351
|
Sellami MH, Kaabi H, Bibi A, Sahli C, Bani M, Ben Ahmed A, Massoud T, Hmida S. Minor histocompatibility antigens in Tunisians: could platelet endothelial cell adhesion molecule 1 marker be one of them? ACTA ACUST UNITED AC 2011; 77:68-73. [PMID: 21155722 DOI: 10.1111/j.1399-0039.2010.01574.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Platelet endothelial cell adhesion molecule 1 (PECAM-1/CD31) is one of the human minor histocompatibility antigens that are the main targets of alloreactive T-cells after hematopoietic stem cells or solid organs transplantation. In order to investigate its polymorphism in Tunisians, three single nucleotide polymorphisms (SNPs) (rs668, rs12953 and rs1131012) were selected to perform an allele and haplotype analysis. Hundred-and-forty-two healthy and unrelated subjects were enrolled in this survey. Genomic DNAs were extracted using salting out method. SNP genotyping assays were performed with home-designed sequence-specific primers polymerase chain reaction (SSP-PCR). As a result, molecular analysis showed that PECAM-1 is one of the most polymorphic markers in the Tunisian population because minor allele frequency was 0.3, and minimum haplotype frequency was 0.03. A low linkage disequilibrium (D' = 0.45) between rs12953 and rs1131012 was noticed, although all other loci were in the Hardy-Weinberg equilibrium (minimum P value = 0.07). The frequencies were close to those reported in African-American and Caucasian groups.
Collapse
Affiliation(s)
- M H Sellami
- Department of Immunohaematology, The National Blood Transfusion Center of Tunis, Tunis, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|
352
|
Kim SW, Kim H, Yoon YS. Advances in bone marrow-derived cell therapy: CD31-expressing cells as next generation cardiovascular cell therapy. Regen Med 2011; 6:335-49. [PMID: 21548739 PMCID: PMC3129287 DOI: 10.2217/rme.11.24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the past few years, bone marrow (BM)-derived cells have been used to regenerate damaged cardiovascular tissues post-myocardial infarction. Recent clinical trials have shown controversial results in recovering damaged cardiac tissue. New progress has shown that the underlying mechanisms of cell-based therapy relies more heavily on humoral and paracrine effects rather than on new tissue generation. However, studies have also reported the potential of new endothelial cell generation from BM cells. Thus, efforts have been made to identify cells having higher humoral or therapeutic effects as well as their surface markers. Specifically, BM-derived CD31+ cells were isolated by a surface marker and demonstrated high angio-vasculogenic effects. This article will describe recent advances in the therapeutic use of BM-derived cells and the usefulness of CD31+ cells.
Collapse
Affiliation(s)
- Sung-Whan Kim
- Department of Cardiology, College of Medicine, Dong-A University, Busan, South Korea
| | - Hyongbum Kim
- Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Seoul, South Korea
| | - Young-sup Yoon
- Author for correspondence: Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, WMRB 3309, Atlanta, GA 30322, USA Tel.: +1 404 727 8176 Fax: +1 404 727 3988
| |
Collapse
|
353
|
Delayed asthmatic response: a new phenotype of bronchial response to allergen challenge and soluble adhesion molecules in the serum. Ann Allergy Asthma Immunol 2011; 106:119-30. [PMID: 21277513 DOI: 10.1016/j.anai.2010.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/26/2010] [Accepted: 11/02/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND Patients with bronchial asthma develop various types of asthmatic response to bronchial challenge with allergen, such as immediate asthmatic response, late asthmatic response, or delayed asthmatic response (DYAR), due to different immunologic mechanisms. OBJECTIVES To investigate the appearance and possible changes in the concentrations of soluble cell adhesion molecules during the DYAR, to explore the involvement of particular cell types in the mechanism(s) leading to DYAR, and to contribute to a fuller understanding of this clinical phenomenon. METHODS The DYAR recorded in 28 patients (P < .001), appearing within 26 to 32 hours, reaching maximum within 32 to 48 hours, and resolving within 56 hours after the allergen challenge, was repeated 2 to 6 weeks later. The repeated DYAR (P < .001) was supplemented with blood cell counts and measurement of serum concentrations of soluble adhesion molecules by an enzyme-linked immunoassay. RESULTS The prechallenge concentrations of soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), soluble platelet endothelial cell adhesion molecule (sPECAM-1), soluble E-selectin, soluble L-selectin, soluble P-selectin, and soluble E-cadherin did not differ significantly from healthy controls. The DYAR was associated with the following changes in the serum: an increase of sICAM-1 at 6 and 12 hours and a decrease at 24 hours; an increase of sVCAM-1 at 24 and 36 hours; an increase of sPECAM-1 at 36 and 48 hours and a decrease at 56 and 72 hours; an increase of soluble E-selectin at 56 hours; an increase of soluble L-selectin at 56 and 72 hours; a decrease of soluble E-cadherin at 48 and 56 hours; and increased counts of blood leukocytes at 36, 48, and 56 hours, neutrophils at 24, 36, 48, and 56 hours, lymphocytes at 24, 36, and 48 hours, and monocytes at 6, 12, and 24 hours. The Th1/Th2 ratio in blood increased at 24, 36, 48, and 56 hours. The intracellular concentration of interferon γ, but not of interleukin 4, increased at 24, 36, 48, and 56 hours. CONCLUSIONS These results provide evidence of the involvement of neutrophils, Th1 lymphocytes, monocytes, platelets, and endothelial cells, upon participation of various adhesion molecules, in mechanisms(s) underlying the clinical DYAR.
Collapse
|
354
|
Abstract
The concept of using stem cells for cardiovascular repair holds great potential, but uncertainties in preclinical experiments must be addressed before their therapeutic application. Contemporary proteomic techniques can help to characterize cell preparations more thoroughly and identify some of the potential causes that may lead to a high failure rate in clinical trials. The first part of this review discusses the broader application of proteomics to stem cell research by providing an overview of the main proteomic technologies and how they might help the translation of stem cell therapy. The second part focuses on the controversy about endothelial progenitor cells (EPCs) and raises cautionary flags for marker assignment and assessment of cell purity. A proteomics-led approach in early outgrowth EPCs has already raised the awareness that markers used to define their endothelial potential may arise from an uptake of platelet proteins. A platelet microparticle-related transfer of endothelial characteristics to mononuclear cells can result in a misinterpretation of the assay. The necessity to perform counterstaining for platelet markers in this setting is not fully appreciated. Similarly, the presence of platelets and platelet microparticles is not taken into consideration when functional improvements are directly attributed to EPCs, whereas saline solutions or plain medium serve as controls. Thus, proteomics shed new light on the caveats of a common stem cell assay in cardiovascular research, which might explain some of the inconsistencies in the field.
Collapse
Affiliation(s)
- Marianna Prokopi
- King's British Heart Foundation Centre, King's College London, United Kingdom
| | | |
Collapse
|
355
|
Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, Han M, Muneoka K. Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol 2011; 350:301-10. [PMID: 21145316 PMCID: PMC3031655 DOI: 10.1016/j.ydbio.2010.11.035] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/02/2010] [Accepted: 11/27/2010] [Indexed: 11/30/2022]
Abstract
Amputation of the distal region of the terminal phalanx of mice causes an initial wound healing response followed by blastema formation and the regeneration of the digit tip. Thus far, most regeneration studies have focused in embryonic or neonatal models and few studies have examined adult digit regeneration. Here we report on studies that include morphological, immunohistological, and volumetric analyses of adult digit regeneration stages. The regenerated digit is grossly similar to the original, but is not a perfect replacement. Re-differentiation of the digit tip occurs by intramembranous ossification forming a trabecular bone network that replaces the amputated cortical bone. The digit blastema is comprised of proliferating cells that express vimentin, a general mesenchymal marker, and by comparison to mature tissues, contains fewer endothelial cells indicative of reduced vascularity. The majority of blastemal cells expressing the stem cell marker SCA-1, also co-express the endothelial marker CD31, suggesting the presence of endothelial progenitor cells. Epidermal closure during wound healing is very slow and is characterized by a failure of the wound epidermis to close across amputated bone. Instead, the wound healing phase is associated with an osteoclast response that degrades the stump bone allowing the wound epidermis to undercut the distal bone resulting in a novel re-amputation response. Thus, the regeneration process initiates from a level that is proximal to the original plane of amputation.
Collapse
Affiliation(s)
- Warnakulasuriya Akash Fernando
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | | | | | |
Collapse
|
356
|
Heng BC, Xia Y, Shang X, Preiser PR, Alex Law SK, Boey FYC, Venkatraman SS. Comparison of the adhesion and proliferation characteristics of HUVEC and two endothelial cell lines (CRL 2922 and CRL 2873) on various substrata. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0141-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
357
|
Usas A, Usaite D, Gao X, Huard J, Clymer JW, Malaviya P. Use of an ultrasonic blade facilitates muscle repair after incision injury. J Surg Res 2011; 167:e177-84. [PMID: 21324491 DOI: 10.1016/j.jss.2010.12.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/02/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND The ultrasonic Harmonic Blade cuts and coagulates soft tissue at temperatures lower than conventional electrosurgery. This study investigated whether improved hemostatic control and reduced collateral damage in skeletal muscle incisions translates into improved myofiber regeneration, reduced fibrosis and faster muscle recovery. MATERIALS AND METHODS Transections in the left gastrocnemius muscles of mice were made with the Harmonic Blade, and contralaterally, with either cold steel scissors or electrosurgery. Histology up to 8 wk after surgery was performed to evaluate myofiber regeneration and fibrosis. Tissue inflammation (Gr1+ neutrophils) and vascularization (CD31+ capillaries) were assessed immunohistochemically at 1 wk . RESULTS Overall the Harmonic Blade showed significantly higher level of muscle regeneration than cold steel. Fibrosis for both the Harmonic Blade and cold steel decreased three-fold over the 8 wk period, while electrosurgery yielded significantly increasing fibrosis through wk 4 before declining. At 1 wk post-surgery the Harmonic Blade induced less inflammation than electrosurgery, and higher vascularization than electrosurgery and cold steel. CONCLUSIONS Harmonic Blade-incised tissue showed accelerated vascularization, slight reduction of inflammation, enhanced muscle regeneration and decreased scarring, demonstrating a more effective healing process than electrosurgery.
Collapse
Affiliation(s)
- Arvydas Usas
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC and Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
358
|
Laurance S, Lansiaux P, Pellay FX, Hauchecorne M, Benecke A, Elion J, Lapoumeroulie C. Differential modulation of adhesion molecule expression by hydroxycarbamide in human endothelial cells from the micro- and macrocirculation: potential implications in sickle cell disease vasoocclusive events. Haematologica 2011; 96:534-42. [PMID: 21228039 DOI: 10.3324/haematol.2010.026740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND All the cellular partners of the vascular system and especially endothelial cells are involved in the pathophysiology of the vasoocclusive crises associated with sickle cell disease. In sickle cell disease, circulating cells adhere abnormally to endothelial cells in a chronic pro-inflammatory context. Hydroxycarbamide is the only drug with demonstrated efficacy to reduce the frequency of vasoocclusive crises. Here, we investigated the effects of hydroxycarbamide and/or cytokines on the expression of genes related to adhesion events in endothelial cells from three different vascular sites. DESIGN AND METHODS Endothelial cells representative of the macro- (HUVEC) or microcirculation (TrHBMEC and HPMEC) were grown in the presence or absence of hydroxycarbamide and/or cytokines (TNFα and IFNγ). Expression of genes encoding adhesion proteins was analyzed by RQ-PCR, ELISA, flow cytometry, in situ ELISA for extracellular matrix proteins, and Western blot. RESULTS In cells from the microcirculation, expression of TSP-1, vWF, and PECAM-1 genes was decreased by hydroxycarbamide and/or cytokine treatment at the mRNA level. In the macro-circulation their expression was unaffected or increased. Hydroxycarbamide significantly decreased vWF incorporated in the TrHBMEC extracellular matrix. CD36 mRNA was strongly down-regulated by cytokines in HPMEC, the only cell type in which it is expressed. Hydroxycarbamide decreased soluble PECAM-1 in HUVEC supernatants. CONCLUSIONS Our results highlight the heterogeneity of vascular endothelial cell responses to hydroxycarbamide and/or cytokines depending upon their origin. They also suggest that hydroxycarbamide has an anti-adhesogenic effect on endothelial cells, but by mechanisms which could vary according to their macro- or microcirculation and organ origin.
Collapse
Affiliation(s)
- Sandrine Laurance
- INSERM, UMR_S763, Hôpital, Robert Debré, 48 boulevard, Sérurier, 75019 Paris, France
| | | | | | | | | | | | | |
Collapse
|
359
|
Abstract
Filopodia are an important feature of actively motile cells, probing the pericellular environment for chemotactic factors and other molecular cues that enable and direct the movement of the cell. They also act as points of attachment to the extracellular matrix for the cell, generating tension that may act to pull the cell forward and/or stabilize the cell as it moves. Endothelial cell motility is a critical aspect of angiogenesis, but only a limited number of molecules have been identified as specific regulators of endothelial cell filopodia. Recent reports, however, provide evidence for the involvement of PECAM-1, an endothelial cell adhesion and signaling molecule, in the formation of endothelial cell filopodia. This commentary will focus on these studies and their suggestion that at least two PECAM-1-regulated pathways are involved in the processes that enable filopodial protrusions by endothelial cells. Developing a more complete understanding of the role of PECAM-1 in mediating various endothelial cell activities, such as the extension of filopodia, will be essential for exploiting the therapeutic potential of targeting PECAM-1.
Collapse
Affiliation(s)
- Horace M DeLisser
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
360
|
Heng BC, Bezerra PP, Preiser PR, Law SKA, Xia Y, Boey F, Venkatraman SS. Effect of cell-seeding density on the proliferation and gene expression profile of human umbilical vein endothelial cells within ex vivo culture. Cytotherapy 2010; 13:606-17. [PMID: 21171823 DOI: 10.3109/14653249.2010.542455] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Characterization of endothelial cell-biomaterial interaction is crucial for the development of blood-contacting biomedical devices and implants. However, a crucial parameter that has largely been overlooked is the cell-seeding density. METHODS This study investigated how varying cell-seeding density influences human umbilical vein endothelial cell (HUVEC) proliferation on three different substrata: gelatin, tissue culture polystyrene (TCPS) and poly-l-lactic acid (PLLA). RESULTS The fastest proliferation was seen on gelatin, followed by TCPS and PLLA, regardless of seeding density. On both TCPS and gelatin, maximal proliferation was attained at an initial seeding density of 1000 cells/cm(2). At seeding densities above and below 1000 cells/cm(2), the proliferation rate decreased sharply. On PLLA, there was a decrease in cell numbers over 7 days of culture, below a certain threshold seeding density (c. 2500-3000 cells/cm(2)), which meant that some of the cells were dying off rather than proliferating. Above this threshold seeding density, HUVEC displayed slow proliferation. Subsequently, quantitative real-time polymerase chain reaction (RT-qPCR) analysis of eight gene markers associated with adhesion and endothelial functionality (VEGF-A, integrin-α5, VWF, ICAM1, ICAM2, VE-cadherin, endoglin and PECAM1) was carried out on HUVEC seeded at varying densities on the three substrata. A significant downregulation of gene expression was observed at an ultralow cell-seeding density of 100 cells/cm(2). This was accompanied by an extremely slow proliferation rate, probably because of an acute lack of intercellular contacts and paracrine signaling. CONCLUSION Hence, this study demonstrates that seeding density has a profound effect on the proliferation and gene expression profile of endothelial cells seeded on different biomaterial surfaces.
Collapse
Affiliation(s)
- Boon Chin Heng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | | | | | |
Collapse
|
361
|
Zhao Y, LaPar DJ, Steidle J, Emaminia A, Kron IL, Ailawadi G, Linden J, Lau CL. Adenosine signaling via the adenosine 2B receptor is involved in bronchiolitis obliterans development. J Heart Lung Transplant 2010; 29:1405-14. [PMID: 20920842 PMCID: PMC3100202 DOI: 10.1016/j.healun.2010.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/10/2010] [Accepted: 07/02/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Adenosine is produced in response to ischemia or inflammation and protects tissues from injury. Four adenosine receptors are critical in the physiologic negative-feedback mechanism for limitation and termination of tissue-specific and systemic inflammatory responses. Accumulating evidence has focused on the anti-inflammatory and immunosuppressive role of the adenosine 2A receptor (A(2A)R), and we have previously reported on its role in the development of bronchiolitis obliterans (BO) after lung transplantation. Few studies, however, have reported the role of the adenosine 2B receptor (A(2B)R) in BO. Data suggests that the A(2B)R has pro-inflammatory and pro-fibrotic roles. We hypothesized that adenosine signaling through A(2B)R is involved in the development of BO. METHODS A murine heterotopic tracheal model across a total alloantigenic mismatch was used to study A(2B)R signaling in BO. Tracheal transplants consisted of Balb/c donor tracheas transplanted into wild-type or A(2B)R knockout (KO) C57BL/6 recipients. Transplanted tracheas were removed 3, 7, 12, and 21 days after transplantation. The luminal obliteration was evaluated through hematoxylin and eosin staining, and the cellular infiltration (macrophage, neutrophil, CD3+ and Foxp3+ regulatory T cell) was detected by immunohistochemical staining. RESULTS Compared with allografts in wild-type recipients, tracheas transplanted into A(2B)R KO mice displayed less BO development on Day 21. A(2B)R KO mice had an increase in CD3+ T cells and CD4+/CD25+/Foxp3+ regulatory T cells than did wild-type mice on Day 7. By Day 12, more CD3+ T cells were present in the wild-type trachea compared with the A(2B)R KO, but the percentage of CD4+/CD25+/Foxp3+ regulatory T cells remained higher in the tracheas of A(2B)R KO mice. CONCLUSIONS A(2B)R stimulation may promote the development of BO by inhibiting CD4+/CD25+/Foxp3+ regulatory T-cell infiltration.
Collapse
Affiliation(s)
- Yunge Zhao
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Damien J. LaPar
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - John Steidle
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Abbas Emaminia
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Irving L. Kron
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Gorav Ailawadi
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Joel Linden
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Christine L. Lau
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
362
|
Tront JS, Haung Y, Fornace AA, Hoffman B, Liebermann DA. Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress. Cancer Res 2010; 70:9671-81. [PMID: 21098706 PMCID: PMC3199142 DOI: 10.1158/0008-5472.can-10-2177] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gadd45a plays a pivotal role as a stress sensor that modulates cellular responses to various stress stimuli including oncogenic stress. We reported that the stress sensor Gadd45a gene functions as a tumor suppressor in Ras-driven breast tumorigenesis via increasing JNK-mediated apoptosis and p38-mediated senescence. In contrast, here, we show that Gadd45a promotes Myc-driven breast cancer by negatively regulating MMP10 via GSK3 β/β-catenin signaling, resulting in increased tumor vascularization and growth. These novel findings indicate that Gadd45a functions as either tumor promoter or suppressor, is dependent on the oncogenic stress, and is mediated via distinct signaling pathways. Collectively, these novel findings highlight the significance of the type of oncogenic alteration on how stress response genes function during initiation and progression of tumorigenesis. Because Gadd45a is a target for BRCA1 and p53, these findings have implications regarding BRCA1/p53 tumor suppressor functions.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/physiology
- Female
- Gene Expression Regulation, Neoplastic
- Genes, myc/genetics
- Genes, myc/physiology
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Immunohistochemistry
- Male
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Matrix Metalloproteinase 10/genetics
- Matrix Metalloproteinase 10/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neovascularization, Pathologic/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- RNA Interference
- Signal Transduction
- Tumor Burden
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/physiology
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Jennifer S. Tront
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pa
| | - Yajue Haung
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, Pa
| | - Albert A. Fornace
- Lombardi Comprehensive Cancer Center and Department of Biochemistry Georgetown University, Georgetown, Washington, DC, USA
| | - Barbara Hoffman
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pa
- Department of Biochemistry, Temple University, Philadelphia, Pa
| | - Dan A. Liebermann
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pa
- Department of Biochemistry, Temple University, Philadelphia, Pa
| |
Collapse
|
363
|
Moby V, Labrude P, Kadi A, Bordenave L, Stoltz JF, Menu P. Polyelectrolyte multilayer film and human mesenchymal stem cells: An attractive alternative in vascular engineering applications. J Biomed Mater Res A 2010; 96:313-9. [DOI: 10.1002/jbm.a.32981] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 01/16/2023]
|
364
|
La Manna G, Bianchi F, Cappuccilli M, Cenacchi G, Tarantino L, Pasquinelli G, Valente S, Della Bella E, Cantoni S, Claudia C, Neri F, Tsivian M, Nardo B, Ventura C, Stefoni S. Mesenchymal stem cells in renal function recovery after acute kidney injury: use of a differentiating agent in a rat model. Cell Transplant 2010; 20:1193-1208. [PMID: 21092414 DOI: 10.3727/096368910x543394] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a major health care condition with limited current treatment options. Within this context, stem cells may provide a clinical approach for AKI. Moreover, a synthetic compound previously developed, hyaluronan monoesters with butyric acid (HB), able to induce metanephric differentiation, formation of capillary-like structures, and secretion of angiogenic cytokines, was tested in vitro. Thereafter, we investigated the effects of human mesenchymal stem cells from fetal membranes (FMhMSCs), both treated and untreated with HB, after induction of ischemic AKI in a rat model. At reperfusion following 45-min clamping of renal pedicles, each rat was randomly assigned to one of four groups: CTR, PBS, MSC, and MSC-HB. Renal function at 1, 3, 5, and 7 days was assessed. Histological samples were analyzed by light and electron microscopy and renal injury was graded. Cytokine analysis on serum samples was performed. FMhMSCs induced an accelerated renal functional recovery, demonstrated by biochemical parameters and confirmed by histology showing that histopathological alterations associated with ischemic injury were less severe in cell-treated kidneys. HB-treated rats showed a minor degree of inflammation, both at cytokine and TEM analyses. Better functional and morphological recovery were not associated to stem cells' regenerative processes, but possibly suggest paracrine effects on microenvironment that induce retrieval of renal damaged tissues. These results suggest that FMhMSCs could be useful in the treatment of AKI and the utilization of synthetic compounds could enhance the recovery induction ability of cells.
Collapse
Affiliation(s)
- Gaetano La Manna
- Department of Internal Medicine, Aging and Renal Disease-Section of Nephrology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Probing microbubble targeting with atomic force microscopy. Colloids Surf B Biointerfaces 2010; 80:12-7. [DOI: 10.1016/j.colsurfb.2010.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 01/05/2023]
|
366
|
Fraser DA, Tenner AJ. Innate immune proteins C1q and mannan-binding lectin enhance clearance of atherogenic lipoproteins by human monocytes and macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:3932-9. [PMID: 20833838 PMCID: PMC3334294 DOI: 10.4049/jimmunol.1002080] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is a chronic inflammatory disorder that is characterized by the accumulation of modified lipoproteins in the arterial intima. C1q and mannan-binding lectin (MBL) are not only recognition components involved in activation of inflammation via the complement cascade, but they are also able to directly modulate phagocyte activation. Studies in C1q(-/-) and MBL(-/-) mice suggest that these molecules play a protective role in the early atherosclerotic lesion in the absence of, or prior to, expression of other complement components. However, in later stages, complement activation becomes an inappropriate inflammatory response, contributing to disease pathology. Therefore, to investigate possible molecular interactions of C1q and MBL in atherosclerotic lesions, we examined the influence of C1q and MBL in the clearance of native and modified lipoproteins by human monocytes and monocyte-derived macrophages. Both C1q and MBL are shown to bind and enhance the monocyte/monocyte-derived macrophage clearance of modified forms of low-density lipoprotein (LDL), including oxidized LDL and acetylated LDL, but not native LDL. Modified forms of LDL activate the classical complement pathway, but no lectin pathway activation was detected. Interestingly, monocytes that ingested modified LDL in the presence of C1q or MBL upregulated surface CD80 and CD31, as well as CCL2 chemokine gene expression. However, C1q and MBL also significantly reduced levels of free cholesterol accumulation in monocytes and human monocyte-derived macrophages that ingested oxidized LDL, while enhancing high-density lipoprotein-specific cholesterol efflux from these cells. These results suggest a novel pathway in which C1q and MBL influence removal and metabolism of atherogenic forms of LDL in the early stages of atherosclerosis.
Collapse
Affiliation(s)
- Deborah A Fraser
- Department of Molecular Biology and Biochemistry, Institute for Immunology, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
367
|
Kushner EJ, Weil BR, MacEneaney OJ, Morgan RG, Mestek ML, Van Guilder GP, Diehl KJ, Stauffer BL, DeSouza CA. Human aging and CD31+ T-cell number, migration, apoptotic susceptibility, and telomere length. J Appl Physiol (1985) 2010; 109:1756-61. [PMID: 20864561 DOI: 10.1152/japplphysiol.00601.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
CD31(+) T cells, or so-called "angiogenic T cells," have been shown to demonstrate vasculoprotective and neovasculogenic qualities. The influence of age on CD31(+) T-cell number and function is unclear. We tested the hypothesis that circulating CD31(+) T-cell number and migratory capacity are reduced, apoptotic susceptibility is heightened, and telomere length is shortened with advancing age in adult humans. Thirty-six healthy, sedentary men were studied: 12 young (25 ± 1 yr), 12 middle aged (46 ± 1 yr), and 12 older (64 ± 2 yr). CD31(+) T cells were isolated from peripheral blood samples by magnetic-activated cell sorting. The number of circulating CD31(+) T cells (fluorescence-activated cell sorting analysis) was lower (P < 0.01) in older (24% of CD3(+) cells) compared with middle-aged (38% of CD3(+) cells) and young (40% of CD3(+) cells) men. Migration (Boyden chamber) to both VEGF and stromal cell-derived factor-1α was markedly blunted (P < 0.05) in cells harvested from middle-aged [306.1 ± 45 and 305.6 ± 46 arbitrary units (AU), respectively] and older (231 ± 65 and 235 ± 62 AU, respectively) compared with young (525 ± 60 and 570 ± 62 AU, respectively) men. CD31(+) T cells from middle-aged and older men demonstrated greater apoptotic susceptibility, as staurosporine-stimulated intracellular caspase-3 activation was ∼ 40% higher (P < 0.05) than young. There was a progressive age-related decline in CD31(+) T-cell telomere length (young: 10,706 ± 220 bp; middle-aged: 10,179 ± 251 bp; and older: 9,324 ± 192 bp). Numerical and functional impairments in this unique T-cell subpopulation may contribute to diminished angiogenic potential and greater cardiovascular risk with advancing age.
Collapse
Affiliation(s)
- Erich J Kushner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO 8030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
368
|
Ashby EL, Kehoe PG, Love S. Kallikrein-related peptidase 6 in Alzheimer's disease and vascular dementia. Brain Res 2010; 1363:1-10. [PMID: 20846516 DOI: 10.1016/j.brainres.2010.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/03/2010] [Accepted: 09/06/2010] [Indexed: 11/30/2022]
Abstract
Human kallikrein-related peptidase 6 (KLK6) is highly expressed in the central nervous system. Although the physiological roles of this serine protease are unknown, in vitro substrates include amyloid precursor protein and components of the extracellular matrix, which are altered in neurological disease, particularly Alzheimer's disease (AD). We have compared KLK6 expression in post-mortem brain tissue in AD, vascular dementia (VaD) and controls. We studied the distribution of KLK6 in the temporal cortex and white matter by immunohistochemistry, and measured KLK6 mRNA and protein levels in the frontal and temporal cortex from 15 AD, 15 VaD and 15 control brains. Immunohistochemistry showed KLK6 to be restricted to endothelial cells. After adjustment for variations in vessel density by measurement of factor VIII-related antigen, we found KLK6 protein and mRNA levels to be significantly decreased in the frontal but not the temporal cortex in AD. In VaD, KLK6 protein level was significantly increased in the frontal cortex. Our findings suggest that an altered KLK6 expression may contribute to vascular abnormalities in AD and VaD.
Collapse
Affiliation(s)
- Emma L Ashby
- Dementia Research Group, Institute of Clinical Neurosciences, Clinical Science at North Bristol, University of Bristol, UK
| | | | | |
Collapse
|
369
|
Dandona P, Ghanim H, Chaudhuri A, Dhindsa S, Kim SS. Macronutrient intake induces oxidative and inflammatory stress: potential relevance to atherosclerosis and insulin resistance. Exp Mol Med 2010; 42:245-53. [PMID: 20200475 DOI: 10.3858/emm.2010.42.4.033] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With the global increase in the epidemic of obesity and type 2 diabetes with a concomitant increase in atherosclerotic disease, an investigation into the effects of various macronutrients and food products has become necessary. Such investigation will allow us to better understand the relationship between the intake of various macronutrients and the pathogenesis of mechanisms underlying the regulation of insulin sensitivity and resistance, oxidative stress and inflammation, the regulation of hunger and satiety and atherogenesis. This review covers the first decade of work in this area relating the intake of usual foods and diets to their immediate and long term outcomes. The review also covers the exciting novel area of anti-inflammatory effects of certain foods. Hopefully, a comprehensive understanding of these actions of macronutrients and their long term effects will allow us to formulate food combinations which will lead to healthy eating habits and improvement in our overall health status.
Collapse
Affiliation(s)
- Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo and Kaleida Health 3 Gates Circle Buffalo, NY 14209, USA.
| | | | | | | | | |
Collapse
|
370
|
Kim H, Cho HJ, Kim SW, Liu B, Choi YJ, Lee J, Sohn YD, Lee MY, Houge MA, Yoon YS. CD31+ cells represent highly angiogenic and vasculogenic cells in bone marrow: novel role of nonendothelial CD31+ cells in neovascularization and their therapeutic effects on ischemic vascular disease. Circ Res 2010; 107:602-14. [PMID: 20634489 PMCID: PMC2938961 DOI: 10.1161/circresaha.110.218396] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 07/02/2010] [Indexed: 12/24/2022]
Abstract
RATIONALE Bone marrow (BM) cells play an important role in physiological and therapeutic neovascularization. However, it remains unclear whether any specific uncultured BM cell populations have higher angiogenic and vasculogenic activities. Moreover, there has been controversy regarding the vasculogenic ability of BM cells. OBJECTIVE Preliminary flow cytometric analysis showed that CD31, traditionally a marker for endothelial cells, is expressed in certain nonendothelial BM mononuclear cells in both human and mouse. Based on the conserved CD31 expression in the axis of hematopoietic stem/progenitor cells (HSC/HPCs) to endothelial cells, we further sought to determine the comprehensive vasculogenic and angiogenic characteristics of human and mouse BM-derived CD31(+) cells. METHODS AND RESULTS Flow cytometric analysis demonstrated that all CD31(+) cells derived from BM were CD45(+) and expressed markers for both HSC/HPCs and endothelial cells. Comprehensive gene expression analyses revealed that BM-CD31(+) cells expressed higher levels of angiogenic genes than CD31(-) cells. Endothelial progenitor cells, as well as HSC/HPCs, were almost exclusively confined to the CD31(+) cell fraction, and culture of CD31(+) cells under defined conditions gave rise to endothelial cells. Finally, injection of CD31(+) cells into ischemic hindlimb repaired ischemia, increased expression of angiogenic and chemoattractive factors, and, in part, directly contributed to vasculogenesis, as demonstrated by both 3D confocal microscopy and flow cytometry. CONCLUSIONS These data indicate that BM-CD31(+) cells represent highly angiogenic and vasculogenic cells and can be a novel and highly promising source of cells for cell therapy to treat ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Hyongbum Kim
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
371
|
Bruno KF, Silva JA, Silva TA, Batista AC, Alencar AHG, Estrela C. Characterization of inflammatory cell infiltrate in human dental pulpitis. Int Endod J 2010; 43:1013-21. [PMID: 20726912 DOI: 10.1111/j.1365-2591.2010.01757.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION To evaluate the microscopic characteristics and densities (per mm(2) ) of tryptase(+) mast cells, CD4(+) T helper lymphocytes, CD45RO(+) memory T lymphocytes, foxp3(+) T regulatory lymphocytes, CD20(+) B lymphocytes, CD68(+) macrophages, and CD31(+) blood vessels in human dental pulpitis (n=38) and healthy pulpal tissue (n=6). METHODOLOGY The pulps of 38 human teeth with a clinical diagnosis of irreversible pulpitis were removed by pulpectomy. The pulp tissue was immersed in 10% buffered formalin for evaluation using light microscopy. Tryptase, CD4, CD45RO, foxp3, CD20, CD68, and CD31 expressions were analysed using immunohistochemistry; other microscopic features, such as intensity of inflammatory infiltrate and collagen deposition, were evaluated using haematoxylin and eosin stain. Wilcoxon and Mann-Whitney tests were used for statistical analysis. The significance level was set at α=5%. RESULTS Two microscopic patterns of pulpitis were found: group 1 (G1) (n=15) had an intense inflammatory infiltrate and mild collagen deposition; conversely, group 2 (G2) (n=23) had a scarce inflammatory infiltrate and intense collagen deposition. The numbers of CD68(+) macrophages (P=0.004) and CD20(+) B (P=0.068) lymphocytes and the density of blood vessels (P=0.002) were higher in G1 than in G2. However, a similar number of CD4(+) and CD45RO(+) T lymphocytes was found in both groups (P>0.05). When present, tryptase(+) mast cells were equally distributed in G1 and G2, whereas foxp3(+) T regulatory lymphocytes were detected in 59% and 14% of the samples of G1 and G2. Controls exhibited lower numbers of foxp3, tryptase, CD4, CD45RO, CD68 and CD20 positive cells than G1 and G2. CONCLUSIONS Irreversible pulpitis had distinct microscopic features with important quantitative and qualitative differences in inflammatory cell infiltration.
Collapse
Affiliation(s)
- K F Bruno
- Department of Endodontics, Federal University of Goiás, Goiânia, GO, Brazil
| | | | | | | | | | | |
Collapse
|
372
|
Zeeb M, Strilic B, Lammert E. Resolving cell-cell junctions: lumen formation in blood vessels. Curr Opin Cell Biol 2010; 22:626-32. [PMID: 20678912 DOI: 10.1016/j.ceb.2010.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/01/2010] [Accepted: 07/07/2010] [Indexed: 12/23/2022]
Abstract
Formation of a patent vascular lumen is essential for the transport of oxygen, nutrients and waste products to and from tissues. No matter whether the blood vessel arises from vasculogenesis or angiogenesis, endothelial cells (EC) first have to form a cord, which subsequently lumenizes, in order to generate a functional vessel. During these processes, cellular junctions rearrange between adjacent ECs and are involved in EC polarization as a prerequisite for lumen formation. Here we review the role of EC junctions in vascular lumen formation within different vascular beds.
Collapse
Affiliation(s)
- Martin Zeeb
- Institute of Metabolic Physiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | |
Collapse
|
373
|
Privratsky JR, Newman DK, Newman PJ. PECAM-1: conflicts of interest in inflammation. Life Sci 2010; 87:69-82. [PMID: 20541560 PMCID: PMC2917326 DOI: 10.1016/j.lfs.2010.06.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 12/21/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is a cell adhesion and signaling receptor that is expressed on hematopoietic and endothelial cells. PECAM-1 is vital to the regulation of inflammatory responses, as it has been shown to serve a variety of pro-inflammatory and anti-inflammatory functions. Pro-inflammatory functions of PECAM-1 include the facilitation of leukocyte transendothelial migration and the transduction of mechanical signals in endothelial cells emanating from fluid shear stress. Anti-inflammatory functions include the dampening of leukocyte activation, suppression of pro-inflammatory cytokine production, and the maintenance of vascular barrier integrity. Although PECAM-1 has been well-characterized and studied, the mechanisms through which PECAM-1 regulates these seemingly opposing functions, and how they influence each other, are still not completely understood. The purpose of this review, therefore, is to provide an overview of the pro- and anti-inflammatory functions of PECAM-1 with special attention paid to mechanistic insights that have thus far been revealed in the literature in hopes of gaining a clearer picture of how these opposing functions might be integrated in a temporal and spatial manner on the whole organism level. A better understanding of how inflammatory responses are regulated should enable the development of new therapeutics that can be used in the treatment of acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Jamie R Privratsky
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201, USA.
| | | | | |
Collapse
|
374
|
Merkl M, Ulbrich SE, Otzdorff C, Herbach N, Wanke R, Wolf E, Handler J, Bauersachs S. Microarray analysis of equine endometrium at days 8 and 12 of pregnancy. Biol Reprod 2010; 83:874-86. [PMID: 20631402 DOI: 10.1095/biolreprod.110.085233] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Establishment and maintenance of pregnancy in equids is only partially understood. To provide new insights into early events of this process, we performed a systematic analysis of transcriptome changes in the endometrium at Days 8 and 12 of pregnancy. Endometrial biopsy samples from pregnant and nonpregnant stages were taken from the same mares. Composition of the collected biopsy samples was analyzed using quantitative stereological techniques to determine proportions of surface and glandular epithelium and blood vessels. Microarray analysis did not reveal detectable changes in gene expression at Day 8, whereas at Day 12 of pregnancy 374 differentially expressed genes were identified, 332 with higher and 42 with lower transcript levels in pregnant endometrium. Expression of selected genes was validated by quantitative real-time RT-PCR. Gene set enrichment analysis, functional annotation clustering, and cocitation analysis were performed to characterize the genes differentially expressed in Day 12 pregnant endometrium. Many known estrogen-induced genes and genes involved in regulation of estrogen signaling were found, but also genes known to be regulated by progesterone and prostaglandin E2. Additionally, differential expression of a number of genes related to angiogenesis and vascular remodeling suggests an important role of this process. Furthermore, genes that probably have conserved functions across species, such as CRYAB, ERRFI1, FGF9, IGFBP2, NR2F2, STC1, and TNFSF10, were identified. This study revealed the potential target genes and pathways of conceptus-derived estrogens, progesterone, and prostaglandin E2 in the equine endometrium probably involved in the early events of establishment and maintenance of pregnancy in the mare.
Collapse
Affiliation(s)
- M Merkl
- Clinic for Horses, Center for Clinical Veterinary Medicine, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
375
|
Zhu JX, Cao G, Williams JT, Delisser HM. SHP-2 phosphatase activity is required for PECAM-1-dependent cell motility. Am J Physiol Cell Physiol 2010; 299:C854-65. [PMID: 20631249 DOI: 10.1152/ajpcell.00436.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in endothelial cell motility during angiogenesis. Although there is evidence that SHP-2 plays a role in PECAM-1-dependent cell motility, the molecular basis of the activity of SHP-2 in this process has not been defined. To investigate the requirement of SHP-2 in PECAM-1-dependent cell motility, studies were done in which various constructs of SHP-2 were expressed in cell transfectants expressing PECAM-1. We observed that the levels of PECAM-1 tyrosine phosphorylation and SHP-2 association with PECAM-1 were significantly increased in cells expressing a phosphatase-inactive SHP-2 mutant, suggesting that the level of PECAM-1 tyrosine phosphorylation, and thus SHP-2 binding are regulated in part by bound, catalytically active SHP-2. We subsequently found that expression of PECAM-1 stimulated wound-induced migration and the formation of filopodia (a morphological feature of motile cells). These activities were associated with increased mitogen-activated protein kinase (MAPK) activation and the dephosphorylation of paxillin (an event implicated in the activation of MAPK). The phosphatase-inactive SHP-2 mutant, however, suppressed these PECAM-1-dependent phenomena, whereas the activity of PECAM-1 expressing cells was not altered by expression of wild-type SHP-2 or SHP-2 in which the scaffold/adaptor function had been disabled. Pharmacological inhibition of SHP-2 phosphatase activity also suppressed PECAM-1-dependent motility. Furthermore, PECAM-1 expression also stimulates tube formation, but none of the SHP-2 constructs affected this process. These findings therefore suggest a model for the involvement of SHP-2 in PECAM-1-dependent motility in which SHP-2, recruited by its interaction with PECAM-1, targets paxillin to ultimately activate the MAPK pathway and downstream events required for cell motility.
Collapse
Affiliation(s)
- Jing-Xu Zhu
- Pulmonary, Allergy and Critical Care Division, SVM-Hill Pavilion, Rm. 410B, 380 South Univ. Ave., Philadelphia, PA 19104-4539, USA
| | | | | | | |
Collapse
|
376
|
Gene expression profiles characterize inflammation stages in the acute lung injury in mice. PLoS One 2010; 5:e11485. [PMID: 20628605 PMCID: PMC2900209 DOI: 10.1371/journal.pone.0011485] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 06/08/2010] [Indexed: 01/05/2023] Open
Abstract
Acute Lung Injury (ALI) carries about 50 percent mortality and is frequently associated with an infection (sepsis). Life-support treatment with mechanical ventilation rescues many patients, although superimposed infection or multiple organ failure can result in death. The outcome of a patient developing sepsis depends on two factors: the infection and the pre-existing inflammation. In this study, we described each stage of the inflammation process using a transcriptional approach and an animal model. Female C57BL6/J mice received an intravenous oleic acid injection to induce an acute lung injury (ALI). Lung expression patterns were analyzed using a 9900 cDNA mouse microarray (MUSV29K). Our gene-expression analysis revealed marked changes in the immune and inflammatory response metabolic pathways, notably lipid metabolism and transcription. The early stage (1 hour–1.5 hours) is characterized by a pro-inflammatory immune response. Later (3 hours–4 hours), the immune cells migrate into inflamed tissues through interaction with vascular endothelial cells. Finally, at late stages of lung inflammation (18 hours–24 hours), metabolism is deeply disturbed. Highly expressed pro-inflammatory cytokines activate transcription of many genes and lipid metabolism. In this study, we described a global overview of critical events occurring during lung inflammation which is essential to understand infectious pathologies such as sepsis where inflammation and infection are intertwined. Based on these data, it becomes possible to isolate the impact of a pathogen at the transcriptional level from the global gene expression modifications resulting from the infection associated with the inflammation.
Collapse
|
377
|
Buschow SI, Lasonder E, van Deutekom HWM, Oud MM, Beltrame L, Huynen MA, de Vries IJM, Figdor CG, Cavalieri D. Dominant processes during human dendritic cell maturation revealed by integration of proteome and transcriptome at the pathway level. J Proteome Res 2010; 9:1727-37. [PMID: 20131907 DOI: 10.1021/pr9008546] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene expression is commonly used to study the activation of dendritic cells (DCs) to identify proteins that determine whether these cells induce an immunostimulatory or tolerogenic immune response. RNA expression, however, does not necessarily predict protein abundance and often requires large numbers of experiments for statistical significance. Proteomics provides a direct view on protein expression but is costly and time consuming. Here, we combined a comprehensive quantitative proteome and transcriptome analysis on a single batch of immature and cytokine cocktail matured human DCs and integrated resulting data sets at the pathway level. Although overall correlation between differential mRNA and protein expression was low, correlation between components of DC relevant pathways was significantly higher. Differentially expressed proteins and genes partly mapped to identical but also to different pathway components demonstrating that RNA and protein data not only supported but also complemented each other. We identified 5 dominant pathways, which confirmed the importance of cytokines, cell adhesion, and migration in DC maturation and also indicated a fundamental role for lipid metabolism. From these pathways we extracted novel maturation markers that might improve DC vaccine design. For several of the candidate markers we confirmed widespread significance examining DCs from multiple individuals, underscoring the validity of our approach. We conclude that integration of different but related data sets at the pathway level can significantly increase the predictive power of multi "omics" analyses.
Collapse
Affiliation(s)
- Sonja I Buschow
- Department of Tumor Immunology and CMBI at the Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
378
|
Daniel JM, Bielenberg W, Stieger P, Weinert S, Tillmanns H, Sedding DG. Time-course analysis on the differentiation of bone marrow-derived progenitor cells into smooth muscle cells during neointima formation. Arterioscler Thromb Vasc Biol 2010; 30:1890-6. [PMID: 20576944 DOI: 10.1161/atvbaha.110.209692] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Bone marrow-derived progenitor cells have been implicated to contribute to neointima formation, but the time course and extent of their accumulation and differentiation into vascular cells and, most importantly, the long-term contribution of bone marrow-derived progenitor cells to the vascular lesion remain undefined. METHODS AND RESULTS Wire-induced injury of the femoral artery was performed on chimeric C57BL/6 mice transplanted with bone marrow from transgenic mice expressing enhanced green fluorescence protein, and vessels were harvested at 3 days, 1, 2, 3, 4, 6, and 16 weeks after dilatation (n=8 animals per time point). Using high-resolution microscopy, we unexpectedly found that the expression of smooth muscle cell or endothelial cell markers in enhanced green fluorescence protein positive cells was a very rare event. Indeed, most of the enhanced green fluorescence protein positive cells that accumulated during the acute inflammatory response were identified as monocytes/macrophages, and their number declined at later time points. In contrast, a substantial fraction of highly proliferative stem cell antigen-1 and CD34(+) but enhanced green fluorescence protein negative and thus locally derived cells were detected in the adventitia. CONCLUSIONS These data provide evidence that the differentiation of bone marrow-derived progenitor cells into smooth muscle cell or endothelial cell lineages seems to be an exceedingly rare event. Moreover, the contribution of bone marrow-derived cells to the cellular compartment of the neointima is limited to a transient period of the inflammatory response.
Collapse
Affiliation(s)
- Jan-Marcus Daniel
- Department of Cardiology, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
379
|
Ogba N, Doughman YQ, Chaplin LJ, Hu Y, Gargesha M, Watanabe M, Montano MM. HEXIM1 modulates vascular endothelial growth factor expression and function in breast epithelial cells and mammary gland. Oncogene 2010; 29:3639-49. [PMID: 20453883 PMCID: PMC2892028 DOI: 10.1038/onc.2010.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/30/2022]
Abstract
Recently, we found that mutation of the C-terminus of transcription factor hexamethylene bisacetamide-inducible protein 1 (HEXIM1) in mice leads to abnormalities in cardiovascular development because of aberrant vascular endothelial growth factor (VEGF) expression. HEXIM1 regulation of some genes has also been shown to be positive transcription elongation factor b (P-TEFb) dependent. However, it is not known whether HEXIM1 regulates VEGF in the mammary gland. We demonstrate that HEXIM1 regulates estrogen-induced VEGF transcription through inhibition of estrogen receptor-alpha recruitment to the VEGF promoter in a P-TEFb-independent manner in MCF-7 cells. Under hypoxic conditions, HEXIM1 inhibits estrogen-induced hypoxia-inducible factor-1 alpha (HIF-1alpha) protein expression and recruitment of HIF-1alpha to the hypoxia-response element in the VEGF promoter. In the mouse mammary gland, increased HEXIM1 expression decreased estrogen-driven VEGF and HIF-1alpha expression. Conversely, a mutation in the C-terminus of HEXIM1 (HEXIM1(1-312)) led to increased VEGF and HIF-1alpha expression and vascularization in mammary glands of heterozygous HEXIM1(1-312) mice when compared with their wild-type littermates. In addition, HEXIM1(1-312) mice have a higher incidence of carcinogen-induced mammary tumors with increased vascularization, suggesting an inhibitory role for HEXIM1 during angiogenesis. Taken together, our data provide evidence to suggest a novel role for HEXIM1 in cancer progression.
Collapse
MESH Headings
- Animals
- Carcinogens/toxicity
- Cell Hypoxia/drug effects
- Cell Line, Tumor
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Estradiol/pharmacology
- Estrogen Receptor alpha/metabolism
- Gene Expression Regulation
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mammary Glands, Animal/blood supply
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/physiopathology
- Mice
- Mutation
- Neovascularization, Pathologic/metabolism
- Neovascularization, Physiologic
- Positive Transcriptional Elongation Factor B/metabolism
- Promoter Regions, Genetic/genetics
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Response Elements
- Transcription Factors
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Ndiya Ogba
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Yong Qiu Doughman
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, OH 44106
| | - Laura J. Chaplin
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Yanduan Hu
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Madhusudhana Gargesha
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, OH 44106
| | - Monica M. Montano
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
380
|
Circulating endothelial microparticles in diabetes mellitus. Mediators Inflamm 2010; 2010:250476. [PMID: 20634911 PMCID: PMC2904448 DOI: 10.1155/2010/250476] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/18/2010] [Indexed: 01/19/2023] Open
Abstract
Background. Endothelial Microparticles (EMPs) are small vesicles shed from activated or apoptotic endothelial cells and involved in cellular cross-talk. Whether EMP immunophenotypes vary according to stimulus in Diabetes Mellitus (DM) is not known. We studied the cellular adhesion molecule (CAM) profile of circulating EMPs in patients with and without Diabetes Mellitus type 2, who were undergoing elective cardiac catheterization.
Methods and Results. EMPs were analyzed by flow cytometry. The absolute median number of EMPs (EMPs/μL) specific for CD31, CD105, and CD106 was significantly increased in the DM population. The ratio of CD62E/CD31 EMP populations reflected an apoptotic process.
Conclusion. Circulating CD31+, CD105+, and CD106+ EMPs were significantly elevated in patients with DM. EMPs were the only independent predictors of DM in our study cohort. In addition, the EMP immunophenotype reflected an apoptotic process. Circulating EMPs may provide new options for risk assessment.
Collapse
|
381
|
Asano Y, Stawski L, Hant F, Highland K, Silver R, Szalai G, Watson DK, Trojanowska M. Endothelial Fli1 deficiency impairs vascular homeostasis: a role in scleroderma vasculopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1983-98. [PMID: 20228226 DOI: 10.2353/ajpath.2010.090593] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic sclerosis or scleroderma (SSc) is a complex autoimmune connective tissue disease characterized by obliterative vasculopathy and tissue fibrosis. The molecular mechanisms underlying SSc vasculopathy are largely unknown. Friend leukemia integration factor 1 (Fli1), an important regulator of immune function and collagen fibrillogenesis, is expressed at reduced levels in endothelial cells in affected skin of patients with SSc. To develop a disease model and to investigate the function of Fli1 in the vasculature, we generated mice with a conditional deletion of Fli1 in endothelial cells (Fli1 CKO). Fli1 CKO mice showed a disorganized dermal vascular network with greatly compromised vessel integrity and markedly increased vessel permeability. We show that Fli1 regulates expression of genes involved in maintaining vascular homeostasis including VE-cadherin, platelet endothelial cell adhesion molecule 1, type IV collagen, matrix metalloproteinase 9, platelet-derived growth factor B, and S1P(1) receptor. Accordingly, Fli1 CKO mice are characterized by down-regulation of VE-cadherin and platelet endothelial cell adhesion molecule 1, impaired development of basement membrane, and a decreased presence of alpha-smooth muscle actin-positive cells in dermal microvessels. This phenotype is consistent with a role of Fli1 as a regulator of vessel maturation and stabilization. Importantly, vascular characteristics of Fli1 CKO mice are recapitulated by SSc microvasculature. Thus, persistently reduced levels of Fli1 in endothelial cells may play a critical role in the development of SSc vasculopathy.
Collapse
Affiliation(s)
- Yoshihide Asano
- Arthritis Center, Boston University Medical Center, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
382
|
Sondergaard CS, Hess DA, Maxwell DJ, Weinheimer C, Rosová I, Creer MH, Piwnica-Worms D, Kovacs A, Pedersen L, Nolta JA. Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction. J Transl Med 2010; 8:24. [PMID: 20214792 PMCID: PMC2846892 DOI: 10.1186/1479-5876-8-24] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 03/09/2010] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED Human stem cells from adult sources have been shown to contribute to the regeneration of muscle, liver, heart, and vasculature. The mechanisms by which this is accomplished are, however, still not well understood. We tested the engraftment and regenerative potential of human umbilical cord blood-derived ALDH(hi)Lin(-), and ALDH(lo)Lin(-) cells following transplantation to NOD/SCID or NOD/SCID beta2m null mice with experimentally induced acute myocardial infarction. We used combined nanoparticle labeling and whole organ fluorescent imaging to detect human cells in multiple organs 48 hours post transplantation. Engraftment and regenerative effects of cell treatment were assessed four weeks post transplantation. We found that ALDH(hi)Lin(-) stem cells specifically located to the site of injury 48 hours post transplantation and engrafted the infarcted heart at higher frequencies than ALDH(lo)Lin(-) committed progenitor cells four weeks post transplantation. We found no donor derived cardiomyocytes and few endothelial cells of donor origin. Cell treatment was not associated with any detectable functional improvement at the four week endpoint. There was, however, a significant increase in vascular density in the central infarct zone of ALDH(hi)Lin(-) cell-treated mice, as compared to PBS and ALDH(lo)Lin(-) cell-treated mice. CONCLUSIONS Our data indicate that adult human stem cells do not become a significant part of the regenerating tissue, but rapidly home to and persist only temporarily at the site of hypoxic injury to exert trophic effects on tissue repair thereby enhancing vascular recovery.
Collapse
Affiliation(s)
- Claus S Sondergaard
- Department of Molecular Biology, Department of Hematology and Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California, Davis, Sacramento CA, USA
| | - David A Hess
- Program in Regenerative Medicine, Krembil Centre for Stem Cell Biology, Vascular Biology Group, Robarts Research Institute and the University of Western Ontario, London, ON, Canada
| | - Dustin J Maxwell
- Department of Molecular Biology and Pharmacology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Carla Weinheimer
- Department of Surgery, Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MO, USA
| | - Ivana Rosová
- Division of Oncology, Hematopoietic Development and Malignancy Program, Washington University School of Medicine, St Louis, MO, USA
| | - Michael H Creer
- Department of Pathology, Umbilical Cord Blood Bank, Cardinal Glennon Children's Hospital, St Louis, MO, USA
| | - David Piwnica-Worms
- Department of Molecular Biology and Pharmacology, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Attila Kovacs
- Department of Surgery, Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MO, USA
| | - Lene Pedersen
- Department of Molecular Biology, Department of Hematology and Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jan A Nolta
- Department of Molecular Biology, Department of Hematology and Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California, Davis, Sacramento CA, USA
| |
Collapse
|
383
|
Hagensen MK, Shim J, Thim T, Falk E, Bentzon JF. Circulating endothelial progenitor cells do not contribute to plaque endothelium in murine atherosclerosis. Circulation 2010; 121:898-905. [PMID: 20142446 DOI: 10.1161/circulationaha.109.885459] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND It has been reported that circulating endothelial progenitor cells (EPCs) home to and differentiate into endothelial cells after various kinds of arterial injury. By inference, EPCs are also proposed to be important in the most important arterial disease, atherosclerosis, but the evidence for this theory is not clear. In the present study, we assessed the contribution of circulating EPCs to plaque endothelium in apolipoprotein E-deficient (apoE(-/-)) mice. METHODS AND RESULTS To investigate whether EPCs in the circulating blood are a source of plaque endothelial cells during atherogenesis, we examined plaques in lethally irradiated apoE(-/-) mice reconstituted with bone marrow cells from enhanced green fluorescent protein (eGFP) transgenic apoE(-/-) mice and plaques induced in segments of common carotid artery transplanted from apoE(-/-) mice into eGFP(+)apoE(-/-) mice. Among 4232 endothelial cells identified by a cell-type-specific marker (von Willebrand factor) and analyzed by high-resolution microscopy, we found only 1 eGFP(+). Using the Y chromosome to track cells after sex-mismatched transplants yielded similar results. To investigate whether circulating EPCs are involved in plaque reendothelialization after plaque disruption and superimposed thrombosis, we produced mechanical plaque disruptions in carotid bifurcation plaques in old lethally irradiated apoE(-/-) mice reconstituted with eGFP(+)apoE(-/-) bone marrow cells and carotid bifurcation plaques transplanted from old apoE(-/-) mice into eGFP(+)apoE(-/-) mice. Only 1 eGFP(+) endothelial cell was found among 3170 analyzed. CONCLUSIONS Circulating EPCs rarely, if ever, contribute to plaque endothelium in apoE(-/-) mice. These findings bring into question the prevailing theory that circulating EPCs play an important role in atherogenesis.
Collapse
Affiliation(s)
- Mette K Hagensen
- MSc, Atherosclerosis Research Unit, Institute of Clinical Medicine and Department of Cardiology, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark.
| | | | | | | | | |
Collapse
|
384
|
Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One 2010; 5:e8564. [PMID: 20084101 PMCID: PMC2797324 DOI: 10.1371/journal.pone.0008564] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 11/30/2009] [Indexed: 11/19/2022] Open
Abstract
Epigenetic mechanisms such as microRNA and histone modification are crucially responsible for dysregulated gene expression in heart failure. In contrast, the role of DNA methylation, another well-characterized epigenetic mark, is unknown. In order to examine whether human cardiomyopathy of different etiologies are connected by a unifying pattern of DNA methylation pattern, we undertook profiling with ischaemic and idiopathic end-stage cardiomyopathic left ventricular (LV) explants from patients who had undergone cardiac transplantation compared to normal control. We performed a preliminary analysis using methylated-DNA immunoprecipitation-chip (MeDIP-chip), validated differential methylation loci by bisulfite-(BS) PCR and high throughput sequencing, and identified 3 angiogenesis-related genetic loci that were differentially methylated. Using quantitative RT-PCR, we found that the expression of these genes differed significantly between CM hearts and normal control (p<0.01). Moreover, for each individual LV tissue, differential methylation showed a predicted correlation to differential expression of the corresponding gene. Thus, differential DNA methylation exists in human cardiomyopathy. In this series of heterogenous cardiomyopathic LV explants, differential DNA methylation was found in at least 3 angiogenesis-related genes. While in other systems, changes in DNA methylation at specific genomic loci usually precede changes in the expression of corresponding genes, our current findings in cardiomyopathy merit further investigation to determine whether DNA methylation changes play a causative role in the progression of heart failure.
Collapse
|
385
|
Fernandez-Borja M, van Buul JD, Hordijk PL. The regulation of leucocyte transendothelial migration by endothelial signalling events. Cardiovasc Res 2010; 86:202-10. [PMID: 20068003 DOI: 10.1093/cvr/cvq003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leucocytes use sophisticated mechanisms to cross the endothelium lining the vasculature. This is initiated by chemokine- and adhesion molecule-induced intracellular signalling that controls adhesion, spreading, and motility. At the same time, adherent leucocytes trigger the endothelium, manipulating the barrier to promote their transmigration into the underlying tissues. Over the past years, our insights in the associated signalling events within the endothelium have increased considerably, albeit the order of events, their crosstalk, and the consequences for endothelial cells and leucocytes are only partially resolved. Here, we briefly review endothelial signalling that is initiated at the apical endothelial membrane, where the first contact with the leucocytes takes place and signal transduction is induced. In addition, we discuss subsequent events at endothelial cell-cell junctions insofar as they have been linked to transendothelial migration. Finally, we briefly touch upon the modulation of endothelial signalling by infectious pathogens, since these have developed additional, elegant ways to manipulate the endothelium and transendothelial migration that may provide new, relevant insights into this process.
Collapse
Affiliation(s)
- Mar Fernandez-Borja
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
386
|
|
387
|
Ma J, Goble K, Smietana M, Kostrominova T, Larkin L, Arruda EM. Morphological and functional characteristics of three-dimensional engineered bone-ligament-bone constructs following implantation. J Biomech Eng 2010; 131:101017. [PMID: 19831487 DOI: 10.1115/1.4000151] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The incidence of ligament injury has recently been estimated at 400,000/year. The preferred treatment is reconstruction using an allograft, but outcomes are limited by donor availability, biomechanical incompatibility, and immune rejection. The creation of an engineered ligament in vitro solely from patient bone marrow stromal cells (has the potential to greatly enhance outcomes in knee reconstructions. Our laboratory has developed a scaffoldless method to engineer three-dimensional (3D) ligament and bone constructs from rat bone marrow stem cells in vitro. Coculture of these two engineered constructs results in a 3D bone-ligament-bone (BLB) construct with viable entheses, which was successfully used for medial collateral ligament (MCL) replacement in a rat model. 1 month and 2 month implantations were applied to the engineered BLBs. Implantation of 3D BLBs in a MCL replacement application demonstrated that our in vitro engineered tissues grew and remodeled quickly in vivo to an advanced phenotype and partially restored function of the knee. The explanted 3D BLB ligament region stained positively for type I collagen and elastin and was well vascularized after 1 and 2 months in vivo. Tangent moduli of the ligament portion of the 3D BLB 1 month explants increased by a factor of 2.4 over in vitro controls, to a value equivalent to those observed in 14-day-old neonatal rat MCLs. The 3D BLB 1 month explants also exhibited a functionally graded response that closely matched native MCL inhomogeneity, indicating the constructs functionally adapted in vivo.
Collapse
Affiliation(s)
- Jinjin Ma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | |
Collapse
|
388
|
Tinsley JH, South S, Chiasson VL, Mitchell BM. Interleukin-10 reduces inflammation, endothelial dysfunction, and blood pressure in hypertensive pregnant rats. Am J Physiol Regul Integr Comp Physiol 2010; 298:R713-9. [PMID: 20053959 DOI: 10.1152/ajpregu.00712.2009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hypertensive disorders of pregnancy are characterized by systemic and placental inflammation; however, treatment for these conditions has remained elusive. We tested whether administration of the anti-inflammatory cytokine interleukin-10 (IL-10) during pregnancy would attenuate the hypertension, endothelial dysfunction, proteinuria, and inflammation seen in pregnant DOCA/saline-treated (PDS) rats. Normal pregnant (NP) rats and PDS were given daily intraperitoneal injections of recombinant IL-10 from gestational day 13 until death on day 20. Systolic blood pressure, aortic endothelium-dependent relaxation responses, and urinary protein excretion were measured on days 13 and 20 of gestation. Fetal number and development, plasma endothelin-1 levels, serum and placental levels of IFNgamma and IL-10, and aortic and placental levels of platelet endothelial cell adhesion molecule (PECAM) were assessed on gestational day 20. Systolic blood pressure, aortic endothelial dysfunction, and urinary protein excretion were significantly increased at gestational day 13 in PDS rats. However, all of these were restored to NP levels following IL-10 treatment in PDS rats. IL-10 treatment also significantly increased the number of pups per litter in PDS rats and did not further affect fetal development. The beneficial effects of IL-10 in PDS rats were likely mediated by the decreased plasma levels of endothelin-1, decreased levels of circulating and placental IFNgamma, as well as decreased aortic and placental expression of PECAM. These data demonstrate that exogenous IL-10 can normalize blood pressure and endothelial function in pregnancy-induced hypertensive rats and may be beneficial in women with hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- John H Tinsley
- Department of Internal Medicine, Division of Nephrology and Hypertension, Texas A&M Health Science Center, College of Medicine/Scott & White Memorial Hospital, Temple, TX 76504, USA
| | | | | | | |
Collapse
|
389
|
Barreiro O, Martin P, Gonzalez-Amaro R, Sanchez-Madrid F. Molecular cues guiding inflammatory responses. Cardiovasc Res 2010; 86:174-82. [DOI: 10.1093/cvr/cvq001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
390
|
Gu M, Roy S, Raina K, Agarwal C, Agarwal R. Inositol hexaphosphate suppresses growth and induces apoptosis in prostate carcinoma cells in culture and nude mouse xenograft: PI3K-Akt pathway as potential target. Cancer Res 2010; 69:9465-72. [PMID: 19920184 DOI: 10.1158/0008-5472.can-09-2805] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constitutive activation of phosphoinositide 3-kinase (PI3K)-Akt pathway transmits growth-regulatory signals that play a central role in promoting survival, proliferation, and angiogenesis in human prostate cancer cells. Here, we assessed the efficacy of inositol hexaphosphate (IP6) against invasive human prostate cancer PC-3 and C4-2B cells and regulation of PI3K-Akt pathway. IP6 treatment of cells suppressed proliferation, induced apoptosis along with caspase-3 and poly(ADP-ribose) polymerase (PARP) cleavage, and inhibited constitutive activation of Akt and its upstream regulators PI3K, phosphoinositide-dependent kinase-1 and integrin-linked kinase-1 (ILK1). Downstream of Akt, IP6 inhibited the phosphorylation of glycogen synthase kinase-3alpha/beta at Ser(21/9) and consequently reduced cyclin D1 expression. Efficacy studies employing PC-3 tumor xenograft growth in nude mice showed that 2% (w/v) IP6 feeding in drinking water inhibits tumor growth and weight by 52% to 59% (P < 0.001). Immunohistochemical analysis of xenografts showed that IP6 significantly reduces the expression of molecules associated with cell survival/proliferation (ILK1, phosphorylated Akt, cyclin D1, and proliferating cell nuclear antigen) and angiogenesis (platelet endothelial cell adhesion molecule-1 or CD31, vascular endothelial growth factor, endothelial nitric oxide synthase, and hypoxia-inducible factor-1alpha) together with an increase in apoptotic markers (cleaved caspase-3 and PARP). These findings suggest that, by targeting the PI3K-ILK1-Akt pathway, IP6 suppresses cell survival, proliferation, and angiogenesis but induces death in prostate cancer cells, which might have translational potential in preventing and controlling the growth of advanced and aggressive prostate cancer for which conventional chemotherapy is not effective.
Collapse
Affiliation(s)
- Mallikarjuna Gu
- Department of Pharmaceutical Sciences, School of Pharmacy, and University of Colorado Cancer Center, University of Colorado-Denver, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
391
|
Kitazume S, Imamaki R, Ogawa K, Komi Y, Futakawa S, Kojima S, Hashimoto Y, Marth JD, Paulson JC, Taniguchi N. Alpha2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling. J Biol Chem 2010; 285:6515-21. [PMID: 20048157 PMCID: PMC2825447 DOI: 10.1074/jbc.m109.073106] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antiangiogenesis therapies are now part of the standard repertoire of cancer therapies, but the mechanisms for the proliferation and survival of endothelial cells are not fully understood. Although endothelial cells are covered with a glycocalyx, little is known about how endothelial glycosylation regulates endothelial functions. Here, we show that alpha2,6-sialic acid is necessary for the cell-surface residency of platelet endothelial cell adhesion molecule (PECAM), a member of the immunoglobulin superfamily that plays multiple roles in cell adhesion, mechanical stress sensing, antiapoptosis, and angiogenesis. As a possible underlying mechanism, we found that the homophilic interactions of PECAM in endothelial cells were dependent on alpha2,6-sialic acid. We also found that the absence of alpha2,6-sialic acid down-regulated the tyrosine phosphorylation of PECAM and recruitment of Src homology 2 domain-containing protein-tyrosine phosphatase 2 and rendered the cells more prone to mitochondrion-dependent apoptosis, as evaluated using PECAM- deficient endothelial cells. The present findings open up a new possibility that modulation of glycosylation could be one of the promising strategies for regulating angiogenesis.
Collapse
Affiliation(s)
- Shinobu Kitazume
- Disease Glycomics Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
392
|
Abstract
PURPOSE OF REVIEW As the migration of neutrophils from blood to inflamed tissues is an essential component of innate immunity and a key contributing factor to the pathogenesis of inflammatory disorders, this aspect of leukocyte biology continues to be a highly dynamic field of research. This review summarizes recent findings in this area, focusing on the mechanisms that mediate neutrophil transmigration, an area where significant progress has been made. RECENT FINDINGS The topics to be covered will include responses that are prerequisite to neutrophil migration through venular walls, such as leukocyte luminal crawling and cellular and molecular changes in leukocytes and endothelial cells (e.g. formation of protrusions) that collectively support leukocyte transendothelial cell migration. Advances in both paracellular and transcellular neutrophil migration through endothelial cells will be discussed, addressing the associated roles and regulation of expression of endothelial cell luminal and junctional adhesion molecules. Beyond the endothelium, migration through the vascular pericyte coverage and basement membrane will be reviewed. SUMMARY The unquestionable role of neutrophils in the development and progression of inflammatory conditions suggests that a better understanding of the tissue-specific and stimulus-specific mechanisms that mediate this response may identify novel pathways that could be exploited for the development of more specific anti-inflammatory interventions.
Collapse
Affiliation(s)
- Abigail Woodfin
- Queen Mary University of London, William Harvey Research Institute, UK
| | | | | |
Collapse
|
393
|
Noda K, Zhang J, Fukuhara S, Kunimoto S, Yoshimura M, Mochizuki N. Vascular endothelial-cadherin stabilizes at cell-cell junctions by anchoring to circumferential actin bundles through alpha- and beta-catenins in cyclic AMP-Epac-Rap1 signal-activated endothelial cells. Mol Biol Cell 2009; 21:584-96. [PMID: 20032304 PMCID: PMC2820423 DOI: 10.1091/mbc.e09-07-0580] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Vascular endothelial (VE)-cadherin is a cell-cell adhesion molecule involved in endothelial barrier function. Here, we show that initial circumferential actin bundling induced by cyclic AMP-Epac-Rap1 signal and its linkage to VE-cadherin through α- and β-catenins lead to the stabilization of VE-cadherin at cell-cell contacts. Vascular endothelial (VE)-cadherin is a cell–cell adhesion molecule involved in endothelial barrier functions. Previously, we reported that cAMP-Epac-Rap1 signal enhances VE-cadherin–dependent cell adhesion. Here, we further scrutinized how cAMP-Epac-Rap1 pathway promotes stabilization of VE-cadherin at the cell–cell contacts. Forskolin induced circumferential actin bundling and accumulation of VE-cadherin fused with green fluorescence protein (VEC-GFP) on the bundled actin filaments. Fluorescence recovery after photobleaching (FRAP) analyses using VEC-GFP revealed that forskolin stabilizes VE-cadherin at cell–cell contacts. These effects of forskolin were mimicked by an activator for Epac but not by that for protein kinase A. Forskolin-induced both accumulation and stabilization of junctional VEC-GFP was impeded by latrunculin A. VE-cadherin, α-catenin, and β-catenin were dispensable for forskolin-induced circumferential actin bundling, indicating that homophilic VE-cadherin association is not the trigger of actin bundling. Requirement of α- and β-catenins for forskolin-induced stabilization of VE-cadherin on the actin bundles was confirmed by FRAP analyses using VEC-GFP mutants, supporting the classical model that α-catenin could potentially link the bundled actin to cadherin. Collectively, circumferential actin bundle formation and subsequent linkage between actin bundles and VE-cadherin through α- and β-catenins are important for the stabilization of VE-cadherin at the cell–cell contacts in cAMP-Epac-Rap1 signal-activated cells.
Collapse
Affiliation(s)
- Kazuomi Noda
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
394
|
Drosopoulos JHF, Kraemer R, Shen H, Upmacis RK, Marcus AJ, Musi E. Human solCD39 inhibits injury-induced development of neointimal hyperplasia. Thromb Haemost 2009; 103:426-34. [PMID: 20024507 DOI: 10.1160/th09-05-0305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 11/01/2009] [Indexed: 12/13/2022]
Abstract
Blood platelets provide the initial response to vascular endothelial injury, becoming activated as they adhere to the injured site. Activated platelets recruit leukocytes, and initiate proliferation and migration of vascular smooth muscle cells (SMC) within the injured vessel wall, leading to development of neointimal hyperplasia. Endothelial CD39/NTPDase1 and recombinant solCD39 rapidly metabolise nucleotides, including stimulatory ADP released from activated platelets, thereby suppressing additional platelet reactivity. Using a murine model of vascular endothelial injury, we investigated whether circulating human solCD39 could reduce platelet activation and accumulation, thus abating leukocyte infiltration and neointimal formation following vascular damage. Intraperitoneally-administered solCD39 ADPase activity in plasma peaked 1 hour (h) post-injection, with an elimination half-life of 43 h. Accordingly, mice were administered solCD39 or saline 1 h prior to vessel injury, then either sacrificed 24 h post-injury or treated with solCD39 or saline (three times weekly) for an additional 18 days. Twenty-four hours post-injury, solCD39-treated mice displayed a reduction in platelet activation and recruitment, P-selectin expression, and leukocyte accumulation in the arterial lumen. Furthermore, repeated administration of solCD39 modulated the late stage of vascular injury by suppressing leukocyte deposition, macrophage infiltration and smooth muscle cell (SMC) proliferation/migration, resulting in abrogation of neointimal thickening. In contrast, injured femoral arteries of saline-injected mice exhibited massive platelet thrombus formation, marked P-selectin expression, and leukocyte infiltration. Pronounced neointimal growth with macrophage and SMC accretion was also observed (intimal-to-medial area ratio 1.56 +/- 0.34 at 19 days). Thus, systemic administration of solCD39 profoundly affects injury-induced cellular responses, minimising platelet deposition and leukocyte recruitment, and suppressing neointimal hyperplasia.
Collapse
Affiliation(s)
- J H F Drosopoulos
- Thrombosis Research Laboratory, Room 13026W, VA New York Harbor Healthcare System, 423 East 23rd Street, New York, N.Y. 10010-5050, USA.
| | | | | | | | | | | |
Collapse
|
395
|
CD31+ T cells represent a functionally distinct vascular T cell phenotype. Blood Cells Mol Dis 2009; 44:74-8. [PMID: 19897387 DOI: 10.1016/j.bcmd.2009.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/01/2009] [Accepted: 10/01/2009] [Indexed: 11/24/2022]
Abstract
In contrast to CD3(+)/CD31(-) cells, CD3(+)/CD31(+) cells aid in endothelial repair and revascularization. There are limited data regarding the functional differences between circulating CD3(+)/CD31(+) and CD3(+)/CD31(-) cells that may contribute to their divergent cardiovascular effects. The aim of the present study was to characterize functional differences between CD3(+)/CD31(+) and CD3(+)/CD31(-) cells. To address this aim, migratory capacity, proangiogenic cytokine release and apoptotic susceptibility of CD3(+)/CD31(+) and CD3(+)/CD31(-) cells were determined. Human CD3(+)/CD31(+) and CD3(+)/CD31(-)cells from peripheral blood were isolated using magnetic-activated cell sorting. CD3(+)/CD31(+) cells demonstrated significantly higher ( approximately 60%) migratory capacity to the chemokines SDF-1alpha (655+/-99 vs. 273+/-54 AU) and VEGF (618+/-99 vs. 259+/-57 AU) vs. CD3(+)/CD31(-) cells. Release of angiogenic cytokines G-CSF, interleukin-8 and matrix metallopeptidase-9 were all approximately 100% higher (P<0.05) in CD3(+)/CD31(+) than CD3(+)/CD31(-) cells. CD3(+)/CD31(+) cells exhibited significantly higher intracellular concentrations of active caspase-3 (2.61+/-0.60 vs. 0.34+/-0.09 ng/mL) and cytochrome-c (21.8+/-1.4 vs. 13.7+/-1.0 ng/mL). In summary, CD3(+)/CD31(+) cells have greater migratory and angiogenic cytokine release capacity, but are more susceptible to apoptosis compared with CD3(+)/CD31(-) cells. Enhanced migratory capacity and angiogenic cytokine release may contribute to the vasculogenic properties of this unique T cell subpopulation.
Collapse
|
396
|
Park JY, Kim JH, Choi YJ, Hwang KC, Cho SK, Park HH, Paik SS, Kim T, Park C, Lee HT, Seo HG, Park SB, Hwang S, Kim JH. Comparative proteomic analysis of malformed umbilical cords from somatic cell nuclear transfer-derived piglets: implications for early postnatal death. BMC Genomics 2009; 10:511. [PMID: 19889237 PMCID: PMC2783166 DOI: 10.1186/1471-2164-10-511] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/05/2009] [Indexed: 02/02/2023] Open
Abstract
Background Somatic cell nuclear transfer (scNT)-derived piglets have high rates of mortality, including stillbirth and postnatal death. Here, we examined severe malformed umbilical cords (MUC), as well as other organs, from nine scNT-derived term piglets. Results Microscopic analysis revealed complete occlusive thrombi and the absence of columnar epithelial layers in MUC (scNT-MUC) derived from scNT piglets. scNT-MUC had significantly lower expression levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) and angiogenesis-related genes than umbilical cords of normal scNT piglets (scNT-N) that survived into adulthood. Endothelial cells derived from scNT-MUC migrated and formed tubules more slowly than endothelial cells from control umbilical cords or scNT-N. Proteomic analysis of scNT-MUC revealed significant down-regulation of proteins involved in the prevention of oxidative stress and the regulation of glycolysis and cell motility, while molecules involved in apoptosis were significantly up-regulated. Histomorphometric analysis revealed severe calcification in the kidneys and placenta, peliosis in the liver sinusoidal space, abnormal stromal cell proliferation in the lungs, and tubular degeneration in the kidneys in scNT piglets with MUC. Increased levels of apoptosis were also detected in organs derived from all scNT piglets with MUC. Conclusion These results suggest that MUC contribute to fetal malformations, preterm birth and low birth weight due to underlying molecular defects that result in hypoplastic umbilical arteries and/or placental insufficiency. The results of the current study demonstrate the effects of MUC on fetal growth and organ development in scNT-derived pigs, and provide important insight into the molecular mechanisms underlying angiogenesis during umbilical cord development.
Collapse
Affiliation(s)
- Jong-Yi Park
- Animal Resource Research Center, College of Animal Bioscience and Technology, KonKuk University, Seoul, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
397
|
Tiwari R, Sullivan J, Czuprynski C. PECAM-1 is involved in neutrophil transmigration across Histophilus somni treated bovine brain endothelial cells. Microb Pathog 2009; 47:164-70. [DOI: 10.1016/j.micpath.2009.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/26/2009] [Accepted: 06/04/2009] [Indexed: 11/17/2022]
|
398
|
Molecular mechanisms of leukocyte trafficking in T-cell-mediated skin inflammation: insights from intravital imaging. Expert Rev Mol Med 2009; 11:e25. [DOI: 10.1017/s146239940900115x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infiltration of T cells is a key step in the pathogenesis of the inflammatory skin diseases atopic dermatitis, allergic contact dermatitis and psoriasis. Understanding the mechanisms of T cell recruitment to the skin is therefore of fundamental importance for the discovery and application of novel therapies for these conditions. Studies of both clinical samples and experimental models of skin inflammation have implicated specific adhesion molecules and chemokines in lymphocyte recruitment. In particular, recent studies using advanced in vivo imaging techniques have greatly increased our understanding of the kinetics and molecular basis of this process. In this review, we summarise the current understanding of the cellular immunology of antigen-driven dermal inflammation and the roles of adhesion molecules and chemokines. We focus on results obtained using intravital microscopy to examine the dermal microvasculature and interstitium to determine the mechanisms of T cell recruitment and migration in experimental models of T-cell-mediated skin inflammation.
Collapse
|
399
|
Barreiro O, Sánchez-Madrid F. Molecular basis of leukocyte-endothelium interactions during the inflammatory response. Rev Esp Cardiol 2009; 62:552-62. [PMID: 19406069 DOI: 10.1016/s1885-5857(09)71837-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The process of leukocyte extravasation, a critical step in the inflammatory response, involves the migration of leukocytes from the bloodstream towards target tissues, where they exert their effector function. Leukocyte extravasation is orchestrated by the combined action of cellular adhesion receptors and chemotactic factors, and involves radical morphological changes in both leukocytes and endothelial cells. Thus, it constitutes an active process for both cell types and promotes the rapid and efficient influx of leukocytes to inflammatory foci without compromising the integrity of the endothelial barrier. This article provides a review of leukocyte extravasation from both molecular and mechanical points of view, with a particular emphasis on the most recent findings on the topic. It includes a description of newly revealed steps in the adhesion cascade, such as slow rolling motion, intraluminal crawling and alternative pathways for transcellular migration, and discusses the functional role of novel adhesion receptors, the spatiotemporal organization of receptors at the plasma membrane and the signaling pathways that control different phases of the extravasation process.
Collapse
Affiliation(s)
- Olga Barreiro
- Servicio de Inmunología. Hospital Universitario de la Princesa. Universidad Autónoma de Madrid. Departamento de Biología Vascular e Inflamación. Centro Nacional de Investigaciones Cardiovasculares. Madrid. España
| | | |
Collapse
|
400
|
Abstract
OBJECTIVE Vascular remodeling is a physiological process that occurs in response to long-term changes in hemodynamic conditions, but may also contribute to the pathophysiology of intima-media thickening (IMT) and vascular disease. Shear stress detection by the endothelium is thought to be an important determinant of vascular remodeling. Previous work showed that platelet endothelial cell adhesion molecule-1 (PECAM-1) is a component of a mechanosensory complex that mediates endothelial cell (EC) responses to shear stress. METHODS AND RESULTS We tested the hypothesis that PECAM-1 contributes to vascular remodeling by analyzing the response to partial carotid artery ligation in PECAM-1 knockout mice and wild-type littermates. PECAM-1 deficiency resulted in impaired vascular remodeling and significantly reduced IMT in areas of low flow. Inward remodeling was associated with PECAM-1-dependent NFkappaB activation, surface adhesion molecule expression, and leukocyte infiltration as well as Akt activation and vascular cell proliferation. CONCLUSIONS PECAM-1 plays a crucial role in the activation of the NFkappaB and Akt pathways and inflammatory cell accumulation during vascular remodeling and IMT. Elucidation of some of the signals that drive vascular remodeling represent pharmacologically tractable targets for the treatment of restenosis after balloon angioplasty or stent placement.
Collapse
Affiliation(s)
- Zhongming Chen
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, NC 27599, USA
| | | |
Collapse
|