351
|
Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, Stanton C. Gut microbiota, obesity and diabetes. Postgrad Med J 2016; 92:286-300. [PMID: 26912499 DOI: 10.1136/postgradmedj-2015-133285] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/28/2016] [Indexed: 02/06/2023]
Abstract
The central role of the intestinal microbiota in the progression and, equally, prevention of metabolic dysfunction is becoming abundantly apparent. The symbiotic relationship between intestinal microbiota and host ensures appropriate development of the metabolic system in humans. However, disturbances in composition and, in turn, functionality of the intestinal microbiota can disrupt gut barrier function, a trip switch for metabolic endotoxemia. This low-grade chronic inflammation, brought about by the influx of inflammatory bacterial fragments into circulation through a malfunctioning gut barrier, has considerable knock-on effects for host adiposity and insulin resistance. Conversely, recent evidence suggests that there are certain bacterial species that may interact with host metabolism through metabolite-mediated stimulation of enteric hormones and other systems outside of the gastrointestinal tract, such as the endocannabinoid system. When the abundance of these keystone species begins to decline, we see a collapse of the symbiosis, reflected in a deterioration of host metabolic health. This review will investigate the intricate axis between the microbiota and host metabolism, while also addressing the promising and novel field of probiotics as metabolic therapies.
Collapse
Affiliation(s)
- Elaine Patterson
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Paul M Ryan
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland School of Microbiology, University College Cork, Co. Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland Department of Anatomy and Neuroscience, University College Cork, Co. Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland Department of Psychiatry and Neurobehavioural Science, University College Cork, Co. Cork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland College of Science, Engineering and Food Science, University College Cork, Co. Cork, Ireland
| | - Gerald F Fitzgerald
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
352
|
Abstract
Given the recognized role of the commensal microbiota in regulating host immunity to pathogens, it is not surprising that microbiota are also capable of regulating autoimmune responses. The underlying mechanisms of autoimmune regulation by the microbiota are just beginning to emerge. Here, we discuss possible pressure points toward the development of autoimmune diseases that can be influenced by the microbiota. Besides acting on the adaptive and innate arms of the immune response, the microbiota can affect the targets of autoimmunity directly, even during development in utero, and be involved in regulation of autoimmunity via interactions with hormones.
Collapse
|
353
|
Lichtman JS, Ferreyra JA, Ng KM, Smits SA, Sonnenburg JL, Elias JE. Host-Microbiota Interactions in the Pathogenesis of Antibiotic-Associated Diseases. Cell Rep 2016; 14:1049-1061. [PMID: 26832403 PMCID: PMC5372703 DOI: 10.1016/j.celrep.2016.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/17/2015] [Accepted: 12/30/2015] [Indexed: 01/06/2023] Open
Abstract
Improved understanding of the interplay between host and microbes stands to illuminate new avenues for disease diagnosis, treatment, and prevention. Here, we provide a high-resolution view of the dynamics between host and gut microbiota during antibiotic-induced intestinal microbiota depletion, opportunistic Salmonella typhimurium and Clostridium difficile pathogenesis, and recovery from these perturbed states in a mouse model. Host-centric proteome and microbial community profiles provide a nuanced longitudinal view, revealing the interdependence between host and microbiota in evolving dysbioses. Time- and condition-specific molecular and microbial signatures are evident and clearly distinguished from pathogen-independent inflammatory fingerprints. Our data reveal that mice recovering from antibiotic treatment or C. difficile infection retain lingering signatures of inflammation, despite compositional normalization of the microbiota, and host responses could be rapidly and durably relieved through fecal transplant. These experiments demonstrate insights that emerge from the combination of these orthogonal, untargeted approaches to the gastrointestinal ecosystem.
Collapse
Affiliation(s)
- Joshua S Lichtman
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94025, USA
| | - Jessica A Ferreyra
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, CA 94025, USA
| | - Katharine M Ng
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, CA 94025, USA
| | - Samuel A Smits
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, CA 94025, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, CA 94025, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94025, USA.
| |
Collapse
|
354
|
Abstract
Type 1 diabetes is a multifactorial disease in which genetic and environmental factors play a key role. The triggering event is still obscure, and so are many of the immune events that follow. In this brief review, we discuss the possible role of potential environmental factors and which triggers are believed to have a role in the disease. In addition, as the disease evolves, beta cells are lost and this occurs in a very heterogeneous fashion. Our knowledge of how beta cell mass declines and our view of the disease’s pathogenesis are also debated. We highlight the major hallmarks of disease, among which are MHC-I (major histocompatibility complex class I) expression and insulitis. The dependence versus independence of antigen for the immune infiltrate is also discussed, as both the influence from bystander T cells and the formation of neo-epitopes through post-translational modifications are thought to influence the course of the disease. As human studies are proliferating, our understanding of the disease’s pathogenesis will increase exponentially. This article aims to shed light on some of the burning questions in type 1 diabetes research.
Collapse
Affiliation(s)
- Gustaf Christoffersson
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037, USA
| | - Teresa Rodriguez-Calvo
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037, USA
| | - Matthias von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037, USA; Novo Nordisk Diabetes Research & Development Center, Seattle, Washington, 98109, USA
| |
Collapse
|
355
|
Heida FH, van Zoonen AGJF, Hulscher JBF, Te Kiefte BJC, Wessels R, Kooi EMW, Bos AF, Harmsen HJM, de Goffau MC. A Necrotizing Enterocolitis-Associated Gut Microbiota Is Present in the Meconium: Results of a Prospective Study. Clin Infect Dis 2016; 62:863-870. [PMID: 26787171 DOI: 10.1093/cid/ciw016] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/16/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Anomalous intestinal microbiota development is supposedly associated with development of necrotizing enterocolitis (NEC). Our aim in this study was to identify the intestinal microbiota of patients at risk for NEC. METHODS In a prospective trial that investigated prognostic factors for development of NEC in high-risk neonates (NTR4153), 11 NEC cases were gestational age/birthweight matched with controls (ratio of 1:2). Feces were collected twice a week. We used the first feces sample of each patient (meconium), as well as the last 2 feces samples prior to development of NEC. DNA was extracted, and the bacterial 16S rRNA genes were analyzed on a MiSeq sequencer. RESULTS The presence and abundance of Clostridium perfringens (8.4%) and Bacteroides dorei (0.9%) in meconium were increased in neonates who developed NEC compared with controls (0.1% and 0.2%; both species, P < .001). In post-meconium samples, the abundance of staphylococci became negatively associated with NEC development (P = .1 and P = .01 for consecutive samples); Clostridium perfringens continued to be more prevalent in NEC cases. Early enteral feeding and, in particular, breast milk were correlated with an increase in lactate-producing bacilli in post-meconium samples (ρ = -0.45; P = .004). CONCLUSIONS A NEC-associated gut microbiota can be identified in meconium samples; C. perfringens continues to be associated with NEC from the first meconium till just before NEC onset. In contrast, in post-meconium, increased numbers of staphylococci were negatively associated with NEC. These findings suggest causality but this causality should be verified in trials of induced infection in animals, targeted antibiotics, and/or probiotics. CLINICAL TRIALS REGISTRATION CALIFORNIA trial, registered under trial number NTR4153 in the Dutch Trial Registry.
Collapse
Affiliation(s)
- Fardou H Heida
- Department of Pediatric Surgery.,Department of Medical Microbiology
| | | | | | | | | | - Elisabeth M W Kooi
- Department of Neonatology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Arend F Bos
- Department of Neonatology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | | |
Collapse
|
356
|
Semenkovich CF, Danska J, Darsow T, Dunne JL, Huttenhower C, Insel RA, McElvaine AT, Ratner RE, Shuldiner AR, Blaser MJ. American Diabetes Association and JDRF Research Symposium: Diabetes and the Microbiome. Diabetes 2015; 64:3967-77. [PMID: 26420863 PMCID: PMC4876761 DOI: 10.2337/db15-0597] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022]
Abstract
From 27-29 October 2014, more than 100 people gathered in Chicago, IL, to participate in a research symposium titled "Diabetes and the Microbiome," jointly sponsored by the American Diabetes Association and JDRF. The conference brought together international scholars and trainees from multiple disciplines, including microbiology, bioinformatics, endocrinology, metabolism, and immunology, to share the current understanding of host-microbe interactions and their influences on diabetes and metabolism. Notably, this gathering was the first to assemble specialists with distinct expertise in type 1 diabetes, type 2 diabetes, immunology, and microbiology with the goal of discussing and defining potential pathophysiologies linking the microbiome and diabetes. In addition to reviewing existing evidence in the field, speakers presented their own original research to provide a comprehensive view of the current understanding of the topics under discussion.Presentations and discussions throughout the conference reflected a number of important concepts. The microbiota in any host represent a complex ecosystem with a high degree of interindividual variability. Different microbial communities, comprising bacteria, archaea, viruses, and fungi, occupy separate niches in and on the human body. Individually and collectively, these microbes provide benefits to the host-including nutrient harvest from food and protection against pathogens. They are dynamically regulated by both host genes and the environment, and they critically influence both physiology and lifelong health. The objective of the symposium was to discuss the relationship between the host and the microbiome-the combination of microbiota and their biomolecular environment and ecology-specifically with regard to metabolic and immunological systems and to define the critical research needed to understand and potentially target the microbiome in the prevention and treatment of diabetes. In this report, we present meeting highlights in the following areas: 1) relationships between diabetes and the microbiome, 2) bioinformatic tools, resources, and study design considerations, 3) microbial programming of the immune system, 4) the microbiome and energy balance, 5) interventions, and 6) limitations, unanswered questions, and resource and policy needs.
Collapse
Affiliation(s)
| | | | | | | | - Curtis Huttenhower
- Harvard T.H. Chan School of Public Health, Boston, MA, and Broad Institute of MIT and Harvard, Cambridge, MA
| | | | | | | | | | | |
Collapse
|
357
|
Immuno-ecology: how the microbiome regulates tolerance and autoimmunity. Curr Opin Immunol 2015; 37:34-9. [DOI: 10.1016/j.coi.2015.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/19/2015] [Accepted: 09/25/2015] [Indexed: 01/06/2023]
|
358
|
Mejía-León ME, Barca AMCDL. Diet, Microbiota and Immune System in Type 1 Diabetes Development and Evolution. Nutrients 2015; 7:9171-84. [PMID: 26561831 PMCID: PMC4663589 DOI: 10.3390/nu7115461] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is the second most frequent autoimmune disease in childhood. The long-term micro- and macro-vascular complications of diabetes are associated with the leading causes of disability and even mortality in young adults. Understanding the T1D etiology will allow the design of preventive strategies to avoid or delay the T1D onset and to help to maintain control after developing. T1D development involves genetic and environmental factors, such as birth delivery mode, use of antibiotics, and diet. Gut microbiota could be the link between environmental factors, the development of autoimmunity, and T1D. In this review, we will focus on the dietary factor and its relationship with the gut microbiota in the complex process involved in autoimmunity and T1D. The molecular mechanisms involved will also be addressed, and finally, evidence-based strategies for potential primary and secondary prevention of T1D will be discussed.
Collapse
Affiliation(s)
- María E Mejía-León
- Department Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, A.C., Carr. La Victoria, Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Ana M Calderón de la Barca
- Department Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, A.C., Carr. La Victoria, Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
359
|
Sun J, Xu M, Ortsäter H, Lundeberg E, Juntti-Berggren L, Chen YQ, Haeggström JZ, Gudmundsson GH, Diana J, Agerberth B. Cathelicidins positively regulate pancreatic β-cell functions. FASEB J 2015; 30:884-94. [PMID: 26527065 DOI: 10.1096/fj.15-275826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022]
Abstract
Cathelicidins are pleiotropic antimicrobial peptides largely described for innate antimicrobial defenses and, more recently, immunomodulation. They are shown to modulate a variety of immune or nonimmune host cell responses. However, how cathelicidins are expressed by β cells and modulate β-cell functions under steady-state or proinflammatory conditions are unknown. We find that cathelicidin-related antimicrobial peptide (CRAMP) is constitutively expressed by rat insulinoma β-cell clone INS-1 832/13. CRAMP expression is inducible by butyrate or phenylbutyric acid and its secretion triggered upon inflammatory challenges by IL-1β or LPS. CRAMP promotes β-cell survival in vitro via the epidermal growth factor receptor (EGFR) and by modulating expression of antiapoptotic Bcl-2 family proteins: p-Bad, Bcl-2, and Bcl-xL. Also via EGFR, CRAMP stimulates glucose-stimulated insulin secretion ex vivo by rat islets. A similar effect is observed in diabetes-prone nonobese diabetic (NOD) mice. Additional investigation under inflammatory conditions reveals that CRAMP modulates inflammatory responses and β-cell apoptosis, as measured by prostaglandin E2 production, cyclooxygenases (COXs), and caspase activation. Finally, CRAMP-deficient cnlp(-/-) mice exhibit defective insulin secretion, and administration of CRAMP to prediabetic NOD mice improves blood glucose clearance upon glucose challenge. Our finding suggests that cathelicidins positively regulate β-cell functions and may be potentially used for intervening β-cell dysfunction-associated diseases.
Collapse
Affiliation(s)
- Jia Sun
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Meng Xu
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Henrik Ortsäter
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Erik Lundeberg
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lisa Juntti-Berggren
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yong Q Chen
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jesper Z Haeggström
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gudmundur H Gudmundsson
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Julien Diana
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Birgitta Agerberth
- *State Key Laboratory of Food Science and Technology, School of Food Science and Technology and Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China; Biomedical Centre, Uppsala University, Uppsala, Sweden; Diabetes Research Unit, Department of Clinical Science and Education, Department of Physiology and Pharmacology, and The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Biomedical Center, University of Iceland, Reykjavik, Iceland; Institut National de la Santé et de la Recherche Médicale, Institute Necker-Enfants Malades, Centre National de la Recherche Scientifique, Paris, France; **Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
360
|
Li X, Atkinson MA. The role for gut permeability in the pathogenesis of type 1 diabetes--a solid or leaky concept? Pediatr Diabetes 2015; 16:485-92. [PMID: 26269193 PMCID: PMC4638168 DOI: 10.1111/pedi.12305] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence, both functional and morphological, supports the concept of increased intestinal permeability as an intrinsic characteristic of type 1 diabetes (T1D) in both humans and animal models of the disease. Often referred to as a 'leaky gut', its mechanistic impact on the pathogenesis of T1D remains unclear. Hypotheses that this defect influences immune responses against antigens (both self and non-self) predominate, yet others argue hyperglycemia and insulitis may contribute to increased gut permeability in T1D. To address these complicated issues, we herein review the many conceptual role(s) for a leaky gut in the pathogenesis of T1D and suggest ways that if true, therapeutic interventions aimed at the gut-pancreas axis may prove promising for future therapeutic interventions.
Collapse
Affiliation(s)
- Xia Li
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States 32610,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States 32610
| |
Collapse
|
361
|
Lopez-Siles M, Martinez-Medina M, Abellà C, Busquets D, Sabat-Mir M, Duncan SH, Aldeguer X, Flint HJ, Garcia-Gil LJ. Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. Appl Environ Microbiol 2015; 81:7582-7592. [PMID: 26296733 PMCID: PMC4592880 DOI: 10.1128/aem.02006-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022] Open
Abstract
Faecalibacterium prausnitzii depletion in intestinal diseases has been extensively reported, but little is known about intraspecies variability. This work aims to determine if subjects with gastrointestinal disease host mucosa-associated F. prausnitzii populations different from those hosted by healthy individuals. A new species-specific PCR-denaturing gradient gel electrophoresis (PCR-DGGE) method targeting the 16S rRNA gene was developed to fingerprint F. prausnitzii populations in biopsy specimens from 31 healthy control (H) subjects and 36 Crohn's disease (CD), 23 ulcerative colitis (UC), 6 irritable bowel syndrome (IBS), and 22 colorectal cancer (CRC) patients. The richness of F. prausnitzii subtypes was lower in inflammatory bowel disease (IBD) patients than in H subjects. The most prevalent operational taxonomic units (OTUs) consisted of four phylotypes (OTUs with a 99% 16S rRNA gene sequence similarity [OTU99]), which were shared by all groups of patients. Their distribution and the presence of some disease-specific F. prausnitzii phylotypes allowed us to differentiate the populations in IBD and CRC patients from that in H subjects. At the level of a minimum similarity of 97% (OTU97), two phylogroups accounted for 98% of the sequences. Phylogroup I was found in 87% of H subjects but in under 50% of IBD patients (P = 0.003). In contrast, phylogroup II was detected in >75% of IBD patients and in only 52% of H subjects (P = 0.005). This study reveals that even though the main members of the F. prausnitzii population are present in both H subjects and individuals with gut diseases, richness is reduced in the latter and an altered phylotype distribution exists between diseases. This approach may serve as a basis for addressing the suitability of F. prausnitzii phylotypes to be quantified as a putative biomarker of disease and depicting the importance of the loss of these subtypes in disease pathogenesis.
Collapse
Affiliation(s)
- Mireia Lopez-Siles
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Girona, Spain
| | | | - Carles Abellà
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Girona, Spain
| | - David Busquets
- Department of Gastroenterology, Hospital Universitari Dr. Josep Trueta, Girona, Spain
| | - Miriam Sabat-Mir
- Department of Gastroenterology, Hospital Santa Caterina, Salt, Girona, Spain
| | - Sylvia H Duncan
- Microbial Ecology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Xavier Aldeguer
- Department of Gastroenterology, Hospital Universitari Dr. Josep Trueta, Girona, Spain
| | - Harry J Flint
- Microbial Ecology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - L Jesús Garcia-Gil
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Girona, Spain
| |
Collapse
|
362
|
Alkanani AK, Hara N, Gottlieb PA, Ir D, Robertson CE, Wagner BD, Frank DN, Zipris D. Alterations in Intestinal Microbiota Correlate With Susceptibility to Type 1 Diabetes. Diabetes 2015; 64:3510-20. [PMID: 26068542 PMCID: PMC4587635 DOI: 10.2337/db14-1847] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/29/2015] [Indexed: 12/26/2022]
Abstract
We tested the hypothesis that alterations in the intestinal microbiota are linked with the progression of type 1 diabetes (T1D). Herein, we present results from a study performed in subjects with islet autoimmunity living in the U.S. High-throughput sequencing of bacterial 16S rRNA genes and adjustment for sex, age, autoantibody presence, and HLA indicated that the gut microbiomes of seropositive subjects differed from those of autoantibody-free first-degree relatives (FDRs) in the abundance of four taxa. Furthermore, subjects with autoantibodies, seronegative FDRs, and new-onset patients had different levels of the Firmicutes genera Lactobacillus and Staphylococcus compared with healthy control subjects with no family history of autoimmunity. Further analysis revealed trends toward increased and reduced abundances of the Bacteroidetes genera Bacteroides and Prevotella, respectively, in seropositive subjects with multiple versus one autoantibody. Canonical discriminant analysis suggested that the gut microbiomes of autoantibody-positive individuals and seronegative FDRs clustered together but separate from those of new-onset patients and unrelated healthy control subjects. Finally, no differences in biodiversity were evident in seropositive versus seronegative FDRs. These observations suggest that altered intestinal microbiota may be associated with disease susceptibility.
Collapse
Affiliation(s)
- Aimon K Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Naoko Hara
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Diana Ir
- Division of Infectious Diseases, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Charles E Robertson
- Division of Infectious Diseases, School of Medicine, University of Colorado Denver, Aurora, CO University of Colorado Denver Microbiome Research Consortium, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Brandie D Wagner
- University of Colorado Denver Microbiome Research Consortium, School of Medicine, University of Colorado Denver, Aurora, CO Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO
| | - Daniel N Frank
- Division of Infectious Diseases, School of Medicine, University of Colorado Denver, Aurora, CO University of Colorado Denver Microbiome Research Consortium, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| |
Collapse
|
363
|
Sadaghian Sadabad M, Regeling A, de Goffau MC, Blokzijl T, Weersma RK, Penders J, Faber KN, Harmsen HJM, Dijkstra G. The ATG16L1-T300A allele impairs clearance of pathosymbionts in the inflamed ileal mucosa of Crohn's disease patients. Gut 2015; 64:1546-52. [PMID: 25253126 DOI: 10.1136/gutjnl-2014-307289] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 09/09/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Crohn's disease (CD) is caused by a complex interplay among genetic, microbial and environmental factors. ATG16L1 is an important genetic factor involved in innate immunity, including autophagy and phagocytosis of microbial components from the gut. We investigated the effect of inflammation on the composition of microbiota in the ileal mucosa of CD patients in relation to the ATG16L1 risk status. DESIGN Biopsies (n=35) were obtained from inflamed and non-inflamed regions of the terminal ileum of 11 CD patients homozygous for the ATG16L1 risk allele (ATG16L1-T300A) and 9 CD patients homozygous for the ATG16L1 protective allele (ATG16L1-T300). Biopsy DNA was extracted and the bacterial composition analysed by pyrosequencing. Intracellular survival rates of adherent-invasive Escherichia coli (AIEC) were analysed by determining colony forming units after exposure to monocytes isolated from healthy volunteers homozygous for the ATG16L1 risk or protective allele. RESULTS Inflamed ileal tissue from patients homozygous for the ATG16L1 risk allele contained increased numbers of Fusobacteriaceae, whereas inflamed ileal tissue of patients homozygous for the ATG16L1 protective allele showed decreased numbers of Bacteroidaceae and Enterobacteriaceae and increased Lachnospiraceae. The ATG16L1 allele did not affect the bacterial composition in the non-inflamed ileal tissue. Monocytes homozygous for the ATG16L1 risk allele showed impaired killing of AIEC under inflammatory conditions compared with those homozygous for the ATG16L1 protective allele. CONCLUSIONS CD patients homozygous for the ATG16L1-T300A risk allele show impaired clearance of pathosymbionts in ileal inflammation indicating that ATG16L1 is essential for effective elimination of pathosymbionts upon inflammation.
Collapse
Affiliation(s)
- Mehdi Sadaghian Sadabad
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anouk Regeling
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcus C de Goffau
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tjasso Blokzijl
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - John Penders
- Department of Medical Microbiology, School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
364
|
Hu Y, Peng J, Tai N, Hu C, Zhang X, Wong FS, Wen L. Maternal Antibiotic Treatment Protects Offspring from Diabetes Development in Nonobese Diabetic Mice by Generation of Tolerogenic APCs. THE JOURNAL OF IMMUNOLOGY 2015; 195:4176-84. [PMID: 26401004 DOI: 10.4049/jimmunol.1500884] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/28/2015] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that involves the slow, progressive destruction of islet β cells and loss of insulin production, as a result of interaction with environmental factors, in genetically susceptible individuals. The gut microbiome is established very early in life. Commensal microbiota establish mutualism with the host and form an important part of the environment to which individuals are exposed in the gut, providing nutrients and shaping immune responses. In this study, we studied the impact of targeting most Gram-negative bacteria in the gut of NOD mice at different time points in their life, using a combination of three antibiotics--neomycin, polymyxin B, and streptomycin--on diabetes development. We found that the prenatal period is a critical time for shaping the immune tolerance in the progeny, influencing development of autoimmune diabetes. Prenatal neomycin, polymyxin B, and streptomycin treatment protected NOD mice from diabetes development through alterations in the gut microbiota, as well as induction of tolerogenic APCs, which led to reduced activation of diabetogenic CD8 T cells. Most importantly, we found that the protective effect was age dependent, and the most profound protection was found when the mice were treated before birth. This indicates the importance of the prenatal environment and early exposure to commensal bacteria in shaping the host immune system and health.
Collapse
Affiliation(s)
- Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - Ningwen Tai
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - Changyun Hu
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - Xiaojun Zhang
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| |
Collapse
|
365
|
Intestinal microbiota and anastomotic leakage of stapled colorectal anastomoses: a pilot study. Surg Endosc 2015; 30:2259-65. [PMID: 26385781 PMCID: PMC4887536 DOI: 10.1007/s00464-015-4508-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/03/2015] [Indexed: 02/08/2023]
Abstract
Background
Anastomotic leakage (AL) after colorectal surgery is a severe complication, resulting in morbidity, reinterventions, prolonged hospital stay and, in some cases, death. Some technical and patient-related aetiological factors of AL are well established. In many cases, however, none of these factors seem to explain the occurrence of AL. Recent studies suggest that the intestinal microbiome plays a role in wound healing, diabetes and Crohn’s disease. The aim of this study was to compare the intestinal microbiota of patients who developed AL with matched patients with healed colorectal anastomoses. Methods We investigated the microbiome in the doughnuts collected from 16 patients participating in the C-seal trial. We selected eight patients who developed AL requiring reintervention and eight matched controls without AL. We analysed the bacterial 16S rDNA of both groups with MiSeq sequencing. Results The abundance of Lachnospiraceae is statistically higher (P = 0.001) in patient group who did develop AL, while microbial diversity levels were higher in the group who did not develop AL (P = 0.037). Body mass index (BMI) was also positively associated with the abundance of the Lachnospiraceae family (P = 0.022). Conclusion A correlation between the bacterial family Lachnospiraceae, low microbial diversity and anastomotic leakage, possibly in association with the BMI, was found. The relative abundance of the Lachnospiraceae family is possibly explained by the higher abundance of mucin-degrading Ruminococci within that family in AL cases (P = 0.011) as is similarly the case in IBD.
Electronic supplementary material The online version of this article (doi:10.1007/s00464-015-4508-z) contains supplementary material, which is available to authorized users.
Collapse
|
366
|
The Role of Gluten in Celiac Disease and Type 1 Diabetes. Nutrients 2015; 7:7143-62. [PMID: 26343710 PMCID: PMC4586524 DOI: 10.3390/nu7095329] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Celiac disease (CD) and type 1 diabetes (T1D) are autoimmune conditions in which dietary gluten has been proven or suggested to play a pathogenic role. In CD; gluten is established as the instigator of autoimmunity; the autoimmune process is halted by removing gluten from the diet; which allows for resolution of celiac autoimmune enteropathy and subsequent normalization of serological markers of the disease. However; an analogous causative agent has not yet been identified for T1D. Nevertheless; the role of dietary gluten in development of T1D and the potentially beneficial effect of removing gluten from the diet of patients with T1D are still debated. In this review; we discuss the comorbid occurrence of CD and T1D and explore current evidences for the specific role of gluten in both conditions; specifically focusing on current evidence on the effect of gluten on the immune system and the gut microbiota.
Collapse
|
367
|
Heinonen MT, Moulder R, Lahesmaa R. New Insights and Biomarkers for Type 1 Diabetes: Review for Scandinavian Journal of Immunology. Scand J Immunol 2015; 82:244-53. [DOI: 10.1111/sji.12338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- M. T. Heinonen
- Turku Centre for Biotechnology; University of Turku; Åbo Akademi University; Turku Finland
| | - R. Moulder
- Turku Centre for Biotechnology; University of Turku; Åbo Akademi University; Turku Finland
| | - R. Lahesmaa
- Turku Centre for Biotechnology; University of Turku; Åbo Akademi University; Turku Finland
| |
Collapse
|
368
|
Sun J, Furio L, Mecheri R, van der Does AM, Lundeberg E, Saveanu L, Chen Y, van Endert P, Agerberth B, Diana J. Pancreatic β-Cells Limit Autoimmune Diabetes via an Immunoregulatory Antimicrobial Peptide Expressed under the Influence of the Gut Microbiota. Immunity 2015; 43:304-17. [PMID: 26253786 DOI: 10.1016/j.immuni.2015.07.013] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/15/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) expressed by epithelial and immune cells are largely described for the defense against invading microorganisms. Recently, their immunomodulatory functions have been highlighted in various contexts. However how AMPs expressed by non-immune cells might influence autoimmune responses in peripheral tissues, such as the pancreas, is unknown. Here, we found that insulin-secreting β-cells produced the cathelicidin related antimicrobial peptide (CRAMP) and that this production was defective in non-obese diabetic (NOD) mice. CRAMP administrated to prediabetic NOD mice induced regulatory immune cells in the pancreatic islets, dampening the incidence of autoimmune diabetes. Additional investigation revealed that the production of CRAMP by β-cells was controlled by short-chain fatty acids produced by the gut microbiota. Accordingly, gut microbiota manipulations in NOD mice modulated CRAMP production and inflammation in the pancreatic islets, revealing that the gut microbiota directly shape the pancreatic immune environment and autoimmune diabetes development.
Collapse
Affiliation(s)
- Jia Sun
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue Wuxi, 214122 Jiangsu, P.R. China
| | - Laetitia Furio
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1163, Institut Imagine, 24 Boulevard du Montparnasse, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Ramine Mecheri
- Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Anne M van der Does
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Erik Lundeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Loredana Saveanu
- Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institut Necker-Enfants Malades (INEM), Centre National de la Recherche Scientifique, Unité 8253, 149 rue de Sèvres, 75015 Paris, France
| | - Yongquan Chen
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue Wuxi, 214122 Jiangsu, P.R. China
| | - Peter van Endert
- Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institut Necker-Enfants Malades (INEM), Centre National de la Recherche Scientifique, Unité 8253, 149 rue de Sèvres, 75015 Paris, France
| | - Birgitta Agerberth
- Medical Microbial Pathogenesis Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Julien Diana
- Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institut Necker-Enfants Malades (INEM), Centre National de la Recherche Scientifique, Unité 8253, 149 rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
369
|
Hu C, Wong FS, Wen L. Type 1 diabetes and gut microbiota: Friend or foe? Pharmacol Res 2015; 98:9-15. [PMID: 25747961 PMCID: PMC4469505 DOI: 10.1016/j.phrs.2015.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is a T cell-mediated autoimmune disease. Environmental factors play an important role in the initiation of the disease in genetically predisposed individuals. With the improved control of infectious disease, the incidence of autoimmune diseases, particularly type 1 diabetes, has dramatically increased in developed countries. Increasing evidence suggests that gut microbiota are involved in the pathogenesis of type 1 diabetes. Here we focus on recent advances in this field and provide a rationale for novel therapeutic strategies targeting gut microbiota for the prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Changyun Hu
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
370
|
Davis-Richardson AG, Triplett EW. A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes. Diabetologia 2015; 58:1386-93. [PMID: 25957231 PMCID: PMC4473028 DOI: 10.1007/s00125-015-3614-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/27/2015] [Indexed: 01/05/2023]
Abstract
Several lines of evidence suggest a role for the gut microbiome in type 1 diabetes. Treating diabetes-prone rodents with probiotics or antibiotics prevents the development of the disorder. Diabetes-prone rodents also have a distinctly different gut microbiome compared with healthy rodents. Recent studies in children with a high genetic risk for type 1 diabetes demonstrate significant differences in the gut microbiome between children who develop autoimmunity for the disease and those who remain healthy. However, the differences in microbiome composition between autoimmune and healthy children are not consistent across all studies because of the strong environmental influences on microbiome composition, particularly diet and geography. Controlling confounding factors of microbiome composition uncovers bacterial associations with disease. For example, in a human cohort from a single Finnish city where geography is confined, a strong association between one dominant bacterial species, Bacteroides dorei, and type 1 diabetes was discovered (Davis-Richardson et al. Front Microbiol 2014;5:678). Beyond this, recent DNA methylation analyses suggest that a thorough epigenetic analysis of the gut microbiome may be warranted. These studies suggest a testable model whereby a diet high in fat and gluten and low in resistant starch may be the primary driver of gut dysbiosis. This dysbiosis may cause a lack of butyrate production by gut bacteria, which, in turn, leads to the development of a permeable gut followed by autoimmunity. The bacterial community responsible for these changes in butyrate production may vary around the world, but bacteria of the genus Bacteroides are thought to play a key role.
Collapse
Affiliation(s)
- Austin G. Davis-Richardson
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, 1355 Museum Road, PO Box 110700, Gainesville, FL 32611-0700 USA
| | - Eric W. Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, 1355 Museum Road, PO Box 110700, Gainesville, FL 32611-0700 USA
| |
Collapse
|
371
|
Мokrozub VV, Lazarenko LM, Sichel LM, Babenko LP, Lytvyn PM, Demchenko OM, Melnichenko YO, Boyko NV, Biavati B, DiGioia D, Bubnov RV, Spivak MY. The role of beneficial bacteria wall elasticity in regulating innate immune response. EPMA J 2015; 6:13. [PMID: 26110044 PMCID: PMC4479350 DOI: 10.1186/s13167-015-0035-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/22/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Probiotics have great potential to contribute to development of healthy dietary regimes, preventive care, and an integrated approach to immunity-related disease management. The bacterial wall is a dynamic entity, depending on many components and playing an essential role in modulating immune response. The impact of cell wall elasticity on the beneficial effects of probiotic strains has not been sufficiently studied. The aim was to investigate the effect of lactic acid bacteria (LAB) and bifidobacteria strains on phagocytic system cells (macrophages) as related to bacterial wall elasticity, estimated using atomic force microscopy (AFM). METHODS We conducted studies on Balb/c line mice 18-20 g in weight using lyophilized strains of LAB-Lactobacillus acidophilus IMV B-7279, Lactobacillus casei IMV B-7280, Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281, and bifidobacteria-Bifidobacterium animalis VKL and Bifidobacterium animalis VKB. We cultivated the macrophages obtained from the peritoneal cavity of mice individually with the strains of LAB and bifidobacteria and evaluated their effect on macrophages, oxygen-dependent bactericidal activity, nitric oxide production, and immunoregulatory cytokines. We used AFM scanning to estimate bacterial cell wall elasticity. RESULTS All strains had a stimulating effect on the functional activity of macrophages and ability to produce NO/NO2 in vitro. Lactobacilli strains increased the production of IL-12 and IFN-γ in vitro. The AFM demonstrated different cell wall elasticity levels in various strains of LAB and bifidobacteria. The rigidity of the cell walls among lactobacilli was distributed as follows: Lactobacillus acidophilus IMV B-7279 > Lactobacillus casei IMV B-7280 > Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281; among the strains of bifidobacteria: B. animalis VKB > B. animalis VKL. Probiotic strain survival in the macrophages depended on the bacterial cell wall elasticity and on the time of their joint cultivation. CONCLUSION LAB and bifidobacteria strains stimulate immune-modulatory cytokines and active oxygen and nitrogen oxide compound production in macrophages. Strains with a more elastic cell wall according to AFM data demonstrated higher resistance to intracellular digestion in macrophages and higher level of their activation. AFM might be considered as a fast and accurate method to assess parameters of probiotic strain cell wall to predict their immune-modulatory properties.
Collapse
Affiliation(s)
- Viktoria V. Мokrozub
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
| | - Liudmyla M. Lazarenko
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
| | - Liubov M. Sichel
- />Pure Research Products, LLC, 6107, Chelsea Manor Court, Boulder, CO 80301 USA
| | - Lidia P. Babenko
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
| | - Petro M. Lytvyn
- />Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41, pr. Nauky, Kyiv, 03028 Ukraine
| | | | - Yulia O. Melnichenko
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
| | - Nadiya V. Boyko
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
| | - Bruno Biavati
- />Dipartimento di Scienze Agrarie, Alma Mater Studiorum—Bologna University, Bologna, 40127 Italy
| | - Diana DiGioia
- />Dipartimento di Scienze Agrarie, Alma Mater Studiorum—Bologna University, Bologna, 40127 Italy
| | - Rostyslav V. Bubnov
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
- />Clinical Hospital “Pheophania” of State Affairs Department, Zabolotny str., 21, Kyiv, 03680 Ukraine
| | - Mykola Ya Spivak
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
- />LCL «Diaprof», Svitlycky Str., 35, Kyiv, 04123 Ukraine
| |
Collapse
|
372
|
Gülden E, Wong FS, Wen L. The gut microbiota and Type 1 Diabetes. Clin Immunol 2015; 159:143-53. [PMID: 26051037 DOI: 10.1016/j.clim.2015.05.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 01/03/2023]
Abstract
Type 1 Diabetes (T1D) is a multifactorial, immune-mediated disease, which is characterized by the progressive destruction of autologous insulin-producing beta cells in the pancreas. The risk of developing T1D is determined by genetic, epigenetic and environmental factors. In the past few decades there has been a continuous rise in the incidence of T1D, which cannot be explained by genetic factors alone. Changes in our lifestyle that include diet, hygiene, and antibiotic usage have already been suggested to be causal factors for this rising T1D incidence. Only recently have microbiota, which are affected by all these factors, been recognized as key environmental factors affecting T1D development. In this review we will summarize current knowledge on the impact of gut microbiota on T1D development and give an outlook on the potential to design new microbiota-based therapies in the prevention and treatment of T1D.
Collapse
Affiliation(s)
- Elke Gülden
- Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Li Wen
- Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
373
|
Verbeke KA, Boobis AR, Chiodini A, Edwards CA, Franck A, Kleerebezem M, Nauta A, Raes J, van Tol EAF, Tuohy KM, on behalf of the ILSI Europe Prebiotics Task Force Expert Group ‘Microbial metabolism and fermentation’. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev 2015; 28:42-66. [PMID: 26156216 PMCID: PMC4501371 DOI: 10.1017/s0954422415000037] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Available evidence on the bioactive, nutritional and putative detrimental properties of gut microbial metabolites has been evaluated to support a more integrated view of how prebiotics might affect host health throughout life. The present literature inventory targeted evidence for the physiological and nutritional effects of metabolites, for example, SCFA, the potential toxicity of other metabolites and attempted to determine normal concentration ranges. Furthermore, the biological relevance of more holistic approaches like faecal water toxicity assays and metabolomics and the limitations of faecal measurements were addressed. Existing literature indicates that protein fermentation metabolites (phenol, p-cresol, indole, ammonia), typically considered as potentially harmful, occur at concentration ranges in the colon such that no toxic effects are expected either locally or following systemic absorption. The endproducts of saccharolytic fermentation, SCFA, may have effects on colonic health, host physiology, immunity, lipid and protein metabolism and appetite control. However, measuring SCFA concentrations in faeces is insufficient to assess the dynamic processes of their nutrikinetics. Existing literature on the usefulness of faecal water toxicity measures as indicators of cancer risk seems limited. In conclusion, at present there is insufficient evidence to use changes in faecal bacterial metabolite concentrations as markers of prebiotic effectiveness. Integration of results from metabolomics and metagenomics holds promise for understanding the health implications of prebiotic microbiome modulation but adequate tools for data integration and interpretation are currently lacking. Similarly, studies measuring metabolite fluxes in different body compartments to provide a more accurate picture of their nutrikinetics are needed.
Collapse
Affiliation(s)
- Kristin A. Verbeke
- Translational Research in Gastrointestinal Disorders (TARGID), KU Leuven and Leuven Food Science and Nutrition Research Center (LFoRCe), Leuven, Belgium
| | - Alan R. Boobis
- Department of Medicine, Imperial College London, London, UK
| | - Alessandro Chiodini
- Formerly ILSI Europe, Box 6, Avenue Emmanuel Mounier 83, BE-1200, Brussels, Belgium; now European Commission, Research Executive Agency (REA) Unit B2, Brussels, Belgium
| | - Christine A. Edwards
- Human Nutrition School of Medicine, College of MVLS, University of Glasgow, Glasgow, Scotland
| | | | - Michiel Kleerebezem
- Host Microbe Interactomics, Wageningen University, Wageningen, The Netherlands
| | - Arjen Nauta
- FrieslandCampina, Amersfoort, The Netherlands
| | - Jeroen Raes
- Microbiology and Immunology, Rega Institute, KU Leuven, Leuven; VIB, Leuven; DBIT, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Kieran M. Tuohy
- Nutrition and Nutrigenomics, Research and Innovation Centre-Fondazione Edmund Mach, Trento, Italy
| | | |
Collapse
|
374
|
Khan S, Jena G. The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: experimental evidence for therapeutic intervention. Epigenomics 2015; 7:669-80. [DOI: 10.2217/epi.15.20] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The contribution of epigenetic mechanisms in diabetes mellitus (DM), β-cell reprogramming and its complications is an emerging concept. Recent evidence suggests that there is a link between DM and histone deacetylases (HDACs), because HDAC inhibitors promote β-cell differentiation, proliferation, function and improve insulin resistance. Moreover, gut microbes and diet-derived products can alter the host epigenome. Furthermore, butyrate and butyrate-producing microbes are decreased in DM. Butyrate is a short-chain fatty acid produced from the fermentation of dietary fibers by microbiota and has been proven as an HDAC inhibitor. The present review provides a pragmatic interpretation of chromatin-dependent and independent complex signaling/mechanisms of butyrate for the treatment of Type 1 and Type 2 DM, with an emphasis on the promising strategies for its drugability and therapeutic implication.
Collapse
Affiliation(s)
- Sabbir Khan
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Sector-67, S.A.S. Nagar, Punjab 60 062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Sector-67, S.A.S. Nagar, Punjab 60 062, India
| |
Collapse
|
375
|
Candon S, Perez-Arroyo A, Marquet C, Valette F, Foray AP, Pelletier B, Milani C, Ventura M, Bach JF, Chatenoud L. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes. PLoS One 2015; 10:e0125448. [PMID: 25970503 PMCID: PMC4430542 DOI: 10.1371/journal.pone.0125448] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 03/02/2015] [Indexed: 12/11/2022] Open
Abstract
Insulin-dependent or type 1 diabetes is a prototypic autoimmune disease whose incidence steadily increased over the past decades in industrialized countries. Recent evidence suggests the importance of the gut microbiota to explain this trend. Here, non-obese diabetic (NOD) mice that spontaneously develop autoimmune type 1 diabetes were treated with different antibiotics to explore the influence of a targeted intestinal dysbiosis in the progression of the disease. A mixture of wide spectrum antibiotics (i.e. streptomycin, colistin and ampicillin) or vancomycin alone were administered orally from the moment of conception, treating breeding pairs, and during the postnatal and adult life until the end of follow-up at 40 weeks. Diabetes incidence significantly and similarly increased in male mice following treatment with these two antibiotic regimens. In NOD females a slight yet not significant trend towards an increase in disease incidence was observed. Changes in gut microbiota composition were assessed by sequencing the V3 region of bacterial 16S rRNA genes. Administration of the antibiotic mixture resulted in near complete ablation of the gut microbiota. Vancomycin treatment led to increased Escherichia, Lactobacillus and Sutterella genera and decreased members of the Clostridiales order and Lachnospiraceae, Prevotellaceae and Rikenellaceae families, as compared to control mice. Massive elimination of IL-17-producing cells, both CD4+TCRαβ+ and TCRγδ+ T cells was observed in the lamina propria of the ileum and the colon of vancomycin-treated mice. These results show that a directed even partial ablation of the gut microbiota, as induced by vancomycin, significantly increases type 1 diabetes incidence in male NOD mice thus prompting for caution in the use of antibiotics in pregnant women and newborns.
Collapse
Affiliation(s)
- Sophie Candon
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France
- INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France
- CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - Alicia Perez-Arroyo
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France
- INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France
- CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - Cindy Marquet
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France
- INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France
- CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - Fabrice Valette
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France
- INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France
- CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - Anne-Perrine Foray
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France
- INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France
- CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - Benjamin Pelletier
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France
- INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France
- CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - Cristian Milani
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Jean-François Bach
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France
- INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France
- CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - Lucienne Chatenoud
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France
- INSERM U1151, Hôpital Necker-Enfants Malades, Paris, France
- CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
- * E-mail:
| |
Collapse
|
376
|
Gomez A, Luckey D, Taneja V. The gut microbiome in autoimmunity: Sex matters. Clin Immunol 2015; 159:154-62. [PMID: 25956531 DOI: 10.1016/j.clim.2015.04.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases like rheumatoid arthritis are multifactorial in nature, requiring both genetic and environmental factors for onset. Increased predisposition of females to a wide range of autoimmune diseases points to a gender bias in the multifactorial etiology of these disorders. However, the existing evidence to date has not provided any conclusive mechanism of gender-bias beyond the role of hormones and sex chromosomes. The gut microbiome, which impacts the innate and adaptive branches of immunity, not only influences the development of autoimmune disorders but may interact with sex-hormones to modulate disease progression and sex-bias. Here, we review the current information on gender bias in autoimmunity and discuss the potential of microbiome-derived biomarkers to help unravel the complex interplay between genes, environment and hormones in rheumatoid arthritis.
Collapse
Affiliation(s)
| | - David Luckey
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
377
|
Knip M, Siljander H. Microbe-based approaches for the treatment of diabetes. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/dmt.15.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
378
|
Simpfendorfer KR, Strugnell RA, Brodnicki TC, Wijburg OLC. Increased autoimmune diabetes in pIgR-deficient NOD mice is due to a "Hitchhiking" interval that refines the genetic effect of Idd5.4. PLoS One 2015; 10:e0121979. [PMID: 25835383 PMCID: PMC4383422 DOI: 10.1371/journal.pone.0121979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/05/2015] [Indexed: 01/12/2023] Open
Abstract
Selective breeding to introduce a gene mutation from one mouse strain onto the genetic background of another strain invariably produces “hitchhiking” (i.e. flanking) genomic intervals, which may independently affect a disease trait of interest. To investigate a role for the polymeric Ig receptor in autoimmune diabetes, a congenic nonobese diabetic (NOD) mouse strain was generated that harbors a Pigr null allele derived from C57BL/6 (B6) mice. These pIgR-deficient NOD mice exhibited increased serum IgA along with an increased diabetes incidence. However, the Pigr null allele was encompassed by a relatively large “hitchhiking” genomic interval that was derived from B6 mice and overlaps Idd5.4, a susceptibility locus for autoimmune diabetes. Additional congenic NOD mouse strains, harboring smaller B6-derived intervals, confirmed Idd5.4 independently of the other three known susceptibility loci on chromosome 1, and further localized Idd5.4 to an interval proximal to Pigr. Moreover, these congenic NOD mice showed that B6 mice harbor a more diabetogenic allele than NOD mice for this locus. The smallest B6-derived interval encompassing the Pigr null allele may, however, confer a small degree of protection against diabetes, but this protection appears to be dependent on the absence of the diabetogenic B6 allele for Idd5.4. This study provides another example of the potential hidden effects of “hitchhiking" genomic intervals and how such intervals can be used to localize disease susceptibility loci.
Collapse
MESH Headings
- Age Factors
- Alleles
- Animals
- Chromosome Mapping
- Chromosomes, Mammalian/chemistry
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Disease Models, Animal
- Female
- Genetic Loci
- Genetic Predisposition to Disease
- Genome
- Humans
- Immunoglobulin A/blood
- Immunoglobulin A/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Receptors, Polymeric Immunoglobulin/deficiency
- Receptors, Polymeric Immunoglobulin/genetics
- Receptors, Polymeric Immunoglobulin/immunology
Collapse
Affiliation(s)
- Kim R. Simpfendorfer
- The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Richard A. Strugnell
- The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- The Australian Bacterial Pathogenesis Program, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas C. Brodnicki
- Immunology & Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Odilia L. C. Wijburg
- The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- The Australian Bacterial Pathogenesis Program, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
379
|
Can exposure to environmental chemicals increase the risk of diabetes type 1 development? BIOMED RESEARCH INTERNATIONAL 2015; 2015:208947. [PMID: 25883945 PMCID: PMC4391693 DOI: 10.1155/2015/208947] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/14/2014] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.
Collapse
|
380
|
West CE, Renz H, Jenmalm MC, Kozyrskyj AL, Allen KJ, Vuillermin P, Prescott SL. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies. J Allergy Clin Immunol 2015; 135:3-13; quiz 14. [PMID: 25567038 DOI: 10.1016/j.jaci.2014.11.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 02/08/2023]
Abstract
Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity for multisystem effects. Changes in microbial composition are implicated in the increasing propensity for a broad range of inflammatory diseases, such as allergic disease, asthma, inflammatory bowel disease (IBD), obesity, and associated noncommunicable diseases (NCDs). There are also suggestive implications for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti-inflammatory properties. Specific probiotics also have immunomodulatory and metabolic effects. However, when evaluated in clinical trials, the effects are variable, preliminary, or limited in magnitude. Fecal microbiota transplantation is another emerging therapy that regulates inflammation in experimental models. In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention.
Collapse
Affiliation(s)
- Christina E West
- International Inflammation (in-FLAME) Network of the World Universities Network; Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden.
| | - Harald Renz
- International Inflammation (in-FLAME) Network of the World Universities Network; Department of Clinical Chemistry and Molecular Diagnostics, University of Marburg, Marburg, Germany
| | - Maria C Jenmalm
- International Inflammation (in-FLAME) Network of the World Universities Network; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anita L Kozyrskyj
- International Inflammation (in-FLAME) Network of the World Universities Network; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Katrina J Allen
- International Inflammation (in-FLAME) Network of the World Universities Network; Murdoch Childrens Research Institute and Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Peter Vuillermin
- International Inflammation (in-FLAME) Network of the World Universities Network; Child Health research Unit, Barwon Health, Geelong, Australia
| | - Susan L Prescott
- International Inflammation (in-FLAME) Network of the World Universities Network; School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | | |
Collapse
|
381
|
Olivares M, Neef A, Castillejo G, Palma GD, Varea V, Capilla A, Palau F, Nova E, Marcos A, Polanco I, Ribes-Koninckx C, Ortigosa L, Izquierdo L, Sanz Y. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 2015; 64:406-17. [PMID: 24939571 DOI: 10.1136/gutjnl-2014-306931] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Intestinal dysbiosis has been associated with coeliac disease (CD), but whether the alterations are cause or consequence of the disease is unknown. This study investigated whether the human leukocyte antigen (HLA)-DQ2 genotype is an independent factor influencing the early gut microbiota composition of healthy infants at family risk of CD. DESIGN As part of a larger prospective study, a subset (n=22) of exclusively breastfed and vaginally delivered infants with either high genetic risk (HLA-DQ2 carriers) or low genetic risk (non-HLA-DQ2/8 carriers) of developing CD were selected from a cohort of healthy infants with at least one first-degree relative with CD. Infant faecal microbiota was analysed by 16S rRNA gene pyrosequencing and real time quantitative PCR. RESULTS Infants with a high genetic risk had significantly higher proportions of Firmicutes and Proteobacteria and lower proportions of Actinobacteria compared with low-risk infants. At genus level, high-risk infants had significantly less Bifidobacterium and unclassified Bifidobacteriaceae proportions and more Corynebacterium, Gemella, Clostridium sensu stricto, unclassified Clostridiaceae, unclassified Enterobacteriaceae and Raoultella proportions. Quantitative real time PCR also revealed lower numbers of Bifidobacterium species in infants with high genetic risk than in those with low genetic risk. In high-risk infants negative correlations were identified between Bifidobacterium species and several genera of Proteobacteria (Escherichia/Shigella) and Firmicutes (Clostridium). CONCLUSIONS The genotype of infants at family risk of developing CD, carrying the HLA-DQ2 haplotypes, influences the early gut microbiota composition. This finding suggests that a specific disease-biased host genotype may also select for the first gut colonisers and could contribute to determining disease risk.
Collapse
Affiliation(s)
- M Olivares
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - A Neef
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - G Castillejo
- Hospital Universitario Sant Joan de Reus, Tarragona, Spain
| | - G De Palma
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - V Varea
- Gastroenterología, Nutrición y Hepatología Pediátrica, Hospital Universitario Sant Joan de Deu and Unidad de Gastroenterología Pediátrica del Institut Dexeus, Barcelona, Spain
| | - A Capilla
- Centro de Investigación Príncipe Felipe (CIPF) and IBV-CSIC Associated Unit, CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - F Palau
- Centro de Investigación Príncipe Felipe (CIPF) and IBV-CSIC Associated Unit, CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - E Nova
- Department Metabolismo y Nutrición, ICTAN-CSIC, Madrid, Spain
| | - A Marcos
- Department Metabolismo y Nutrición, ICTAN-CSIC, Madrid, Spain
| | - I Polanco
- Servicio de Gastroenterología y Nutrición Pediátrica, Hospital Universitario La Paz, Madrid, Spain
| | - C Ribes-Koninckx
- Unidad de Gastroenterología Pediátrica, Hospital Universitario La Fe, Valencia, Spain
| | - L Ortigosa
- Unidad de Gastroenterología, Hepatología y Nutrición Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Canarias, Spain
| | - L Izquierdo
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Y Sanz
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| |
Collapse
|
382
|
Tai N, Wong FS, Wen L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev Endocr Metab Disord 2015; 16:55-65. [PMID: 25619480 PMCID: PMC4348024 DOI: 10.1007/s11154-015-9309-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is a group of metabolic disorders characterized by persistent hyperglycemia and has become a major public health concern. Autoimmune type 1 diabetes (T1D) and insulin resistant type 2 diabetes (T2D) are the two main types. A combination of genetic and environmental factors contributes to the development of these diseases. Gut microbiota have emerged recently as an essential player in the development of T1D, T2D and obesity. Altered gut microbiota have been strongly linked to disease in both rodent models and humans. Both classic 16S rRNA sequencing and shot-gun metagenomic pyrosequencing analysis have been successfully applied to explore the gut microbiota composition and functionality. This review focuses on the association between gut microbiota and diabetes and discusses the potential mechanisms by which gut microbiota regulate disease development in T1D, T2D and obesity.
Collapse
Affiliation(s)
- Ningwen Tai
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, USA
| | | | | |
Collapse
|
383
|
Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, Hämäläinen AM, Peet A, Tillmann V, Pöhö P, Mattila I, Lähdesmäki H, Franzosa EA, Vaarala O, de Goffau M, Harmsen H, Ilonen J, Virtanen SM, Clish CB, Orešič M, Huttenhower C, Knip M, Xavier RJ. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 2015; 17:260-73. [PMID: 25662751 DOI: 10.1016/j.chom.2015.01.001] [Citation(s) in RCA: 839] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/05/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022]
Abstract
Colonization of the fetal and infant gut microbiome results in dynamic changes in diversity, which can impact disease susceptibility. To examine the relationship between human gut microbiome dynamics throughout infancy and type 1 diabetes (T1D), we examined a cohort of 33 infants genetically predisposed to T1D. Modeling trajectories of microbial abundances through infancy revealed a subset of microbial relationships shared across most subjects. Although strain composition of a given species was highly variable between individuals, it was stable within individuals throughout infancy. Metabolic composition and metabolic pathway abundance remained constant across time. A marked drop in alpha-diversity was observed in T1D progressors in the time window between seroconversion and T1D diagnosis, accompanied by spikes in inflammation-favoring organisms, gene functions, and serum and stool metabolites. This work identifies trends in the development of the human infant gut microbiome along with specific alterations that precede T1D onset and distinguish T1D progressors from nonprogressors.
Collapse
Affiliation(s)
- Aleksandar D Kostic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Dirk Gevers
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland
| | - Tommi Vatanen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Information and Computer Science, Aalto University School of Science, 02150 Espoo, Finland
| | - Tuulia Hyötyläinen
- Steno Diabetes Center, 2820 Gentofte, Denmark; VTT Technical Research Centre of Finland, 02044 Espoo, Finland
| | | | - Aleksandr Peet
- Department of Pediatrics, University of Tartu, Estonia and Tartu University Hospital, 51014 Tartu, Estonia
| | - Vallo Tillmann
- Department of Pediatrics, University of Tartu, Estonia and Tartu University Hospital, 51014 Tartu, Estonia
| | - Päivi Pöhö
- Faculty of Pharmacy, University of Helsinki, 00290 Helsinki, Finland; VTT Technical Research Centre of Finland, 02044 Espoo, Finland
| | - Ismo Mattila
- Steno Diabetes Center, 2820 Gentofte, Denmark; VTT Technical Research Centre of Finland, 02044 Espoo, Finland
| | - Harri Lähdesmäki
- Department of Information and Computer Science, Aalto University School of Science, 02150 Espoo, Finland
| | - Eric A Franzosa
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Outi Vaarala
- Research Program Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland
| | - Marcus de Goffau
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Hermie Harmsen
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, 20520 Turku, Finland; Department of Clinical Microbiology, University of Eastern Finland, 70211 Kuopio, Finland
| | - Suvi M Virtanen
- Department of Lifestyle and Participation, National Institute for Health and Welfare, 00271 Helsinki, Finland; School of Health Sciences, University of Tampere, 33014 Tampere, Finland; Science Centre, Pirkanmaa Hospital District, 33521 Tampere, Finland
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matej Orešič
- Steno Diabetes Center, 2820 Gentofte, Denmark; VTT Technical Research Centre of Finland, 02044 Espoo, Finland
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland; Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, 33521 Tampere, Finland
| | | | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
384
|
Krych Ł, Nielsen DS, Hansen AK, Hansen CHF. Gut microbial markers are associated with diabetes onset, regulatory imbalance, and IFN-γ level in NOD mice. Gut Microbes 2015; 6:101-9. [PMID: 25648687 PMCID: PMC4615729 DOI: 10.1080/19490976.2015.1011876] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota regulated imbalances in the host's immune profile seem to be an important factor in the etiology of type 1 diabetes (T1D), and identifying bacterial markers for T1D may therefore be useful in diagnosis and prevention of T1D. The aim of the present study was to investigate the link between the early gut microbiota and immune parameters of non-obese diabetic (NOD) mice in order to select alleged bacterial markers of T1D. Gut microbial composition in feces was analyzed with 454/FLX Titanium (Roche) pyro-sequencing and correlated with diabetes onset age and immune cell populations measured in diabetic and non-diabetic mice at 30 weeks of age. The early gut microbiota composition was found to be different between NOD mice that later in life were classified as diabetic or non-diabetic. Those differences were further associated with changes in FoxP3(+) regulatory T cells, CD11b(+) dendritic cells, and IFN-γ production. The model proposed in this work suggests that operational taxonomic units classified to S24-7, Prevotella, and an unknown Bacteriodales (all Bacteroidetes) act in favor of diabetes protection whereas members of Lachnospiraceae, Ruminococcus, and Oscillospira (all Firmicutes) promote pathogenesis.
Collapse
Key Words
- CD, cluster of differentiation
- DC, dendritic cell
- FoxP3, forkhead box
- IFN, interferon
- IFN-γ
- MLN, mesenteric lymph node
- NKT, natural killer T cell
- NOD mice
- PCA, principal component analysis
- PCoA, principal coordinate analysis
- PLN, pancreatic lymph node
- Treg, regulatory T cell
- Type 1 diabetes
- gut microbiota
- regulatory immunity
- siLP, small intestinal lamina propria
Collapse
Affiliation(s)
- Ł Krych
- Department of Food Science; Faculty of Science; University of Copenhagen; Copenhagen, Denmark,Correspondence to: Ł Krych;
| | - DS Nielsen
- Department of Food Science; Faculty of Science; University of Copenhagen; Copenhagen, Denmark
| | - AK Hansen
- Department of Veterinary Disease Biology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen, Denmark
| | - CHF Hansen
- Department of Veterinary Disease Biology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
385
|
Kemppainen KM, Ardissone AN, Davis-Richardson AG, Fagen JR, Gano KA, León-Novelo LG, Vehik K, Casella G, Simell O, Ziegler AG, Rewers MJ, Lernmark Å, Hagopian W, She JX, Krischer JP, Akolkar B, Schatz DA, Atkinson MA, Triplett EW. Early childhood gut microbiomes show strong geographic differences among subjects at high risk for type 1 diabetes. Diabetes Care 2015; 38:329-32. [PMID: 25519450 PMCID: PMC4302256 DOI: 10.2337/dc14-0850] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/22/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Gut microbiome dysbiosis is associated with numerous diseases, including type 1 diabetes. This pilot study determines how geographical location affects the microbiome of infants at high risk for type 1 diabetes in a population of homogenous HLA class II genotypes. RESEARCH DESIGN AND METHODS High-throughput 16S rRNA sequencing was performed on stool samples collected from 90 high-risk, nonautoimmune infants participating in The Environmental Determinants of Diabetes in the Young (TEDDY) study in the U.S., Germany, Sweden, and Finland. RESULTS Study site-specific patterns of gut colonization share characteristics across continents. Finland and Colorado have a significantly lower bacterial diversity, while Sweden and Washington state are dominated by Bifidobacterium in early life. Bacterial community diversity over time is significantly different by geographical location. CONCLUSIONS The microbiome of high-risk infants is associated with geographical location. Future studies aiming to identify the microbiome disease phenotype need to carefully consider the geographical origin of subjects.
Collapse
Affiliation(s)
- Kaisa M Kemppainen
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Alexandria N Ardissone
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Austin G Davis-Richardson
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Jennie R Fagen
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Kelsey A Gano
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Luis G León-Novelo
- Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA
| | - Kendra Vehik
- Health Informatics Institute, University of South Florida, Tampa, FL
| | - George Casella
- Department of Statistics, University of Florida, Gainesville, FL
| | - Olli Simell
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | - Anette G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum Rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V., Neuherberg, Germany
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | | | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | | | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Eric W Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| |
Collapse
|
386
|
Altered CD161 bright CD8+ mucosal associated invariant T (MAIT)-like cell dynamics and increased differentiation states among juvenile type 1 diabetics. PLoS One 2015; 10:e0117335. [PMID: 25625430 PMCID: PMC4307988 DOI: 10.1371/journal.pone.0117335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
Type 1A diabetes (T1D) is believed to be caused by immune-mediated destruction of β-cells, but the immunological basis for T1D remains controversial. Microbial diversity promotes the maturation and activation of certain immune subsets, including CD161bright CD8+ mucosal associated invariant T (MAIT) cells, and alterations in gut mucosal responses have been reported in type 1 diabetics (T1Ds). We analyzed T cell populations in peripheral blood leukocytes from juvenile T1Ds and healthy controls. We found that proportion and absolute number of MAIT cells were similar between T1Ds and controls. Furthermore, while MAIT cell proportions increased with age among healthy controls, this trend was not observed among long-standing T1Ds. Additionally, the CD27- MAIT cell subset is significantly increased in T1Ds and positively correlated with HbA1c levels. However, after T1Ds are stratified by age, the younger group has significantly increased proportions of CD27- MAIT cells compared to age-matched controls, and this proportional increase appears to be independent of HbA1c levels. Finally, we analyzed function of the CD27- MAIT cells and observed that IL-17A production is increased in CD27- compared to CD27+ MAIT cells. Overall, our data reveal disparate MAIT cell dynamics between T1Ds and controls, as well as signs of increased MAIT cell activation in T1Ds. These changes may be linked to hyperglycemia and increased mucosal challenge among T1Ds.
Collapse
|
387
|
Abstract
Neonates face unique challenges in the period following birth. The postnatal immune system is in the early stages of development and has a range of functional capabilities that are distinct from the mature adult immune system. Bidirectional immune-microbial interactions regulate the development of mucosal immunity and alter the composition of the microbiota, which contributes to overall host well-being. In the past few years, nutrition has been highlighted as a third element in this interaction that governs host health by modulating microbial composition and the function of the immune system. Dietary changes and imbalances can disturb the immune-microbiota homeostasis, which might alter susceptibility to several autoimmune and metabolic diseases. Major changes in cultural traditions, socioeconomic status and agriculture are affecting the nutritional status of humans worldwide, which is altering core intestinal microbial communities. This phenomenon is especially relevant to the neonatal and paediatric populations, in which the microbiota and immune system are extremely sensitive to dietary influences. In this Review, we discuss the current state of knowledge regarding early-life nutrition, its effects on the microbiota and the consequences of diet-induced perturbation of the structure of the microbial community on mucosal immunity and disease susceptibility.
Collapse
Affiliation(s)
- Nitya Jain
- Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - W Allan Walker
- Mucosal Immunology and Biology Research Centre, Massachusetts General Hospital, Building 114, 16th Street, Charlestown, MA 02129-4404, USA
| |
Collapse
|
388
|
Leal-Lopes C, Velloso FJ, Campopiano JC, Sogayar MC, Correa RG. Roles of Commensal Microbiota in Pancreas Homeostasis and Pancreatic Pathologies. J Diabetes Res 2015; 2015:284680. [PMID: 26347203 PMCID: PMC4544440 DOI: 10.1155/2015/284680] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
The pancreas plays a central role in metabolism, allowing ingested food to be converted and used as fuel by the cells throughout the body. On the other hand, the pancreas may be affected by devastating diseases, such as pancreatitis, pancreatic adenocarcinoma (PAC), and diabetes mellitus (DM), which generally results in a wide metabolic imbalance. The causes for the development and progression of these diseases are still controversial; therefore it is essential to better understand the underlying mechanisms which compromise the pancreatic homeostasis. The interest in the study of the commensal microbiome increased extensively in recent years, when many discoveries have illustrated its central role in both human physiology and maintenance of homeostasis. Further understanding of the involvement of the microbiome during the development of pathological conditions is critical for the improvement of new diagnostic and therapeutic approaches. In the present review, we discuss recent findings on the behavior and functions played by the microbiota in major pancreatic diseases and provide further insights into its potential roles in the maintenance of pancreatic steady-state activities.
Collapse
Affiliation(s)
- Camila Leal-Lopes
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Fernando J. Velloso
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Julia C. Campopiano
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Mari C. Sogayar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Ricardo G. Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- *Ricardo G. Correa:
| |
Collapse
|
389
|
Systemic Manifestations of Mucosal Diseases. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
390
|
Davis-Richardson AG, Ardissone AN, Dias R, Simell V, Leonard MT, Kemppainen KM, Drew JC, Schatz D, Atkinson MA, Kolaczkowski B, Ilonen J, Knip M, Toppari J, Nurminen N, Hyöty H, Veijola R, Simell T, Mykkänen J, Simell O, Triplett EW. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol 2014; 5:678. [PMID: 25540641 PMCID: PMC4261809 DOI: 10.3389/fmicb.2014.00678] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/19/2014] [Indexed: 01/15/2023] Open
Abstract
The incidence of the autoimmune disease, type 1 diabetes (T1D), has increased dramatically over the last half century in many developed countries and is particularly high in Finland and other Nordic countries. Along with genetic predisposition, environmental factors are thought to play a critical role in this increase. As with other autoimmune diseases, the gut microbiome is thought to play a potential role in controlling progression to T1D in children with high genetic risk, but we know little about how the gut microbiome develops in children with high genetic risk for T1D. In this study, the early development of the gut microbiomes of 76 children at high genetic risk for T1D was determined using high-throughput 16S rRNA gene sequencing. Stool samples from children born in the same hospital in Turku, Finland were collected at monthly intervals beginning at 4-6 months after birth until 2.2 years of age. Of those 76 children, 29 seroconverted to T1D-related autoimmunity (cases) including 22 who later developed T1D, the remaining 47 subjects remained healthy (controls). While several significant compositional differences in low abundant species prior to seroconversion were found, one highly abundant group composed of two closely related species, Bacteroides dorei and Bacteroides vulgatus, was significantly higher in cases compared to controls prior to seroconversion. Metagenomic sequencing of samples high in the abundance of the B. dorei/vulgatus group before seroconversion, as well as longer 16S rRNA sequencing identified this group as Bacteroides dorei. The abundance of B. dorei peaked at 7.6 months in cases, over 8 months prior to the appearance of the first islet autoantibody, suggesting that early changes in the microbiome may be useful for predicting T1D autoimmunity in genetically susceptible infants. The cause of increased B. dorei abundance in cases is not known but its timing appears to coincide with the introduction of solid food.
Collapse
Affiliation(s)
- Austin G Davis-Richardson
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Alexandria N Ardissone
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Ville Simell
- Department of Pediatrics, Turku University Hospital and University of Turku Turku, Finland
| | - Michael T Leonard
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Kaisa M Kemppainen
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Jennifer C Drew
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Desmond Schatz
- Department of Pediatrics, University of Florida Gainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Gainesville, FL, USA
| | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Jorma Ilonen
- Department of Clinical Microbiology, University of Eastern Finland Kuopio, Finland ; Immunogenetics Laboratory, University of Turku Turku, Finland
| | - Mikael Knip
- Department of Pediatrics, Children's Hospital, University of Helsinki and Helsinki University Central Hospital Helsinki, Finland ; Diabetes and Obesity Research Program, University of Helsinki Helsinki, Finland ; Department of Pediatrics, Tampere University Hospital Tampere, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital and University of Turku Turku, Finland
| | - Noora Nurminen
- School of Medicine, University of Tampere Tampere, Finland
| | - Heikki Hyöty
- School of Medicine, University of Tampere Tampere, Finland
| | - Riitta Veijola
- Department of Pediatrics, University of Oulu, and Oulu University Hospital Oulu, Finland
| | - Tuula Simell
- Department of Pediatrics, Turku University Hospital and University of Turku Turku, Finland
| | - Juha Mykkänen
- Department of Pediatrics, Turku University Hospital and University of Turku Turku, Finland
| | - Olli Simell
- Department of Pediatrics, Turku University Hospital and University of Turku Turku, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| |
Collapse
|
391
|
Bisgaard H, Bønnelykke K, Stokholm J. Immune-mediated diseases and microbial exposure in early life. Clin Exp Allergy 2014; 44:475-81. [PMID: 24533884 DOI: 10.1111/cea.12291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The non-communicable disease pandemic includes immune-mediated diseases such as asthma and allergy, which are likely originating in early life where the immature immune system is prone to alterations caused by the exposome. The timing of exposure seems critical for the developing immune system, and certain exposures may have detrimental effects in the earliest life, but no or even beneficial effects later. The human microbiome and infections are candidates as intermediary in the interaction between the host and the environment. The evidence seems inconsistent as infections as well as particular colonization patterns in neonates drive both short-term and long-term asthma symptoms, while, on the other hand, the composition of the microbiome in early life may protect against asthma and allergy in later life. This apparent contradiction may be explained by a deeper disease heterogeneity than we are currently able to discriminate, and in particular, the indiscriminate lumping together of different diseases into one atopic disease category. Also, the microbiome needs a differentiated understanding, considering balance between microbial groups, diversity and microbial genetic capability. Furthermore, the effects of the microbial exposure may only affect individuals with certain susceptibility genes. Few of the observations have been replicated, and publication bias is likely. Therefore, we are still far from understanding, or having proved, causal effects of the human microbiome. Still, the microbiome-gene interaction is a fascinating paradigm that fosters exiting research and promises a breakthrough in the understanding of the mechanisms driving asthma, allergy and eczema, and potentially also other immune-mediated non-communicable diseases.
Collapse
Affiliation(s)
- H Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, University of Copenhagen, Gentofte, Copenhagen, Denmark; The Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Copenhagen, Denmark
| | | | | |
Collapse
|
392
|
Tormo-Badia N, Håkansson Å, Vasudevan K, Molin G, Ahrné S, Cilio CM. Antibiotic treatment of pregnant non-obese diabetic mice leads to altered gut microbiota and intestinal immunological changes in the offspring. Scand J Immunol 2014; 80:250-60. [PMID: 24965690 DOI: 10.1111/sji.12205] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 06/09/2014] [Indexed: 02/04/2023]
Abstract
The intestinal microbiota is important for tolerance induction through mucosal immunological responses. The composition of the gut microbiota of an infant is affected by environmental factors such as diet, disease and antibiotic treatment. However, already in utero, these environmental factors can affect the immunological development of the foetus and influence the future gut microbiota of the infant. To investigate the effects of antibiotic treatment of pregnant mothers on the offspring's gut microbiome and diabetes development, we treated non-obese diabetic (NOD) mice with a cocktail of antibiotics during gestation and the composition of the gut microbiota, diabetes incidence and major gut-related T lymphocyte populations were investigated in the offspring. We observed a persistent reduction in the general diversity of the gut microbiota in the offspring from NOD mothers treated with antibiotics during gestation compared with offspring from control mothers. In addition, by clustering the present bacterial taxa with principal component analysis, we found a differential clustering of gut microbiota in the offspring from NOD mothers treated with antibiotics during gestation compared with offspring from control mothers. Offspring from NOD mothers treated with antibiotics during gestation also showed some immunological alterations in the gut immune system, which could be related to the diversity of the gut microbiome and influence modulation of diabetes development at 20 weeks. Our data point out maternal derangement of the intestinal microbiota as a potential environmental risk factor for T1D development.
Collapse
Affiliation(s)
- N Tormo-Badia
- Department of Clinical Sciences, Cellular Autoimmunity Unit, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
393
|
Greiner TU, Hyötyläinen T, Knip M, Bäckhed F, Orešič M. The gut microbiota modulates glycaemic control and serum metabolite profiles in non-obese diabetic mice. PLoS One 2014; 9:e110359. [PMID: 25390735 PMCID: PMC4229081 DOI: 10.1371/journal.pone.0110359] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/21/2014] [Indexed: 01/15/2023] Open
Abstract
Islet autoimmunity in children who later progress to type 1 diabetes is preceded by dysregulated serum metabolite profiles, but the origin of these metabolic changes is unknown. The gut microbiota affects host metabolism and changes in its composition contribute to several immune-mediated diseases; however, it is not known whether the gut microbiota is involved in the early metabolic disturbances in progression to type 1 diabetes. We rederived non-obese diabetic (NOD) mice as germ free to explore the potential role of the gut microbiota in the development of diabetic autoimmunity and to directly investigate whether the metabolic profiles associated with the development of type 1 diabetes can be modulated by the gut microbiota. The absence of a gut microbiota in NOD mice did not affect the overall diabetes incidence but resulted in increased insulitis and levels of interferon gamma and interleukin 12; these changes were counterbalanced by improved peripheral glucose metabolism. Furthermore, we observed a markedly increased variation in blood glucose levels in the absence of a microbiota in NOD mice that did not progress to diabetes. Additionally, germ-free NOD mice had a metabolite profile similar to that of pre-diabetic children. Our data suggest that germ-free NOD mice have reduced glycaemic control and dysregulated immunologic and metabolic responses.
Collapse
Affiliation(s)
- Thomas U. Greiner
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Tuulia Hyötyläinen
- VTT Technical Research Centre of Finland, Espoo, Finland
- Steno Diabetes Center, Gentofte, Denmark
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Fredrik Bäckhed
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matej Orešič
- VTT Technical Research Centre of Finland, Espoo, Finland
- Steno Diabetes Center, Gentofte, Denmark
| |
Collapse
|
394
|
Patterson E, Marques TM, O'Sullivan O, Fitzgerald P, Fitzgerald GF, Cotter PD, Dinan TG, Cryan JF, Stanton C, Ross RP. Streptozotocin-induced type-1-diabetes disease onset in Sprague-Dawley rats is associated with an altered intestinal microbiota composition and decreased diversity. MICROBIOLOGY-SGM 2014; 161:182-193. [PMID: 25370749 DOI: 10.1099/mic.0.082610-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a growing appreciation that microbiota composition can significantly affect host health and play a role in disease onset and progression. This study assessed the impact of streptozotocin (STZ)-induced type-1-diabetes (T1D) on intestinal microbiota composition and diversity in Sprague-Dawley rats, compared with healthy controls over time. T1D was induced by injection of a single dose (60 mg STZ kg(-1)) of STZ, administered via the intraperitoneal cavity. Total DNA was isolated from faecal pellets at weeks 0 (pre-STZ injection), 1, 2 and 4 and from caecal content at week 5 from both healthy and T1D groups. High-throughput 16S rRNA sequencing was employed to investigate intestinal microbiota composition. The data revealed that although intestinal microbiota composition between the groups was similar at week 0, a dramatic impact of T1D development on the microbiota was apparent post-STZ injection and for up to 5 weeks. Most notably, T1D onset was associated with a shift in the Bacteroidetes : Firmicutes ratio (P<0.05), while at the genus level, increased proportions of lactic acid producing bacteria such as Lactobacillus and Bifidobacterium were associated with the later stages of T1D progression (P<0.05). Coincidently, T1D increased caecal lactate levels (P<0.05). Microbial diversity was also reduced following T1D (P<0.05). Principle co-ordinate analyses demonstrated temporal clustering in T1D and control groups with distinct separation between groups. The results provide a comprehensive account of how T1D is associated with an altered intestinal microbiota composition and reduced microbial diversity over time.
Collapse
Affiliation(s)
- Elaine Patterson
- Department of Microbiology, University College Cork, Co. Cork, Ireland.,Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Tatiana M Marques
- Department of Microbiology, University College Cork, Co. Cork, Ireland.,Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Patrick Fitzgerald
- Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Gerald F Fitzgerald
- Department of Microbiology, University College Cork, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| | - R Paul Ross
- Teagasc Food Research Centre, Food Biosciences Department, Moorepark, Fermoy, Co. Cork, Ireland.,Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Co. Cork, Ireland
| |
Collapse
|
395
|
Bussolo de Souza C, Roeselers G, Troost F, Jonkers D, Koenen M, Venema K. Prebiotic effects of cassava bagasse in TNO's in vitro model of the colon in lean versus obese microbiota. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
396
|
Adamczak DM, Nowak JK, Frydrychowicz M, Kaczmarek M, Sikora J. The role of Toll-like receptors and vitamin D in diabetes mellitus type 1--a review. Scand J Immunol 2014; 80:75-84. [PMID: 24845558 DOI: 10.1111/sji.12188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/04/2014] [Indexed: 12/17/2022]
Abstract
It is widely accepted that type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting from an interaction between immunologic, genetic and environmental factors. However, the exact mechanism leading to the development of T1DM remains incomplete. There is a large body of evidence pointing towards the important role of toll-like receptor (TLR) activation and vitamin D deficiency in T1DM pathogenesis. In this article, we review the available data on the influence of TLRs' level of activation and vitamin D status on the risk of the development of T1DM in humans and rodent models. We also summarize the current information regarding the interactions between TLRs' level of activation, vitamin D status and various environmental factors, such as enteroviral infections, the gut microbiota and breastfeeding substitution, among others. Our results stipulate that vitamin D seems to protect against T1DM by reducing the TLRs' level of activation.
Collapse
Affiliation(s)
- D M Adamczak
- Poznan University of Medical Sciences, Clinical Hospital No. 1, Poznan, Poland; Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | |
Collapse
|
397
|
Toivonen RK, Emani R, Munukka E, Rintala A, Laiho A, Pietilä S, Pursiheimo JP, Soidinsalo P, Linhala M, Eerola E, Huovinen P, Hänninen A. Fermentable fibres condition colon microbiota and promote diabetogenesis in NOD mice. Diabetologia 2014; 57:2183-92. [PMID: 25031069 DOI: 10.1007/s00125-014-3325-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Gut microbiota (GM) and diet both appear to be important in the pathogenesis of type 1 diabetes. Fermentable fibres (FFs), of which there is an ample supply in natural, diabetes-promoting diets, are used by GM as a source of energy. Our aim was to determine whether FFs modify GM and diabetes incidence in the NOD mouse. METHODS Female NOD mice were weaned to a semisynthetic diet and the effects of FF supplementation on diabetes incidence and insulitis were evaluated. Real-time quantitative PCR was employed to determine the effects imposed to gene transcripts in the colon and lymph nodes. Changes to GM were analysed by next-generation sequencing. RESULTS NOD mice fed semisynthetic diets free from FFs were largely protected from diabetes while semisynthetic diets supplemented with the FFs pectin and xylan (PX) resulted in higher diabetes incidence. Semisynthetic diet free from FFs altered GM composition significantly; addition of PX changed the composition of the GM towards that found in natural-diet-fed mice and increased production of FF-derived short-chain fatty acid metabolites in the colon. The highly diabetogenic natural diet was associated with expression of proinflammatory and stress-related genes in the colon, while the semisynthetic diet free from FFs promoted Il4, Il22, Tgfβ and Foxp3 transcripts in the colon and/or pancreatic lymph node. PX in the same diet counteracted these effects and promoted stress-related IL-18 activation in gut epithelial cells. 16S RNA sequencing revealed each diet to give rise to its particular GM composition, with different Firmicutes to Bacteroidetes ratios, and enrichment of mucin-degrading Ruminococcaceae following diabetes-protective FF-free diet. CONCLUSIONS/INTERPRETATION FFs condition microbiota, affect colon homeostasis and are important components of natural, diabetes-promoting diets in NOD mice.
Collapse
Affiliation(s)
- Raine K Toivonen
- Department of Medical Microbiology and Immunology, University of Turku, Kiinamyllynkatu 13, 20520, Turku, Finland,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
398
|
Surana NK, Kasper DL. Deciphering the tête-à-tête between the microbiota and the immune system. J Clin Invest 2014; 124:4197-203. [PMID: 25036709 PMCID: PMC4191050 DOI: 10.1172/jci72332] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past decade has witnessed an explosion in studies--both clinical and basic science--examining the relationship between the microbiota and human health, and it is now clear that the effects of commensal organisms are much broader than previously believed. Among the microbiota's major contributions to host physiology is regulation of the development and maintenance of the immune system. There are now a handful of examples of intestinal commensal bacteria with defined immunomodulatory properties, but our mechanistic understanding of how microbes influence the immune system is still in its infancy. Nevertheless, several themes have emerged that provide a framework for appreciating microbe-induced immunoregulation. In this Review, we discuss the current state of knowledge regarding the role of the intestinal microbiota in immunologic development, highlighting mechanistic principles that can guide future work.
Collapse
Affiliation(s)
- Neeraj K. Surana
- Division of Infectious Diseases, Department of Medicine,
Boston Children’s Hospital, Boston, Massachusetts, USA. Department of
Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis L. Kasper
- Division of Infectious Diseases, Department of Medicine,
Boston Children’s Hospital, Boston, Massachusetts, USA. Department of
Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
399
|
Abstract
A healthy gut microbiota plays many crucial functions in the host, being involved in the correct development and functioning of the immune system, assisting in the digestion of certain foods and in the production of health-beneficial bioactive metabolites or 'pharmabiotics'. These include bioactive lipids (including SCFA and conjugated linoleic acid) antimicrobials and exopolysaccharides in addition to nutrients, including vitamins B and K. Alterations in the composition of the gut microbiota and reductions in microbial diversity are highlighted in many disease states, possibly rendering the host susceptible to infection and consequently negatively affecting innate immune function. Evidence is also emerging of microbially produced molecules with neuroactive functions that can have influences across the brain-gut axis. For example, γ-aminobutyric acid, serotonin, catecholamines and acetylcholine may modulate neural signalling within the enteric nervous system, when released in the intestinal lumen and consequently signal brain function and behaviour. Dietary supplementation with probiotics and prebiotics are the most widely used dietary adjuncts to modulate the gut microbiota. Furthermore, evidence is emerging of the interactions between administered microbes and dietary substrates, leading to the production of pharmabiotics, which may directly or indirectly positively influence human health.
Collapse
|
400
|
Dunne JL, Triplett EW, Gevers D, Xavier R, Insel R, Danska J, Atkinson MA. The intestinal microbiome in type 1 diabetes. Clin Exp Immunol 2014; 177:30-7. [PMID: 24628412 DOI: 10.1111/cei.12321] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 02/06/2023] Open
Abstract
Few concepts in recent years have garnered more disease research attention than that of the intestinal (i.e. 'gut') microbiome. This emerging interest has included investigations of the microbiome's role in the pathogenesis of a variety of autoimmune disorders, including type 1 diabetes (T1D). Indeed, a growing number of recent studies of patients with T1D or at varying levels of risk for this disease, as well as in animal models of the disorder, lend increasing support to the notion that alterations in the microbiome precede T1D onset. Herein, we review these investigations, examining the mechanisms by which the microbiome may influence T1D development and explore how multi-disciplinary analysis of the microbiome and the host immune response may provide novel biomarkers and therapeutic options for prevention of T1D.
Collapse
|