indicating that a decrease in mitochondrial division has occurred. In support of this role in organelle division, antibodies to FszA and FszA-green fluorescent protein (GFP) show belts and puncta at multiple places along the mitochondria, which may define future or recent sites of division. FszB-GFP, in contrast, locates to an electron-dense, submitochondrial body usually located at one end of the organelle, but how it functions during division is unclear. This is the first demonstration of two differentially localized FtsZs within the one organelle, and it points to a divergence in the roles of these two proteins.
Collapse
Affiliation(s)
- Paul R Gilson
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Victoria 3125, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Serero A, Giglione C, Sardini A, Martinez-Sanz J, Meinnel T. An Unusual Peptide Deformylase Features in the Human Mitochondrial N-terminal Methionine Excision Pathway. J Biol Chem 2003; 278:52953-63. [PMID: 14532271 DOI: 10.1074/jbc.m309770200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dedicated machinery for N-terminal methionine excision (NME) was recently identified in plant organelles and shown to be essential in plastids. We report here the existence of mitochondrial NME in mammals, as shown by the identification of cDNAs encoding specific peptide deformylases (PDFs) and new methionine aminopeptidases (MAP1D). We cloned the two full-length human cDNAs and showed that the N-terminal domains of the encoded enzymes were specifically involved in targeting to mitochondria. In contrast to mitochondrial MAP1D, the human PDF sequence differed from that of known PDFs in several key features. We characterized the human PDF fully in vivo and in vitro. Comparison of the processed human enzyme with the plant mitochondrial PDF1A, to which it is phylogenetically related, showed that the human enzyme had an extra N-terminal domain involved in both mitochondrial targeting and enzyme stability. Mammalian PDFs also display non-random substitutions in the conserved motifs important for activity. Human PDF site-directed mutagenesis variants were studied and compared with the corresponding plant PDF1A variants. We found that amino acid substitutions in human PDF specifically altered its catalytic site, resulting in an enzyme intermediate between bacterial PDF1Bs and plant PDF1As. Because (i) human PDF was found to be active both in vitro and in vivo, (ii) the entire machinery is conserved and expressed in most animals, (iii) the mitochondrial genome expresses substrates for these enzymes, and (iv) mRNA synthesis is regulated, we conclude that animal mitochondria have a functional NME machinery that can be regulated.
Collapse
Affiliation(s)
- Alexandre Serero
- Protein Maturation Group, Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche Scientifique, Bâtiment 23, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette cedex, France
| | | | | | | | | |
Collapse
|
356
|
Nosek J, Tomáska L. Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 2003; 44:73-84. [PMID: 12898180 DOI: 10.1007/s00294-003-0426-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 06/25/2003] [Accepted: 06/26/2003] [Indexed: 11/28/2022]
Abstract
Mitochondrial genomes in organisms from diverse phylogenetic groups vary in both size and molecular form. Although the types of mitochondrial genome appear very dissimilar, several lines of evidence argue that they do not differ radically. This would imply that interconversion between different types of mitochondrial genome might have occurred via relatively simple mechanisms. We exemplify this scenario on patterns accompanying evolution of mitochondrial telomeres. We propose that mitochondrial telomeres are derived from mobile elements (transposons or plasmids) that invaded mitochondria, integrated into circular or polydisperse linear mitochondrial DNAs (mtDNAs) and subsequently enabled precise resolution of the linear genophore. Simply, the selfish elements generated a problem - how to maintain the ends of a linear DNA - and, at the same time, made themselves essential by providing its solution. This scenario implies that insertion or deletion of such resolution elements may represent relatively simple routes for interconversion between different forms of the mitochondrial genome.
Collapse
Affiliation(s)
- Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, 842 15, Bratislava, Slovakia.
| | | |
Collapse
|
357
|
Seif ER, Forget L, Martin NC, Lang BF. Mitochondrial RNase P RNAs in ascomycete fungi: lineage-specific variations in RNA secondary structure. RNA (NEW YORK, N.Y.) 2003; 9:1073-83. [PMID: 12923256 PMCID: PMC1370472 DOI: 10.1261/rna.5880403] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 06/18/2003] [Indexed: 05/19/2023]
Abstract
The RNA subunit of mitochondrial RNase P (mtP-RNA) is encoded by a mitochondrial gene (rnpB) in several ascomycete fungi and in the protists Reclinomonas americana and Nephroselmis olivacea. By searching for universally conserved structural elements, we have identified previously unknown rnpB genes in the mitochondrial DNAs (mtDNAs) of two fission yeasts, Schizosaccharomyces pombe and Schizosaccharomyces octosporus; in the budding yeast Pichia canadensis; and in the archiascomycete Taphrina deformans. The expression of mtP-RNAs of the predicted size was experimentally confirmed in the two fission yeasts, and their precise 5' and 3' ends were determined by sequencing of cDNAs generated from circularized mtP-RNAs. Comparative RNA secondary structure modeling shows that in contrast to mtP-RNAs of the two protists R. americana and N. olivacea, those of ascomycete fungi all have highly reduced secondary structures. In certain budding yeasts, such as Saccharomycopsis fibuligera, we find only the two most conserved pairings, P1 and P4. A P18 pairing is conserved in Saccharomyces cerevisiae and its close relatives, whereas nearly half of the minimum bacterial consensus structure is retained in the RNAs of fission yeasts, Aspergillus nidulans and Taphrina deformans. The evolutionary implications of the reduction of mtP-RNA structures in ascomycetes will be discussed.
Collapse
Affiliation(s)
- Elias R Seif
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | | | | |
Collapse
|
358
|
Turmel M, Otis C, Lemieux C. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. THE PLANT CELL 2003; 15:1888-903. [PMID: 12897260 PMCID: PMC167177 DOI: 10.1105/tpc.013169] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Accepted: 06/04/2003] [Indexed: 05/20/2023]
Abstract
Mitochondrial DNA (mtDNA) has undergone radical changes during the evolution of green plants, yet little is known about the dynamics of mtDNA evolution in this phylum. Land plant mtDNAs differ from the few green algal mtDNAs that have been analyzed to date by their expanded size, long spacers, and diversity of introns. We have determined the mtDNA sequence of Chara vulgaris (Charophyceae), a green alga belonging to the charophycean order (Charales) that is thought to be the most closely related alga to land plants. This 67,737-bp mtDNA sequence, displaying 68 conserved genes and 27 introns, was compared with those of three angiosperms, the bryophyte Marchantia polymorpha, the charophycean alga Chaetosphaeridium globosum (Coleochaetales), and the green alga Mesostigma viride. Despite important differences in size and intron composition, Chara mtDNA strikingly resembles Marchantia mtDNA; for instance, all except 9 of 68 conserved genes lie within blocks of colinear sequences. Overall, our genome comparisons and phylogenetic analyses provide unequivocal support for a sister-group relationship between the Charales and the land plants. Only four introns in land plant mtDNAs appear to have been inherited vertically from a charalean algar ancestor. We infer that the common ancestor of green algae and land plants harbored a tightly packed, gene-rich, and relatively intron-poor mitochondrial genome. The group II introns in this ancestral genome appear to have spread to new mtDNA sites during the evolution of bryophytes and charalean green algae, accounting for part of the intron diversity found in Chara and land plant mitochondria.
Collapse
Affiliation(s)
- Monique Turmel
- Département de Biochimie et de Microbiologie, Université Laval, Québec, Québec G1K 7P4, Canada.
| | | | | |
Collapse
|
359
|
Lai HC, Liu TJ, Ting CT, Sharma PM, Wang PH. Insulin-like growth factor-1 prevents loss of electrochemical gradient in cardiac muscle mitochondria via activation of PI 3 kinase/Akt pathway. Mol Cell Endocrinol 2003; 205:99-106. [PMID: 12890571 DOI: 10.1016/s0303-7207(03)00200-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Insulin-like growth factor-1 (IGF 1) suppresses myocardial apoptosis and improves myocardial function in experimental models of cardiomyopathy. Apoptosis is triggered by mitochondria dysfunction and subsequent activation of caspases. We had previously shown that IGF 1 inhibited cardiomyocyte apoptosis via suppression of caspase, however, how IGF 1 and its signaling pathway modulates mitochondria function in cardiac muscle is not yet known. In this study we investigated how IGF 1 signaling modulates mitochondria membrane depolarization in the cardiomyocytes treated with doxorubicin. Doxorubicin rapidly induced loss of mitochondria electrochemical gradient and triggered mitochondria depolarization in primary cardiomyocytes, whereas addition of IGF 1 restored mitochondria electrochemical gradient. The effects of IGF 1 was blocked by a chemical inhibitor of PI 3 kinase and a dominant negative Akt, suggesting that IGF 1 signaling to mitochondria involves the PI 3 kinase-Akt pathway. Transducing cardiomyocytes with constitutive active PI 3 kinase partially restored the mitochondria electrochemical gradient in doxorubicin-treated cells. These findings provide direct evidence that IGF 1 modulation of mitochondria function is mediated through activation of PI 3 kinase and Akt. Additional experiments using agonist and antagonist of mitochondria K(ATP) channel suggest that IGF 1 signaling to mitochondria membrane does not directly involve K(ATP) channel. These findings suggest that cytosolic signaling to mitochondria may play a fundamental role in the cardiotoxic actions of doxorubicin and cardioprotective actions of IGF 1.
Collapse
Affiliation(s)
- Hui-Chin Lai
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Med Sci I, Rm C240, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
360
|
Elo A, Lyznik A, Gonzalez DO, Kachman SD, Mackenzie SA. Nuclear genes that encode mitochondrial proteins for DNA and RNA metabolism are clustered in the Arabidopsis genome. THE PLANT CELL 2003; 15:1619-31. [PMID: 12837951 PMCID: PMC165405 DOI: 10.1105/tpc.010009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Accepted: 05/13/2003] [Indexed: 05/18/2023]
Abstract
The plant mitochondrial genome is complex in structure, owing to a high degree of recombination activity that subdivides the genome and increases genetic variation. The replication activity of various portions of the mitochondrial genome appears to be nonuniform, providing the plant with an ability to modulate its mitochondrial genotype during development. These and other interesting features of the plant mitochondrial genome suggest that adaptive changes have occurred in DNA maintenance and transmission that will provide insight into unique aspects of plant mitochondrial biology and mitochondrial-chloroplast coevolution. A search in the Arabidopsis genome for genes involved in the regulation of mitochondrial DNA metabolism revealed a region of chromosome III that is unusually rich in genes for mitochondrial DNA and RNA maintenance. An apparently similar genetic linkage was observed in the rice genome. Several of the genes identified within the chromosome III interval appear to target the plastid or to be targeted dually to the mitochondria and the plastid, suggesting that the process of endosymbiosis likely is accompanied by an intimate coevolution of these two organelles for their genome maintenance functions.
Collapse
Affiliation(s)
- Annakaisa Elo
- Plant Science Initiative, Beadle Center for Genetics Research, University of Nebraska, Lincoln, Nebraska 68588-0660, USA
| | | | | | | | | |
Collapse
|
361
|
Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 2003; 27:197-213. [PMID: 12829268 DOI: 10.1016/s0168-6445(03)00049-4] [Citation(s) in RCA: 506] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Escherichia coli is equipped with multiple systems to ensure safe copper handling under varying environmental conditions. The Cu(I)-translocating P-type ATPase CopA, the central component in copper homeostasis, is responsible for removing excess Cu(I) from the cytoplasm. The multi-copper oxidase CueO and the multi-component copper transport system CusCFBA appear to safeguard the periplasmic space from copper-induced toxicity. Some strains of E. coli can survive in copper-rich environments that would normally overwhelm the chromosomally encoded copper homeostatic systems. Such strains possess additional plasmid-encoded genes that confer copper resistance. The pco determinant encodes genes that detoxify copper in the periplasm, although the mechanism is still unknown. Genes involved in copper homeostasis are regulated by MerR-like activators responsive to cytoplasmic Cu(I) or two-component systems sensing periplasmic Cu(I). Pathways of copper uptake and intracellular copper handling are still not identified in E. coli.
Collapse
Affiliation(s)
- Christopher Rensing
- Department of Soil, Water, and Environmental Science, University of Arizona, Shantz Bld. #38, Rm. 429, Tucson, AZ 85721, USA.
| | | |
Collapse
|
362
|
Kroth PG. Protein transport into secondary plastids and the evolution of primary and secondary plastids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:191-255. [PMID: 12455749 DOI: 10.1016/s0074-7696(02)21013-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are key organelles in algae and plants due to their photosynthetic abilities. They are thought to have evolved from prokaryotic cyanobacteria taken up by a eukaryotic host cell in a process termed primary endocytobiosis. In addition, a variety of organisms have evolved by subsequent secondary endocytobioses, in which a heterotrophic host cell engulfed a eukaryotic alga. Both processes dramatically enhanced the complexity of the resulting cells. Since the first version of the endosymbiotic theory was proposed more than 100 years ago, morphological, physiological, biochemical, and molecular data have been collected substantiating the emerging picture about the origin and the relationship of individual organisms with different primary or secondary chloroplast types. Depending on their origin, plastids in different lineages may have two, three, or four envelope membranes. The evolutionary success of endocytobioses depends, among other factors, on the specific exchange of molecules between the host and endosymbiont. This raises questions concerning how targeting of nucleus-encoded proteins into the different plastid types occurs and how these processes may have developed. Most studies of protein translocation into plastids have been performed on primary plastids, but in recent years more complex protein-translocation systems of secondary plastids have been investigated. Analyses of transport systems in different algal lineages with secondary plastids reveal that during evolution existing translocation machineries were recycled or recombined rather than being developed de novo. This review deals with current knowledge about the evolution and function of primary and secondary plastids and the respective protein-targeting systems.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
363
|
Burger G, Lang BF, Braun HP, Marx S. The enigmatic mitochondrial ORF ymf39 codes for ATP synthase chain b. Nucleic Acids Res 2003; 31:2353-60. [PMID: 12711680 PMCID: PMC154212 DOI: 10.1093/nar/gkg326] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Revised: 02/13/2003] [Accepted: 02/25/2003] [Indexed: 11/12/2022] Open
Abstract
ymf39 is a conserved hypothetical protein-coding gene found in mitochondrial genomes of land plants and certain protists. We speculated earlier, based on a weak sequence similarity between Ymf39 from a green alga and the atpF gene product from Bradyrhizobium, that ymf39 might code for subunit b of mitochondrial F(0)F(1)-ATP synthase. To test this hypothesis, we have sequenced ymf39 from five protists with minimally derived mitochondrial genomes, the jakobids. In addition, we isolated the mitochondrial ATP synthase complex of the jakobid Seculamonas ecuadoriensis and determined the partial protein sequence of the 19-kDa subunit, the size expected for Ymf39. The obtained peptide sequence matches perfectly with a 3'-proximal region of the ymf39 gene of this organism, confirming that Ymf39 is indeed an ATP synthase subunit. Finally, we employed statistical tests to assess the significance of sequence similarity of Ymf39 proteins with each other, their nucleus-encoded functional counterparts, ATP4/ATP5F, from fungi and animals and alpha-proteobacterial ATP synthase b-subunits. This analysis provides clear evidence that ymf39 is an atpF homolog, while ATP4/ATP5F appears to be a highly diverged form of ymf39 that has migrated to the nucleus. We propose to designate ymf39 from now on atp4.
Collapse
Affiliation(s)
- Gertraud Burger
- Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, 2900 Boulevard Edouard Montpetit, Montréal, Québec H3T 1J4, Canada
| | | | | | | |
Collapse
|
364
|
Heazlewood JL, Whelan J, Millar AH. The products of the mitochondrial orf25 and orfB genes are FO components in the plant F1FO ATP synthase. FEBS Lett 2003; 540:201-5. [PMID: 12681508 DOI: 10.1016/s0014-5793(03)00264-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The F(O) portion of the mitochondrial ATP synthase contains a range of different subunits in bacteria, yeast and mammals. A search of the Arabidopsis genome identified sequence orthologs for only some of these subunits. Blue native polyacrylamide gel electrophoresis separation of Arabidopsis mitochondrial respiratory chain complexes revealed intact F(1)F(O), and separated F(1) and F(O) components. The subunits of each complex were analysed by mass spectrometry and matched to Arabidopsis genes. In the F(1)F(O) complex a series of nine known subunits were identified along with two additional proteins matching the predicted products of the mitochondrial encoded orfB and orf25 genes. The F(1) complex contained the five well-characterised F(1) subunits, while four subunits in the F(O) complex were identified: subunit 9, d subunit, and the orfB and orf25 products. Previously, orfB has been suggested as the plant equivalent of subunit 8 based on structural and sequence similarity. We propose that orf25 is the plant b subunit based on structural similarity and its presence in the F(O) complex. Chimerics of orf25, orfB, subunit 9 and subunit 6 have been associated with cytoplasmic male sterility in a variety of plant species, our additional findings now place all these proteins in the same protein complex.
Collapse
Affiliation(s)
- J L Heazlewood
- Plant Molecular Biology Group, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley 6009, WA, Australia
| | | | | |
Collapse
|
365
|
Emelyanov VV. Mitochondrial connection to the origin of the eukaryotic cell. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1599-618. [PMID: 12694174 DOI: 10.1046/j.1432-1033.2003.03499.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phylogenetic evidence is presented that primitively amitochondriate eukaryotes containing the nucleus, cytoskeleton, and endomembrane system may have never existed. Instead, the primary host for the mitochondrial progenitor may have been a chimeric prokaryote, created by fusion between an archaebacterium and a eubacterium, in which eubacterial energy metabolism (glycolysis and fermentation) was retained. A Rickettsia-like intracellular symbiont, suggested to be the last common ancestor of the family Rickettsiaceae and mitochondria, may have penetrated such a host (pro-eukaryote), surrounded by a single membrane, due to tightly membrane-associated phospholipase activity, as do present-day rickettsiae. The relatively rapid evolutionary conversion of the invader into an organelle may have occurred in a safe milieu via numerous, often dramatic, changes involving both partners, which resulted in successful coupling of the host glycolysis and the symbiont respiration. Establishment of a potent energy-generating organelle made it possible, through rapid dramatic changes, to develop genuine eukaryotic elements. Such sequential, or converging, global events could fill the gap between prokaryotes and eukaryotes known as major evolutionary discontinuity.
Collapse
|
366
|
Moraes CT, Srivastava S, Kirkinezos I, Oca-Cossio J, van Waveren C, Woischnick M, Diaz F. Mitochondrial DNA structure and function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:3-23. [PMID: 12512335 DOI: 10.1016/s0074-7742(02)53002-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Carlos T Moraes
- Department of Neurology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
367
|
Gaziová I, Lukes J. Mitochondrial and nuclear localization of topoisomerase II in the flagellate Bodo saltans (Kinetoplastida), a species with non-catenated kinetoplast DNA. J Biol Chem 2003; 278:10900-7. [PMID: 12533517 DOI: 10.1074/jbc.m202347200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied topoisomerase II (topo II) in the cells of Bodo saltans, a free-living bodonid (Kinetoplastida). Phylogenetic analysis based on the sequence of the entire topo II gene, which is a single-copy gene, confirmed that B. saltans is a predecessor of parasitic trypanosomatids. Antibodies generated against either an overexpressed unique C-terminal region of topo II or a synthetic oligopeptide derived from the same region did not cross-react with cell lysates of related trypanosomatids, while they recognized a single specific band in the B. saltans lysate. Immunolocalization experiments using both antibodies showed that topo II is evenly dispersed throughout the kinetoplast. This is in striking difference from the localization of topo II in other flagellates, where it occurs in two antipodal centers flanking the kinetoplast disk. Moreover, the same topo II has a distinct localization in multiple loci at the periphery of the nucleus of B. saltans. With a minicircle probe derived from the conserved region we have shown that all relaxed non-catenated minicircles are confined to the globular kinetoplast DNA bundle. Therefore, in the mitochondrion of this primitive eukaryote topo II does not catenate relaxed DNA circles into a network in vivo, while a decatenating activity is present in partially purified cell lysates.
Collapse
Affiliation(s)
- Ivana Gaziová
- Institute of Parasitology, Czech Academy of Sciences and Faculty of Biology, University of South Bohemia, 37005 Ceské Budejovice, Czech Republic
| | | |
Collapse
|
368
|
Bullerwell CE, Schnare MN, Gray MW. Discovery and characterization of Acanthamoeba castellanii mitochondrial 5S rRNA. RNA (NEW YORK, N.Y.) 2003; 9:287-292. [PMID: 12592002 PMCID: PMC1370395 DOI: 10.1261/rna.2170803] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Accepted: 11/25/2002] [Indexed: 05/24/2023]
Abstract
Although 5S rRNA is a highly conserved and universal component of eubacterial, archaeal, chloroplast, and eukaryotic cytoplasmic ribosomes, a mitochondrial DNA-encoded 5S rRNA has so far been identified only in land plants and certain protists. This raises the question of whether 5S rRNA is actually required for and used in mitochondrial translation. In the protist Acanthamoeba castellanii, BLAST searches fail to reveal a 5S rRNA gene in the complete mitochondrial genome sequence, nor is a 5S-sized RNA species detectable in ethidium bromide-stained gels of highly purified mitochondrial RNA preparations. Here we show that an alternative visualization technique, UV shadowing, readily detects a novel, mitochondrion-specific small RNA in A. castellanii mitochondrial RNA preparations, and that this RNA species is, in fact, a 5S rRNA encoded by the A. castellanii mitochondrial genome. These results emphasize the need for caution when interpreting negative results that suggest the absence of 5S rRNA and/or a mitochondrial DNA-encoded 5S rRNA sequence in other (particularly protist) mitochondrial systems.
Collapse
Affiliation(s)
- Charles E Bullerwell
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | |
Collapse
|
369
|
Burger G, Forget L, Zhu Y, Gray MW, Lang BF. Unique mitochondrial genome architecture in unicellular relatives of animals. Proc Natl Acad Sci U S A 2003; 100:892-7. [PMID: 12552117 PMCID: PMC298697 DOI: 10.1073/pnas.0336115100] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animal mtDNAs are typically small (approximately 16 kbp), circular-mapping molecules that encode 37 or fewer tightly packed genes. Here we investigate whether similarly compact mitochondrial genomes are also present in the closest unicellular relatives of animals, i.e., choanoflagellate and ichthyosporean protists. We find that the gene content and architecture of the mitochondrial genomes of the choanoflagellate Monosiga brevicollis, the ichthyosporean Amoebidium parasiticum, and Metazoa are radically different from one another. The circular-mapping choanoflagellate mtDNA with its long intergenic regions is four times as large and contains two times as many protein genes as do animal mtDNAs, whereas the ichthyosporean mitochondrial genome totals >200 kbp and consists of several hundred linear chromosomes that share elaborate terminal-specific sequence patterns. The highly peculiar organization of the ichthyosporean mtDNA raises questions about the mechanism of mitochondrial genome replication and chromosome segregation during cell division in this organism. Considering that the closest unicellular relatives of animals possess large, spacious, gene-rich mtDNAs, we posit that the distinct compaction characteristic of metazoan mitochondrial genomes occurred simultaneously with the emergence of a multicellular body plan in the animal lineage.
Collapse
Affiliation(s)
- Gertraud Burger
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7.
| | | | | | | | | |
Collapse
|
370
|
Affiliation(s)
- P Sperling
- Institut für Allgemeine Botanik, Universität Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany.
| | | | | | | |
Collapse
|
371
|
Binder S, Brennicke A. Gene expression in plant mitochondria: transcriptional and post-transcriptional control. Philos Trans R Soc Lond B Biol Sci 2003; 358:181-8; discussion 188-9. [PMID: 12594926 PMCID: PMC1693100 DOI: 10.1098/rstb.2002.1179] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The informational content of the mitochondrial genome in plants is, although small, essential for each cell. Gene expression in these organelles involves a number of distinct transcriptional and post-transcriptional steps. The complex post-transcriptional processes of plant mitochondria such as 5' and 3' RNA processing, intron splicing, RNA editing and controlled RNA stability extensively modify individual steady-state RNA levels and influence the mRNA quantities available for translation. In this overview of the processes in mitochondrial gene expression, we focus on confirmed and potential sites of regulatory interference and discuss the evolutionary origins of the transcriptional and post-transcriptional processes.
Collapse
Affiliation(s)
- Stefan Binder
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | |
Collapse
|
372
|
Howe CJ, Barbrook AC, Koumandou VL, Nisbet RER, Symington HA, Wightman TF. Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol Sci 2003; 358:99-106; discussion 106-7. [PMID: 12594920 PMCID: PMC1693101 DOI: 10.1098/rstb.2002.1176] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We discuss the suggestion that differences in the nucleotide composition between plastid and nuclear genomes may provide a selective advantage in the transposition of genes from plastid to nucleus. We show that in the adenine, thymine (AT)-rich genome of Borrelia burgdorferi several genes have an AT-content lower than the average for the genome as a whole. However, genes whose plant homologues have moved from plastid to nucleus are no less AT-rich than genes whose plant homologues have remained in the plastid, indicating that both classes of gene are able to support a high AT-content. We describe the anomalous organization of dinoflagellate plastid genes. These are located on small circles of 2-3 kbp, in contrast to the usual plastid genome organization of a single large circle of 100-200 kbp. Most circles contain a single gene. Some circles contain two genes and some contain none. Dinoflagellate plastids have retained far fewer genes than other plastids. We discuss a similarity between the dinoflagellate minicircles and the bacterial integron system.
Collapse
Affiliation(s)
- Christopher J Howe
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | | | | | | | | | | |
Collapse
|
373
|
Martin W, Russell MJ. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci 2003; 358:59-83; discussion 83-5. [PMID: 12594918 PMCID: PMC1693102 DOI: 10.1098/rstb.2002.1183] [Citation(s) in RCA: 420] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All life is organized as cells. Physical compartmentation from the environment and self-organization of self-contained redox reactions are the most conserved attributes of living things, hence inorganic matter with such attributes would be life's most likely forebear. We propose that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyse the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments, which furthermore restrained reacted products from diffusion into the ocean, providing sufficient concentrations of reactants to forge the transition from geochemistry to biochemistry. The chemistry of what is known as the RNA-world could have taken place within these naturally forming, catalyticwalled compartments to give rise to replicating systems. Sufficient concentrations of precursors to support replication would have been synthesized in situ geochemically and biogeochemically, with FeS (and NiS) centres playing the central catalytic role. The universal ancestor we infer was not a free-living cell, but rather was confined to the naturally chemiosmotic, FeS compartments within which the synthesis of its constituents occurred. The first free-living cells are suggested to have been eubacterial and archaebacterial chemoautotrophs that emerged more than 3.8 Gyr ago from their inorganic confines. We propose that the emergence of these prokaryotic lineages from inorganic confines occurred independently, facilitated by the independent origins of membrane-lipid biosynthesis: isoprenoid ether membranes in the archaebacterial and fatty acid ester membranes in the eubacterial lineage. The eukaryotes, all of which are ancestrally heterotrophs and possess eubacterial lipids, are suggested to have arisen ca. 2 Gyr ago through symbiosis involving an autotrophic archaebacterial host and a heterotrophic eubacterial symbiont, the common ancestor of mitochondria and hydrogenosomes. The attributes shared by all prokaryotes are viewed as inheritances from their confined universal ancestor. The attributes that distinguish eubacteria and archaebacteria, yet are uniform within the groups, are viewed as relics of their phase of differentiation after divergence from the non-free-living universal ancestor and before the origin of the free-living chemoautotrophic lifestyle. The attributes shared by eukaryotes with eubacteria and archaebacteria, respectively, are viewed as inheritances via symbiosis. The attributes unique to eukaryotes are viewed as inventions specific to their lineage. The origin of the eukaryotic endomembrane system and nuclear membrane are suggested to be the fortuitous result of the expression of genes for eubacterial membrane lipid synthesis by an archaebacterial genetic apparatus in a compartment that was not fully prepared to accommodate such compounds, resulting in vesicles of eubacterial lipids that accumulated in the cytosol around their site of synthesis. Under these premises, the most ancient divide in the living world is that between eubacteria and archaebacteria, yet the steepest evolutionary grade is that between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- William Martin
- Institut für Botanik III, Heinrich-Heine Universitaet Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
374
|
Allen JF. The function of genomes in bioenergetic organelles. Philos Trans R Soc Lond B Biol Sci 2003; 358:19-37; discussion 37-8. [PMID: 12594916 PMCID: PMC1693096 DOI: 10.1098/rstb.2002.1191] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondria and chloroplasts are energy-transducing organelles of the cytoplasm of eukaryotic cells. They originated as bacterial symbionts whose host cells acquired respiration from the precursor of the mitochondrion, and oxygenic photosynthesis from the precursor of the chloroplast. The host cells also acquired genetic information from their symbionts, eventually incorporating much of it into their own genomes. Genes of the eukaryotic cell nucleus now encode most mitochondrial and chloroplast proteins. Genes are copied and moved between cellular compartments with relative ease, and there is no obvious obstacle to successful import of any protein precursor from the cytosol. So why are any genes at all retained in cytoplasmic organelles? One proposal is that these small but functional genomes provide a location for genes that is close to, and in the same compartment as, their gene products. This co-location facilitates rapid and direct regulatory coupling. Redox control of synthesis de novo is put forward as the common property of those proteins that must be encoded and synthesized within mitochondria and chloroplasts. This testable hypothesis is termed CORR, for co-location for redox regulation. Principles, predictions and consequences of CORR are examined in the context of competing hypotheses and current evidence.
Collapse
Affiliation(s)
- John F Allen
- Plant Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
375
|
Schlegel M. Phylogeny of Eukaryotes recovered with molecular data: highlights and pitfalls. Eur J Protistol 2003. [DOI: 10.1078/0932-4739-00896] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
376
|
Evolution of the Fungi and their Mitochondrial Genomes. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1874-5334(03)80010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
377
|
Marx S, Baumgärtner M, Kannan S, Braun HP, Lang BF, Burger G, Kunnan S. Structure of the bc1 complex from Seculamonas ecuadoriensis, a jakobid flagellate with an ancestral mitochondrial genome. Mol Biol Evol 2003; 20:145-53. [PMID: 12519917 DOI: 10.1093/molbev/msg016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In eubacteria, the respiratory bc(1) complex (complex III) consists of three or four different subunits, whereas that of mitochondria, which have descended from an alpha-proteobacterial endosymbiont, contains about seven additional subunits. To understand better how mitochondrial protein complexes evolved from their simpler bacterial predecessors, we purified complex III of Seculamonas ecuadoriensis, a member of the jakobid protists, which possess the most bacteria-like mitochondrial genomes known. The S. ecuadoriensis complex III has an apparent molecular mass of 460 kDa and exhibits antimycin-sensitive quinol:cytochrome c oxidoreductase activity. It is composed of at least eight subunits between 6 and 46 kDa in size, including two large "core" subunits and the three "respiratory" subunits. The molecular mass of the S. ecuadoriensis bc(1) complex is slightly lower than that reported for other eukaryotes, but about 2x as large as complex III in bacteria. This indicates that the departure from the small bacteria-like complex III took place at an early stage in mitochondrial evolution, prior to the divergence of jakobids. We posit that the recruitment of additional subunits in mitochondrial respiratory complexes is a consequence of the migration of originally alpha-proteobacterial genes to the nucleus.
Collapse
Affiliation(s)
- Stefanie Marx
- Institut für Angewandte Genetik, Universität Hannover, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
378
|
|
379
|
Rudhe C, Clifton R, Whelan J, Glaser E. N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency. J Mol Biol 2002; 324:577-85. [PMID: 12460562 DOI: 10.1016/s0022-2836(02)01133-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.
Collapse
Affiliation(s)
- Charlotta Rudhe
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
380
|
Pryer KM, Schneider H, Zimmer EA, Ann Banks J. Deciding among green plants for whole genome studies. TRENDS IN PLANT SCIENCE 2002; 7:550-554. [PMID: 12475497 DOI: 10.1016/s1360-1385(02)02375-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent comparative DNA-sequencing studies of chloroplast, mitochondrial and ribosomal genes have produced an evolutionary tree relating the diversity of green-plant lineages. By coupling this phylogenetic framework to the explosion of information on genome content, plant-genomic efforts can and should be extended beyond angiosperm crop and model systems. Including plant species representative of other crucial evolutionary nodes would produce the comparative information necessary to understand fully the organization, function and evolution of plant genomes. The simultaneous development of genomic tools for green algae, bryophytes, 'seed-free' vascular plants and gymnosperms should provide insights into the bases of the complex morphological, physiological, reproductive and biochemical innovations that have characterized the successful transition of green plants to land.
Collapse
|
381
|
Ojaimi J, Pan J, Santra S, Snell WJ, Schon EA. An algal nucleus-encoded subunit of mitochondrial ATP synthase rescues a defect in the analogous human mitochondrial-encoded subunit. Mol Biol Cell 2002; 13:3836-44. [PMID: 12429828 PMCID: PMC133596 DOI: 10.1091/mbc.e02-05-0306] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Unlike most organisms, the mitochondrial DNA (mtDNA) of Chlamydomonas reinhardtii, a green alga, does not encode subunit 6 of F(0)F(1)-ATP synthase. We hypothesized that C. reinhardtii ATPase 6 is nucleus encoded and identified cDNAs and a single-copy nuclear gene specifying this subunit (CrATP6, with eight exons, four of which encode a mitochondrial targeting signal). Although the algal and human ATP6 genes are in different subcellular compartments and the encoded polypeptides are highly diverged, their secondary structures are remarkably similar. When CrATP6 was expressed in human cells, a significant amount of the precursor polypeptide was targeted to mitochondria, the mitochondrial targeting signal was cleaved within the organelle, and the mature polypeptide was assembled into human ATP synthase. In spite of the evolutionary distance between algae and mammals, C. reinhardtii ATPase 6 functioned in human cells, because deficiencies in both cell viability and ATP synthesis in transmitochondrial cell lines harboring a pathogenic mutation in the human mtDNA-encoded ATP6 gene were overcome by expression of CrATP6. The ability to express a nucleus-encoded version of a mammalian mtDNA-encoded protein may provide a way to import other highly hydrophobic proteins into mitochondria and could serve as the basis for a gene therapy approach to treat human mitochondrial diseases.
Collapse
Affiliation(s)
- Joseline Ojaimi
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
382
|
Brassinga AKC, Siam R, McSween W, Winkler H, Wood D, Marczynski GT. Conserved response regulator CtrA and IHF binding sites in the alpha-proteobacteria Caulobacter crescentus and Rickettsia prowazekii chromosomal replication origins. J Bacteriol 2002; 184:5789-99. [PMID: 12270838 PMCID: PMC139603 DOI: 10.1128/jb.184.20.5789-5799.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CzcR is the Rickettsia prowazekii homolog of the Caulobacter crescentus global response regulator CtrA. CzcR expression partially compensates for developmental defects in ctrA mutant C. crescentus cells, and CzcR binds to all five CtrA binding sites in the C. crescentus replication origin. Conversely, CtrA binds to five similar sites in the putative R. prowazekii replication origin (oriRp). Also, Escherichia coli IHF protein binds over a central CtrA binding site in oriRp. Therefore, CtrA and IHF regulatory proteins have similar binding patterns in both replication origins, and we propose that CzcR is a global cell cycle regulator in R. prowazekii.
Collapse
Affiliation(s)
- Ann Karen C Brassinga
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | | | | | |
Collapse
|
383
|
Abstract
Molecular phylogenies support a common ancestry between animals (Metazoa) and Fungi, but the evolutionary descent of the Metazoa from single-celled eukaryotes (protists) and the nature and taxonomic affiliation of these ancestral protists remain elusive. We addressed this question by sequencing complete mitochondrial genomes from taxonomically diverse protists to generate a large body of molecular data for phylogenetic analyses. Trees inferred from multiple concatenated mitochondrial protein sequences demonstrate that animals are specifically affiliated with two morphologically dissimilar unicellular protist taxa: Monosiga brevicollis (Choanoflagellata), a flagellate, and Amoebidium parasiticum (Ichthyosporea), a fungus-like organism. Statistical evaluation of competing evolutionary hypotheses confirms beyond a doubt that Choanoflagellata and multicellular animals share a close sister group relationship, originally proposed more than a century ago on morphological grounds. For the first time, our trees convincingly resolve the currently controversial phylogenetic position of the Ichthyosporea, which the trees place basal to Choanoflagellata and Metazoa but after the divergence of Fungi. Considering these results, we propose the new taxonomic group Holozoa, comprising Ichthyosporea, Choanoflagellata, and Metazoa. Our findings provide insight into the nature of the animal ancestor and have broad implications for our understanding of the evolutionary transition from unicellular protists to multicellular animals.
Collapse
Affiliation(s)
- B F Lang
- The Canadian Institute for Advanced Research Program in Evolutionary Biology, Département de Biochimie, Université de Montréal, Succursale Centre-Ville, Québec, Canada
| | | | | | | | | |
Collapse
|
384
|
Reichert AS, Neupert W. Contact sites between the outer and inner membrane of mitochondria-role in protein transport. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:41-9. [PMID: 12191767 DOI: 10.1016/s0167-4889(02)00263-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many essential functions of mitochondrial metabolism have been studied in the past three decades in considerable depth: oxidative phosphorylation, catabolism of fatty acids, role in nitrogen metabolism, and amino acid metabolism. More recently, other aspects attracted much attention like protein translocation into mitochondria, inheritance of mitochondrial DNA, movement of mitochondria, their fusion and fission, and their involvement in apoptosis, ageing, cancer and other cellular processes. Together with these new views on the function of mitochondria, new ideas on the structure of mitochondria emerged. Here we will discuss the current knowledge about how the membranes of mitochondria are organized and how they interact. Interactions between components of the inner and the outer membrane are necessary for a number of central mitochondrial functions such as the channeling of metabolites, coordinated fusion and fission of mitochondria, and protein transport. Some of these interactions appear stable such as the so-called morphological contact sites; others are quite dynamic. Direct evidence that a certain protein is part of morphologically defined contact sites is lacking. Nevertheless, protein translocase complexes of the outer and the inner membrane exhibit stable interactions between the two membranes when precursor proteins are arrested during import into mitochondria. Finally, we discuss possible roles of cristae junctions, another morphologically defined membrane structure in mitochondria.
Collapse
Affiliation(s)
- Andreas S Reichert
- Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377, Munich,
| | | |
Collapse
|
385
|
Daley DO, Clifton R, Whelan J. Intracellular gene transfer: reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase. Proc Natl Acad Sci U S A 2002; 99:10510-5. [PMID: 12142462 PMCID: PMC124958 DOI: 10.1073/pnas.122354399] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2002] [Accepted: 06/12/2002] [Indexed: 11/18/2022] Open
Abstract
Subunit 2 of cytochrome c oxidase (Cox2) in legumes offers a rare opportunity to investigate factors necessary for successful gene transfer of a hydrophobic protein that is usually mitochondrial-encoded. We found that changes in local hydrophobicity were necessary to allow import of this nuclear-encoded protein into mitochondria. All legume species containing both a mitochondrial and nuclear encoded Cox2 displayed a similar pattern, with a large decrease in hydrophobicity evident in the first transmembrane region of the nuclear encoded protein compared with the organelle-encoded protein. Mitochondrial-encoded Cox2 could not be imported into mitochondria under the direction of the mitochondrial targeting sequence that readily supports the import of nuclear encoded Cox2. Removal of the first transmembrane region promotes import ability of the mitochondrial-encoded Cox2. Changing just two amino acids in the first transmembrane region of mitochondrial-encoded Cox2 to the corresponding amino acids in the nuclear encoded Cox2 also promotes import ability, whereas changing the same two amino acids in the nuclear encoded Cox2 to what they are in the mitochondrial-encoded copy prevents import. Therefore, changes in amino acids in the mature protein were necessary and sufficient for gene transfer to allow import under the direction of an appropriate signal to achieve the functional topology of Cox2.
Collapse
Affiliation(s)
- Daniel O Daley
- Plant Molecular Biology Group, Department of Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia
| | | | | |
Collapse
|
386
|
Adams KL, Qiu YL, Stoutemyer M, Palmer JD. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci U S A 2002; 99:9905-12. [PMID: 12119382 PMCID: PMC126597 DOI: 10.1073/pnas.042694899] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2001] [Indexed: 11/18/2022] Open
Abstract
To study the tempo and pattern of mitochondrial gene loss in plants, DNAs from 280 genera of flowering plants were surveyed for the presence or absence of 40 mitochondrial protein genes by Southern blot hybridization. All 14 ribosomal protein genes and both sdh genes have been lost from the mitochondrial genome many times (6 to 42) during angiosperm evolution, whereas only two losses were detected among the other 24 genes. The gene losses have a very patchy phylogenetic distribution, with periods of stasis followed by bursts of loss in certain lineages. Most of the oldest groups of angiosperms are still mired in a prolonged stasis in mitochondrial gene content, containing nearly the same set of genes as their algal ancestors more than a billion years ago. In sharp contrast, other plants have rapidly lost many or all of their 16 mitochondrial ribosomal protein and sdh genes, thereby converging on a reduced gene content more like that of an animal or fungus than a typical plant. In these and many lineages with more modest numbers of losses, the rate of ribosomal protein and sdh gene loss exceeds, sometimes greatly, the rate of mitochondrial synonymous substitutions. Most of these mitochondrial gene losses are probably the consequence of gene transfer to the nucleus; thus, rates of functional gene transfer also may vary dramatically in angiosperms.
Collapse
Affiliation(s)
- Keith L Adams
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
387
|
Fan J, Lee RW. Mitochondrial genome of the colorless green alga Polytomella parva: two linear DNA molecules with homologous inverted repeat Termini. Mol Biol Evol 2002; 19:999-1007. [PMID: 12082120 DOI: 10.1093/oxfordjournals.molbev.a004180] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most of the well-characterized mitochondrial genomes from diverse green algal lineages are circular mapping DNA molecules; however, Chlamydomonas reinhardtii has a linear 15.8 kb unit mitochondrial genome with 580 or 581 bp inverted repeat ends. In mitochondrial-enriched fractions prepared from Polytomella parva (=P. agilis), a colorless, naturally wall-less relative of C. reinhardtii, we have detected two linear mitochondrial DNA (mtDNA) components with sizes of 13.5 and 3.5 kb. Sequences spanning 97% and 86% of the 13.5- and 3.5-kb mtDNAs, respectively, reveal that these molecules contain long, at least 1.3 kb, homologous inverted repeat sequences at their termini. The 3.5-kb mtDNA has only one coding region (nad6), the functionality of which is supported by both the relative rate at which it has accumulated nonsynonymous nucleotide substitutions and its absence from the 13.5-kb mtDNA which encodes nine genes (i.e., large and small subunit rRNA [LSU and SSU rRNA] genes, one tRNA gene, and six protein-coding genes). On the basis of DNA sequence data, we propose that a variant start codon, GTG, is utilized by the P. parva 13.5-kb mtDNA-encoded gene, nad5. Using the relative rate test with Chlamydomonas moewusii (=C. eugametos) as the outgroup, we conclude that the nonsynonymous nucleotide substitution rate in the mitochondrial protein-coding genes of P. parva is on an average about 3.3 times that of the C. reinhardtii counterparts.
Collapse
Affiliation(s)
- Jinshui Fan
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
388
|
Bapteste E, Philippe H. The potential value of indels as phylogenetic markers: position of trichomonads as a case study. Mol Biol Evol 2002; 19:972-7. [PMID: 12032255 DOI: 10.1093/oxfordjournals.molbev.a004156] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
389
|
Jardine O, Gough J, Chothia C, Teichmann SA. Comparison of the small molecule metabolic enzymes of Escherichia coli and Saccharomyces cerevisiae. Genome Res 2002; 12:916-29. [PMID: 12045145 PMCID: PMC313875 DOI: 10.1101/gr.228002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The comparison of the small molecule metabolism pathways in Escherichia coli and Saccharomyces cerevisiae (yeast) shows that 271 enzymes are common to both organisms. These common enzymes involve 384 gene products in E. coli and 390 in yeast, which are between one half and two thirds of the gene products of small molecule metabolism in E. coli and yeast, respectively. The arrangement and family membership of the domains that form all or part of 374 E. coli sequences and 343 yeast sequences was determined. Of these, 70% consist entirely of homologous domains, and 20% have homologous domains linked to other domains that are unique to E. coli, yeast, or both. Over two thirds of the enzymes common to the two organisms have sequence identities between 30% and 50%. The remaining groups include 13 clear cases of nonorthologous displacement. Our calculations show that at most one half to two thirds of the gene products involved in small molecule metabolism are common to E. coli and yeast. We have shown that the common core of 271 enzymes has been largely conserved since the separation of prokaryotes and eukaryotes, including modifications for regulatory purposes, such as gene fusion and changes in the number of isozymes in one of the two organisms. Only one fifth of the common enzymes have nonhomologous domains between the two organisms. Around the common core very different extensions have been made to small molecule metabolism in the two organisms.
Collapse
Affiliation(s)
- Oliver Jardine
- Department of Crystallography, Birkbeck College, London WC1E 7HX, United Kingdom
| | | | | | | |
Collapse
|
390
|
Abstract
The results of extensive in vitro studies of DNA-lipid complexes allowed us to propose a model for the structure of such complexes and their involvement in the formation of DNA-membrane complexes (DMC). DMC seem to form the basis for such cellular structures as Bayer's junctions and nucleoid of bacteria, the nuclear pores, annulate lamellae and nucleoid of eucaryotes. The role of DMC in gene expression is discussed.Numerical density of mitochondria during cell aging correlates with the density of bacteria in batch culture. It is concluded that aging is caused by the unlimited growth of mitochondria and their subsequent degradation. The role of DMC in mitochondrial DNA damage at aging is discussed. The way of increasing the life span by controlling the density of mitochondria in a cell volume is likewise discussed. DMC formed between any two intracellular membranes can serve the basis for the membrane continuum in a cell.
Collapse
Affiliation(s)
- V V Kuvichkin
- Laboratory of Biophysics of Receptors, Institute of Cell Biophysics, Pushchino, 142290 Moscow Region, Russia.
| |
Collapse
|
391
|
Zhu G, Keithly JS. Alpha-proteobacterial relationship of apicomplexan lactate and malate dehydrogenases. J Eukaryot Microbiol 2002; 49:255-61. [PMID: 12120991 DOI: 10.1111/j.1550-7408.2002.tb00532.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have cloned and sequenced a lactate dehydrogenase (LDH) gene from Cryptosporidium parvum (CpLDH1). With this addition, and that of four recently deposited alpha-proteobacterial malate dehydrogenase (MDH) genes, the phylogenetic relationships among apicomplexan LDH and bacterial MDH were re-examined. Consistent with previous studies, our maximum likelihood (ML) analysis using the quartet-puzzling method divided 105 LDH/MDH enzymes into five clades, and confirmed that mitochondrial MDH is a sister clade to those of y-proteobacteria, rather than to alpha-proteobacteria. In addition, a Cryptosporidium parvum MDH (CpMDH1) was identified from the ongoing Cryptosporidium genome project that appears to belong to a distinct clade (III) comprised of 22 sequences from one archaebacterium, numerous eubacteria, and several apicomplexans. Using the ML puzzling test and bootstrapping analysis with protein distance and parsimony methods, the resulting trees not only robustly confirmed the alpha-proteobacterial relationship of apicomplexan LDH/MDH, but also supported a monophyletic relationship of CpLDH1 with CpMDHI. These data suggest that, unlike most other eukaryotes, the Apicomplexa may be one of the few lineages retaining an alpha-proteobacterial-type MDH that could have been acquired from an ancestral alpha-proteobacterium through primary endosymbiosis giving rise to the mitochondria, or through an unknown lateral gene transfer (LGT) event.
Collapse
Affiliation(s)
- Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine Texas A&M Univeristy, College Station 77843-4467, USA.
| | | |
Collapse
|
392
|
Vermel M, Guermann B, Delage L, Grienenberger JM, Maréchal-Drouard L, Gualberto JM. A family of RRM-type RNA-binding proteins specific to plant mitochondria. Proc Natl Acad Sci U S A 2002; 99:5866-71. [PMID: 11972043 PMCID: PMC122868 DOI: 10.1073/pnas.092019599] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2002] [Indexed: 11/18/2022] Open
Abstract
Expression of higher plant mitochondrial (mt) genes is regulated at the transcriptional, posttranscriptional, and translational levels, but the vast majority of the mtDNA and RNA-binding proteins involved remain to be identified. Plant mt single-stranded nucleic acid-binding proteins were purified by affinity chromatography, and corresponding genes have been identified. A majority of these proteins belong to a family of RNA-binding proteins characterized by the presence of an N-terminal RNA-recognition motif (RRM) sequence. They diverge in their C-terminal sequences, suggesting that they can be involved in different plant mt regulation processes. Mitochondrial localization of the proteins was confirmed both in vitro and in vivo and by immunolocalization. Binding experiments showed that several proteins have a preference for poly(U)-rich sequences. This mt protein family contains the ubiquitous RRM motif and has no known mt counterpart in non-plant species. Phylogenetic and functional analysis suggest a common ancestor with RNA-binding glycine-rich proteins (GRP), a family of developmentally regulated proteins of unknown function. As with several plant, cyanobacteria, and animal proteins that have similar structures, the expression of one of the Arabidopsis thaliana mt RNA-binding protein genes is induced by low temperatures.
Collapse
Affiliation(s)
- Matthieu Vermel
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 rue du général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
393
|
Baughn AD, Malamy MH. A mitochondrial-like aconitase in the bacterium Bacteroides fragilis: implications for the evolution of the mitochondrial Krebs cycle. Proc Natl Acad Sci U S A 2002; 99:4662-7. [PMID: 11880608 PMCID: PMC123704 DOI: 10.1073/pnas.052710199] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Accepted: 12/31/2001] [Indexed: 11/18/2022] Open
Abstract
Aconitase and isocitrate dehydrogenase (IDH) enzyme activities were detected in anaerobically prepared cell extracts of the obligate anaerobe Bacteroides fragilis. The aconitase gene was located upstream of the genes encoding the other two components of the oxidative branch of the Krebs cycle, IDH and citrate synthase. Mutational analysis indicates that these genes are cotranscribed. A nonpolar in-frame deletion of the acnA gene that encodes the aconitase prevented growth in glucose minimal medium unless heme or succinate was added to the medium. These results imply that B. fragilis has two pathways for alpha-ketoglutarate biosynthesis-one from isocitrate and the other from succinate. Homology searches indicated that the B. fragilis aconitase is most closely related to aconitases of two other Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria, Cytophaga hutchinsonii and Fibrobacter succinogenes. Phylogenetic analysis indicates that the CFB group aconitases are most closely related to mitochondrial aconitases. In addition, the IDH of C. hutchinsonii was found to be most closely related to the mitochondrial/cytosolic IDH-2 group of eukaryotic organisms. These data suggest a common origin for these Krebs cycle enzymes in mitochondria and CFB group bacteria.
Collapse
Affiliation(s)
- Anthony D Baughn
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
394
|
Daley DO, Adams KL, Clifton R, Qualmann S, Millar AH, Palmer JD, Pratje E, Whelan J. Gene transfer from mitochondrion to nucleus: novel mechanisms for gene activation from Cox2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:11-21. [PMID: 11967089 DOI: 10.1046/j.1365-313x.2002.01263.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The evolutionarily recent transfer of the gene for cytochrome c oxidase subunit 2 (cox2) from the mitochondrion to the nucleus in legumes is shown to have involved novel gene-activation steps. The acquired mitochondrial targeting presequence is bordered by two introns. Characterization of the import of soybean Cox2 indicates that the presequence is cleaved in a three-step process which is independent of assembly. The final processing step takes place only in the mitochondria of legume species, and not in several non-legume plants. The unusually long presequence of 136 amino acids consists of three regions: the first 20 amino acids are required for mitochondrial targeting and can be replaced by another presequence; the central portion of the presequence is required for efficient import of the Cox2 protein into mitochondria; and the last 12 amino acids, derived from the mitochondrially encoded protein, are required for correct maturation of the imported protein. The acquisition of a unique presequence, and the capacity for legume mitochondria to remove this presequence post-import, are considered to be essential adaptations for targeting of Cox2 to the mitochondrion and therefore activation of the transferred gene in the nucleus.
Collapse
Affiliation(s)
- Daniel O Daley
- Department of Biochemistry, University of Western Australia, Nedlands 6907, Australia
| | | | | | | | | | | | | | | |
Collapse
|
395
|
Abstract
Wolbachia is a maternally inherited bacterium that may manipulate the reproduction of its arthropod hosts. In insects, it is known to lead to inviable matings, cause asexual reproduction or kill male offspring, all to its own benefit, but to the detriment of its host. In social Hymenoptera, Wolbachia occurs widely, but little is known about its fitness effects. We report on a Wolbachia infection in the wood ant Formica truncorum, and evaluate whether it influences reproductive patterns. All 33 colonies of the study population were infected, suggesting that Wolbachia infection is at, or close to, fixation. Interestingly, in colonies with fewer infected workers, significantly more sexuals are produced, indicating that Wolbachia has deleterious effects in this species. In addition, adult workers are shown to have significantly lower infection rates (45%) than worker pupae (87%) or virgin queens (94%), suggesting that workers lose their infection over life. Clearance of Wolbachia infection has, to our knowledge, never been shown in any other natural system, but we argue that it may, in this case, represent an adaptive strategy to reduce colony load. The cause of fixation requires further study, but our data strongly suggest that Wolbachia has no influence on the sex ratio in this species.
Collapse
Affiliation(s)
- T Wenseleers
- Zoological Institute, University of Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
396
|
Regina TMR, Lopez L, Picardi E, Quagliariello C. Striking differences in RNA editing requirements to express the rps4 gene in magnolia and sunflower mitochondria. Gene 2002; 286:33-41. [PMID: 11943458 DOI: 10.1016/s0378-1119(01)00802-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ribosomal protein S4 gene (rps4) has been identified as a single copy sequence in the mitochondrial genomes of two distant higher plants, Magnolia and Helianthus. Sequence analysis revealed that the rps4 genes present in the magnolia and sunflower mitochondrial genomes encode S4 polypeptides of 352 and 331 amino acids, respectively, longer than their counterparts in liverwort and bacteria. Expression of the rps4 genes in the investigated higher plant mitochondria was confirmed by Western blot analysis. In Helianthus, one of two short nucleotide insertions at the 3'-end introduces in the coding region a premature termination codon. Northern hybridizations and reverse transcription-polymerase chain reaction analysis demonstrated that the monocistronic RNA transcripts generated from the rps4 locus in Magnolia and Helianthus mitochondria are modified by RNA editing at 28 and 13 positions, respectively. Although evolutionarily conserved, RNA editing requirements of the rps4 appear more extensive in Magnolia than in Helianthus and in the other higher plants so far investigated. Furthermore, our analysis also suggests that selection of editing sites is RNA sequence-specific in a duplicated sequence context.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Southern
- Blotting, Western
- DNA, Mitochondrial/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Gene Expression Regulation, Plant
- Helianthus/genetics
- Magnoliopsida/genetics
- Molecular Sequence Data
- RNA Editing/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Species Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- Teresa M R Regina
- Dipartimento di Biologia Cellulare, Università degli Studi della Calabria, 87030 Arcavacata di Rende, Italy
| | | | | | | |
Collapse
|
397
|
Forget L, Ustinova J, Wang Z, Huss VAR, Lang BF. Hyaloraphidium curvatum: a linear mitochondrial genome, tRNA editing, and an evolutionary link to lower fungi. Mol Biol Evol 2002; 19:310-9. [PMID: 11861890 DOI: 10.1093/oxfordjournals.molbev.a004084] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have sequenced the mitochondrial DNA (mtDNA) of Hyaloraphidium curvatum, an organism previously classified as a colorless green alga but now recognized as a lower fungus based on molecular data. The 29.97-kbp mitochondrial chromosome is maintained as a monomeric, linear molecule with identical, inverted repeats (1.43 kbp) at both ends, a rare genome architecture in mitochondria. The genome encodes only 14 known mitochondrial proteins, 7 tRNAs, the large subunit rRNA and small subunit rRNA (SSU rRNA), and 3 ORFs. The SSU rRNA is encoded in two gene pieces that are located 8 kbp apart on the mtDNA. Scrambled and fragmented mitochondrial rRNAs are well known from green algae and alveolate protists but are unprecedented in fungi. Protein genes code for apocytochrome b; cytochrome oxidase 1, 2, and 3, NADH dehydrogenase 1, 2, 3, 4, 4L, 5, and 6, and ATP synthase 6, 8, and 9 subunits, and several of these genes are organized in operon-like clusters. The set of seven mitochondrially encoded tRNAs is insufficient to recognize all codons that occur in the mitochondrial protein genes. When taking into account the pronounced codon bias, at least 16 nuclear-encoded tRNAs are assumed to be imported into the mitochondria. Three of the seven predicted mitochondria-encoded tRNA sequences carry mispairings in the first three positions of the acceptor stem. This strongly suggests that these tRNAs are edited by a mechanism similar to the one seen in the fungus Spizellomyces punctatus and the rhizopod amoeba Acanthamoeba castellanii. Our phylogenetic analysis confirms with overwhelming support that H. curvatum is a member of the chytridiomycete fungi, specifically related to the Monoblepharidales.
Collapse
Affiliation(s)
- Lise Forget
- Program in Evolutionary Biology, Département de Biochimie, Canadian Institute for Advanced Research, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
398
|
Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P, Duruflé L, Gaasterland T, Lopez P, Müller M, Philippe H. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci U S A 2002; 99:1414-9. [PMID: 11830664 PMCID: PMC122205 DOI: 10.1073/pnas.032662799] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Accepted: 12/11/2001] [Indexed: 11/18/2022] Open
Abstract
The phylogenetic relationships of amoebae are poorly resolved. To address this difficult question, we have sequenced 1,280 expressed sequence tags from Mastigamoeba balamuthi and assembled a large data set containing 123 genes for representatives of three phenotypically highly divergent major amoeboid lineages: Pelobionta, Entamoebidae, and Mycetozoa. Phylogenetic reconstruction was performed on approximately 25,000 aa positions for 30 species by using maximum-likelihood approaches. All well-established eukaryotic groups were recovered with high statistical support, validating our approach. Interestingly, the three amoeboid lineages strongly clustered together in agreement with the Conosa hypothesis [as defined by T. Cavalier-Smith (1998) Biol. Rev. Cambridge Philos. Soc. 73, 203-266]. Two amitochondriate amoebae, the free-living Mastigamoeba and the human parasite Entamoeba, formed a significant sister group to the exclusion of the mycetozoan Dictyostelium. This result suggested that a part of the reductive process in the evolution of Entamoeba (e.g., loss of typical mitochondria) occurred in its free-living ancestors. Applying this inexpensive expressed sequence tag approach to many other lineages will surely improve our understanding of eukaryotic evolution.
Collapse
Affiliation(s)
- Eric Bapteste
- Unité Mixte de Recherche 7622 Centre National de la Recherche Scientifique, Université Paris 6, 9 Quai Saint Bernard, Bât C, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
399
|
Turmel M, Otis C, Lemieux C. The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants. Mol Biol Evol 2002; 19:24-38. [PMID: 11752187 DOI: 10.1093/oxfordjournals.molbev.a003979] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To gain insights into the nature of the mitochondrial genome in the common ancestor of all green plants, we have completely sequenced the mitochondrial DNA (mtDNA) of Mesostigma viride. This green alga belongs to a morphologically heterogeneous class (Prasinophyceae) that includes descendants of the earliest diverging green plants. Recent phylogenetic analyses of ribosomal RNAs (rRNAs) and concatenated proteins encoded by the chloroplast genome identified Mesostigma as a basal branch relative to the Streptophyta and the Chlorophyta, the two phyla that were previously thought to contain all extant green plants. The circular mitochondrial genome of Mesostigma resembles the mtDNAs of green algae occupying a basal position within the Chlorophyta in displaying a small size (42,424 bp) and a high gene density (86.6% coding sequences). It contains 65 genes that are conserved in other mtDNAs. Although none of these genes represents a novel coding sequence among green plant mtDNAs, four of them (rps1, sdh3, sdh4, and trnL[caa]) have not been reported previously in chlorophyte mtDNAs, and two others (rpl14 and trnI[gau]) have not been identified in the streptophyte mtDNAs examined so far (land-plant mtDNAs). Phylogenetic analyses of 19 concatenated mtDNA-encoded proteins favor the hypothesis that Mesostigma represents the earliest branch of green plant evolution. Four group I introns (two in rnl and two in cox1) and three group II introns (two in nad3 and one in cox2), two of which are trans-spliced at the RNA level, reside in Mesostigma mtDNA. The insertion sites of the three group II introns are unique to this mtDNA, suggesting that trans-splicing arose independently in the Mesostigma lineage and in the Streptophyta. The few structural features that can be regarded as ancestral in Mesostigma mtDNA predict that the common ancestor of all green plants had a compact mtDNA containing a minimum of 75 genes and perhaps two group I introns. Considering that the mitochondrial genome is much larger in size in land plants than in Mesostigma, we infer that mtDNA size began to increase dramatically in the Streptophyta either during the evolution of charophyte green algae or during the transition from charophytes to land plants.
Collapse
Affiliation(s)
- Monique Turmel
- Département de Biochimie et de Microbiologie, Canadian Institute for Advanced Research, Pavillon C.-E. Marchand, Université Laval, Québec G1K 7P4, Canada.
| | | | | |
Collapse
|
400
|
Chloroplast and Mitochondrial Type I Signal Peptidases. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1874-6047(02)80006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|