351
|
Gustafsson S, Gustavsson T, Roshanbin S, Hultqvist G, Hammarlund-Udenaes M, Sehlin D, Syvänen S. Blood-brain barrier integrity in a mouse model of Alzheimer's disease with or without acute 3D6 immunotherapy. Neuropharmacology 2018; 143:1-9. [DOI: 10.1016/j.neuropharm.2018.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/27/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
|
352
|
Femminella GD, Thayanandan T, Calsolaro V, Komici K, Rengo G, Corbi G, Ferrara N. Imaging and Molecular Mechanisms of Alzheimer's Disease: A Review. Int J Mol Sci 2018; 19:E3702. [PMID: 30469491 PMCID: PMC6321449 DOI: 10.3390/ijms19123702] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is the most common form of dementia and is a significant burden for affected patients, carers, and health systems. Great advances have been made in understanding its pathophysiology, to a point that we are moving from a purely clinical diagnosis to a biological one based on the use of biomarkers. Among those, imaging biomarkers are invaluable in Alzheimer's, as they provide an in vivo window to the pathological processes occurring in Alzheimer's brain. While some imaging techniques are still under evaluation in the research setting, some have reached widespread clinical use. In this review, we provide an overview of the most commonly used imaging biomarkers in Alzheimer's disease, from molecular PET imaging to structural MRI, emphasising the concept that multimodal imaging would likely prove to be the optimal tool in the future of Alzheimer's research and clinical practice.
Collapse
Affiliation(s)
| | - Tony Thayanandan
- Imperial Memory Unit, Charing Cross Hospital, Imperial College London, London W6 8RF, UK.
| | - Valeria Calsolaro
- Neurology Imaging Unit, Imperial College London, London W12 0NN, UK.
| | - Klara Komici
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy.
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy.
- Istituti Clinici Scientifici Maugeri SPA-Società Benefit, IRCCS, 82037 Telese Terme, Italy.
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy.
- Istituti Clinici Scientifici Maugeri SPA-Società Benefit, IRCCS, 82037 Telese Terme, Italy.
| |
Collapse
|
353
|
Shih CH, Chen JK, Kuo LW, Cho KH, Hsiao TC, Lin ZW, Lin YS, Kang JH, Lo YC, Chuang KJ, Cheng TJ, Chuang HC. Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. Part Fibre Toxicol 2018; 15:44. [PMID: 30413208 PMCID: PMC6234801 DOI: 10.1186/s12989-018-0281-1 10.1186/s12989-018-0281-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Effects of air pollution on neurotoxicity and behavioral alterations have been reported. The objective of this study was to investigate the pathophysiology caused by particulate matter (PM) in the brain. We examined the effects of traffic-related particulate matter with an aerodynamic diameter of < 1 μm (PM1), high-efficiency particulate air (HEPA)-filtered air, and clean air on the brain structure, behavioral changes, brainwaves, and bioreactivity of the brain (cortex, cerebellum, and hippocampus), olfactory bulb, and serum after 3 and 6 months of whole-body exposure in 6-month-old Sprague Dawley rats. RESULTS The rats were exposed to 16.3 ± 8.2 (4.7~ 68.8) μg/m3 of PM1 during the study period. An MRI analysis showed that whole-brain and hippocampal volumes increased with 3 and 6 months of PM1 exposure. A short-term memory deficiency occurred with 3 months of exposure to PM1 as determined by a novel object recognition (NOR) task, but there were no significant changes in motor functions. There were no changes in frequency bands or multiscale entropy of brainwaves. Exposure to 3 months of PM1 increased 8-isoporstance in the cortex, cerebellum, and hippocampus as well as hippocampal inflammation (interleukin (IL)-6), but not in the olfactory bulb. Systemic CCL11 (at 3 and 6 months) and IL-4 (at 6 months) increased after PM1 exposure. Light chain 3 (LC3) expression increased in the hippocampus after 6 months of exposure. Spongiosis and neuronal shrinkage were observed in the cortex, cerebellum, and hippocampus (neuronal shrinkage) after exposure to air pollution. Additionally, microabscesses were observed in the cortex after 6 months of PM1 exposure. CONCLUSIONS Our study first observed cerebral edema and brain impairment in adult rats after chronic exposure to traffic-related air pollution.
Collapse
Affiliation(s)
- Chi-Hsiang Shih
- 0000 0000 9337 0481grid.412896.0School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Kun Chen
- 0000000406229172grid.59784.37Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Wei Kuo
- 0000000406229172grid.59784.37Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuan-Hung Cho
- 0000000406229172grid.59784.37Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ta-Chih Hsiao
- 0000 0004 0546 0241grid.19188.39Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhe-Wei Lin
- 0000 0000 9337 0481grid.412896.0School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Syuan Lin
- 0000 0000 9337 0481grid.412896.0School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiunn-Horng Kang
- 0000 0004 0639 0994grid.412897.1Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan ,0000 0000 9337 0481grid.412896.0Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- 0000 0000 9337 0481grid.412896.0The Ph.D Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- 0000 0000 9337 0481grid.412896.0School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan ,0000 0000 9337 0481grid.412896.0Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- 0000 0004 0546 0241grid.19188.39Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- 0000 0000 9337 0481grid.412896.0School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan ,0000 0000 9337 0481grid.412896.0School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan ,0000 0000 9337 0481grid.412896.0Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
354
|
Shih CH, Chen JK, Kuo LW, Cho KH, Hsiao TC, Lin ZW, Lin YS, Kang JH, Lo YC, Chuang KJ, Cheng TJ, Chuang HC. Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. Part Fibre Toxicol 2018; 15:44. [PMID: 30413208 PMCID: PMC6234801 DOI: 10.1186/s12989-018-0281-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022] Open
Abstract
Background Effects of air pollution on neurotoxicity and behavioral alterations have been reported. The objective of this study was to investigate the pathophysiology caused by particulate matter (PM) in the brain. We examined the effects of traffic-related particulate matter with an aerodynamic diameter of < 1 μm (PM1), high-efficiency particulate air (HEPA)-filtered air, and clean air on the brain structure, behavioral changes, brainwaves, and bioreactivity of the brain (cortex, cerebellum, and hippocampus), olfactory bulb, and serum after 3 and 6 months of whole-body exposure in 6-month-old Sprague Dawley rats. Results The rats were exposed to 16.3 ± 8.2 (4.7~ 68.8) μg/m3 of PM1 during the study period. An MRI analysis showed that whole-brain and hippocampal volumes increased with 3 and 6 months of PM1 exposure. A short-term memory deficiency occurred with 3 months of exposure to PM1 as determined by a novel object recognition (NOR) task, but there were no significant changes in motor functions. There were no changes in frequency bands or multiscale entropy of brainwaves. Exposure to 3 months of PM1 increased 8-isoporstance in the cortex, cerebellum, and hippocampus as well as hippocampal inflammation (interleukin (IL)-6), but not in the olfactory bulb. Systemic CCL11 (at 3 and 6 months) and IL-4 (at 6 months) increased after PM1 exposure. Light chain 3 (LC3) expression increased in the hippocampus after 6 months of exposure. Spongiosis and neuronal shrinkage were observed in the cortex, cerebellum, and hippocampus (neuronal shrinkage) after exposure to air pollution. Additionally, microabscesses were observed in the cortex after 6 months of PM1 exposure. Conclusions Our study first observed cerebral edema and brain impairment in adult rats after chronic exposure to traffic-related air pollution. Electronic supplementary material The online version of this article (10.1186/s12989-018-0281-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chi-Hsiang Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuan-Hung Cho
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhe-Wei Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Syuan Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiunn-Horng Kang
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.,Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan. .,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
355
|
Kim YK, Nam KI, Song J. The Glymphatic System in Diabetes-Induced Dementia. Front Neurol 2018; 9:867. [PMID: 30429819 PMCID: PMC6220044 DOI: 10.3389/fneur.2018.00867] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
The glymphatic system has emerged as an important player in central nervous system (CNS) diseases, by regulating the vasculature impairment, effectively controlling the clearance of toxic peptides, modulating activity of astrocytes, and being involved in the circulation of neurotransmitters in the brain. Recently, several studies have indicated decreased activity of the glymphatic pathway under diabetes conditions such as in insulin resistance and hyperglycemia. Furthermore, diabetes leads to the disruption of the blood-brain barrier and decrease of apolipoprotein E (APOE) expression and the secretion of norepinephrine in the brain, involving the impairment of the glymphatic pathway and ultimately resulting in cognitive decline. Considering the increased prevalence of diabetes-induced dementia worldwide, the relationship between the glymphatic pathway and diabetes-induced dementia should be investigated and the mechanisms underlying their relationship should be discussed to promote the development of an effective therapeutic approach in the near future. Here, we have reviewed recent evidence for the relationship between glymphatic pathway dysfunction and diabetes. We highlight that the enhancement of the glymphatic system function during sleep may be beneficial to the attenuation of neuropathology in diabetes-induced dementia. Moreover, we suggest that improving glymphatic system activity may be a potential therapeutic strategy for the prevention of diabetes-induced dementia.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, South Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, South Korea
| | - Kwang Il Nam
- Department of Anatomy, Chonnam National University Medical School, Gwangju, South Korea
| | - Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, South Korea.,Department of Anatomy, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
356
|
Chang R, Al Maghribi A, Vanderpoel V, Vasilevko V, Cribbs DH, Boado R, Pardridge WM, Sumbria RK. Brain Penetrating Bifunctional Erythropoietin-Transferrin Receptor Antibody Fusion Protein for Alzheimer's Disease. Mol Pharm 2018; 15:4963-4973. [PMID: 30252487 DOI: 10.1021/acs.molpharmaceut.8b00594] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Erythropoietin (EPO), a glycoprotein cytokine essential to hematopoiesis, has neuroprotective effects in rodent models of Alzheimer's disease (AD). However, high therapeutic doses or invasive routes of administration of EPO are required to achieve effective brain concentrations due to low blood-brain barrier (BBB) penetrability, and high EPO doses result in hematopoietic side effects. These obstacles can be overcome by engineering a BBB-penetrable analog of EPO, which is rapidly cleared from the blood, by fusing EPO to a chimeric monoclonal antibody targeting the transferrin receptor (cTfRMAb), which acts as a molecular Trojan horse to ferry the EPO into the brain via the transvascular route. In the current study, we investigated the effects of the BBB-penetrable analog of EPO on AD pathology in a double transgenic mouse model of AD. Five and a half month old male APPswe/PSEN1dE9 (APP/PS1) transgenic mice were treated with saline ( n = 10) or the BBB-penetrable EPO ( n = 10) 3 days/week intraperitoneally for 8 weeks, compared to same-aged C57BL/6J wild-type mice treated with saline ( n = 8) with identical regiment. At 9 weeks following treatment initiation, exploration and spatial memory were assessed with the open-field and Y-maze test, mice were sacrificed, and brains were evaluated for Aβ peptide load, synaptic loss, BBB disruption, microglial activation, and microhemorrhages. APP/PS1 mice treated with the BBB-penetrable cTfRMAb-EPO fusion protein had significantly lower cortical and hippocampal Aβ peptide number ( p < 0.05) and immune-positive area ( p < 0.05), a decrease in hippocampal synaptic loss ( p < 0.05) and cortical microglial activation ( p < 0.001), and improved spatial memory ( p < 0.05) compared with APP/PS1 saline controls. BBB-penetrating EPO was not associated with microhemorrhage development. The cTfRMAb-EPO fusion protein offers therapeutic benefits by targeting multiple targets of AD pathogenesis and progression (Aβ load, synaptic loss, microglial activation) and improving spatial memory in the APP/PS1 mouse model of AD.
Collapse
Affiliation(s)
- Rudy Chang
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences , Keck Graduate Institute , Claremont , California 91711 , United States
| | - Abrar Al Maghribi
- Henry E. Riggs School of Applied Life Sciences , Keck Graduate Institute , Claremont , California 91711 , United States
| | - Victoria Vanderpoel
- Department of Neuroscience , Pomona College , Claremont , California 91711 , United States
| | - Vitaly Vasilevko
- Institute for Memory Impairments and Neurological Disorders , University of California , Irvine , California 92697 , United States
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders , University of California , Irvine , California 92697 , United States
| | - Ruben Boado
- ArmaGen, Inc. , Calabasas , California 91302 , United States
| | | | - Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences , Keck Graduate Institute , Claremont , California 91711 , United States.,Institute for Memory Impairments and Neurological Disorders , University of California , Irvine , California 92697 , United States
| |
Collapse
|
357
|
Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 2018; 21:1318-1331. [PMID: 30250261 PMCID: PMC6198802 DOI: 10.1038/s41593-018-0234-x] [Citation(s) in RCA: 649] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
Adequate supply of blood and structural and functional integrity of blood vessels are key to normal brain functioning. On the other hand, cerebral blood flow shortfalls and blood-brain barrier dysfunction are early findings in neurodegenerative disorders in humans and animal models. Here we first examine molecular definition of cerebral blood vessels, as well as pathways regulating cerebral blood flow and blood-brain barrier integrity. Then we examine the role of cerebral blood flow and blood-brain barrier in the pathogenesis of Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. We focus on Alzheimer's disease as a platform of our analysis because more is known about neurovascular dysfunction in this disease than in other neurodegenerative disorders. Finally, we propose a hypothetical model of Alzheimer's disease biomarkers to include brain vasculature as a factor contributing to the disease onset and progression, and we suggest a common pathway linking brain vascular contributions to neurodegeneration in multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Axel Montagne
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
358
|
Elhaik Goldman S, Goez D, Last D, Naor S, Liraz Zaltsman S, Sharvit-Ginon I, Atrakchi-Baranes D, Shemesh C, Twitto-Greenberg R, Tsach S, Lotan R, Leikin-Frenkel A, Shish A, Mardor Y, Schnaider Beeri M, Cooper I. High-fat diet protects the blood-brain barrier in an Alzheimer's disease mouse model. Aging Cell 2018; 17:e12818. [PMID: 30079520 PMCID: PMC6156545 DOI: 10.1111/acel.12818] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with increased risk of Alzheimer's disease (AD). There is evidence for impaired blood-brain barrier (BBB) in both diseases, but its role in the interplay between them is not clear. Here, we investigated the effects of high-fat diet (HFD), a model for T2D, on the Tg2576 mouse model of AD, in regard to BBB function. We showed that HFD mice had higher weight, more insulin resistance, and higher serum HDL cholesterol levels, primarily in Tg2576 mice, which also had higher brain lipids content. In terms of behavior, Tg2576 HFD mice were less active and more anxious, but had better learning in the Morris Water Maze compared to Tg2576 on regular diet. HFD had no effect on the level of amyloid beta 1-42 in the cortex of Tg2576 mice, but increased the transcription level of insulin receptor in the hippocampus. Tg2576 mice on regular diet demonstrated more BBB disruption at 8 and 12 months accompanied by larger lateral ventricles volume in contrast to Tg2576 HFD mice, whose BBB leakage and ventricular volume were similar to wild-type (WT) mice. Our results suggest that in AD, HFD may promote better cognitive function through improvements of BBB function and of brain atrophy but not of amyloid beta levels. Lipid metabolism in the CNS and peripheral tissues and brain insulin signaling may underlie this protection.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Gonda Brain Research Center; Bar Ilan University; Ramat-Gan Israel
| | - David Goez
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - David Last
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Sharone Naor
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Sigal Liraz Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Pharmacology Division, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy; Hebrew University of Jerusalem; Jerusalem Israel
| | - Inbal Sharvit-Ginon
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Department of Psychology; Bar Ilan University; Ramat-Gan Israel
| | - Dana Atrakchi-Baranes
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Rachel Twitto-Greenberg
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Shoval Tsach
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Roni Lotan
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Alicia Leikin-Frenkel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Aviv Shish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Yael Mardor
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- The Interdisciplinary Center; Herzliya Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- The Interdisciplinary Center; Herzliya Israel
| |
Collapse
|
359
|
Pan Y, Nicolazzo JA. Impact of aging, Alzheimer's disease and Parkinson's disease on the blood-brain barrier transport of therapeutics. Adv Drug Deliv Rev 2018; 135:62-74. [PMID: 29665383 DOI: 10.1016/j.addr.2018.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/17/2018] [Accepted: 04/07/2018] [Indexed: 01/01/2023]
Abstract
Older people are at a greater risk of medicine-induced toxicity resulting from either increased drug sensitivity or age-related pharmacokinetic changes. The scenario is further complicated with the two most prevalent age-related neurodegenerative diseases, Alzheimer's disease (AD) and Parkinson's disease (PD). With aging, AD and PD, there is growing evidence of altered structure and function of the blood-brain barrier (BBB), including modifications to tight junctions and efflux transporters, such as P-glycoprotein. The subsequent impact on CNS drug exposure and risk of neurotoxicity from systemically-acting medicines is less well characterized. The purpose of this review, therefore, is to provide an overview of the multiple changes that occur to the BBB as a result of aging, AD and PD, and the impact that such changes have on CNS exposure of drugs, based on studies conducted in aged rodents or rodent models of disease, and in elderly people with and without AD or PD.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
360
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|
361
|
Dickie BR, Vandesquille M, Ulloa J, Boutin H, Parkes LM, Parker GJM. Water-exchange MRI detects subtle blood-brain barrier breakdown in Alzheimer's disease rats. Neuroimage 2018; 184:349-358. [PMID: 30219292 DOI: 10.1016/j.neuroimage.2018.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 01/21/2023] Open
Abstract
Blood-brain barrier (BBB) breakdown has been hypothesized to play a key role in the onset and progression of Alzheimer's disease (AD). However, the question of whether AD itself contributes to loss of BBB integrity is still uncertain, as many in-vivo studies have failed to detect signs of AD-related BBB breakdown. We hypothesize AD-related BBB damage is subtle, and that these negative results arise from a lack of measurement sensitivity. With the aim of developing a more sensitive measure of BBB breakdown, we have designed a novel MRI scanning protocol to quantify the trans-BBB exchange of endogenous water. Using this method, we detect increased BBB water permeability in a rat model of AD that is associated with reduced expression of the tight junction protein occludin. BBB permeability to MRI contrast agent, assessed using dynamic contrast-enhanced (DCE)-MRI, did not differ between transgenic and wild-type animals and was uncorrelated with occludin expression. Our data supports the occurrence of AD-related BBB breakdown, and indicates that such BBB pathology is subtle and may be undetectable using existing 'tracer leakage' methods. Our validated water-exchange MRI method provides a new powerful tool with which to study BBB damage in-vivo.
Collapse
Affiliation(s)
- Ben R Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford Building, University of Manchester, UK.
| | - Matthias Vandesquille
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford Building, University of Manchester, UK
| | | | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford Building, University of Manchester, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford Building, University of Manchester, UK
| | - Geoff J M Parker
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford Building, University of Manchester, UK; Bioxydyn Ltd, Manchester, UK
| |
Collapse
|
362
|
Impact of the Glymphatic System on the Kinetic and Distribution of Gadodiamide in the Rat Brain. Invest Radiol 2018; 53:529-534. [DOI: 10.1097/rli.0000000000000473] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
363
|
Ott BR, Jones RN, Daiello LA, de la Monte SM, Stopa EG, Johanson CE, Denby C, Grammas P. Blood-Cerebrospinal Fluid Barrier Gradients in Mild Cognitive Impairment and Alzheimer's Disease: Relationship to Inflammatory Cytokines and Chemokines. Front Aging Neurosci 2018; 10:245. [PMID: 30186149 PMCID: PMC6110816 DOI: 10.3389/fnagi.2018.00245] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 07/25/2018] [Indexed: 01/30/2023] Open
Abstract
Background: The pathophysiology underlying altered blood-cerebrospinal fluid barrier (BCSFB) function in Alzheimer's disease (AD) is unknown but may relate to endothelial cell activation and cytokine mediated inflammation. Methods: Cerebrospinal fluid (CSF) and peripheral blood were concurrently collected from cognitively healthy controls (N = 21) and patients with mild cognitive impairment (MCI) (N = 8) or AD (N = 11). The paired serum and CSF samples were assayed for a panel of cytokines, chemokines, and related trophic factors using multiplex ELISAs. Dominance analysis models were conducted to determine the relative importance of the inflammatory factors in relationship to BCSFB permeability, as measured by CSF/serum ratios for urea, creatinine, and albumin. Results: BCSFB disruption to urea, a small molecule distributed by passive diffusion, had a full model coefficient of determination (r2) = 0.35, and large standardized dominance weights (>0.1) for monocyte chemoattractant protein-1, interleukin (IL)-15, IL-1rα, and IL-2 in serum. BCSFB disruption to creatinine, a larger molecule governed by active transport, had a full model r2 = 0.78, and large standardized dominance weights for monocyte inhibitor protein-1b in CSF and tumor necrosis factor-α in serum. BCSFB disruption to albumin, a much larger molecule, had a full model r2 = 0.62, and large standardized dominance weights for IL-17a, interferon-gamma, IL-2, and VEGF in CSF, as well IL-4 in serum. Conclusions: Inflammatory proteins have been widely documented in the AD brain. The results of the current study suggest that changes in BCSFB function resulting in altered permeability and transport are related to expression of specific inflammatory proteins, and that the shifting distribution of these proteins from serum to CSF in AD and MCI is correlated with more severe perturbations in BCSFB function.
Collapse
Affiliation(s)
- Brian R. Ott
- Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States,*Correspondence: Brian R. Ott
| | - Richard N. Jones
- Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Lori A. Daiello
- Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Suzanne M. de la Monte
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States,Division of Neuropathology, Department of Pathology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Edward G. Stopa
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States,Division of Neuropathology, Department of Pathology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Conrad E. Johanson
- Department of Neurosurgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Charles Denby
- Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
364
|
Fang X. Impaired tissue barriers as potential therapeutic targets for Parkinson's disease and amyotrophic lateral sclerosis. Metab Brain Dis 2018; 33:1031-1043. [PMID: 29681010 DOI: 10.1007/s11011-018-0239-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier and the intestinal barrier show signs of disruption in patients with idiopathic Parkinson's disease (PD) and animal models of nigrostriatal degeneration, and likewise in amyotrophic lateral sclerosis (ALS) models. A substantial body of evidence shows that defects in epithelial membrane barriers, both in the gut and within the cerebral vasculature, can result in increased vulnerability of tissues to external factors potentially participating in the pathogenesis of PD and ALS. As such, restoration of tissue barriers may prove to be a novel therapeutic target in neurodegenerative disease. In this review, we focus on the potential of new intervention strategies for rescuing and maintaining barrier functions in PD and ALS.
Collapse
Affiliation(s)
- Xin Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
365
|
Fulop T, Witkowski JM, Bourgade K, Khalil A, Zerif E, Larbi A, Hirokawa K, Pawelec G, Bocti C, Lacombe G, Dupuis G, Frost EH. Can an Infection Hypothesis Explain the Beta Amyloid Hypothesis of Alzheimer's Disease? Front Aging Neurosci 2018; 10:224. [PMID: 30087609 PMCID: PMC6066504 DOI: 10.3389/fnagi.2018.00224] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent type of dementia. The pathological hallmarks of the disease are extracellular senile plaques composed of beta-amyloid peptide (Aβ) and intracellular neurofibrillary tangles composed of pTau. These findings led to the "beta-amyloid hypothesis" that proposes that Aβ is the major cause of AD. Clinical trials targeting Aβ in the brain have mostly failed, whether they attempted to decrease Aβ production by BACE inhibitors or by antibodies. These failures suggest a need to find new hypotheses to explain AD pathogenesis and generate new targets for intervention to prevent and treat the disease. Many years ago, the "infection hypothesis" was proposed, but received little attention. However, the recent discovery that Aβ is an antimicrobial peptide (AMP) acting against bacteria, fungi, and viruses gives increased credence to an infection hypothesis in the etiology of AD. We and others have shown that microbial infection increases the synthesis of this AMP. Here, we propose that the production of Aβ as an AMP will be beneficial on first microbial challenge but will become progressively detrimental as the infection becomes chronic and reactivates from time to time. Furthermore, we propose that host measures to remove excess Aβ decrease over time due to microglial senescence and microbial biofilm formation. We propose that this biofilm aggregates with Aβ to form the plaques in the brain of AD patients. In this review, we will develop this connection between Infection - Aβ - AD and discuss future possible treatments based on this paradigm.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Karine Bourgade
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Abdelouahed Khalil
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Echarki Zerif
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Anis Larbi
- Singapore Immunology Network, ASTAR, Biopolis, Singapore, Singapore
| | - Katsuiku Hirokawa
- Department of Pathology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research, University of Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Greater Sudbury, ON, Canada
| | - Christian Bocti
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Lacombe
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Programme of Immunology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H. Frost
- Department of Microbiology and Infectious Diseases, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
366
|
Yang L, Han W, Luo Y, Hu X, Xu Y, Li H, Hu C, Huang D, Ma J, Yang Y, Chen Q, Li Y, Zhang J, Xia H, Chen Z, Wang H, Ran D, Yang J. Adapentpronitrile, a New Dipeptidyl Peptidase-IV Inhibitor, Ameliorates Diabetic Neuronal Injury Through Inhibiting Mitochondria-Related Oxidative Stress and Apoptosis. Front Cell Neurosci 2018; 12:214. [PMID: 30072873 PMCID: PMC6058014 DOI: 10.3389/fncel.2018.00214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022] Open
Abstract
Our previous studies indicated that adapentpronitrile, a new adamantane-based dipeptidyl peptidase-IV (DPP-IV) inhibitor, has a hypoglycemic effect and ameliorates rat pancreatic β cell dysfunction in type 2 diabetes mellitus through inhibiting DPP-IV activity. However, the effect of adapentpronitrile on the neurodegenerative diseases has not been studied. In the present study, we first found that adapentpronitrile significantly ameliorated neuronal injury and decreased amyloid precursor protein (APP) and amyloid beta (Aβ) expression in the hippocampus and cortex in the high fat diet/STZ rat model of diabetes. Furthermore, adapentpronitrile significantly attenuated oxidative stress, downregulated expression of the pro-apoptotic proteins BAX, cytochrome c, caspase-9, and caspase-3, and upregulated expression of the anti-apoptotic protein Bcl-2, although there was no effect on GLP-1R expression. At 30 min post-injection of adapentpronitrile (50 mg/kg) via the tail vein, its concentration in normal rat brain was 0.2034 ± 0.0094 μg/g. Subsequently, we further confirmed the neuroprotective effects and mechanism of adapentpronitrile in HT22 cells treated with high glucose (HG) and aluminum maltolate [Al(mal)3] overload, respectively. Our results showed significant decreases in mitochondrial membrane potential (MTP) and Bcl-2 expression, accompanied by a significant increase in apoptosis, reactive oxygen species (ROS) generation, and the expression of pro-apoptotic proteins in HT22 cells exposed to these stimuli. Adapentpronitrile treatment protected against neuronal injury, suppressed ROS generation, and reduced MTP and mitochondrial apoptosis in HT22 cells; however, DPP-IV activity was not detected. Our results suggest that adapentpronitrile protects against diabetic neuronal injury, at least partially, by inhibiting mitochondrial oxidative stress and the apoptotic pathway in a DPP-IV-independent manner.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Wenli Han
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Ying Luo
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xiangnan Hu
- Department of Pharmacology, The Laboratory of Pharmaceutical Chemistry, Chongqing Medical University, Chongqing, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, United States
| | - Huan Li
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Congli Hu
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Dan Huang
- Department of Pharmacology, The Laboratory of Pharmaceutical Analysis, Chongqing Medical University, Chongqing, China
| | - Jie Ma
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Qi Chen
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yuke Li
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Jiahua Zhang
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Hui Xia
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Zhihao Chen
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Dongzhi Ran
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Junqing Yang
- Department of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
367
|
Liu CY, Yang Y, Ju WN, Wang X, Zhang HL. Emerging Roles of Astrocytes in Neuro-Vascular Unit and the Tripartite Synapse With Emphasis on Reactive Gliosis in the Context of Alzheimer's Disease. Front Cell Neurosci 2018; 12:193. [PMID: 30042661 PMCID: PMC6048287 DOI: 10.3389/fncel.2018.00193] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/14/2018] [Indexed: 01/09/2023] Open
Abstract
Astrocytes, which are five-fold more numerous than neurons in the central nervous system (CNS), are traditionally viewed to provide simple structural and nutritional supports for neurons and to participate in the composition of the blood brain barrier (BBB). In recent years, the active roles of astrocytes in regulating cerebral blood flow (CBF) and in maintaining the homeostasis of the tripartite synapse have attracted increasing attention. More importantly, astrocytes have been associated with the pathogenesis of Alzheimer's disease (AD), a major cause of dementia in the elderly. Although microglia-induced inflammation is considered important in the development and progression of AD, inflammation attributable to astrogliosis may also play crucial roles. A1 reactive astrocytes induced by inflammatory stimuli might be harmful by up-regulating several classical complement cascade genes thereby leading to chronic inflammation, while A2 induced by ischemia might be protective by up-regulating several neurotrophic factors. Here we provide a concise review of the emerging roles of astrocytes in the homeostasis maintenance of the neuro-vascular unit (NVU) and the tripartite synapse with emphasis on reactive astrogliosis in the context of AD, so as to pave the way for further research in this area, and to search for potential therapeutic targets of AD.
Collapse
Affiliation(s)
- Cai-Yun Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wei-Na Ju
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hong-Liang Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Department of Life Sciences, The National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
368
|
Cole JH. Neuroimaging Studies Illustrate the Commonalities Between Ageing and Brain Diseases. Bioessays 2018; 40:e1700221. [PMID: 29882974 DOI: 10.1002/bies.201700221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/23/2018] [Indexed: 12/19/2022]
Abstract
The lack of specificity in neuroimaging studies of neurological and psychiatric diseases suggests that these different diseases have more in common than is generally considered. Potentially, features that are secondary effects of different pathological processes may share common neurobiological underpinnings. Intriguingly, many of these mechanisms are also observed in studies of normal (i.e., non-pathological) brain ageing. Different brain diseases may be causing premature or accelerated ageing to the brain, an idea that is supported by a line of "brain ageing" research that combines neuroimaging data with machine learning analysis. In reviewing this field, I conclude that such observations could have important implications, suggesting that we should shift experimental paradigm: away from characterizing the average case-control brain differences resulting from a disease toward methods that place individuals in their age-appropriate context. This will also lead naturally to clinical applications, whereby neuroimaging can contribute to a personalized-medicine approach to improve brain health.
Collapse
Affiliation(s)
- James H Cole
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience King's College London, London, SE5 8AF, UK
| |
Collapse
|
369
|
Abstract
This review by O'Brown et al. discusses the cellular nature of the blood–brain barrier (BBB) and the conservation and variation of BBB function across taxa. It compares the BBB across organisms in order to provide insight into the human BBB both under normal physiological conditions and in neurological diseases. The blood–brain barrier (BBB) restricts free access of molecules between the blood and the brain and is essential for regulating the neural microenvironment. Here, we describe how the BBB was initially characterized and how the current field evaluates barrier properties. We next detail the cellular nature of the BBB and discuss both the conservation and variation of BBB function across taxa. Finally, we examine our current understanding of mouse and zebrafish model systems, as we expect that comparison of the BBB across organisms will provide insight into the human BBB under normal physiological conditions and in neurological diseases.
Collapse
Affiliation(s)
- Natasha M O'Brown
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sarah J Pfau
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
370
|
Chen JJ. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage 2018; 187:209-225. [PMID: 29793062 DOI: 10.1016/j.neuroimage.2018.05.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022] Open
Abstract
Brain aging and associated neurodegeneration constitute a major societal challenge as well as one for the neuroimaging community. A full understanding of the physiological mechanisms underlying neurodegeneration still eludes medical researchers, fuelling the development of in vivo neuroimaging markers. Hence it is increasingly recognized that our understanding of neurodegenerative processes likely will depend upon the available information provided by imaging techniques. At the same time, the imaging techniques are often developed in response to the desire to observe certain physiological processes. In this context, functional MRI (fMRI), which has for decades provided information on neuronal activity, has evolved into a large family of techniques well suited for in vivo observations of brain physiology. Given the rapid technical advances in fMRI in recent years, this review aims to summarize the physiological basis of fMRI observations in healthy aging as well as in age-related neurodegeneration. This review focuses on in-vivo human brain imaging studies in this review and on disease features that can be imaged using fMRI methods. In addition to providing detailed literature summaries, this review also discusses future directions in the study of brain physiology using fMRI in the clinical setting.
Collapse
Affiliation(s)
- J Jean Chen
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| |
Collapse
|
371
|
Raja R, Rosenberg GA, Caprihan A. MRI measurements of Blood-Brain Barrier function in dementia: A review of recent studies. Neuropharmacology 2018; 134:259-271. [PMID: 29107626 PMCID: PMC6044415 DOI: 10.1016/j.neuropharm.2017.10.034] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/26/2022]
Abstract
Blood-brain barrier (BBB) separates the systemic circulation and the brain, regulating transport of most molecules to protect the brain microenvironment. Multiple structural and functional components preserve the integrity of the BBB. Several imaging modalities are available to study disruption of the BBB. However, the subtle changes in BBB leakage that occurs in vascular cognitive impairment and Alzheimer's disease have been less well studied. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is the most widely adopted non-invasive imaging technique for evaluating BBB breakdown. It is used as a significant marker for a wide variety of diseases with large permeability leaks, such as brain tumors and multiple sclerosis, to more subtle disruption in chronic vascular disease and dementia. DCE-MRI analysis of BBB includes both model-free parameters and quantitative parameters using pharmacokinetic modelling. We review MRI studies of BBB breakdown in dementia. The challenges in measuring subtle BBB changes and the state of the art techniques are initially examined. Subsequently, a systematic review comparing methodologies from recent in-vivo MRI studies is presented. Various factors related to subtle BBB permeability measurement such as DCE-MRI acquisition parameters, arterial input assessment, T1 mapping and data analysis methods are reviewed with the focus on finding the optimal technique. Finally, the reported BBB permeability values in dementia are compared across different studies and across various brain regions. We conclude that reliable measurement of low-level BBB permeability across sites remains a difficult problem and a standardization of the methodology for both data acquisition and quantitative analysis is required. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
| | - Gary A Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | |
Collapse
|
372
|
Quarles CC, Bell LC, Stokes AM. Imaging vascular and hemodynamic features of the brain using dynamic susceptibility contrast and dynamic contrast enhanced MRI. Neuroimage 2018; 187:32-55. [PMID: 29729392 DOI: 10.1016/j.neuroimage.2018.04.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 12/22/2022] Open
Abstract
In the context of neurologic disorders, dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) MRI provide valuable insights into cerebral vascular function, integrity, and architecture. Even after two decades of use, these modalities continue to evolve as their biophysical and kinetic basis is better understood, with improvements in pulse sequences and accelerated imaging techniques and through application of more robust and automated data analysis strategies. Here, we systematically review each of these elements, with a focus on how their integration improves kinetic parameter accuracy and the development of new hemodynamic biomarkers that provide sub-voxel sensitivity (e.g., capillary transit time and flow heterogeneity). Regarding contrast mechanisms, we discuss the dipole-dipole interactions and susceptibility effects that give rise to simultaneous T1, T2 and T2∗ relaxation effects, including their quantification, influence on pulse sequence parameter optimization, and use in methods such as vessel size and vessel architectural imaging. The application of technologic advancements, such as parallel imaging, simultaneous multi-slice, undersampled k-space acquisitions, and sliding window strategies, enables improved spatial and/or temporal resolution of DSC and DCE acquisitions. Such acceleration techniques have also enabled the implementation of, clinically feasible, simultaneous multi-echo spin- and gradient echo acquisitions, providing more comprehensive and quantitative interrogation of T1, T2 and T2∗ changes. Characterizing these relaxation rate changes through different post-processing options allows for the quantification of hemodynamics and vascular permeability. The application of different biophysical models provides insight into traditional hemodynamic parameters (e.g., cerebral blood volume) and more advanced parameters (e.g., capillary transit time heterogeneity). We provide insight into the appropriate selection of biophysical models and the necessary post-processing steps to ensure reliable measurements while minimizing potential sources of error. We show representative examples of advanced DSC- and DCE-MRI methods applied to pathologic conditions affecting the cerebral microcirculation, including brain tumors, stroke, aging, and multiple sclerosis. The maturation and standardization of conventional DSC- and DCE-MRI techniques has enabled their increased integration into clinical practice and use in clinical trials, which has, in turn, spurred renewed interest in their technological and biophysical development, paving the way towards a more comprehensive assessment of cerebral hemodynamics.
Collapse
Affiliation(s)
- C Chad Quarles
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA.
| | - Laura C Bell
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| | - Ashley M Stokes
- Division of Neuro imaging Research, Barrow Neurological Institute, 350 W. Thomas Rd, Phoenix, AZ, USA
| |
Collapse
|
373
|
Bäuerl C, Collado M, Diaz Cuevas A, Viña J, Pérez Martínez G. Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer's disease during lifespan. Lett Appl Microbiol 2018; 66:464-471. [DOI: 10.1111/lam.12882] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/11/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022]
Affiliation(s)
- C. Bäuerl
- Department of Biotechnology; Institute of Agrochemistry and Food Technology; Consejo Superior de Investigaciones Científicas (Spanish National Research Council); Valencia Spain
| | - M.C. Collado
- Department of Biotechnology; Institute of Agrochemistry and Food Technology; Consejo Superior de Investigaciones Científicas (Spanish National Research Council); Valencia Spain
| | - A. Diaz Cuevas
- Central Research Unit-INCLIVA; Faculty of Medicine; University of Valencia; Valencia Spain
| | - J. Viña
- Department of Physiology; Faculty of Medicine; University of Valencia; Valencia Spain
| | - G. Pérez Martínez
- Department of Biotechnology; Institute of Agrochemistry and Food Technology; Consejo Superior de Investigaciones Científicas (Spanish National Research Council); Valencia Spain
| |
Collapse
|
374
|
Muszyński P, Kulczyńska-Przybik A, Borawska R, Litman-Zawadzka A, Słowik A, Klimkowicz-Mrowiec A, Pera J, Dziedzic T, Mroczko B. The Relationship between Markers of Inflammation and Degeneration in the Central Nervous System and the Blood-Brain Barrier Impairment in Alzheimer's Disease. J Alzheimers Dis 2018; 59:903-912. [PMID: 28697565 DOI: 10.3233/jad-170220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is known that YKL-40- a marker of glial inflammation, and VILIP-1- a marker of neuronal injury, reflect functional and structural changes in AD brains, although there is limited data concerning their potential influence on blood-brain barrier (BBB) homeostasis. OBJECTIVE Therefore, the aim of our study was to investigate the relationship between markers of inflammation and degeneration in the central nervous system (CNS) of patients with AD and mild cognitive impairment (MCI) as well as immunological response in CNS and BBB function. METHODS Cerebrospinal fluid (CSF) concentrations of proteins tested were determined in 45 AD patients, 18 MCI subjects, and 23 non-demented controls using ELISA method. RESULTS CSF concentrations of YKL-40 were significantly higher in MCI and AD patients, whereas CSF levels of VILIP-1 were statistically higher in the AD group as compared to the subjects without cognitive deficits. Elevated concentrations of YKL-40 correlated significantly with increased albumin quotient and decreased Aβ42/40 ratio in AD patients and with IgG quotient in the total study group. We did not find a relationship between VILIP-1 and immunological parameters reflecting BBB dysfunction and humoral immune response. CONCLUSION Our findings indicate that YKL-40 may contribute to decreased stability and increased permeability of BBB in AD patients. It is assumed that YKL-40 is implicated in the development of brain barriers, although its precise mechanism of action in the BBB disruption remains unrevealed. Further studies on larger groups of patients are required to confirm our hypothesis.
Collapse
Affiliation(s)
- Paweł Muszyński
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| | | | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, Kraków, Poland
| | | | - Joanna Pera
- Department of Neurology, Jagiellonian University, Kraków, Poland
| | - Tomasz Dziedzic
- Department of Neurology, Jagiellonian University, Kraków, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| |
Collapse
|
375
|
Lecler A, Fournier L, Diard-Detoeuf C, Balvay D. Blood-Brain Barrier Leakage in Early Alzheimer Disease. Radiology 2018; 282:923-925. [PMID: 28218884 DOI: 10.1148/radiol.2017162578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Augustin Lecler
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, 25 rue Manin, 75019 Paris, France
| | - Laure Fournier
- Cardiovascular Research Center-PARCC, Université Paris Descartes Sorbonne Paris Cité, UMR-S970, Paris, France †.,Department of Radiology, Université Paris Descartes Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France ‡
| | | | - Daniel Balvay
- Cardiovascular Research Center-PARCC, Université Paris Descartes Sorbonne Paris Cité, UMR-S970, Paris, France †
| |
Collapse
|
376
|
Van Skike CE, Jahrling JB, Olson AB, Sayre NL, Hussong SA, Ungvari Z, Lechleiter JD, Galvan V. Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer's disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol 2018; 314:H693-H703. [PMID: 29351469 PMCID: PMC5966773 DOI: 10.1152/ajpheart.00570.2017] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/29/2017] [Accepted: 12/13/2017] [Indexed: 01/05/2023]
Abstract
An intact blood-brain barrier (BBB) limits entry of proinflammatory and neurotoxic blood-derived factors into the brain parenchyma. The BBB is damaged in Alzheimer's disease (AD), which contributes significantly to the progression of AD pathologies and cognitive decline. However, the mechanisms underlying BBB breakdown in AD remain elusive, and no interventions are available for treatment or prevention. We and others recently established that inhibition of the mammalian/mechanistic target of rapamycin (mTOR) pathway with rapamycin yields significant neuroprotective effects, improving cerebrovascular and cognitive function in mouse models of AD. To test whether mTOR inhibition protects the BBB in neurological diseases of aging, we treated hAPP(J20) mice modeling AD and low-density lipoprotein receptor-null (LDLR-/-) mice modeling vascular cognitive impairment with rapamycin. We found that inhibition of mTOR abrogates BBB breakdown in hAPP(J20) and LDLR-/- mice. Experiments using an in vitro BBB model indicated that mTOR attenuation preserves BBB integrity through upregulation of specific tight junction proteins and downregulation of matrix metalloproteinase-9 activity. Together, our data establish mTOR activity as a critical mediator of BBB breakdown in AD and, potentially, vascular cognitive impairment and suggest that rapamycin and/or rapalogs could be used for the restoration of BBB integrity. NEW & NOTEWORTHY This report establishes mammalian/mechanistic target of rapamycin as a critical mediator of blood-brain barrier breakdown in models of Alzheimer's disease and vascular cognitive impairment and suggests that drugs targeting the target of rapamycin pathway could be used for the restoration of blood-brain barrier integrity in disease states.
Collapse
MESH Headings
- Alzheimer Disease/drug therapy
- Alzheimer Disease/enzymology
- Alzheimer Disease/pathology
- Alzheimer Disease/psychology
- Animals
- Behavior, Animal
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/enzymology
- Blood-Brain Barrier/pathology
- Cell Line
- Cognition
- Dementia, Vascular/drug therapy
- Dementia, Vascular/enzymology
- Dementia, Vascular/pathology
- Dementia, Vascular/psychology
- Disease Models, Animal
- Female
- Male
- Matrix Metalloproteinase 9/metabolism
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Kinase Inhibitors/pharmacology
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/metabolism
- Tight Junction Proteins/metabolism
- Tight Junctions/drug effects
- Tight Junctions/enzymology
- Tight Junctions/pathology
Collapse
Affiliation(s)
- Candice E Van Skike
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
| | - Jordan B Jahrling
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
| | - Angela B Olson
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
| | - Naomi L Sayre
- Department of Neurosurgery, University of Texas Health San Antonio , San Antonio, Texas
- Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas
| | - Stacy A Hussong
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
- Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas
| | - Zoltan Ungvari
- Department of Geriatric Medicine and Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - James D Lechleiter
- Department of Cellular and Structural Biology, South Texas Research Facility Neuroscience Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio , San Antonio, Texas
- Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
377
|
Bae J, Zhang J, Wadghiri YZ, Minhas AS, Poptani H, Ge Y, Kim SG. Measurement of blood-brain barrier permeability using dynamic contrast-enhanced magnetic resonance imaging with reduced scan time. Magn Reson Med 2018; 80:1686-1696. [PMID: 29508443 DOI: 10.1002/mrm.27145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 02/04/2023]
Abstract
PURPOSE To investigate the feasibility of measuring the subtle disruption of blood-brain barrier (BBB) using DCE-MRI with a scan duration shorter than 10 min. METHODS The extended Patlak-model (EPM) was introduced to include the effect of plasma flow (Fp ) in the estimation of vascular permeability-surface area product (PS). Numerical simulation studies were carried out to investigate how the reduction in scan time affects the accuracy in estimating contrast kinetic parameters. DCE-MRI studies of the rat brain were conducted with Fisher rats to confirm the results from the simulation. Intracranial F98 glioblastoma models were used to assess areas with different levels of permeability. In the normal brain tissues, the Patlak model (PM) and EPM were compared, whereas the 2-compartment-exchange-model (TCM) and EPM were assessed in the peri-tumor and the tumor regions. RESULTS The simulation study results demonstrated that scan time reduction could lead to larger bias in PS estimated by PM (>2000%) than by EPM (<47%), especially when Fp is low. When Fp was high as in the gray matter, the bias in PM-PS (>900%) were larger than that in EPM-PS (<42%). The animal study also showed similar results, where the PM parameters were more sensitive to the scan duration than the EPM parameters. It was also demonstrated that, in the peri-tumor region, the EPM parameters showed less change by scan duration than the TCM parameters. CONCLUSION The results of this study suggest that EPM can be used to measure PS with a scan duration of 10 min or less.
Collapse
Affiliation(s)
- Jonghyun Bae
- Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| | - Jin Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| | - Youssef Zaim Wadghiri
- Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| | - Atul Singh Minhas
- Centre for Preclinical Imaging, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Harish Poptani
- Centre for Preclinical Imaging, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Yulin Ge
- Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| | - Sungheon Gene Kim
- Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
378
|
Reddan JM, White DJ, Macpherson H, Scholey A, Pipingas A. Glycerophospholipid Supplementation as a Potential Intervention for Supporting Cerebral Structure in Older Adults. Front Aging Neurosci 2018; 10:49. [PMID: 29563868 PMCID: PMC5845902 DOI: 10.3389/fnagi.2018.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/15/2018] [Indexed: 01/13/2023] Open
Abstract
Modifying nutritional intake through supplementation may be efficacious for altering the trajectory of cerebral structural decline evident with increasing age. To date, there have been a number of clinical trials in older adults whereby chronic supplementation with B vitamins, omega-3 fatty acids, or resveratrol, has been observed to either slow the rate of decline or repair cerebral tissue. There is also some evidence from animal studies indicating that supplementation with glycerophospholipids (GPL) may benefit cerebral structure, though these effects have not yet been investigated in adult humans. Despite this paucity of research, there are a number of factors predicting poorer cerebral structure in older humans, which GPL supplementation appears to beneficially modify or protect against. These include elevated concentrations of homocysteine, unbalanced activity of reactive oxygen species both increasing the risk of oxidative stress, increased concentrations of pro-inflammatory messengers, as well as poorer cardio- and cerebrovascular function. As such, it is hypothesized that GPL supplementation will support cerebral structure in older adults. These cerebral effects may influence cognitive function. The current review aims to provide a theoretical basis for future clinical trials investigating the effects of GPL supplementation on cerebral structural integrity in older adults.
Collapse
Affiliation(s)
- Jeffery M Reddan
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Helen Macpherson
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
379
|
Lin Z, Li Y, Su P, Mao D, Wei Z, Pillai JJ, Moghekar A, van Osch M, Ge Y, Lu H. Non-contrast MR imaging of blood-brain barrier permeability to water. Magn Reson Med 2018; 80:1507-1520. [PMID: 29498097 DOI: 10.1002/mrm.27141] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/05/2018] [Accepted: 01/29/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Many brain diseases are associated with an alteration in blood-brain barrier (BBB) and its permeability. Current methods using contrast agent are primarily sensitive to major leakage of BBB to macromolecules, but may not detect subtle changes in BBB permeability. The present study aims to develop a novel non-contrast MRI technique for the assessment of BBB permeability to water. METHODS The central principle is that by measuring arterially labeled blood spins that are drained into cerebral veins, water extraction fraction (E) and permeability-surface-area product (PS) of BBB can be determined. Four studies were performed. We first demonstrated the proof-of-principle using conventional ASL with very long post-labeling delays (PLD). Next, a new sequence, dubbed water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST), and its Look-Locker (LL) version were developed. Finally, we demonstrated that the sensitivity of the technique can be significantly enhanced by acquiring the data under mild hypercapnia. RESULTS By combining a strong background suppression with long PLDs (2500-4500 ms), ASL spins were reliably detected in the superior sagittal sinus (SSS), demonstrating the feasibility of measuring this signal. The WEPCAST sequence eliminated partial voluming effects of tissue perfusion and allowed quantitative estimation of E = 95.5 ± 1.1% and PS = 188.9 ± 13.4 mL/100 g/min, which were in good agreement with literature reports. LL-WEPCAST sequence shortened the scan time from 19 min to 5 min while providing results consistent with multiple single-PLD acquisitions. Mild hypercapnia increased SNR by 78 ± 25% without causing a discomfort in participants. CONCLUSION A new non-contrast technique for the assessment of global BBB permeability was developed, which may have important clinical applications.
Collapse
Affiliation(s)
- Zixuan Lin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yang Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pan Su
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deng Mao
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland
| | - Jay J Pillai
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthias van Osch
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, the Netherlands
| | - Yulin Ge
- Department of Radiology, New York University Langone Medical Center, New York, New York
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland
| |
Collapse
|
380
|
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 2018; 14:133-150. [PMID: 29377008 PMCID: PMC5829048 DOI: 10.1038/nrneurol.2017.188] [Citation(s) in RCA: 1894] [Impact Index Per Article: 270.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is a continuous endothelial membrane within brain microvessels that has sealed cell-to-cell contacts and is sheathed by mural vascular cells and perivascular astrocyte end-feet. The BBB protects neurons from factors present in the systemic circulation and maintains the highly regulated CNS internal milieu, which is required for proper synaptic and neuronal functioning. BBB disruption allows influx into the brain of neurotoxic blood-derived debris, cells and microbial pathogens and is associated with inflammatory and immune responses, which can initiate multiple pathways of neurodegeneration. This Review discusses neuroimaging studies in the living human brain and post-mortem tissue as well as biomarker studies demonstrating BBB breakdown in Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, HIV-1-associated dementia and chronic traumatic encephalopathy. The pathogenic mechanisms by which BBB breakdown leads to neuronal injury, synaptic dysfunction, loss of neuronal connectivity and neurodegeneration are described. The importance of a healthy BBB for therapeutic drug delivery and the adverse effects of disease-initiated, pathological BBB breakdown in relation to brain delivery of neuropharmaceuticals are briefly discussed. Finally, future directions, gaps in the field and opportunities to control the course of neurological diseases by targeting the BBB are presented.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, California 90089, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo Street, Los Angeles, California 90089, USA
| |
Collapse
|
381
|
Zhan X, Stamova B, Sharp FR. Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer's Disease Brain: A Review. Front Aging Neurosci 2018. [PMID: 29520228 PMCID: PMC5827158 DOI: 10.3389/fnagi.2018.00042] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review proposes that lipopolysaccharide (LPS, found in the wall of all Gram-negative bacteria) could play a role in causing sporadic Alzheimer’s disease (AD). This is based in part upon recent studies showing that: Gram-negative E. coli bacteria can form extracellular amyloid; bacterial-encoded 16S rRNA is present in all human brains with over 70% being Gram-negative bacteria; ultrastructural analyses have shown microbes in erythrocytes of AD patients; blood LPS levels in AD patients are 3-fold the levels in control; LPS combined with focal cerebral ischemia and hypoxia produced amyloid-like plaques and myelin injury in adult rat cortex. Moreover, Gram-negative bacterial LPS was found in aging control and AD brains, though LPS levels were much higher in AD brains. In addition, LPS co-localized with amyloid plaques, peri-vascular amyloid, neurons, and oligodendrocytes in AD brains. Based upon the postulate LPS caused oligodendrocyte injury, degraded Myelin Basic Protein (dMBP) levels were found to be much higher in AD compared to control brains. Immunofluorescence showed that the dMBP co-localized with β amyloid (Aβ) and LPS in amyloid plaques in AD brain, and dMBP and other myelin molecules were found in the walls of vesicles in periventricular White Matter (WM). These data led to the hypothesis that LPS acts on leukocyte and microglial TLR4-CD14/TLR2 receptors to produce NFkB mediated increases of cytokines which increase Aβ levels, damage oligodendrocytes and produce myelin injury found in AD brain. Since Aβ1–42 is also an agonist for TLR4 receptors, this could produce a vicious cycle that accounts for the relentless progression of AD. Thus, LPS, the TLR4 receptor complex, and Gram-negative bacteria might be treatment or prevention targets for sporadic AD.
Collapse
Affiliation(s)
- Xinhua Zhan
- Department of Neurology, MIND Institute, University of California, Davis, Davis, CA, United States
| | - Boryana Stamova
- Department of Neurology, MIND Institute, University of California, Davis, Davis, CA, United States
| | - Frank R Sharp
- Department of Neurology, MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
382
|
Neurovascular dysfunction in dementia - human cellular models and molecular mechanisms. Clin Sci (Lond) 2018; 132:399-418. [PMID: 29444850 DOI: 10.1042/cs20160720] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
From the earliest stages of development, when cerebral angiogenesis and neurogenesis are entwined, to the end of life, the interplay between vascular and neural systems of the brain is critical in health and disease. Cerebral microvascular endothelial cells constitute the blood-brain barrier and in concert with pericytes or smooth muscle cells, glia and neurons, integrate into a functional neurovascular unit (NVU). This multicellular NVU maintains homoeostasis of the brain's microenvironment by restricting the entry of systemic pathogens and neurotoxins as well as meeting the metabolic demands of neural activity. Recent evidence of cerebral microvascular pathologies in vascular diseases and dementia, including Alzheimer's disease, has challenged the notion that vascular events are merely the consequence of neuronal pathology. This review focuses on molecular mechanisms of neurovascular dysfunction in dementia and outlines currently employed in vitro models to decode such mechanisms. Deciphering neurovascular crosstalk is likely to be more important in understanding the molecular mechanisms of disease than previously anticipated and may offer novel therapeutic opportunities for dementia and related conditions.
Collapse
|
383
|
Modarres HP, Janmaleki M, Novin M, Saliba J, El-Hajj F, RezayatiCharan M, Seyfoori A, Sadabadi H, Vandal M, Nguyen MD, Hasan A, Sanati-Nezhad A. In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. J Control Release 2018; 273:108-130. [PMID: 29378233 DOI: 10.1016/j.jconrel.2018.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) plays a crucial role in maintaining brain homeostasis and transport of drugs to the brain. The conventional animal and Transwell BBB models along with emerging microfluidic-based BBB-on-chip systems have provided fundamental functionalities of the BBB and facilitated the testing of drug delivery to the brain tissue. However, developing biomimetic and predictive BBB models capable of reasonably mimicking essential characteristics of the BBB functions is still a challenge. In addition, detailed analysis of the dynamics of drug delivery to the healthy or diseased brain requires not only biomimetic BBB tissue models but also new systems capable of monitoring the BBB microenvironment and dynamics of barrier function and delivery mechanisms. This review provides a comprehensive overview of recent advances in microengineering of BBB models with different functional complexity and mimicking capability of healthy and diseased states. It also discusses new technologies that can make the next generation of biomimetic human BBBs containing integrated biosensors for real-time monitoring the tissue microenvironment and barrier function and correlating it with the dynamics of drug delivery. Such integrated system addresses important brain drug delivery questions related to the treatment of brain diseases. We further discuss how the combination of in vitro BBB systems, computational models and nanotechnology supports for characterization of the dynamics of drug delivery to the brain.
Collapse
Affiliation(s)
- Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Mohsen Janmaleki
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Mana Novin
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - John Saliba
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Fatima El-Hajj
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mahdi RezayatiCharan
- Breast Cancer Research Center (BCRC), ACECR, Tehran, Iran; School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amir Seyfoori
- Breast Cancer Research Center (BCRC), ACECR, Tehran, Iran; School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Sadabadi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Milène Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Anwarul Hasan
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|
384
|
Li HL, Jin JM, Yang C, Wang P, Huang F, Wu H, Zhang BB, Shi HL, Wu XJ. Isoastragaloside I suppresses LPS-induced tight junction disruption and monocyte adhesion on bEnd.3 cells via an activating Nrf2 antioxidant defense system. RSC Adv 2018. [DOI: 10.1039/c7ra10246a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ISOI rescued TJs disruption from ROS induced by LPS in bEnd.3 cells. ISOI ameliorated inflammatory response and decreased monocyte adhesion onto bEnd.3 cells induced with LPS. ISOI protected BBB integrity through activating Nrf2 antioxidant pathway.
Collapse
Affiliation(s)
- Hong-Li Li
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Jin-Mei Jin
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Chun Yang
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Bei-Bei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Hai-Lian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Xiao-Jun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| |
Collapse
|
385
|
Gustafsson S, Lindström V, Ingelsson M, Hammarlund-Udenaes M, Syvänen S. Intact blood-brain barrier transport of small molecular drugs in animal models of amyloid beta and alpha-synuclein pathology. Neuropharmacology 2018; 128:482-491. [DOI: 10.1016/j.neuropharm.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/04/2017] [Accepted: 08/03/2017] [Indexed: 01/19/2023]
|
386
|
Akushevich I, Yashkin AP, Kravchenko J, Ukraintseva S, Stallard E, Yashin AI. Time Trends in the Prevalence of Neurocognitive Disorders and Cognitive Impairment in the United States: The Effects of Disease Severity and Improved Ascertainment. J Alzheimers Dis 2018; 64:137-148. [PMID: 29865067 PMCID: PMC6214183 DOI: 10.3233/jad-180060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Trends in the prevalence of cognitive impairment (CI) based on cognitive assessment instruments are often inconsistent with those of neurocognitive disorders (ND) based on Medicare claims records. OBJECTIVE We hypothesized that improved ascertainment and resulting decrease in disease severity at the time of diagnosis are responsible for this phenomenon. METHODS Using Medicare data linked to the Health and Retirement Study (1992-2012), we performed a joint analysis of trends in CI and ND to test our hypothesis. RESULTS We identified two major contributors to the divergent directions in CI and ND trends: reductions in disease severity explained more than 60% of the differences between CI and ND prevalence over the study period; the remaining 40% was explained by a decrease in the fraction of undiagnosed individuals. DISCUSSION Improvements in the diagnoses of ND diseases were a major contributor to reported trends in ND and CI. Recent forecasts of CI and ND trends in the U.S. may be overly pessimistic.
Collapse
Affiliation(s)
- Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC
| | - Arseniy P. Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC
| | - Julia Kravchenko
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC
| |
Collapse
|
387
|
Miners JS, Schulz I, Love S. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease. J Cereb Blood Flow Metab 2018; 38:103-115. [PMID: 28151041 PMCID: PMC5757436 DOI: 10.1177/0271678x17690761] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies implicate loss of pericytes in hypoperfusion and blood-brain barrier (BBB) leakage in Alzheimer's disease (AD). In this study, we have measured levels of the pericyte marker, platelet-derived growth factor receptor-β (PDGFRB), and fibrinogen (to assess blood-brain barrier leakage), and analyzed their relationship to indicators of microvessel density (von Willebrand factor level), ante-mortem oxygenation (myelin-associated glycoprotein:proteolipid protein-1 ratio and vascular endothelial growth factor level), Aβ level and plaque load, in precuneus and underlying white matter from 49 AD to 37 control brains. There was reduction in PDGFRB and increased fibrinogen in the precuneus in AD. These changes correlated with reduction in oxygenation and with plaque load. In the underlying white matter, increased fibrinogen correlated with reduced oxygenation, but PDGFRB level was unchanged. The level of platelet-derived growth factor-ββ (PDGF-BB), important for pericyte maintenance, was increased in AD but mainly in the insoluble tissue fraction, correlating with insoluble Aβ level. Loss of the PDGFRB within the precuneus in AD is associated with fibrinogen leakage and reduced oxygenation, and related to fibrillar Aβ accumulation. In contrast, fibrinogen leakage and reduced oxygenation of underlying white matter occur independently of loss of PDGFRB, perhaps secondary to reduced transcortical perfusion.
Collapse
Affiliation(s)
| | | | - Seth Love
- Seth Love, School of Clinical Sciences,
University of Bristol, Learning & Research level 2, Southmead Hospital,
Bristol BS10 5NB, UK.
| |
Collapse
|
388
|
Aβ1-42 induces cell damage via RAGE-dependent endoplasmic reticulum stress in bEnd.3 cells. Exp Cell Res 2018; 362:83-89. [DOI: 10.1016/j.yexcr.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/27/2022]
|
389
|
de Godoy MA, Saraiva LM, de Carvalho LRP, Vasconcelos-Dos-Santos A, Beiral HJV, Ramos AB, Silva LRDP, Leal RB, Monteiro VHS, Braga CV, de Araujo-Silva CA, Sinis LC, Bodart-Santos V, Kasai-Brunswick TH, Alcantara CDL, Lima APCA, da Cunha-E Silva NL, Galina A, Vieyra A, De Felice FG, Mendez-Otero R, Ferreira ST. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. J Biol Chem 2017; 293:1957-1975. [PMID: 29284679 DOI: 10.1074/jbc.m117.807180] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a disabling and highly prevalent neurodegenerative condition, for which there are no effective therapies. Soluble oligomers of the amyloid-β peptide (AβOs) are thought to be proximal neurotoxins involved in early neuronal oxidative stress and synapse damage, ultimately leading to neurodegeneration and memory impairment in AD. The aim of the current study was to evaluate the neuroprotective potential of mesenchymal stem cells (MSCs) against the deleterious impact of AβOs on hippocampal neurons. To this end, we established transwell cocultures of rat hippocampal neurons and MSCs. We show that MSCs and MSC-derived extracellular vesicles protect neurons against AβO-induced oxidative stress and synapse damage, revealed by loss of pre- and postsynaptic markers. Protection by MSCs entails three complementary mechanisms: 1) internalization and degradation of AβOs; 2) release of extracellular vesicles containing active catalase; and 3) selective secretion of interleukin-6, interleukin-10, and vascular endothelial growth factor to the medium. Results support the notion that MSCs may represent a promising alternative for cell-based therapies in AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Renata B Leal
- From the Institute of Biophysics Carlos Chagas Filho
| | | | | | | | | | | | | | | | | | | | - Antonio Galina
- the Institute of Medical Biochemistry Leopoldo de Meis, and
| | - Adalberto Vieyra
- From the Institute of Biophysics Carlos Chagas Filho.,the National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | | | - Sergio T Ferreira
- From the Institute of Biophysics Carlos Chagas Filho, .,the Institute of Medical Biochemistry Leopoldo de Meis, and
| |
Collapse
|
390
|
Rodriguez-Rodriguez P, Sandebring-Matton A, Merino-Serrais P, Parrado-Fernandez C, Rabano A, Winblad B, Ávila J, Ferrer I, Cedazo-Minguez A. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons. Brain 2017; 140:3269-3285. [PMID: 29053786 DOI: 10.1093/brain/awx256] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/11/2017] [Indexed: 11/13/2022] Open
Abstract
Insulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies. The intraneuronal accumulation of insulin is directly dependent on tau hyperphosphorylation, and follows the tauopathy progression. Furthermore, cells accumulating insulin show signs of insulin resistance and decreased insulin receptor levels. These results suggest that insulin retention in hyperphosphorylated tau-bearing neurons is a causative factor for the insulin resistance observed in tauopathies, and describe a novel neuropathological concept with important therapeutic implications.
Collapse
Affiliation(s)
- Patricia Rodriguez-Rodriguez
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Anna Sandebring-Matton
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Paula Merino-Serrais
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Cristina Parrado-Fernandez
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Alberto Rabano
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Spain.,Fundación CIEN, Madrid, Spain
| | - Bengt Winblad
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Jesús Ávila
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Isidre Ferrer
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Spain.,Institut de Neuropatologia, Servei Anatomia Patologica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Angel Cedazo-Minguez
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| |
Collapse
|
391
|
Carter CJ, France J, Crean S, Singhrao SK. The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases. Front Aging Neurosci 2017; 9:408. [PMID: 29311898 PMCID: PMC5732932 DOI: 10.3389/fnagi.2017.00408] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis. Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis/host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb (P < 1E-03) and, in some cases, from the NCBI/EBI GWAS database (P < 1E-05). Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis/host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor.
Collapse
Affiliation(s)
| | - James France
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - StJohn Crean
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - Sim K Singhrao
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
392
|
McCaulley ME, Grush KA. Seeking a New Paradigm for Alzheimer's Disease: Considering the Roles of Inflammation, Blood-Brain Barrier Dysfunction, and Prion Disease. Int J Alzheimers Dis 2017; 2017:2438901. [PMID: 29359063 PMCID: PMC5735673 DOI: 10.1155/2017/2438901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 01/21/2023] Open
Abstract
There is no effective etiologic treatment for Alzheimer's disease, nor is there a prophylactic medication which delays or prevents its onset. The lack of an accurate paradigm is undoubtedly related to the lack of effective means of prophylaxis and treatment. The current paradigm of beta amyloid in Alzheimer's brains causing cognitive dysfunction must be modified. Despite failed clinical trials, research continues into amyloid-oriented treatments. The persistence of the amyloid hypothesis/paradigm is an example of anchoring and representativeness heuristics described by Kahneman and Tversky in their classic 1974 Science paper. Economic factors also contribute to the persistence of this paradigm. Paradigms impact the scientific process by the following: (1) what is studied; (2) the types of questions that are asked; (3) the structure and nature of the questions; (4) the interpretations of research findings. We review the contribution of inflammation, malfunction of the neurovascular unit, and prion disease to Alzheimer's disease manifestations. Any or all of these are candidates for inclusion into a more accurate, inclusive, and useful new paradigm. By incorporating emerging facts and understanding into a new paradigm, we will enhance our ability to move toward effective prophylaxis and therapy for this tragic disease.
Collapse
Affiliation(s)
| | - Kira A. Grush
- University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
393
|
Takechi R, Lam V, Brook E, Giles C, Fimognari N, Mooranian A, Al-Salami H, Coulson SH, Nesbit M, Mamo JCL. Blood-Brain Barrier Dysfunction Precedes Cognitive Decline and Neurodegeneration in Diabetic Insulin Resistant Mouse Model: An Implication for Causal Link. Front Aging Neurosci 2017; 9:399. [PMID: 29249964 PMCID: PMC5717019 DOI: 10.3389/fnagi.2017.00399] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022] Open
Abstract
Diabetic insulin resistance and pro-diabetic diet are reported to increase dementia risk through unknown mechanisms. Emerging evidence suggests that the integrity of blood-brain barrier (BBB) is central to the onset and progression of neurodegeneration and cognitive impairment. Therefore, the current study investigated the effect of pro-diabetic diets on cognitive dysfunction in association to BBB integrity and its putative mechanisms. In C57BL/6J mice chronically ingested with a diet enriched in fat and fructose (HFF), Morris Water Maze (MWM) test indicated no significant cognitive decline after 4 weeks of HFF feeding compared to low-fat (LF) fed control. However, at this stage, BBB dysfunction accompanied by heightened neuroinflammation in cortex and hippocampal regions was already evident. After 24 weeks, HFF fed mice showed significantly deteriorated cognitive function concomitant with substantial neurodegeneration, which both showed significant associations with increased BBB permeability. In addition, the data indicated that the loss of BBB tight junctions was significantly associated with heightened inflammation and leukocyte infiltration. The data collectively suggest that in mice maintained on pro-diabetic diet, the dysfunctional BBB associated to inflammation and leukocyte recruitment precedes the neurodegeneration and cognitive decline, possibly indicating causal association.
Collapse
Affiliation(s)
- Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Emily Brook
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Corey Giles
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Nicholas Fimognari
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Armin Mooranian
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Hani Al-Salami
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Stephanie H Coulson
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
394
|
Montagne A, Zhao Z, Zlokovic BV. Alzheimer's disease: A matter of blood-brain barrier dysfunction? J Exp Med 2017; 214:3151-3169. [PMID: 29061693 PMCID: PMC5679168 DOI: 10.1084/jem.20171406] [Citation(s) in RCA: 476] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Montagne et al. examine the role of blood–brain barrier (BBB) dysfunction in Alzheimer’s neurodegeneration and how targeting the BBB can influence the course of neurological disorder in transgenic models with human APP, PSEN1 and TAU mutations, APOE4 (major genetic risk), and pericyte degeneration causing loss of BBB integrity. The blood–brain barrier (BBB) keeps neurotoxic plasma-derived components, cells, and pathogens out of the brain. An early BBB breakdown and/or dysfunction have been shown in Alzheimer’s disease (AD) before dementia, neurodegeneration and/or brain atrophy occur. However, the role of BBB breakdown in neurodegenerative disorders is still not fully understood. Here, we examine BBB breakdown in animal models frequently used to study the pathophysiology of AD, including transgenic mice expressing human amyloid-β precursor protein, presenilin 1, and tau mutations, and apolipoprotein E, the strongest genetic risk factor for AD. We discuss the role of BBB breakdown and dysfunction in neurodegenerative process, pitfalls in BBB measurements, and how targeting the BBB can influence the course of neurological disorder. Finally, we comment on future approaches and models to better define, at the cellular and molecular level, the underlying mechanisms between BBB breakdown and neurodegeneration as a basis for developing new therapies for BBB repair to control neurodegeneration.
Collapse
Affiliation(s)
- Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA
| |
Collapse
|
395
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
396
|
Storck SE, Pietrzik CU. Endothelial LRP1 - A Potential Target for the Treatment of Alzheimer's Disease : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla. Pharm Res 2017; 34:2637-2651. [PMID: 28948494 DOI: 10.1007/s11095-017-2267-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022]
Abstract
The accumulation of the neurotoxin beta-amyloid (Aβ) is a major hallmark in Alzheimer's disease (AD). Aβ homeostasis in the brain is governed by its production and various clearance mechanisms. Both pathways are influenced by the ubiquitously expressed low-density lipoprotein receptor-related protein 1 (LRP1). In cerebral blood vessels, LRP1 is an important mediator for the rapid removal of Aβ from brain via transport across the blood-brain barrier (BBB). Here, we summarize recent findings on LRP1 function and discuss the targeting of LRP1 as a modulator for AD pathology and drug delivery into the brain.
Collapse
Affiliation(s)
- Steffen E Storck
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany
| | - Claus U Pietrzik
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany.
| |
Collapse
|
397
|
Amin FU, Hoshiar AK, Do TD, Noh Y, Shah SA, Khan MS, Yoon J, Kim MO. Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer's disease. NANOSCALE 2017; 9:10619-10632. [PMID: 28534925 DOI: 10.1039/c7nr00772h] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, pathologically characterized by the accumulation of aggregated amyloid beta (Aβ) in the brain. Here, we describe for the first time the development of a new, pioneering nanotechnology-based drug delivery approach for potential therapies for neurodegenerative diseases, particularly AD. We demonstrated the delivery of fluorescent carboxyl magnetic Nile Red particles (FMNPs) to the brains of normal mice using a functionalized magnetic field (FMF) composed of positive- and negative-pulsed magnetic fields generated by electromagnetic coils. The FMNPs successfully reached the brain in a few minutes and showed evidence of blood-brain barrier (BBB) crossing. Moreover, the best FMF conditions were found for inducing the FMNPs to reach the cortex and hippocampus regions. Under the same FMF conditions, dextran-coated Fe3O4 magnetic nanoparticles (MNPs) loaded with osmotin (OMNP) were transported to the brains of Aβ1-42-treated mice. Compared with native osmotin, the OMNP potently attenuates Aβ1-42-induced synaptic deficits, Aβ accumulation, BACE-1 expression and tau hyperphosphorylation. This magnetic drug delivery approach can be extended to preclinical and clinical use and may advance the chances of success in the treatment of neurological disorders like AD in the future.
Collapse
Affiliation(s)
- Faiz Ul Amin
- Division of Life Science (BK 21), College of Natural Sciences, Gyeongsang National University (GNU), Jinju, 660-701, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
398
|
Spampinato SF, Merlo S, Sano Y, Kanda T, Sortino MA. Astrocytes contribute to Aβ-induced blood-brain barrier damage through activation of endothelial MMP9. J Neurochem 2017; 142:464-477. [PMID: 28488764 DOI: 10.1111/jnc.14068] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) plays an important role in the maintenance of the brain homeostasis, and its proper functions are warranted by the interplay between different cellular components (endothelial cells, astrocytes and pericytes). BBB dysfunctions in pathological conditions, and particularly in Alzheimer's disease, have been documented. Here, using an in vitroBBB model, the interaction between endothelial cells and astrocytes exposed to Aβ1-42 was investigated. Human endothelial cells, cultured in monolayer or co-cultured with astrocytes, were exposed to Aβ1-42 (2 μM for 18 h). Aβ induced dysfunction of endothelial barrier, as assessed by enhanced permeability to FITC-conjugated dextran and reduced expression of claudin-5; these modifications were observed in the co-culture model, but not in endothelial cells cultured in monolayer. Similarly, Aβ-induced damage at the barrier was observed when endothelial cells were challenged in the presence of conditioned medium generated by astrocytes previously exposed to Aβ (ACM Aβ). Endothelial barrier damages were associated with enhanced matrix metalloprotease 9 (MMP9) activity, known to mediate claudin-5 disruption. These events were not related to the direct effects played by Aβ on endothelial cells, but they were rather the consequence of Aβ-induced vascular endothelial growth factor (VEGF) expression in astrocytes. Indeed, when vascular endothelial growth factor expression was down-regulated in astrocytes, neither barrier properties or MMP9 expression in endothelial cells were affected after Aβ exposure both in the co-culture model or in the presence of ACM Aβ. These data point out the importance of astrocytes' mediation in inducing endothelial sensitivity to Aβ1-42.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
399
|
Bolourian A, Mojtahedi Z. Possible damage to immune-privileged sites in natural killer cell therapy in cancer patients: side effects of natural killer cell therapy. Immunotherapy 2017; 9:281-288. [PMID: 28231718 DOI: 10.2217/imt-2016-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Natural killer (NK) cells target the cells losing MHC-I in cancer, a phenotype that is similar to certain cells in immune-privileged sites whose milieus are separated from peripheral blood. NK cells are reported to be quantitatively and qualitatively different in immune-privileged sites from those cytotoxic ones in the blood. We hypothesize that cytotoxic and expanded NK cells induced in cancer patients may be turned into pathogenic factors if they enter immune-privileged microenvironments in susceptible individuals, such as, patients with brain cancer or a blood-brain barrier dysfunction. Therefore, in susceptible individuals, different levels of caution should be taken based on the seriousness of the side effect as discussed in this perspective.
Collapse
Affiliation(s)
| | - Zahra Mojtahedi
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
400
|
Zhao Y, Jaber V, Lukiw WJ. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus. Front Cell Infect Microbiol 2017; 7:318. [PMID: 28744452 PMCID: PMC5504724 DOI: 10.3389/fcimb.2017.00318] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Although the potential contribution of the human gastrointestinal (GI) tract microbiome to human health, aging, and disease is becoming increasingly acknowledged, the molecular mechanics and signaling pathways of just how this is accomplished is not well-understood. Major bacterial species of the GI tract, such as the abundant Gram-negative bacilli Bacteroides fragilis (B. fragilis) and Escherichia coli (E. coli), secrete a remarkably complex array of pro-inflammatory neurotoxins which, when released from the confines of the healthy GI tract, are pathogenic and highly detrimental to the homeostatic function of neurons in the central nervous system (CNS). For the first time here we report the presence of bacterial lipopolysaccharide (LPS) in brain lysates from the hippocampus and superior temporal lobe neocortex of Alzheimer's disease (AD) brains. Mean LPS levels varied from two-fold increases in the neocortex to three-fold increases in the hippocampus, AD over age-matched controls, however some samples from advanced AD hippocampal cases exhibited up to a 26-fold increase in LPS over age-matched controls. This “Perspectives” paper will further highlight some very recent research on GI tract microbiome signaling to the human CNS, and will update current findings that implicate GI tract microbiome-derived LPS as an important internal contributor to inflammatory degeneration in the CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, United States.,Department of Anatomy and Cell Biology, Louisiana State University Health Science CenterNew Orleans, LA, United States
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, United States
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science CenterNew Orleans, LA, United States.,Department of Ophthalmology, Louisiana State University Health Science CenterNew Orleans, LA, United States.,Department of Neurology, Louisiana State University Health Science CenterNew Orleans, LA, United States
| |
Collapse
|