351
|
Ciernikova S, Sevcikova A, Stevurkova V, Mego M. Tumor microbiome - an integral part of the tumor microenvironment. Front Oncol 2022; 12:1063100. [PMID: 36505811 PMCID: PMC9730887 DOI: 10.3389/fonc.2022.1063100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment (TME) plays a significant role in tumor progression and cancer cell survival. Besides malignant cells and non-malignant components, including immune cells, elements of the extracellular matrix, stromal cells, and endothelial cells, the tumor microbiome is considered to be an integral part of the TME. Mounting evidence from preclinical and clinical studies evaluated the presence of tumor type-specific intratumoral bacteria. Differences in microbiome composition between cancerous tissues and benign controls suggest the importance of the microbiome-based approach. Complex host-microbiota crosstalk within the TME affects tumor cell biology via the regulation of oncogenic pathways, immune response modulation, and interaction with microbiota-derived metabolites. Significantly, the involvement of tumor-associated microbiota in cancer drug metabolism highlights the therapeutic implications. This review aims to summarize current knowledge about the emerging role of tumor microbiome in various types of solid malignancies. The clinical utility of tumor microbiome in cancer progression and treatment is also discussed. Moreover, we provide an overview of clinical trials evaluating the role of tumor microbiome in cancer patients. The research focusing on the communication between the gut and tumor microbiomes may bring new opportunities for targeting the microbiome to increase the efficacy of cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia,*Correspondence: Sona Ciernikova,
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
352
|
Daulagala AC, Kourtidis A. ECM Substrates Impact RNAi Localization at Adherens Junctions of Colon Epithelial Cells. Cells 2022; 11:3740. [PMID: 36497003 PMCID: PMC9737857 DOI: 10.3390/cells11233740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The extracellular matrix (ECM) plays crucial roles in tissue homeostasis. Abnormalities in ECM composition are associated with pathological conditions, such as fibrosis and cancer. These ECM alterations are sensed by the epithelium and can influence its behavior through crosstalk with other mechanosensitive complexes, including the adherens junctions (AJs). We have previously shown that the AJs, through their component PLEKHA7, recruit the RNAi machinery to regulate miRNA levels and function. We have particularly shown that the junctional localization of RNAi components is critical for their function. Here, we investigated whether different ECM substrates can influence the junctional localization of RNAi complexes. To do this, we plated colon epithelial Caco2 cells on four key ECM substrates found in the colon under normal or pathogenic conditions, namely laminin, fibronectin, collagen I, and collagen IV, and we examined the subcellular distribution of PLEKHA7, and of the key RNAi components AGO2 and DROSHA. Fibronectin and collagen I negatively impacted the junctional localization of PLEKHA7, AGO2, and DROSHA when compared to laminin. Furthermore, fibronectin, collagen I, and collagen IV disrupted interactions of AGO2 and DROSHA with their essential partners GW182 and DGCR8, respectively, both at AJs and throughout the cell. Combinations of all substrates with fibronectin also negatively impacted junctional localization of PLEKHA7 and AGO2. Additionally, collagen I triggered accumulation of DROSHA at tri-cellular junctions, while both collagen I and collagen IV resulted in DROSHA accumulation at basal areas of cell-cell contact. Altogether, fibronectin and collagens I and IV, which are elevated in the stroma of fibrotic and cancerous tissues, altered localization patterns and disrupted complex formation of PLEKHA7 and RNAi components. Combined with our prior studies showing that apical junctional localization of the PLEKHA7-RNAi complex is critical for regulating tumor-suppressing miRNAs, this work points to a yet unstudied mechanism that could contribute to epithelial cell transformation.
Collapse
Affiliation(s)
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
353
|
Lyubetskaya A, Rabe B, Fisher A, Lewin A, Neuhaus I, Brett C, Brett T, Pereira E, Golhar R, Kebede S, Font-Tello A, Mosure K, Van Wittenberghe N, Mavrakis KJ, MacIsaac K, Chen BJ, Drokhlyansky E. Assessment of spatial transcriptomics for oncology discovery. CELL REPORTS METHODS 2022; 2:100340. [PMID: 36452860 PMCID: PMC9701619 DOI: 10.1016/j.crmeth.2022.100340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/05/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Tumor heterogeneity is a major challenge for oncology drug discovery and development. Understanding of the spatial tumor landscape is key to identifying new targets and impactful model systems. Here, we test the utility of spatial transcriptomics (ST) for oncology discovery by profiling 40 tissue sections and 80,024 capture spots across a diverse set of tissue types, sample formats, and RNA capture chemistries. We verify the accuracy and fidelity of ST by leveraging matched pathology analysis, which provides a ground truth for tissue section composition. We then use spatial data to demonstrate the capture of key tumor depth features, identifying hypoxia, necrosis, vasculature, and extracellular matrix variation. We also leverage spatial context to identify relative cell-type locations showing the anti-correlation of tumor and immune cells in syngeneic cancer models. Lastly, we demonstrate target identification approaches in clinical pancreatic adenocarcinoma samples, highlighting tumor intrinsic biomarkers and paracrine signaling.
Collapse
Affiliation(s)
- Anna Lyubetskaya
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Brian Rabe
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Andrew Fisher
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Anne Lewin
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Isaac Neuhaus
- Research and Early Development, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ 08543, USA
| | - Constance Brett
- Aggregate Genius, Inc., 560 Fulford-Ganges Road, Salt Spring Island, BC V8K 2K1, Canada
| | - Todd Brett
- Aggregate Genius, Inc., 560 Fulford-Ganges Road, Salt Spring Island, BC V8K 2K1, Canada
| | - Ethel Pereira
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Ryan Golhar
- Research and Early Development, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ 08543, USA
| | - Sami Kebede
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Alba Font-Tello
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Kathy Mosure
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Nicholas Van Wittenberghe
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Konstantinos J. Mavrakis
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Kenzie MacIsaac
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Benjamin J. Chen
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| | - Eugene Drokhlyansky
- Research and Early Development, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, MA 02142, USA
| |
Collapse
|
354
|
Liu X, Lu Y, Huang J, Xing Y, Dai H, Zhu L, Li S, Feng J, Zhou B, Li J, Xia Q, Li J, Huang M, Gu Y, Su S. CD16 + fibroblasts foster a trastuzumab-refractory microenvironment that is reversed by VAV2 inhibition. Cancer Cell 2022; 40:1341-1357.e13. [PMID: 36379207 DOI: 10.1016/j.ccell.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/16/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
The leukocyte Fcγ receptor (FcγR)-mediated response is important for the efficacy of therapeutic antibodies; however, little is known about the role of FcγRs in other cell types. Here we identify a subset of fibroblasts in human breast cancer that express CD16 (FcγRIII). An abundance of these cells in HER2+ breast cancer patients is associated with poor prognosis and response to trastuzumab. Functionally, upon trastuzumab stimulation, CD16+ fibroblasts reduce drug delivery by enhancing extracellular matrix stiffness. Interaction between trastuzumab and CD16 activates the intracellular SYK-VAV2-RhoA-ROCK-MLC2-MRTF-A pathway, leading to elevated contractile force and matrix production. Targeting of a Rho family guanine nucleotide exchange factor, VAV2, which is indispensable for the function of CD16 in fibroblasts rather than leukocytes, reverses desmoplasia provoked by CD16+ fibroblasts. Collectively, our study reveals a role for the fibroblast FcγR in drug resistance, and suggests that VAV2 is an attractive target to augment the effects of antibody treatments.
Collapse
Affiliation(s)
- Xinwei Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Breast Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingying Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Huiqi Dai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liling Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shunrong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qidong Xia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuanting Gu
- Department of Breast Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
355
|
Park J, Kim S, Hong J, Jeon JS. Enabling perfusion through multicellular tumor spheroids promoting lumenization in a vascularized cancer model. LAB ON A CHIP 2022; 22:4335-4348. [PMID: 36226506 DOI: 10.1039/d2lc00597b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A tumor is composed of heterogeneous cell population, which is known as tumor stroma. In particular, blood vessels have an indispensable role in the tumor microenvironment acting as a key player in anti-cancer drug delivery. Recently, efforts have been made to accurately recapitulate the microenvironment by employing distinct cell types, however, the proper formation of perfusable tumor tissue is challenging. Here, perfusable tumor tissue is engineered by implanting multicellular tumor spheroids inside the microfluidic devices. Blood perfusion, spheroid growth, and vascular dynamics were monitored according to the spheroid composition and the contribution of internal and external vascular cells to spheroid perfusion was analyzed. Most notably, the increased penetration depth of fluorescence conjugated anti-cancer drug was observed in tri-culture spheroids. The implementation of tumor microenvironment reconstruction developed in this study not only creates a perfusable tumor vascular model but can also be utilized as a novel drug screening platform with patient-derived samples.
Collapse
Affiliation(s)
- Joonha Park
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Seunggyu Kim
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Jiman Hong
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Jessie S Jeon
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
356
|
Feng TY, Azar FN, Dreger SA, Buchta Rosean C, McGinty MT, Putelo AM, Kolli SH, Carey MA, Greenfield S, Fowler WJ, Robinson SD, Rutkowski MR. Reciprocal Interactions Between the Gut Microbiome and Mammary Tissue Mast Cells Promote Metastatic Dissemination of HR+ Breast Tumors. Cancer Immunol Res 2022; 10:1309-1325. [PMID: 36040846 PMCID: PMC9633553 DOI: 10.1158/2326-6066.cir-21-1120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Establishing commensal dysbiosis, defined as an inflammatory gut microbiome with low biodiversity, before breast tumor initiation, enhances early dissemination of hormone receptor-positive (HR+) mammary tumor cells. Here, we sought to determine whether cellular changes occurring in normal mammary tissues, before tumor initiation and in response to dysbiosis, enhanced dissemination of HR+ tumors. Commensal dysbiosis increased both the frequency and profibrogenicity of mast cells in normal, non-tumor-bearing mammary tissues, a phenotypic change that persisted after tumor implantation. Pharmacological and adoptive transfer approaches demonstrated that profibrogenic mammary tissue mast cells from dysbiotic animals were sufficient to enhance dissemination of HR+ tumor cells. Using archival HR+ patient samples, we determined that enhanced collagen levels in tumor-adjacent mammary tissue positively correlated with mast cell abundance and HR+ breast cancer recurrence. Together, these data demonstrate that mast cells programmed by commensal dysbiosis activate mammary tissue fibroblasts and orchestrate early dissemination of HR+ breast tumors.
Collapse
Affiliation(s)
- Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Francesca N. Azar
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Sally A. Dreger
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Claire Buchta Rosean
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Mitchell T. McGinty
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Audrey M. Putelo
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Sree H. Kolli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Maureen A. Carey
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, VA, USA
| | - Stephanie Greenfield
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Wesley J. Fowler
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Stephen D. Robinson
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Melanie R. Rutkowski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| |
Collapse
|
357
|
Liu H, Zhao H, Sun Y. Tumor microenvironment and cellular senescence: Understanding therapeutic resistance and harnessing strategies. Semin Cancer Biol 2022; 86:769-781. [PMID: 34799201 DOI: 10.1016/j.semcancer.2021.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME) is a major contributor to cancer malignancy including development of therapeutic resistance, a process mediated in part through intercellular crosstalk. Besides diverse soluble factors responsible for pro-survival pathway activation, immune evasion and extracellular matrix (ECM) remodeling further promote cancer resistance. Importantly, therapy-induced senescence (TIS) of cells in the TME is frequently observed in anticancer regimens, an off-target effect that can generate profound impacts on disease progression. By conferring the resistance and fueling the repopulation of remaining cancerous cells, TIS is responsible for tumor relapse and distant metastasis in posttreatment stage. This pathological trajectory can be substantially driven by the pro-inflammatory feature of senescent cells, termed as the senescence-associated secretory phenotype (SASP). Targeting strategies to selectively and efficiently remove senescent cells before they exert non-autonomous but largely deleterious effects, are emerging as an effective solution to prevent drug resistance acquired from a treatment-remodeled TME. In this review, we summarize the TME composition and key activities that affect tissue homeostasis and support treatment resistance. Promising opportunities that allow TME-manipulation and senescent cell-targeting (senotherapy) are discussed, with translational pipelines to overcome therapeutic barriers in clinical oncology projected.
Collapse
Affiliation(s)
- Hanxin Liu
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Huifang Zhao
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Yu Sun
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
358
|
Alkmin S, Patankar MS, Campagnola PJ. Assessing the roles of collagen fiber morphology and matrix stiffness on ovarian cancer cell migration dynamics using multiphoton fabricated orthogonal image-based models. Acta Biomater 2022; 153:342-354. [PMID: 36152908 PMCID: PMC10324295 DOI: 10.1016/j.actbio.2022.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 11/01/2022]
Abstract
Ovarian cancer remains the deadliest of the gynecological cancers, where this arises from poor screening and imaging tools that can detect early disease, and also limited understanding of the structural and functional aspects of the tumor microenvironment. To gain insight into the underlying cellular dynamics, we have used multiphoton excited fabrication to create Second Harmonic Generation (SHG) image-based orthogonal models from collagen/GelMA that represent both the collagen matrix morphology and stiffness (∼2-8 kPa) of normal ovarian stroma and high grade serous ovarian cancers (HGSOC). These scaffolds are used to study migration/cytoskeletal dynamics of normal (IOSE) and ovarian cancer (OVCA433) cell lines. We found that the highly aligned fiber morphology of HGSOC promotes aspects of motility (motility coefficient, motility, and focal adhesion expression) through a contact guidance mechanism and that stiffer matrix further promotes these same processes through a mechanosensitive mechanism, where these trends were similar for both normal and cancer cells. However, cell specific differences were found on these orthogonal models relative to those providing only morphology, showing the importance of presenting both morphology and stiffness cues. Moreover, we found increased cadherin expression and decreased cell alignment only for cancer cells on scaffolds of intermediate modulus suggesting different stiffness-dependent mechanotransduction mechanisms are engaged. This overall approach affords decoupling the roles of matrix morphology, stiffness and cell genotype and affords hypothesis testing of the factors giving rise to disease progression and metastasis. Further, more established fabrication techniques cannot simultaneously reproduce both the 3D collagen fiber morphology and stiffness. STATEMENT OF SIGNIFICANCE: Ovarian cancer metastasizes when lesions are small, where cells exfoliate from the surface of the ovary and reattach at distal sites in the peritoneum. The adhesion/migration dynamics are not well understood and there is a need for new 3D in vitro models of the extracellular matrix to study the biology. Here we use multiphoton excited crosslinking to fabricate ECM orthogonal models that represent the collagen morphology and stiffness in human ovarian tissues. These are then used to study ovarian cancer cell migration dynamics and we found that contact guidance and a mechanosensitive response and cell genotype all combine to affect the behavior. These models provide insight into disease etiology and progression not readily possible by other fabrication methods.
Collapse
Affiliation(s)
- Samuel Alkmin
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706, USA
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul J Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
359
|
Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. J Control Release 2022; 351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
360
|
K Patel K, Hassan D, Nair S, Tejovath S, Kahlon SS, Peddemul A, Sikandar R, Mostafa JA. Role of Immunotherapy in the Treatment of Triple-Negative Breast Cancer: A Literature Review. Cureus 2022; 14:e31729. [PMID: 36569674 PMCID: PMC9771573 DOI: 10.7759/cureus.31729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Numerous malignancies, including metastatic triple-negative breast cancer (TNBC), which has long been associated with a poor prognosis, have been transformed by the widespread use of immunotherapy. Immune checkpoint inhibitors (ICIs) that target and block programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1) have demonstrated encouraging outcomes in the treatment of patients with metastatic TNBC. The PD-1 inhibitor pembrolizumab is the first-line treatment of metastatic PD-L1+ TNBC in combination with chemotherapy, and the PD-L1 inhibitor atezolizumab has also shown clinical activity. The median progression-free survival for pembrolizumab or atezolizumab combined with chemotherapy increased by 4.1 months and 2.5 months, respectively, with the addition of immunotherapy. Despite this progress, there is still more to be desired. The addition of immunotherapy to chemotherapy improved the pathological complete response (PCR) rate compared to chemotherapy with placebo in landmark phase III trials in the early-stage neoadjuvant context, whereas others reported no meaningful improvement in PCR. There are various ongoing trials that show that more research and studies are needed for components in the TNBC microenvironment and to further explore its importance in the treatment of TNBC.
Collapse
Affiliation(s)
- Khushbu K Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Danial Hassan
- Health Care Profession, Ministry of Public Health, Doha, QAT
- Cardiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shaalina Nair
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sreedevi Tejovath
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Simranjit S Kahlon
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aishwarya Peddemul
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rabia Sikandar
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry, Professional Psychotherapy, Cognitive Behavioral Psychotherapy, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
361
|
Gonzalez-Molina J, Moyano-Galceran L, Single A, Gultekin O, Alsalhi S, Lehti K. Chemotherapy as a regulator of extracellular matrix-cell communication: Implications in therapy resistance. Semin Cancer Biol 2022; 86:224-236. [PMID: 35331851 DOI: 10.1016/j.semcancer.2022.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
The development of most solid cancers, including pancreatic, breast, lung, liver, and ovarian cancer, involves a desmoplastic reaction: a process of major remodeling of the extracellular matrix (ECM) affecting the ECM composition, mechanics, and microarchitecture. These properties of the ECM influence key cancer cell functions, including treatment resistance. Furthermore, emerging data show that various chemotherapeutic treatments lead to alterations in ECM features and ECM-cell communication. Here, we summarize the current knowledge around the effects of chemotherapy on both the ECM remodeling and ECM-cell signaling and discuss the implications of these alterations on distinct mechanisms of chemoresistance. Additionally, we provide an overview of current therapeutic strategies and ongoing clinical trials utilizing anti-cancer drugs to target the ECM-cell communication and explore the future challenges of these strategies.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Single
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Okan Gultekin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shno Alsalhi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
362
|
Byers C, Gill M, Kurtansky NR, Alessi-Fox C, Harman M, Cordova M, Gonzalez S, Guitera P, Rotemberg V, Marghoob A, Chen CSJ, Dy J, Kose K, Rajadhyaksha M, Sahu A. Tertiary lymphoid structures accompanied by fibrillary matrix morphology impact anti-tumor immunity in basal cell carcinomas. Front Med (Lausanne) 2022; 9:981074. [PMID: 36388913 PMCID: PMC9647637 DOI: 10.3389/fmed.2022.981074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 01/07/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are specialized lymphoid formations that serve as local repertoire of T- and B-cells at sites of chronic inflammation, autoimmunity, and cancer. While presence of TLS has been associated with improved response to immune checkpoint blockade therapies and overall outcomes in several cancers, its prognostic value in basal cell carcinoma (BCC) has not been investigated. Herein, we determined the prognostic impact of TLS by relating its prevalence and maturation with outcome measures of anti-tumor immunity, namely tumor infiltrating lymphocytes (TILs) and tumor killing. In 30 distinct BCCs, we show the presence of TLS was significantly enriched in tumors harboring a nodular component and more mature primary TLS was associated with TIL counts. Moreover, assessment of the fibrillary matrix surrounding tumors showed discrete morphologies significantly associated with higher TIL counts, critically accounting for heterogeneity in TIL count distribution within TLS maturation stages. Specifically, increased length of fibers and lacunarity of the matrix with concomitant reduction in density and alignment of fibers were present surrounding tumors displaying high TIL counts. Given the interest in inducing TLS formation as a therapeutic intervention as well as its documented prognostic value, elucidating potential impediments to the ability of TLS in driving anti-tumor immunity within the tumor microenvironment warrants further investigation. These results begin to address and highlight the need to integrate stromal features which may present a hindrance to TLS formation and/or effective function as a mediator of immunotherapy response.
Collapse
Affiliation(s)
- Candice Byers
- The Institute for Experiential AI, Roux Institute, Northeastern University, Portland, ME, United States
| | - Melissa Gill
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
- Faculty of Medicine and Health Sciences, University of Alcala de Henares, Madrid, Spain
| | | | | | - Maggie Harman
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Miguel Cordova
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Pascale Guitera
- Sydney Melanoma Diagnostic Center, Royal Alfred Prince Hospital, Camperdown, NSW, Australia
- Melanoma Institute Australia, Sydney, NSW, Australia
| | | | - Ashfaq Marghoob
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Jennifer Dy
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
- The Institute for Experiential AI, Northeastern University, Boston, MA, United States
| | - Kivanc Kose
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Aditi Sahu
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
363
|
Thiery J. Modulation of the antitumor immune response by cancer-associated fibroblasts: mechanisms and targeting strategies to hamper their immunosuppressive functions. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:598-629. [PMID: 36338519 PMCID: PMC9630350 DOI: 10.37349/etat.2022.00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are highly heterogeneous players that shape the tumor microenvironment and influence tumor progression, metastasis formation, and response to conventional therapies. During the past years, some CAFs subsets have also been involved in the modulation of immune cell functions, affecting the efficacy of both innate and adaptive anti-tumor immune responses. Consequently, the implication of these stromal cells in the response to immunotherapeutic strategies raised major concerns. In this review, current knowledge of CAFs origins and heterogeneity in the tumor stroma, as well as their effects on several immune cell populations that explain their immunosuppressive capabilities are summarized. The current development of therapeutic strategies for targeting this population and their implication in the field of cancer immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Jerome Thiery
- INSERM, UMR 1186, 94800 Villejuif, France
- Gustave Roussy Cancer Campus, 94805 Villejuif, France
- University Paris Saclay, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
364
|
Ramezankhani R, Ghavidel AA, Rashidi S, Rojhannezhad M, Abolkheir HR, Mirhosseini M, Taleahmad S, Vosough M. Gender-related differentially expressed genes in pancreatic cancer: possible culprits or accomplices? Front Genet 2022; 13:966941. [DOI: 10.3389/fgene.2022.966941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer mortality worldwide, and its incidence and mortality rate in several regions is higher in male patients. Although numerous efforts have been made to enhance the clinical outcomes of existing therapeutic regimens, their efficiency is still low, and drug resistance usually occurs in many patients. In addition, the exact underlying molecular basis that makes PC slightly more prevalent among males remains unknown. Providing information regarding the possible association between gender and PC tumorigenesis may offer important clues for how certain molecular cross-talks can affect PC initiation and/or progression. In this study, we used several microarray expression data to identify the common up- and downregulated genes within one specific gender, which were also specified to have binding sites for androgen and/or estrogen receptors. Using functional enrichment analysis among the others, for all the gene sets found in this study, we have shed light on the plausible importance of the androgenic effectors in tumorigenesis, such as the androgen-regulated expression of the GLI transcription factor and the potential role of testosterone in the extracellular matrix (ECM)–cell interaction, which are known for their importance in tumorigenesis. Moreover, we demonstrated that the biological process axon guidance was highlighted regarding the upregulated genes in male patients. Overall, identification of gene candidates as the possible link between gender and PC progression or survival rates may help in developing strategies to reduce the incidence of this cancer.
Collapse
|
365
|
Wang X, Maeng HM, Lee J, Xie C. Therapeutic Implementation of Oncolytic Viruses for Cancer Immunotherapy: Review of Challenges and Current Clinical Trials. JOURNAL OF BIOMEDICAL SCIENCE AND RESEARCH 2022; 4:164. [PMID: 36381110 PMCID: PMC9647850 DOI: 10.36266/jbsr/164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of cancer therapeutics has evolved from general targets with radiation and chemotherapy and shifted toward treatments with a more specific mechanism of action such as small molecule kinase inhibitors, monoclonal antibodies against tumor antigens, or checkpoint inhibitors. Recently, oncolytic viruses (OVs) have come to the forefront as a viable option for cancer immunotherapy, especially for "cold" tumors, which are known to inhabit an immunologically suppressive tumor microenvironment. Desired characteristics of viruses are selected through genetic attenuation of uncontrolled virulence, and some genes are replaced with ones that enhance conditional viral replication within tumor cells. Treatment with OVs must overcome various hurdles such as premature viral suppression by the host's immune system and the dense stromal barrier. Currently, clinical studies investigate the efficacy of OVs in conjunction with various anti-cancer therapeutics, including radiotherapy, chemotherapy, immune checkpoint inhibitors, and monoclonal antibodies. Thus, future research should explore how cancer therapeutics work synergistically with certain OVs in order to create more effective combination therapies and improve patient outcomes.
Collapse
Affiliation(s)
- X Wang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - H M Maeng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - J Lee
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - C Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
366
|
Ceccato J, Piazza M, Pizzi M, Manni S, Piazza F, Caputo I, Cinetto F, Pisoni L, Trojan D, Scarpa R, Zambello R, Tos APD, Trentin L, Semenzato G, Vianello F. A bone-based 3D scaffold as an in-vitro model of microenvironment–DLBCL lymphoma cell interaction. Front Oncol 2022; 12:947823. [PMID: 36330473 PMCID: PMC9623125 DOI: 10.3389/fonc.2022.947823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
About 30% of patients with diffuse large B-cell lymphoma (DLBCL) relapse or exhibit refractory disease (r/r DLBCL) after first-line immunochemotherapy. Bone marrow (BM) involvement confers a dismal prognosis at diagnosis, likely due to the interaction between neoplastic cells and a complex tumor microenvironment (TME). Therefore, we developed a 3D in-vitro model from human decellularized femoral bone fragments aiming to study the role of mesenchymal stromal cells (MSC) and the extracellular matrix (ECM) in the adaptation, growth, and drug resistance of DLBCL lymphoma cells. The 3D spatial configuration of the model was studied by histological analysis and confocal and multiphoton microscopy which allowed the 3D digital reproduction of the structure. We proved that MSC adapt and expand in the 3D scaffold generating niches in which also other cell types may grow. DLBCL cell lines adhered and grew in the 3D scaffold, both in the presence and absence of MSC, suggesting an active ECM–lymphocyte interaction. We found that the germinal center B-cell (GCB)-derived OCI-LY18 cells were more resistant to doxorubicin-induced apoptosis when growing in the decellularized 3D bone scaffold compared to 2D cultures (49.9% +/- 7.7% Annexin V+ cells in 2D condition compared to 30.7% + 9.2% Annexin V+ 3D adherent cells in the ECM model), thus suggesting a protective role of ECM. The coexistence of MSC in the 3D scaffold did not significantly affect doxorubicin-induced apoptosis of adherent OCI-LY18 cells (27.6% +/- 7.3% Annexin V+ 3D adherent cells in the ECM/MSC model after doxorubicin treatment). On the contrary, ECM did not protect the activated B-cell (ABC)-derived NU-DUL-1 lymphoma cell line from doxorubicin-induced apoptosis but protection was observed when MSC were growing in the bone scaffold (40.6% +/- 5.7% vs. 62.1% +/- 5.3% Annexin V+ 3D adherent cells vs. 2D condition). These data suggest that the interaction of lymphoma cells with the microenvironment may differ according to the DLBCL subtype and that 2D systems may fail to uncover this behavior. The 3D model we proposed may be improved with other cell types or translated to the study of other pathologies with the final goal to provide a tool for patient-specific treatment development.
Collapse
Affiliation(s)
- Jessica Ceccato
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Maria Piazza
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Sabrina Manni
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Francesco Piazza
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Ilaria Caputo
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Francesco Cinetto
- Internal Medicine and Allergology and Clinical Immunology Units, Treviso Ca’ Foncello Hospital, Treviso, Italy
| | - Lorena Pisoni
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
| | | | - Riccardo Scarpa
- Internal Medicine and Allergology and Clinical Immunology Units, Treviso Ca’ Foncello Hospital, Treviso, Italy
| | - Renato Zambello
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Gianpietro Semenzato
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Fabrizio Vianello
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- *Correspondence: Fabrizio Vianello,
| |
Collapse
|
367
|
Yu X, Long Y, Chen B, Tong Y, Shan M, Jia X, Hu C, Liu M, Zhou J, Tang F, Lu H, Chen R, Xu P, Huang W, Ren J, Wan Y, Sun J, Li J, Jin G, Gong L. PD-L1/TLR7 dual-targeting nanobody-drug conjugate mediates potent tumor regression via elevating tumor immunogenicity in a host-expressed PD-L1 bias-dependent way. J Immunother Cancer 2022; 10:jitc-2022-004590. [PMID: 36253000 PMCID: PMC9577932 DOI: 10.1136/jitc-2022-004590] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Background Various tumors are insensitive to immune checkpoint blockade (ICB) therapy. Toll-like receptors (TLRs) establish the link between innate and adaptive immunity, which can assist T-cell activation and serve as promising targets for combination to enhance ICB therapy. Here, we aimed to improve efficacy for anti-programmed death ligand 1 (PD-L1) therapy by developing a PD-L1/TLR7 dual-targeting nanobody-drug conjugate (NDC), based on the PD-L1 nanobodies and TLR7 agonist we developed. Methods PD-L1 nanobodies were obtained by phage display screening and identified through T-cell activation bioassay, in vivo imaging and quantitative biodistribution study. Immune activation and PD-L1-inducing of TLR7 agonists were evaluated in diverse innate cell models. We constructed PD-L1/TLR7 dual-targeting NDCs by chemically coupling PD-L1 nanobodies and TLR7 agonists. The antitumor effect was evaluated via several murine or humanized solid tumor models. Immunophenotyping, immune cell depletion, tumor rechallenge, RNA sequencing and PD-L1-deficient models were combined to determine the mechanism for NDCs function. The dynamics of the in vivo behaviors of NDCs were assessed based on multiorgan changes in PD-L1 levels. Results The screened PD-L1 nanobodies were characterized as tumor-targeting and alleviated T-cell immunosuppression. The TLR7 agonists induced broad innate immune responses and intratumoral PD-L1 expression on antigen-presenting cells (APCs), and its antitumor effect was dependent on intratumoral delivery. The combination of TLR7 agonists and PD-L1 nanobodies activated both innate and adaptive immunity and upregulated PD-L1-related signaling pathways. After coupling to form dual-targeting NDCs, TLR7 agonists and PD-L1 nanobodies exerted synergistic antitumor effects and safety in either ‘hot’ or ‘cold’ tumor and early or advanced tumor models, reshaped the tumor immune microenvironment and induced antitumor immune memory. CD8+ T cells and natural killer cells were the main effector cells for NDCs to function. NDCs can promote PD-L1 expression on intratumoral APCs and tumor cells, and subsequently achieve targeted enrichment in tumors. Moreover, the efficacy of NDCs is biased toward dependence on host expression of PD-L1. Conclusions The novel PD-L1/TLR7 dual-targeting NDC exhibited potent efficacy against heterogeneous tumors through orchestrating innate and adaptive immunity, which could act as a promising strategy to improve ICB therapy and shows prospects for clinical development.
Collapse
Affiliation(s)
- Xiaolu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Binfan Chen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongliang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Mengwen Shan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaomin Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Meng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Ji Zhou
- International Cancer Center, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Henglei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Runqiu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Pan Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Jin Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yakun Wan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Guangyi Jin
- International Cancer Center, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
368
|
Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci 2022; 29:83. [PMID: 36253762 PMCID: PMC9575280 DOI: 10.1186/s12929-022-00866-3] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment (TME) is a specialized ecosystem of host components, designed by tumor cells for successful development and metastasis of tumor. With the advent of 3D culture and advanced bioinformatic methodologies, it is now possible to study TME’s individual components and their interplay at higher resolution. Deeper understanding of the immune cell’s diversity, stromal constituents, repertoire profiling, neoantigen prediction of TMEs has provided the opportunity to explore the spatial and temporal regulation of immune therapeutic interventions. The variation of TME composition among patients plays an important role in determining responders and non-responders towards cancer immunotherapy. Therefore, there could be a possibility of reprogramming of TME components to overcome the widely prevailing issue of immunotherapeutic resistance. The focus of the present review is to understand the complexity of TME and comprehending future perspective of its components as potential therapeutic targets. The later part of the review describes the sophisticated 3D models emerging as valuable means to study TME components and an extensive account of advanced bioinformatic tools to profile TME components and predict neoantigens. Overall, this review provides a comprehensive account of the current knowledge available to target TME.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
369
|
Minnai F, Noci S, Chierici M, Cotroneo CE, Bartolini B, Incarbone M, Tosi D, Mattioni G, Jurman G, Dragani TA, Colombo F. Genetic predisposition to lung adenocarcinoma outcome is a feature already present in patients' noninvolved lung tissue. Cancer Sci 2022; 114:281-294. [PMID: 36114746 PMCID: PMC9807507 DOI: 10.1111/cas.15591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023] Open
Abstract
Emerging evidence suggests that the prognosis of patients with lung adenocarcinoma can be determined from germline variants and transcript levels in nontumoral lung tissue. Gene expression data from noninvolved lung tissue of 483 lung adenocarcinoma patients were tested for correlation with overall survival using multivariable Cox proportional hazard and multivariate machine learning models. For genes whose transcript levels are associated with survival, we used genotype data from 414 patients to identify germline variants acting as cis-expression quantitative trait loci (eQTLs). Associations of eQTL variant genotypes with gene expression and survival were tested. Levels of four transcripts were inversely associated with survival by Cox analysis (CLCF1, hazard ratio [HR] = 1.53; CNTNAP1, HR = 2.17; DUSP14, HR = 1.78; and MT1F: HR = 1.40). Machine learning analysis identified a signature of transcripts associated with lung adenocarcinoma outcome that was largely overlapping with the transcripts identified by Cox analysis, including the three most significant genes (CLCF1, CNTNAP1, and DUSP14). Pathway analysis indicated that the signature is enriched for ECM components. We identified 32 cis-eQTLs for CNTNAP1, including 6 with an inverse correlation and 26 with a direct correlation between the number of minor alleles and transcript levels. Of these, all but one were prognostic: the six with an inverse correlation were associated with better prognosis (HR < 1) while the others were associated with worse prognosis. Our findings provide supportive evidence that genetic predisposition to lung adenocarcinoma outcome is a feature already present in patients' noninvolved lung tissue.
Collapse
Affiliation(s)
- Francesca Minnai
- Institute for Biomedical TechnologiesNational Research CouncilSegrateItaly
| | - Sara Noci
- Department of ResearchFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Marco Chierici
- Data Science for Health Research UnitBruno Kessler FoundationTrentoItaly
| | | | - Barbara Bartolini
- Department of ResearchFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | | | - Davide Tosi
- Thoracic Surgery and Lung Transplantation UnitFondazione IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Giovanni Mattioni
- Thoracic Surgery and Lung Transplantation UnitFondazione IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Giuseppe Jurman
- Data Science for Health Research UnitBruno Kessler FoundationTrentoItaly
| | - Tommaso A. Dragani
- Department of ResearchFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Francesca Colombo
- Institute for Biomedical TechnologiesNational Research CouncilSegrateItaly
| |
Collapse
|
370
|
Chen X, Yuan Q, Liu J, Xia S, Shi X, Su Y, Wang Z, Li S, Shang D. Comprehensive characterization of extracellular matrix-related genes in PAAD identified a novel prognostic panel related to clinical outcomes and immune microenvironment: A silico analysis with in vivo and vitro validation. Front Immunol 2022; 13:985911. [PMID: 36311789 PMCID: PMC9606578 DOI: 10.3389/fimmu.2022.985911] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) is a vital component of the tumor microenvironment, which interplays with stromal and tumor cells to stimulate the capacity of cancer cells to proliferate, migrate, invade, and undergo angiogenesis. Nevertheless, the crucial functions of ECM-related genes (ECMGs) in pancreatic adenocarcinoma (PAAD) have not been systematically evaluated. Hence, a comprehensive evaluation of the ECMGs is required in pan-cancer, especially in PAAD. First, a pan-cancer overview of ECMGs was explored through the integration of expression profiles, prognostic values, mutation information, methylation levels, and pathway-regulation relationships. Seven ECMGs (i.e. LAMB3, LAMA3, ITGB6, ITGB4, ITGA2, LAMC2, and COL11A1) were identified to be hub genes of PAAD, which were obviously up-regulated in PAAD and considerably linked to tumor stage as well as prognosis. Subsequently, patients with PAAD were divided into 3 clusters premised on ECMG expression and ECM scores. Cluster 2 was the subtype with the best prognosis accompanied by the lowest ECM scores, further verifying ECM’s significant contribution to the pathophysiological processes of PAAD. Significant differences were observed for oncogene and tumor suppressor gene expression, immune microenvironment, and chemotherapy sensitivity across three ECM subtypes. After applying a variety of bioinformatics methods, a novel and robust ECM-associated mRNA-lncRNA-based prognostic panel (ECM-APP) was developed and validated for accurately predicting clinical outcomes of patients with PAAD. Patients with PAAD were randomly categorized into the train, internal validation, and external validation cohorts; meanwhile, each patient was allocated into high-risk (unfavorable prognosis) and low-risk (favorable prognosis) populations premised on the expression traits of ECM-related mRNAs and lncRNAs. The discrepancy in the tumor mutation burden and immune microenvironment might be responsible for the difference in prognoses across the high-risk and low-risk populations. Overall, our findings identified and validated seven ECMGs remarkably linked to the onset and progression of PAAD. ECM-based molecular classification and prognostic panel aid in the prognostic assessment and personalized intervention of patients with PAAD.
Collapse
Affiliation(s)
- Xu Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jifeng Liu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilin Xia
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xueying Shi
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yuxin Su
- Department of Medical Imaging, Cardiovascular Research Institute, Northern Theater Command General Hospital, Shenyang, China
| | - Zhizhou Wang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Dong Shang, ; Shuang Li, ; Zhizhou Wang,
| | - Shuang Li
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Dong Shang, ; Shuang Li, ; Zhizhou Wang,
| | - Dong Shang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Dong Shang, ; Shuang Li, ; Zhizhou Wang,
| |
Collapse
|
371
|
Luo Y, Zong Y, Hua H, Gong M, Peng Q, Li C, Neculai D, Zeng X. Immune-infiltrating signature-based classification reveals CD103 +CD39 + T cells associate with colorectal cancer prognosis and response to immunotherapy. Front Immunol 2022; 13:1011590. [PMID: 36311750 PMCID: PMC9596778 DOI: 10.3389/fimmu.2022.1011590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Current stratification systems for tumor prognostic prediction and immunotherapeutic efficacy evaluation are less satisfying in colorectal cancer (CRC). As infiltrating immune cells in tumor microenvironment (TME) played a key role in tumor progression and responses to immune checkpoint blockade (ICB) therapy, we want to construct an immune-related scoring system with detailed immune profiles to stratify CRC patients. METHODS We developed a scoring system based on immune-related signatures and validated its ability to predict prognosis and immunotherapeutic outcomes in CRC. CD45+ cells from CRC patients were sorted to investigate detailed immune profiles of the stratification system using mass cytometry. A single-cell RNA sequencing dataset was used to analyze transcriptomic profiles. RESULTS We constructed an immune-related signature score (IRScore) based on 54 recurrence-free survival (RFS)-related immune signatures to stratify CRC patients. We revealed that IRScore was positively correlated with RFS and favorable outcomes in ICB treatment. Moreover, we depicted a detailed immune profile in TME using mass cytometry and identified that CD103+CD39+ T cells, characterized by an exhaustive, cytotoxic and proliferative phenotype, were enriched in CRC patients with high IRScore. As a beneficial immune signature, CD103+CD39+ T cells could predict prognosis and responses to ICB therapy in CRC. CONCLUSIONS All the analyses above revealed that IRScore could be a valuable tool for predicting prognosis and facilitating the development of new therapeutic strategies in CRC, and CD103+CD39+ T cells were one of defined immune signatures in IRScore, which might be a key factor for antitumor immunity.
Collapse
Affiliation(s)
- Yang Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cell Biology, Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunfeng Zong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Hanju Hua
- Colorectal Surgery Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meiting Gong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Qiao Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Chen Li
- Department of Human Genetics, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| | - Dante Neculai
- Department of Cell Biology, Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, China
| |
Collapse
|
372
|
Transcription profiling of feline mammary carcinomas and derived cell lines reveals biomarkers and drug targets associated with metabolic and cell cycle pathways. Sci Rep 2022; 12:17025. [PMID: 36220861 PMCID: PMC9553959 DOI: 10.1038/s41598-022-20874-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
The molecular heterogeneity of feline mammary carcinomas (FMCs) represents a prognostic and therapeutic challenge. RNA-Seq-based comparative transcriptomic profiling serves to identify recurrent and exclusive differentially expressed genes (DEGs) across sample types and molecular subtypes. Using mass-parallel RNA-Seq, we identified DEGs and performed comparative function-based analysis across 15 tumours (four basal-like triple-negative [TN], eight normal-like TN, and three luminal B fHER2 negative [LB fHER2-]), two cell lines (CL, TiHo-0906, and TiHo-1403) isolated from the primary tumours (LB fHER2-) of two cats included in this study, and 13 healthy mammary tissue controls. DEGs in tumours were predominantly upregulated; dysregulation of CLs transcriptome was more extensive, including mostly downregulated genes. Cell-cycle and metabolic-related DEGs were upregulated in both tumours and CLs, including therapeutically-targetable cell cycle regulators (e.g. CCNB1, CCNB2, CDK1, CDK4, GTSE1, MCM4, and MCM5), metabolic-related genes (e.g. FADS2 and SLC16A3), heat-shock proteins (e.g. HSPH1, HSP90B1, and HSPA5), genes controlling centrosome disjunction (e.g. RACGAP1 and NEK2), and collagen molecules (e.g. COL2A1). DEGs specifically upregulated in basal-like TN tumours were involved in antigen processing and presentation, in normal-like TN tumours encoded G protein-coupled receptors (GPCRs), and in LB fHER2- tumours were associated with lysosomes, phagosomes, and endosomes formation. Downregulated DEGs in CLs were associated with structural and signalling cell surface components. Hence, our results suggest that upregulation of genes enhancing proliferation and metabolism is a common feature among FMCs and derived CLs. In contrast, the dissimilarities observed in dysregulation of membrane components highlight CLs' disconnection with the tumour microenvironment. Furthermore, recurrent and exclusive DEGs associated with dysregulated pathways might be useful for the development of prognostically and therapeutically-relevant targeted panels.
Collapse
|
373
|
Chou CL, Chen TJ, Li WS, Lee SW, Yang CC, Tian YF, Lin CY, He HL, Wu HC, Shiue YL, Li CF, Kuo YH. Upregulated Ubiquitin D is a Favorable Prognostic Indicator for Rectal Cancer Patients Undergoing Preoperative Concurrent Chemoradiotherapy. Onco Targets Ther 2022; 15:1171-1181. [PMID: 36238133 PMCID: PMC9553428 DOI: 10.2147/ott.s378666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose For locally advanced rectal cancer, neoadjuvant concurrent chemoradiotherapy (CCRT) allows tumor downstaging and makes curative radical proctectomy possible. However, we lack a genetic biomarker to predict cancer prognosis or treatment response. We investigated the association between ubiquitin D (UBD) expression and clinical outcomes in rectal cancer patients receiving CCRT. Patients and Methods We analyzed the genes associated with the protein modification process (GO:0036211) and identified the UBD gene as the most relevant among the top 7 differentially expressed genes associated with CCRT resistance. We collected tissue specimens from 172 rectal cancer patients who had received CCRT followed by a curative proctectomy. We examine the relationship between UBD expression and patient characteristics, pathological findings, and patient survival, such as metastasis-free survival (MeFS) and disease-specific survival. Results Upregulated UBD expression was associated with lower pre-CCRT tumor T stage (P = 0.009), lower post-CCRT tumor T stage (P < 0.001), lower post-CCRT nodal stage (P < 0.001), less vascular invasion (P = 0.015), and better tumor regression (P < 0.001). Using univariate analysis, we found that high UBD expression was correlated with better disease-free survival (DFS) (P < 0.0001), local recurrence-free survival (LRFS) (P < 0.0001) and MeFS (P < 0.0001). Moreover, multivariate analysis demonstrated that high UBD expression was associated with superior DFS (P < 0.001), LRFS (P = 0.01), and MeFS (P = 0.004). Conclusion UBD upregulation was linked to better clinical prognosis, favorable pathological features, and good treatment response in rectal cancer patients undergoing CCRT. These results suggest UBD is a biomarker for rectal cancer.
Collapse
Affiliation(s)
- Chia-Lin Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan,Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Tzu-Ju Chen
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan,Department of Pathology, Chi Mei Medical Center, Tainan, 710, Taiwan,Department of Clinical Pathology, Chi Mei Medical Center, Tainan, 710, Taiwan,Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Wan-Shan Li
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan,Department of Pathology, Chi Mei Medical Center, Tainan, 710, Taiwan,Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, 736, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, 710, Taiwan,College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Cheng-Yi Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Hong-Lin He
- Department of Pathology, E-DA Hospital & E-DA Cancer Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Hung-Chang Wu
- College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan,Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan,Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Chien-Feng Li
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan,Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan,National Institute of Cancer Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Yu-Hsuan Kuo
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan,College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan,Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan,Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan,Correspondence: Yu-Hsuan Kuo; Chien-Feng Li, No. 901, Zhonghua Road Yongkang Dist, Tainan City, Taiwan, Tel +886-6-2812811, Fax +886-6-2510218; Fax +886-6-2510218, Email ;
| |
Collapse
|
374
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|
375
|
Chen TJ, Hsu BH, Lee SW, Yang CC, Tian YF, Kuo YH, Li WS, Tsai HH, Wu LC, Yeh CF, Chou CL, Lai HY. Overexpression of Dehydrogenase/Reductase 9 Predicts Poor Response to Concurrent Chemoradiotherapy and Poor Prognosis in Rectal Cancer Patients. Pathol Oncol Res 2022; 28:1610537. [PMID: 36277959 PMCID: PMC9582124 DOI: 10.3389/pore.2022.1610537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
Abstract
Objective: To reduce the risk of locoregional recurrence, the addition of neoadjuvant concurrent chemoradiotherapy (CCRT) is recommended before surgical management for rectal cancer patients. However, despite identical tumor histology, individual patient response to neoadjuvant CCRT varies greatly. Accordingly, a comprehensive molecular characterization that is used to predict CCRT efficacy is instantly needed. Methods: Pearson’s chi-squared test was utilized to correlate dehydrogenase/reductase 9 (DHRS9) expression with clinicopathological features. Survival curves were created applying the Kaplan-Meier method, and the log-rank test was conducted to compare prognostic utility between high and low DHRS9 expression groups. Multivariate Cox proportional hazards regression analysis was applied to identify independent prognostic biomarkers based on variables with prognostic utility at the univariate level. Results: Utilizing a public transcriptome dataset, we identified that the DHRS9 gene is the most considerably upregulated gene related to epithelial cell differentiation (GO: 0030855) among rectal cancer patients with CCRT resistance. Employing immunohistochemical staining, we also demonstrated that high DHRS9 immunoexpression is considerably associated with an aggressive clinical course and CCRT resistance in our rectal cancer cohort. Among all variables with prognostic utility at the univariate level, only high DHRS9 immunoexpression was independently unfavorably prognostic of all three endpoints (all p ≤ 0.048) in the multivariate analysis. In addition, applying bioinformatic analysis, we also linked DHRS9 with unrevealed functions, such as keratan sulfate and mucin synthesis which may be implicated in CCRT resistance. Conclusion: Altogether, DHRS9 expression may serve as a helpful predictive and prognostic biomarker and assist decision-making for rectal cancer patients who underwent neoadjuvant CCRT.
Collapse
Affiliation(s)
- Tzu-Ju Chen
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Bei-Hao Hsu
- Department of General Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan
| | - Wan-Shan Li
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hsin-Hwa Tsai
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Li-Ching Wu
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheng-Fa Yeh
- Division of General Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Environment Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chia-Lin Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
- *Correspondence: Chia-Lin Chou, ; Hong-Yue Lai,
| | - Hong-Yue Lai
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Chia-Lin Chou, ; Hong-Yue Lai,
| |
Collapse
|
376
|
Eskandari-Malayeri F, Rezaei M. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review. Front Immunol 2022; 13:996145. [PMID: 36275750 PMCID: PMC9581325 DOI: 10.3389/fimmu.2022.996145] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment (TME) is a significant contributor to cancer progression containing complex connections between cellular and chemical components and provides a suitable substrate for tumor growth and development. Growing evidence shows targeting tumor cells while ignoring the surrounding TME is not effective enough to overcome the cancer disease. Fibroblasts are essential sentinels of the stroma that due to certain conditions in TME, such as oxidative stress and local hypoxia, become activated, and play the prominent role in the physical support of tumor cells and the enhancement of tumorigenesis. Activated fibroblasts in TME, defined as cancer-associated fibroblasts (CAFs), play a crucial role in regulating the biological behavior of tumors, such as tumor metastasis and drug resistance. CAFs are highly heterogeneous populations that have different origins and, in addition to their role in supporting stromal cells, have multiple immunosuppressive functions via a membrane and secretory patterns. The secretion of different cytokines/chemokines, interactions that mediate the recruitment of regulatory immune cells and the reprogramming of an immunosuppressive function in immature myeloid cells are just a few examples of how CAFs contribute to the immune escape of tumors through various direct and indirect mechanisms on specific immune cell populations. Moreover, CAFs directly abolish the role of cytotoxic lymphocytes. The activation and overexpression of inhibitory immune checkpoints (iICPs) or their ligands in TME compartments are one of the main regulatory mechanisms that inactivate tumor-infiltrating lymphocytes in cancer lesions. CAFs are also essential players in the induction or expression of iICPs and the suppression of immune response in TME. Based on available studies, CAF subsets could modulate immune cell function in TME through iICPs in two ways; direct expression of iICPs by activated CAFs and indirect induction by production soluble and then upregulation of iICPs in TME. With a focus on CAFs’ direct and indirect roles in the induction of iICPs in TME as well as their use in immunotherapy and diagnostics, we present the evolving understanding of the immunosuppressive mechanism of CAFs in TME in this review. Understanding the complete picture of CAFs will help develop new strategies to improve precision cancer therapy.
Collapse
|
377
|
Alsaleh L, Li C, Couetil JL, Ye Z, Huang K, Zhang J, Chen C, Johnson TS. Spatial Transcriptomic Analysis Reveals Associations between Genes and Cellular Topology in Breast and Prostate Cancers. Cancers (Basel) 2022; 14:4856. [PMID: 36230778 PMCID: PMC9562681 DOI: 10.3390/cancers14194856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cancer is the leading cause of death worldwide with breast and prostate cancer the most common among women and men, respectively. Gene expression and image features are independently prognostic of patient survival; but until the advent of spatial transcriptomics (ST), it was not possible to determine how gene expression of cells was tied to their spatial relationships (i.e., topology). METHODS We identify topology-associated genes (TAGs) that correlate with 700 image topological features (ITFs) in breast and prostate cancer ST samples. Genes and image topological features are independently clustered and correlated with each other. Themes among genes correlated with ITFs are investigated by functional enrichment analysis. RESULTS Overall, topology-associated genes (TAG) corresponding to extracellular matrix (ECM) and Collagen Type I Trimer gene ontology terms are common to both prostate and breast cancer. In breast cancer specifically, we identify the ZAG-PIP Complex as a TAG. In prostate cancer, we identify distinct TAGs that are enriched for GI dysmotility and the IgA immunoglobulin complex. We identified TAGs in every ST slide regardless of cancer type. CONCLUSIONS These TAGs are enriched for ontology terms, illustrating the biological relevance to our image topology features and their potential utility in diagnostic and prognostic models.
Collapse
Affiliation(s)
- Lujain Alsaleh
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46202, USA
| | - Chen Li
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Justin L. Couetil
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Ze Ye
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kun Huang
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
- Regenstrief Institute, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Chao Chen
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Travis S. Johnson
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
378
|
Jiang Z, Zhang W, Zhang J, Liu T, Xing J, Zhang H, Tang D. Nanomaterial-Based Drug Delivery Systems: A New Weapon for Cancer Immunotherapy. Int J Nanomedicine 2022; 17:4677-4696. [PMID: 36211025 PMCID: PMC9541303 DOI: 10.2147/ijn.s376216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer immunotherapy, a major breakthrough in cancer treatment, has been successfully applied to treat a number of tumors. However, given the presence of factors in the tumor microenvironment (TME) that impede immunotherapy, only a small proportion of patients achieve a good clinical response. With the ability to increase permeability and cross biological barriers, nanomaterials have been successfully applied to deliver immunotherapeutic agents, thus realizing the anti-cancer therapeutic potential of therapeutic agents. This has driven a wave of research into systems for the delivery of immunotherapeutic agents, which has resulted in widespread interest in nanomaterial-based drug delivery systems. Nanomaterial-based drug delivery systems are able to overcome the challenges from TME and thus achieve good results in cancer immunotherapy. If it can make a breakthrough in improving biocompatibility and reducing cytotoxicity, it will be more widely used in clinical practice. Different types of nanomaterials may also have some subtle differences in enhancing cancer immunotherapy. Moreover, delivery systems made of nanomaterials loaded with drugs, such as cytotoxic drugs, cytokines, and adjuvants, could be used for cancer immunotherapy because they avoid the toxicity and side effects associated with these drugs, thereby enabling their reuse. Therefore, further insights into nanomaterial-based drug delivery systems will provide more effective treatment options for cancer patients.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China,Correspondence: Dong Tang, Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China, Email
| |
Collapse
|
379
|
Kim M, Lee C, Park J. Extracellular matrix remodeling facilitates obesity-associated cancer progression. Trends Cell Biol 2022; 32:825-834. [PMID: 35307288 DOI: 10.1016/j.tcb.2022.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022]
Abstract
Obesity, a global public health concern, is an important risk factor for metabolic diseases and several cancers. Fibro-inflammation in adipose tissues (ATs) is tightly associated with the pathologies of obesity; excessive or uncontrolled extracellular matrix (ECM) production in AT has a crucial role in this pathogenesis. The ECM is a critical and functional component of various tissues, providing a mechanical and chemical network of proteins that controls cell survival, development, and tissue repair. The ECM is tightly regulated and dynamically remodeled; this is an important factor for AT expansion and can result in modifications to the physical shape and biological function of AT. Here, we focus on ECM remodeling in AT and how it affects obesity-related cancer progression.
Collapse
Affiliation(s)
- Min Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Changhu Lee
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
380
|
Leighow SM, Landry B, Lee MJ, Peyton SR, Pritchard JR. Agent-Based Models Help Interpret Patterns of Clinical Drug Resistance by Contextualizing Competition Between Distinct Drug Failure Modes. Cell Mol Bioeng 2022; 15:521-533. [PMID: 36444351 PMCID: PMC9700548 DOI: 10.1007/s12195-022-00748-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Modern targeted cancer therapies are carefully crafted small molecules. These exquisite technologies exhibit an astonishing diversity of observed failure modes (drug resistance mechanisms) in the clinic. This diversity is surprising because back of the envelope calculations and classic modeling results in evolutionary dynamics suggest that the diversity in the modes of clinical drug resistance should be considerably smaller than what is observed. These same calculations suggest that the outgrowth of strong pre-existing genetic resistance mutations within a tumor should be ubiquitous. Yet, clinically relevant drug resistance occurs in the absence of obvious resistance conferring genetic alterations. Quantitatively, understanding the underlying biological mechanisms of failure mode diversity may improve the next generation of targeted anticancer therapies. It also provides insights into how intratumoral heterogeneity might shape interpatient diversity during clinical relapse. Materials and Methods We employed spatial agent-based models to explore regimes where spatial constraints enable wild type cells (that encounter beneficial microenvironments) to compete against genetically resistant subclones in the presence of therapy. In order to parameterize a model of microenvironmental resistance, BT20 cells were cultured in the presence and absence of fibroblasts from 16 different tissues. The degree of resistance conferred by cancer associated fibroblasts in the tumor microenvironment was quantified by treating mono- and co-cultures with letrozole and then measuring the death rates. Results and Discussion Our simulations indicate that, even when a mutation is more drug resistant, its outgrowth can be delayed by abundant, low magnitude microenvironmental resistance across large regions of a tumor that lack genetic resistance. These observations hold for different modes of microenvironmental resistance, including juxtacrine signaling, soluble secreted factors, and remodeled ECM. This result helps to explain the remarkable diversity of resistance mechanisms observed in solid tumors, which subverts the presumption that the failure mode that causes the quantitatively fastest growth in the presence of drug should occur most often in the clinic. Conclusion Our model results demonstrate that spatial effects can interact with low magnitude of resistance microenvironmental effects to successfully compete against genetic resistance that is orders of magnitude larger. Clinical outcomes of solid tumors are intrinsically connected to their spatial structure, and the tractability of spatial agent-based models like the ones presented here enable us to understand this relationship more completely.
Collapse
Affiliation(s)
- Scott M. Leighow
- Department of Biomedical Engineering, 211 Wartik Laboratory, Pennsylvania State University, University Park, State College, PA 16802 USA
| | - Ben Landry
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, MA USA
| | - Michael J. Lee
- Department of Systems Biology, University of Massachusetts Medical School, Worcester, MA USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA USA
| | - Justin R. Pritchard
- Department of Biomedical Engineering, 211 Wartik Laboratory, Pennsylvania State University, University Park, State College, PA 16802 USA
| |
Collapse
|
381
|
Nayak A, Warrier NM, Kumar P. Cancer Stem Cells and the Tumor Microenvironment: Targeting the Critical Crosstalk through Nanocarrier Systems. Stem Cell Rev Rep 2022; 18:2209-2233. [PMID: 35876959 PMCID: PMC9489588 DOI: 10.1007/s12015-022-10426-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
The physiological state of the tumor microenvironment (TME) plays a central role in cancer development due to multiple universal features that transcend heterogeneity and niche specifications, like promoting cancer progression and metastasis. As a result of their preponderant involvement in tumor growth and maintenance through several microsystemic alterations, including hypoxia, oxidative stress, and acidosis, TMEs make for ideal targets in both diagnostic and therapeutic ventures. Correspondingly, methodologies to target TMEs have been investigated this past decade as stratagems of significant potential in the genre of focused cancer treatment. Within targeted oncotherapy, nanomedical derivates-nanocarriers (NCs) especially-have emerged to present notable prospects in enhancing targeting specificity. Yet, one major issue in the application of NCs in microenvironmental directed therapy is that TMEs are too broad a spectrum of targeting possibilities for these carriers to be effectively employed. However, cancer stem cells (CSCs) might portend a solution to the above conundrum: aside from being quite heavily invested in tumorigenesis and therapeutic resistance, CSCs also show self-renewal and fluid clonogenic properties that often define specific TME niches. Further scrutiny of the relationship between CSCs and TMEs also points towards mechanisms that underly tumoral characteristics of metastasis, malignancy, and even resistance. This review summarizes recent advances in NC-enabled targeting of CSCs for more holistic strikes against TMEs and discusses both the current challenges that hinder the clinical application of these strategies as well as the avenues that can further CSC-targeting initiatives. Central role of CSCs in regulation of cellular components within the TME.
Collapse
Affiliation(s)
- Aadya Nayak
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Neerada Meenakshi Warrier
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Praveen Kumar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
382
|
Lee S, Lee GS, Moon JH, Jung J. Policosanol suppresses tumor progression in a gastric cancer xenograft model. Toxicol Res 2022; 38:567-575. [PMID: 36277362 PMCID: PMC9532484 DOI: 10.1007/s43188-022-00139-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the most common cancer worldwide and the third leading cause of cancer death, with the fifth highest incidence. The development of effective chemotherapeutic agents is needed to decrease GC mortality. Policosanol (PC) extracted from Cuban sugar cane wax is a healthy functional food ingredient that helps improve blood cholesterol levels and blood pressure. Its various physiological activities, such as antioxidant, anti-inflammatory, and anticancer activities, have been reported recently. Nevertheless, the therapeutic efficacy of PC in gastric xenograft models is unclear. We aimed to investigate the anticancer effect of PC on human GC SNU-16 cells and a xenograft mouse model. PC significantly inhibited GC cell viability and delayed tumor growth without toxicity in the SNU-16-derived xenograft model. Therefore, we investigated protein expression levels in tumor tissues; the expression levels of Ki-67, a proliferation marker, and cdc2 were decreased. In addition, we performed proteomic analysis and found thirteen differentially expressed proteins. Our results suggested that PC inhibited GC progression via cdc2 suppression and extracellular matrix protein regulation. Notably, our findings might contribute to the development of novel and effective therapeutic strategies for GC.
Collapse
Affiliation(s)
- Sunyi Lee
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
| | - Ga Seul Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Jeong Hee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
- College of Pharmacy, Duksung Women’s University, 33, Samyang-ro 144-gil, Dobong-gu, Seoul, 01369 Korea
| |
Collapse
|
383
|
He D, Liu Q, Wu Y, Xie L. A context-aware deconfounding autoencoder for robust prediction of personalized clinical drug response from cell-line compound screening. NAT MACH INTELL 2022; 4:879-892. [PMID: 38895093 PMCID: PMC11185412 DOI: 10.1038/s42256-022-00541-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 09/08/2022] [Indexed: 11/09/2022]
Abstract
Accurate and robust prediction of patient-specific responses to a new compound is critical to personalized drug discovery and development. However, patient data are often too scarce to train a generalized machine learning model. Although many methods have been developed to utilize cell-line screens for predicting clinical responses, their performances are unreliable owing to data heterogeneity and distribution shift. Here we have developed a novel context-aware deconfounding autoencoder (CODE-AE) that can extract intrinsic biological signals masked by context-specific patterns and confounding factors. Extensive comparative studies demonstrated that CODE-AE effectively alleviated the out-of-distribution problem for the model generalization and significantly improved accuracy and robustness over state-of-the-art methods in predicting patient-specific clinical drug responses purely from cell-line compound screens. Using CODE-AE, we screened 59 drugs for 9,808 patients with cancer. Our results are consistent with existing clinical observations, suggesting the potential of CODE-AE in developing personalized therapies and drug response biomarkers.
Collapse
Affiliation(s)
- Di He
- PhD program in Computer Science, Graduate Center, City University of New York, New York, NY, USA
| | - Qiao Liu
- Department of Computer Science, Hunter College, City University of New York, New York, NY, USA
| | - You Wu
- PhD program in Computer Science, Graduate Center, City University of New York, New York, NY, USA
| | - Lei Xie
- PhD program in Computer Science, Graduate Center, City University of New York, New York, NY, USA
- Department of Computer Science, Hunter College, City University of New York, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
384
|
Zakaria MA, Aziz J, Rajab NF, Chua EW, Masre SF. Tissue Rigidity Increased during Carcinogenesis of NTCU-Induced Lung Squamous Cell Carcinoma In Vivo. Biomedicines 2022; 10:biomedicines10102382. [PMID: 36289644 PMCID: PMC9598693 DOI: 10.3390/biomedicines10102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 01/18/2023] Open
Abstract
Increased tissue rigidity is an emerging hallmark of cancer as it plays a critical role in promoting cancer growth. However, the field lacks a defined characterization of tissue rigidity in dual-stage carcinogenesis of lung squamous cell carcinoma (SCC) in vivo. Pre-malignant and malignant lung SCC was developed in BALB/c mice using N-nitroso-tris-chloroethylurea (NTCU). Picro sirius red staining and atomic force microscopy were performed to measure collagen content and collagen (diameter and rigidity), respectively. Then, the expression of tenascin C (TNC) protein was determined using immunohistochemistry staining. Briefly, all tissue rigidity parameters were found to be increased in the Cancer group as compared with the Vehicle group. Importantly, collagen content (33.63 ± 2.39%) and TNC expression (7.97 ± 2.04%) were found to be significantly higher (p < 0.05) in the Malignant Cancer group, as compared with the collagen content (18.08 ± 1.75%) and TNC expression (0.45 ± 0.53%) in the Pre-malignant Cancer group, indicating increased tissue rigidity during carcinogenesis of lung SCC. Overall, tissue rigidity of lung SCC was suggested to be increased during carcinogenesis as indicated by the overexpression of collagen and TNC protein, which may warrant further research as novel therapeutic targets to treat lung SCC effectively.
Collapse
Affiliation(s)
- Muhammad Asyaari Zakaria
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Jazli Aziz
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nor Fadilah Rajab
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Siti Fathiah Masre
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Correspondence: ; Tel.: +60-137-442-907
| |
Collapse
|
385
|
Ozaki K, Higuchi S, Kimura H, Gabata T. Liver Metastases: Correlation between Imaging Features and Pathomolecular Environments. Radiographics 2022; 42:1994-2013. [PMID: 36149824 DOI: 10.1148/rg.220056] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A wide range of imaging manifestations of liver metastases can be encountered, as various primary cancers preferably metastasize to the liver (organ-specific metastases), with the imaging characteristics largely depending on various primary tumor-specific factors such as histopathologic category, degree of tumor differentiation, histologic behavior, and intratumor alterations. Characteristic imaging features potentially can help provide a more precise diagnosis in some clinical settings. These settings include those of (a) primary cancers of hollow organs such as gastrointestinal organs, the lungs, and the bladder, owing to the appearance of metastases that cannot be applied to the liver, which is a parenchymal organ; (b) unknown primary tumors; (c) more than one primary tumor; (d) another emergent malignancy; and (e) transformation to a different histopathologic tumor subtype. The characteristic features include the target sign on T2-weighted MR images or during the hepatobiliary phase of hypovascular metastasis, the peripheral rim washout sign on delayed phase images, peritumor hyperintensity during the hepatobiliary phase, hypervascular metastasis, a cystic appearance with marked hyperintensity on T2-weighted images, marked hyperintensity on T1-weighted images, calcification, capsular retraction, absence of the vessel-penetrating sign, distribution of liver metastases, and rare intraductal forms of metastases. In addition to various factors associated with the primary cancer, desmoplastic reactions around the tumor-which can be observed in adenocarcinomas with peripheral and peritumor enhancement, distinct arterioportal shunts with metastases from pancreatic ductal carcinoma, and pseudocirrhosis-also can affect these findings. The authors review the characteristic imaging findings of liver metastases from various primary cancers, with a focus on the mechanisms that underlie organ-specific liver metastases. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Kumi Ozaki
- From the Departments of Radiology (K.O., H.K.) and Pathology (S.H.), Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; and Department of Radiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (T.G.)
| | - Shohei Higuchi
- From the Departments of Radiology (K.O., H.K.) and Pathology (S.H.), Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; and Department of Radiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (T.G.)
| | - Hirohiko Kimura
- From the Departments of Radiology (K.O., H.K.) and Pathology (S.H.), Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; and Department of Radiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (T.G.)
| | - Toshifumi Gabata
- From the Departments of Radiology (K.O., H.K.) and Pathology (S.H.), Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; and Department of Radiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (T.G.)
| |
Collapse
|
386
|
Machado ER, van de Vlekkert D, Sheppard HS, Perry S, Downing SM, Laxton J, Ashmun R, Finkelstein DB, Neale GA, Hu H, Harwood FC, Koo SC, Grosveld GC, d'Azzo A. Haploinsufficiency of the lysosomal sialidase NEU1 results in a model of pleomorphic rhabdomyosarcoma in mice. Commun Biol 2022; 5:992. [PMID: 36127469 PMCID: PMC9489700 DOI: 10.1038/s42003-022-03968-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Rhabdomyosarcoma, the most common pediatric sarcoma, has no effective treatment for the pleomorphic subtype. Still, what triggers transformation into this aggressive phenotype remains poorly understood. Here we used Ptch1+/-/ETV7TG/+/- mice with enhanced incidence of rhabdomyosarcoma to generate a model of pleomorphic rhabdomyosarcoma driven by haploinsufficiency of the lysosomal sialidase neuraminidase 1. These tumors share mostly features of embryonal and some of alveolar rhabdomyosarcoma. Mechanistically, we show that the transforming pathway is increased lysosomal exocytosis downstream of reduced neuraminidase 1, exemplified by the redistribution of the lysosomal associated membrane protein 1 at the plasma membrane of tumor and stromal cells. Here we exploit this unique feature for single cell analysis and define heterogeneous populations of exocytic, only partially differentiated cells that force tumors to pleomorphism and promote a fibrotic microenvironment. These data together with the identification of an adipogenic signature shared by human rhabdomyosarcoma, and likely fueling the tumor's metabolism, make this model of pleomorphic rhabdomyosarcoma ideal for diagnostic and therapeutic studies.
Collapse
Affiliation(s)
- Eda R Machado
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | | - Heather S Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Scott Perry
- Flow Cytometry Core Facility, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Susanna M Downing
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jonathan Laxton
- Flow Cytometry Core Facility, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard Ashmun
- Flow Cytometry Core Facility, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David B Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Geoffrey A Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Huimin Hu
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Frank C Harwood
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gerard C Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
387
|
Jurj A, Ionescu C, Berindan-Neagoe I, Braicu C. The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes? J Exp Clin Cancer Res 2022; 41:276. [PMID: 36114508 PMCID: PMC9479349 DOI: 10.1186/s13046-022-02484-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The extracellular matrix (ECM) is an important component of the tumor microenvironment (TME), having several important roles related to the hallmarks of cancer. In cancer, multiple components of the ECM have been shown to be altered. Although most of these alterations are represented by the increased or decreased quantity of the ECM components, changes regarding the functional alteration of a particular ECM component or of the ECM as a whole have been described. These alterations can be induced by the cancer cells directly or by the TME cells, with cancer-associated fibroblasts being of particular interest in this regard. Because the ECM has this wide array of functions in the tumor, preclinical and clinical studies have assessed the possibility of targeting the ECM, with some of them showing encouraging results. In the present review, we will highlight the most relevant ECM components presenting a comprehensive description of their physical, cellular and molecular properties which can alter the therapy response of the tumor cells. Lastly, some evidences regarding important biological processes were discussed, offering a more detailed understanding of how to modulate altered signalling pathways and to counteract drug resistance mechanisms in tumor cells.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Calin Ionescu
- 7Th Surgical Department, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania
- Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139, Targu Mures, Romania.
| |
Collapse
|
388
|
Zhao B, Li X, Kong Y, Wang W, Wen T, Zhang Y, Deng Z, Chen Y, Zheng X. Recent advances in nano-drug delivery systems for synergistic antitumor immunotherapy. Front Bioeng Biotechnol 2022; 10:1010724. [PMID: 36159668 PMCID: PMC9497653 DOI: 10.3389/fbioe.2022.1010724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has demonstrated great clinical success in the field of oncology in comparison with conventional cancer therapy. However, cancer immunotherapy still encounters major challenges that limit its efficacy against different types of cancers and the patients show minimal immune response to the immunotherapy. To overcome these limitations, combinatorial approaches with other therapeutics have been applied in the clinic. Simultaneously, nano-drug delivery system has played an important role in increasing the antitumor efficacy of various treatments and has been increasingly utilized for synergistic immunotherapy to further enhance the immunogenicity of the tumors. Specifically, they can promote the infiltration of immune cells within the tumors and create an environment that is more sensitive to immunotherapy, particularly in solid tumors, by accelerating tumor accumulation and permeability. Herein, this progress report provides a brief overview of the development of nano-drug delivery systems, classification of combinatory cancer immunotherapy and recent progress in tumor immune synergistic therapy in the application of nano-drug delivery systems.
Collapse
Affiliation(s)
- Bonan Zhao
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Xiang Li
- Department of Central Laboratory and Precision Medicine Center, Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Ying Kong
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenbo Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Tingting Wen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yanru Zhang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Zhiyong Deng
- Department of Pathology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- *Correspondence: Xian Zheng, ; Yafang Chen, ; Zhiyong Deng,
| | - Yafang Chen
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- *Correspondence: Xian Zheng, ; Yafang Chen, ; Zhiyong Deng,
| | - Xian Zheng
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- *Correspondence: Xian Zheng, ; Yafang Chen, ; Zhiyong Deng,
| |
Collapse
|
389
|
Fanale D, Dimino A, Pedone E, Brando C, Corsini LR, Filorizzo C, Fiorino A, Lisanti MC, Magrin L, Randazzo U, Bazan Russo TD, Russo A, Bazan V. Prognostic and Predictive Role of Tumor-Infiltrating Lymphocytes (TILs) in Ovarian Cancer. Cancers (Basel) 2022; 14:4344. [PMID: 36139508 PMCID: PMC9497073 DOI: 10.3390/cancers14184344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/12/2022] Open
Abstract
In the last decade, tumor-infiltrating lymphocytes (TILs) have been recognized as clinically relevant prognostic markers for improved survival, providing the immunological basis for the development of new therapeutic strategies and showing a significant prognostic and predictive role in several malignancies, including ovarian cancer (OC). In fact, many OCs show TILs whose typology and degree of infiltration have been shown to be strongly correlated with prognosis and survival. The OC histological subtype with the higher presence of TILs is the high-grade serous carcinoma (HGSC) followed by the endometrioid subtype, whereas mucinous and clear cell OCs seem to contain a lower percentage of TILs. The abundant presence of TILs in OC suggests an immunogenic potential for this tumor. Despite the high immunogenic potential, OC has been described as a highly immunosuppressive tumor with a high expression of PD1 by TILs. Although further studies are needed to better define their role in prognostic stratification and the therapeutic implication, intraepithelial TILs represent a relevant prognostic factor to take into account in OC. In this review, we will discuss the promising role of TILs as markers which are able to reflect the anticancer immune response, describing their potential capability to predict prognosis and therapy response in OC.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessandra Dimino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Clarissa Filorizzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Fiorino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Maria Chiara Lisanti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luigi Magrin
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ugo Randazzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
390
|
Dekker Y, Le Dévédec SE, Danen EHJ, Liu Q. Crosstalk between Hypoxia and Extracellular Matrix in the Tumor Microenvironment in Breast Cancer. Genes (Basel) 2022; 13:genes13091585. [PMID: 36140753 PMCID: PMC9498429 DOI: 10.3390/genes13091585] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Even though breast cancer is the most diagnosed cancer among women, treatments are not always successful in preventing its progression. Recent studies suggest that hypoxia and the extracellular matrix (ECM) are important in altering cell metabolism and tumor metastasis. Therefore, the aim of this review is to study the crosstalk between hypoxia and the ECM and to assess their impact on breast cancer progression. The findings indicate that hypoxic signaling engages multiple mechanisms that directly contribute to ECM remodeling, ultimately increasing breast cancer aggressiveness. Second, hypoxia and the ECM cooperate to alter different aspects of cell metabolism. They mutually enhance aerobic glycolysis through upregulation of glucose transport, glycolytic enzymes, and by regulating intracellular pH. Both alter lipid and amino acid metabolism by stimulating lipid and amino acid uptake and synthesis, thereby providing the tumor with additional energy for growth and metastasis. Third, YAP/TAZ signaling is not merely regulated by the tumor microenvironment and cell metabolism, but it also regulates it primarily through its target c-Myc. Taken together, this review provides a better understanding of the crosstalk between hypoxia and the ECM in breast cancer. Additionally, it points to a role for the YAP/TAZ mechanotransduction pathway as an important link between hypoxia and the ECM in the tumor microenvironment, driving breast cancer progression.
Collapse
Affiliation(s)
- Yasmin Dekker
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sylvia E. Le Dévédec
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Erik H. J. Danen
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Correspondence: (E.H.J.D.); (Q.L.)
| | - Qiuyu Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100102, China
- Correspondence: (E.H.J.D.); (Q.L.)
| |
Collapse
|
391
|
Tamayo-Angorrilla M, López de Andrés J, Jiménez G, Marchal JA. The biomimetic extracellular matrix: a therapeutic tool for breast cancer research. Transl Res 2022; 247:117-136. [PMID: 34844003 DOI: 10.1016/j.trsl.2021.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
A deeper knowledge of the functional versatility and dynamic nature of the ECM has improved the understanding of cancer biology. Translational Significance: This work provides an in-depth view of the importance of the ECM to develop more mimetic breast cancer models, which aim to recreate the components and architecture of tumor microenvironment. Special focus is placed on decellularized matrices derived from tissue and cell culture, both in procurement and applications, as they have achieved great success in cancer research and pharmaceutical sector. The extracellular matrix (ECM) is increasingly recognized as a master regulator of cell behavior and response to breast cancer (BC) treatment. During BC progression, the mammary gland ECM is remodeled and altered in the composition and organization. Accumulated evidence suggests that changes in the composition and mechanics of ECM, orchestrated by tumor-stromal interactions along with ECM remodeling enzymes, are actively involved in BC progression and metastasis. Understanding how specific ECM components modulate the tumorigenic process has led to an increased interest in the development of biomaterial-based biomimetic ECM models to recapitulate key tumor characteristics. The decellularized ECMs (dECMs) have emerged as a promising in vitro 3D tumor model, whose recent advances in the processing and application could become the biomaterial by excellence for BC research and the pharmaceutical industry. This review offers a detailed view of the contribution of ECM in BC progression, and highlights the application of dECM-based biomaterials as promising personalized tumor models that more accurately mimic the tumorigenic mechanisms of BC and the response to treatment. This will allow the design of targeted therapeutic approaches adapted to the specific characteristics of each tumor that will have a great impact on the precision medicine applied to BC patients.
Collapse
Affiliation(s)
- Marta Tamayo-Angorrilla
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.
| |
Collapse
|
392
|
Mattinzoli D, Cacioppo M, Ikehata M, Armelloni S, Alfieri CM, Castellano G, Barilani M, Arcudi F, Messa P, Prato M. Carbon dots conjugated to SN38 for improved colorectal anticancer therapy. Mater Today Bio 2022; 16:100286. [PMID: 36186846 PMCID: PMC9523396 DOI: 10.1016/j.mtbio.2022.100286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Irinotecan (CTP-11) is one of the standard therapies for colorectal cancer (CRC). CTP-11 is enzymatically converted to the hydrophobic 7-ethyl-10-hydroxycamptothecin (SN38), a one hundred-fold more active metabolite. Conjugation of hydrophobic anticancer drugs to nanomaterials is a strategy to improve their solubility, efficacy, and selectivity. Carbon dots (CDs) have garnered interest for their small sizes (<10 nm), low toxicity, high water solubility, and bright fluorescence. This paper describes the use of CDs to improve drug vehiculation, stability, and chemotherapeutic efficiency of SN38 through a direct intracellular uptake in CRC. The covalent conjugation of SN38 to CDs via a carbamate bond provides a CD-SN38 hybrid material for slow, sustained, and pH-responsive drug release. CD-SN38 successfully penetrates the CRC cells with a release in the nucleus affecting first the cell cycle and then the cytoskeleton. Moreover, CD-SN38 leads to a deregulation of the extracellular matrix (ECM), one of the major components of the cancer niche considered a possible target therapy for reducing the cancer progression. This work shows the combined therapeutic and imaging potential of CD-based hybrid materials for the treatment of CRC. Future efforts for targeted therapy of chronic diseases characterized by altered ECM deposition, such as chronic kidney disease and chronic allograft nephropathy in kidney transplant patients are envisaged.
Collapse
Affiliation(s)
- Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, Milan, 20122, Italy
- Corresponding author.
| | - Michele Cacioppo
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián, 20014, Spain
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, Milan, 20122, Italy
| | - Silvia Armelloni
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, Milan, 20122, Italy
| | - Carlo Maria Alfieri
- Unit of Nephrology, Dialysis and Renal Transplant Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 15, Milan, 20122, Italy
- University of Study of Milan, Via Festa Del Perdono 7, 20122, Milan, Italy
- Corresponding author. University of Study of Milan, via Festa Del Perdono 7, 20122, Milan, Italy.
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Renal Transplant Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 15, Milan, 20122, Italy
- University of Study of Milan, Via Festa Del Perdono 7, 20122, Milan, Italy
| | - Mario Barilani
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Milan, 20122, Italy
- Department of Transfusion Medicine and Hematology, Cell Factory, Regenerative Medicine Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
- Corresponding author.
| | - Piergiorgio Messa
- Unit of Nephrology, Dialysis and Renal Transplant Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 15, Milan, 20122, Italy
- University of Study of Milan, Via Festa Del Perdono 7, 20122, Milan, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- Corresponding author. Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, Trieste, 34127, Italy.
| |
Collapse
|
393
|
Li J, Ek F, Olsson R, Belting M, Bengzon J. Glioblastoma CD105 + cells define a SOX2 - cancer stem cell-like subpopulation in the pre-invasive niche. Acta Neuropathol Commun 2022; 10:126. [PMID: 36038950 PMCID: PMC9426031 DOI: 10.1186/s40478-022-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma (GBM) is the most common and most aggressive primary brain tumor in adults. Glioma stem like cells (GSC) represent the highest cellular hierarchy in GBM and have a determining role in tumor growth, recurrence and patient prognosis. However, a better definition of GSC subpopulations, especially at the surgical resection margin, is warranted for improved oncological treatment options. The present study interrogated cells expressing CD105 (CD105+) specifically within the tumor front and the pre-invasive niche as a potential GSC subpopulation. GBM primary cell lines were generated from patients (n = 18) and CD105+ cells were isolated and assessed for stem-like characteristics. In vitro, CD105+ cells proliferated and enriched in serum-containing medium but not in serum-free conditions. CD105+ cells were characterized by Nestin+, Vimentin+ and SOX2-, clearly distinguishing them from SOX2+ GCS. GBM CD105+ cells differentiated into osteocytes and adipocytes but not chondrocytes. Exome sequencing revealed that GBM CD105+ cells matched 83% of somatic mutations in the Cancer cell line encyclopedia, indicating a malignant phenotype and in vivo xenotransplantation assays verified their tumorigenic potential. Cytokine assays showed that immunosuppressive and protumorigenic cytokines such as IL6, IL8, CCL2, CXCL-1 were produced by CD105+ cells. Finally, screening for 88 clinical drugs revealed that GBM CD105+ cells are resistant to most chemotherapeutics except Doxorubicin, Idarubicin, Fludarabine and ABT-751. Our study provides a rationale for targeting tumoral CD105+ cells in order to reshape the tumor microenvironment and block GBM progression.
Collapse
Affiliation(s)
- Jiaxin Li
- Stem Cell Center, Lund University, Lund, Sweden.
- Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mattias Belting
- Section of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiophysics, Skane University Hospital, Lund, Sweden
- Science for Life Laboratory, Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Bengzon
- Stem Cell Center, Lund University, Lund, Sweden
- Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Neurosurgery, Skane University Hospital, Lund, Sweden
| |
Collapse
|
394
|
Laurentino TDS, Soares RDS, Marie SKN, Oba-Shinjo SM. Correlation of Matrisome-Associatted Gene Expressions with LOX Family Members in Astrocytomas Stratified by IDH Mutation Status. Int J Mol Sci 2022; 23:ijms23179507. [PMID: 36076905 PMCID: PMC9455728 DOI: 10.3390/ijms23179507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Tumor cell infiltrative ability into surrounding brain tissue is a characteristic of diffusely infiltrative astrocytoma and is strongly associated with extracellular matrix (ECM) stiffness. Collagens are the most abundant ECM scaffolding proteins and contribute to matrix organization and stiffness. LOX family members, copper-dependent amine oxidases, participate in the collagen and elastin crosslinking that determine ECM tensile strength. Common IDH mutations in lower-grade gliomas (LGG) impact prognosis and have been associated with ECM stiffness. We analyzed the expression levels of LOX family members and matrisome-associated genes in astrocytoma stratified by malignancy grade and IDH mutation status. A progressive increase in expression of all five LOX family members according to malignancy grade was found. LOX, LOXL1, and LOXL3 expression correlated with matrisome gene expressions. LOXL1 correlations were detected in LGG with IDH mutation (IDHmut), LOXL3 correlations in LGG with IDH wild type (IDHwt) and strong LOX correlations in glioblastoma (GBM) were found. These increasing correlations may explain the increment of ECM stiffness and tumor aggressiveness from LGG-IDHmut and LGG-IDHwt through to GBM. The expression of the mechanosensitive transcription factor, β-catenin, also increased with malignancy grade and was correlated with LOXL1 and LOXL3 expression, suggesting involvement of this factor in the outside–in signaling pathway.
Collapse
|
395
|
Wang D, Li Y, Ge H, Ghadban T, Reeh M, Güngör C. The Extracellular Matrix: A Key Accomplice of Cancer Stem Cell Migration, Metastasis Formation, and Drug Resistance in PDAC. Cancers (Basel) 2022; 14:cancers14163998. [PMID: 36010993 PMCID: PMC9406497 DOI: 10.3390/cancers14163998] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is rich in dense fibrotic stroma that are composed of extracellular matrix (ECM) proteins. A disruption of the balance between ECM synthesis and secretion and the altered expression of matrix remodeling enzymes lead to abnormal ECM dynamics in PDAC. This pathological ECM promotes cancer growth, survival, invasion, and alters the behavior of fibroblasts and immune cells leading to metastasis formation and chemotherapy resistance, which contribute to the high lethality of PDAC. Additionally, recent evidence highlights that ECM, as a major structural component of the tumor microenvironment, is a highly dynamic structure in which ECM proteins establish a physical and biochemical niche for cancer stem cells (CSCs). CSCs are characterized by self-renewal, tumor initiation, and resistance to chemotherapeutics. In this review, we will discuss the effects of the ECM on tumor biological behavior and its molecular impact on the fundamental signaling pathways in PDAC. We will also provide an overview of how the different ECM components are able to modulate CSCs properties and finally discuss the current and ongoing therapeutic strategies targeting the ECM. Given the many challenges facing current targeted therapies for PDAC, a better understanding of molecular events involving the interplay of ECM and CSC will be key in identifying more effective therapeutic strategies to eliminate CSCs and ultimately to improve survival in patients that are suffering from this deadly disease.
Collapse
|
396
|
Choi UY, Lee JJ, Park A, Jung KL, Lee SA, Choi YJ, Lee HR, Lai CJ, Eoh H, Jung JU. Herpesvirus-induced spermidine synthesis and eIF5A hypusination for viral episomal maintenance. Cell Rep 2022; 40:111234. [PMID: 35977517 DOI: 10.1016/j.celrep.2022.111234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/16/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022] Open
Abstract
Spermidine is essential for cellular growth and acts as a prerequisite of hypusination, a post-translational modification of eukaryotic initiation factor 5A (eIF5A), allowing the translation of polyproline-containing proteins. Here, we show that oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) increases spermidine synthesis and eIF5A hypusination to enhance expression of polyproline-containing latency-associated nuclear antigen (LANA) for viral episomal maintenance. KSHV upregulates intracellular spermidine levels by dysregulating polyamine metabolic pathways in three-dimensional (3D) culture and 2D de novo infection conditions. Increased intracellular spermidine leads to increased eIF5A hypusination, ultimately enhancing LANA expression. In contrast, inhibition of spermidine synthesis or eIF5A hypusination alleviates LANA expression, decreasing viral episomal maintenance and KSHV-infected cell proliferation in vitro and in vivo, which is reversed by spermidine supplement. This demonstrates that KSHV hijacks spermidine synthesis and eIF5A hypusination pathways to enhance LANA expression for viral episomal maintenance, suggesting polyamine metabolism and eIF5A hypusination as therapeutic targets for KSHV-induced tumorigenesis.
Collapse
Affiliation(s)
- Un Yung Choi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Jae Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kyle L Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shin-Ae Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youn Jung Choi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Chih-Jen Lai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jae U Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
397
|
Zhu Y, Li X, Wang L, Hong X, Yang J. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:988295. [PMID: 36046791 PMCID: PMC9421293 DOI: 10.3389/fendo.2022.988295] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
It is notorious that cancer cells alter their metabolism to adjust to harsh environments of hypoxia and nutritional starvation. Metabolic reprogramming most often occurs in the tumor microenvironment (TME). TME is defined as the cellular environment in which the tumor resides. This includes surrounding blood vessels, fibroblasts, immune cells, signaling molecules and the extracellular matrix (ECM). It is increasingly recognized that cancer cells, fibroblasts and immune cells within TME can regulate tumor progression through metabolic reprogramming. As the most significant proportion of cells among all the stromal cells that constitute TME, cancer-associated fibroblasts (CAFs) are closely associated with tumorigenesis and progression. Multitudinous studies have shown that CAFs participate in and promote tumor metabolic reprogramming and exert regulatory effects via the dysregulation of metabolic pathways. Previous studies have demonstrated that curbing the substance exchange between CAFs and tumor cells can dramatically restrain tumor growth. Emerging studies suggest that CAFs within the TME have emerged as important determinants of metabolic reprogramming. Metabolic reprogramming also occurs in the metabolic pattern of immune cells. In the meanwhile, immune cell phenotype and functions are metabolically regulated. Notably, immune cell functions influenced by metabolic programs may ultimately lead to alterations in tumor immunity. Despite the fact that multiple previous researches have been devoted to studying the interplays between different cells in the tumor microenvironment, the complicated relationship between CAFs and immune cells and implications of metabolic reprogramming remains unknown and requires further investigation. In this review, we discuss our current comprehension of metabolic reprogramming of CAFs and immune cells (mainly glucose, amino acid, and lipid metabolism) and crosstalk between them that induces immune responses, and we also highlight their contributions to tumorigenesis and progression. Furthermore, we underscore potential therapeutic opportunities arising from metabolism dysregulation and metabolic crosstalk, focusing on strategies targeting CAFs and immune cell metabolic crosstalk in cancer immunotherapy.
Collapse
Affiliation(s)
- Yifei Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Xinyan Li
- School of Medicine, Southeast University, Nanjing, China
| | - Lei Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Xiwei Hong
- School of Medicine, Southeast University, Nanjing, China
| | - Jie Yang
- Department of General surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
398
|
Ritter A, Kreis NN, Hoock SC, Solbach C, Louwen F, Yuan J. Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells, Obesity and the Tumor Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:3908. [PMID: 36010901 PMCID: PMC9405791 DOI: 10.3390/cancers14163908] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Adipose tissue is the major microenvironment of breast cancer. Obesity changes the composition, structure, and function of adipose tissue, which is associated with inflammation and metabolic dysfunction. Interestingly, adipose tissue is rich in ASCs/MSCs, and obesity alters the properties and functions of these cells. As a key component of the mammary stroma, ASCs play essential roles in the breast cancer microenvironment. The crosstalk between ASCs and breast cancer cells is multilateral and can occur both directly through cell-cell contact and indirectly via the secretome released by ASC/MSC, which is considered to be the main effector of their supportive, angiogenic, and immunomodulatory functions. In this narrative review, we aim to address the impact of obesity on ASCs/MSCs, summarize the current knowledge regarding the potential pathological roles of ASCs/MSCs in the development of breast cancer, discuss related molecular mechanisms, underline the possible clinical significance, and highlight related research perspectives. In particular, we underscore the roles of ASCs/MSCs in breast cancer cell progression, including proliferation and survival, angiogenesis, migration and invasion, the epithelial-mesenchymal transition, cancer stem cell development, immune evasion, therapy resistance, and the potential impact of breast cancer cells on ASCS/MSCs by educating them to become cancer-associated fibroblasts. We conclude that ASCs/MSCs, especially obese ASCs/MSCs, may be key players in the breast cancer microenvironment. Targeting these cells may provide a new path of effective breast cancer treatment.
Collapse
Affiliation(s)
- Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | | | | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
399
|
Liu B, Jing Z, Zhang X, Chen Y, Mao S, Kaundal R, Zou Y, Wei G, Zang Y, Wang X, Lin W, Di M, Sun Y, Chen Q, Li Y, Xia J, Sun J, Lin CP, Huang X, Chi T. Large-scale multiplexed mosaic CRISPR perturbation in the whole organism. Cell 2022; 185:3008-3024.e16. [PMID: 35870449 DOI: 10.1016/j.cell.2022.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Here, we report inducible mosaic animal for perturbation (iMAP), a transgenic platform enabling in situ CRISPR targeting of at least 100 genes in parallel throughout the mouse body. iMAP combines Cre-loxP and CRISPR-Cas9 technologies and utilizes a germline-transmitted transgene carrying a large array of individually floxed, tandemly linked gRNA-coding units. Cre-mediated recombination triggers expression of all the gRNAs in the array but only one of them per cell, converting the mice to mosaic organisms suitable for phenotypic characterization and also for high-throughput derivation of conventional single-gene perturbation lines via breeding. Using gRNA representation as a readout, we mapped a miniature Perturb-Atlas cataloging the perturbations of 90 genes across 39 tissues, which yields rich insights into context-dependent gene functions and provides a glimpse of the potential of iMAP in genome decoding.
Collapse
Affiliation(s)
- Bo Liu
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhengyu Jing
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoming Zhang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuxin Chen
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shaoshuai Mao
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ravinder Kaundal
- Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA
| | - Yan Zou
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ge Wei
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying Zang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinxin Wang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenyang Lin
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Minghui Di
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Sun
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qin Chen
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yongqin Li
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Xia
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianlong Sun
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingxu Huang
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tian Chi
- Gene Editing Center, School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA.
| |
Collapse
|
400
|
Ramuta TŽ, Kreft ME. Mesenchymal Stem/Stromal Cells May Decrease Success of Cancer Treatment by Inducing Resistance to Chemotherapy in Cancer Cells. Cancers (Basel) 2022; 14:cancers14153761. [PMID: 35954425 PMCID: PMC9367361 DOI: 10.3390/cancers14153761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Tumours consist of different cell types and an extracellular matrix, all of which together form a complex microenvironment. The tumour microenvironment plays a critical role in various aspects of tumour development and progression. Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells that have a tri-lineage differentiation capacity and are one of the key stromal cells in the tumour microenvironment. Following the interaction with cancer cells, they are transformed from naïve MSCs to tumour-associated MSCs, which substantially affect tumour growth and progression as well as the development of chemoresistance in cancer cells. The aim of this review article is to provide an overview of studies that have investigated how MSCs affect the susceptibility of cancer cells to chemotherapeutics. Their results show that MSCs protect cancer cells from chemotherapeutics by influencing several signalling pathways. This knowledge is crucial for the development of new treatment approaches that will lead to improved treatment outcomes. Abstract The tumour microenvironment, which is comprised of various cell types and the extracellular matrix, substantially impacts tumour initiation, progression, and metastasis. Mesenchymal stem/stromal cells (MSCs) are one of the key stromal cells in the tumour microenvironment, and their interaction with cancer cells results in the transformation of naïve MSCs to tumour-associated MSCs. The latter has an important impact on tumour growth and progression. Recently, it has been shown that they can also contribute to the development of chemoresistance in cancer cells. This review provides an overview of 42 studies published between 1 January 2001 and 1 January 2022 that examined the effect of MSCs on the susceptibility of cancer cells to chemotherapeutics. The studies showed that MSCs affect various signalling pathways in cancer cells, leading to protection against chemotherapy-induced damage. Promising results emerged from the use of inhibitors of various signalling pathways that are affected in cancer cells due to interactions with MSCs in the tumour microenvironment. These studies present a good starting point for the investigation of novel treatment approaches and demonstrate the importance of targeting the stroma in the tumour microenvironment to improve treatment outcomes.
Collapse
|