351
|
Rakib AI, Chowdhury R, Bhuia MS, Hasan MSA, Sheikh S, Ansari SA, Ansari IA, Islam MT. Qualitative Phytochemical Analysis and Assessments of Analgesic and Antidiarrheal Activity of the Methanolic Leaf Extract of Cheilanthes tenuifolia: In Vivo Study. Immun Inflamm Dis 2024; 12:e70055. [PMID: 39508723 PMCID: PMC11542299 DOI: 10.1002/iid3.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Cheilanthes tenuifolia (Burm.f.), commonly known as the Sword Fern or Narrow-leaved Cloak Fern, is a little evergreen fern that belongs to the Pteridaceae family and is abundant in various bioactive compounds exerting promising medicinal properties. The current study is designed to evaluate in vivo analgesic and antidiarrheal activity of the methanol leaf extract of C. tenuifolia (MCT). METHODS For this purpose, Swiss albino mice were used to investigate the analgesic and antidiarrheal properties using acetic acid-induced writhing and castor oil-induced diarrhea methods, respectively. The mice were administered orally with different doses of MCT (125, 250, and 500 mg/kg). The vehicle performed as a negative control (NC), while diclofenac sodium (DCN) (25 mg/kg), loperamide (LOP) (3 mg/kg), bismuth subsalicylate (BSS) (10 mg/kg), and nifedipine (NDP) (2.5 mg/kg) were supplied as positive controls (PC) (p.o.). In both models, combination treatment of MCT (higher dose) and PC was also administered to different groups of animals for assessing potential antagonistic or synergistic activity. RESULTS Findings of the in vivo study demonstrated that MCT dose-dependently significantly (p < 0.05) exhibited analgesic and antidiarrheal properties by reduction in the number of writhing and reductions in the total fecal output in contrast to the NC group. Moreover, in combination treatment, MCT significantly (p < 0.05) synergized the activity of PC in both models, exerting potential analgesic and antidiarrheal activity. CONCLUSION In conclusion, MCT has analgesic and antidiarrheal activity; it might be beneficial for the management of pain and diarrhea.
Collapse
Affiliation(s)
- Asraful Islam Rakib
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjDhakaBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd.GopalganjDhakaBangladesh
| | - Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjDhakaBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd.GopalganjDhakaBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjDhakaBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd.GopalganjDhakaBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjDhakaBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd.GopalganjDhakaBangladesh
| | - Salehin Sheikh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjDhakaBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd.GopalganjDhakaBangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | | | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjDhakaBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd.GopalganjDhakaBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
352
|
Azevedo T, Ferreira T, Peña‐Corona SI, Cortes H, Silva‐Reis R, da Costa RMG, Faustino‐Rocha AI, Oliveira PA, Calina D, Cardoso SM, Büsselberg D, Leyva‐Gómez G, Sharifi‐Rad J, Cho WC. Natural products‐based antiangiogenic agents: New frontiers in cancer therapy. FOOD FRONTIERS 2024; 5:2423-2466. [DOI: 10.1002/fft2.466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
AbstractAngiogenesis, vital for tumor growth and metastasis, is a promising target in cancer therapy. Natural compounds offer potential as antiangiogenic agents with reduced toxicity. This review provides a comprehensive overview of natural product‐based antiangiogenic therapies, focusing on molecular mechanisms and therapeutic potential. A systematic search identified relevant articles from 2019 to 2023. Various natural compounds, including polyphenols, terpenes, alkaloids, cannabinoids, omega‐3 fatty acids, polysaccharides, proteins, and carotenoids, were investigated for their antiangiogenic properties. Challenges such as dose standardization, routes of administration, and potential side effects remain. Further studies, including in‐depth animal models and human epidemiological studies, must elucidate clinical efficacy and safety. Synergistic effects with current antiangiogenic therapies, such as bevacizumab and tyrosine kinase inhibitors, should be explored. Additionally, the potential hormone‐dependent effects of compounds like genistein highlight the need for safety evaluation. In conclusion, natural products hold promise as adjunctive therapies to conventional antineoplastic drugs in modulating angiogenesis in cancer. However, robust clinical trials are needed to validate preclinical findings and ensure safety and efficacy.
Collapse
Affiliation(s)
- Tiago Azevedo
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Tiago Ferreira
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Sheila I. Peña‐Corona
- Departamento de Farmacia, Facultad de Química Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Hernán Cortes
- Laboratorio de Medicina Genómica, Departamento de Genómica Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra Ciudad de México Mexico
| | - Rita Silva‐Reis
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- LAQV‐REQUIMTE, Department of Chemistry University of Aveiro Aveiro Portugal
| | - Rui M. Gil da Costa
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network) Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC) Porto Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering University of Porto Porto Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering University of Porto Porto Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology Federal University of Maranhão (UFMA), UFMA University Hospital (HUUFMA) São Luís Brazil
| | - Ana I. Faustino‐Rocha
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
- Comprehensive Health Research Center, Department of Zootechnics, School of Sciences and Technology University of Évora Evora Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro University of Trás‐os‐Montes and Alto Douro (UTAD) Vila Real Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy University of Medicine and Pharmacy of Craiova Craiova Romania
| | - Susana M. Cardoso
- LAQV‐REQUIMTE, Department of Chemistry University of Aveiro Aveiro Portugal
| | | | - Gerardo Leyva‐Gómez
- Departamento de Farmacia, Facultad de Química Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Javad Sharifi‐Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo Veracruz Mexico
- Department of Medicine, College of Medicine Korea University Seoul Republic of Korea
- Facultad de Medicina Universidad del Azuay Cuenca Ecuador
| | - William C. Cho
- Department of Clinical Oncology Queen Elizabeth Hospital Kowloon Hong Kong
| |
Collapse
|
353
|
Arulvendhan V, Saravana Bhavan P, Rajaganesh R. Molecular Identification and Phytochemical Analysis and Bioactivity Assessment of Catharanthus roseus Leaf Extract: Exploring Antioxidant Potential and Antimicrobial Activities. Appl Biochem Biotechnol 2024; 196:7614-7641. [PMID: 38526661 DOI: 10.1007/s12010-024-04902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Plants have long been at the main focus of the medical industry's attention due to their extensive list of biological and therapeutic properties and ethnobotanical applications. Catharanthus roseus, sometimes referred to as Nithyakalyani in Tamil, is an Apocynaceae family member used in traditional Indian medicine. It also examines the plant's potential antimicrobial and antioxidant activities as well as its preliminary phytochemical makeup. Leaf material from C. roseus was analyzed and found to include a variety of phytochemicals including alkaloids, terpenoids, flavonoids, tannins, phenols, saponins, glycosides, quinones, and steroids. Four of the seven secondary metabolic products discovered in C. roseus leaves showed bioactive principles: 3-methylmannoside, squalene, pentatriacontane, and 2,4,4-trimethyl-3-hydroxymethyl-5a-(3-methyl-but-2-enyl)-cyclohexene. Catharanthus roseus is rich in the anticancer compounds vinblastine and vincristine. Whole DNA was isolated from fresh leaves, then amplified, sequenced, and aligned to find prospective DNA barcode candidates. One DNA marker revealed the restricted genetic relationship among C. roseus based on genetic distance and phylogenetic analysis. The antioxidant activity of the plant extract was evaluated using the DPPH, ABTS, phosphomolybdenum, FRAP, and superoxide radical scavenging activity assays, while the antibacterial potential was evaluated using the agar well diffusion assay. The ethanol extract of C. roseus was found to have the highest reducing power. In addition, a 4- to 21-mm-wide zone of inhibition was seen when the C. roseus extract was tested against bacterial and fungal stains. In conclusion, C. roseus has the most promise as an antibacterial and antioxidant agent.
Collapse
Affiliation(s)
- Velusamy Arulvendhan
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Periyakali Saravana Bhavan
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Rajapandian Rajaganesh
- Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
354
|
Priya K, Roy AC, Prasad A, Kumar P, Ghosh I. Naringenin Against Cadmium Toxicity in Fibroblast Cells: An Integrated Network Pharmacology and In Vitro Metabolomics Approach. ENVIRONMENTAL TOXICOLOGY 2024; 39:5124-5139. [PMID: 39105392 DOI: 10.1002/tox.24388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Cadmium, a heavy metal, disrupts cellular homeostasis and is highly toxic, with no effective treatments currently available against its toxicity. According to studies, phytochemicals provide a promising strategy for mitigating cadmium toxicity. Naringenin (NG), a potent antioxidant found primarily in citrus fruits, showed protective properties against cadmium toxicity in rats. Nonetheless, the precise mechanism of cadmium cytotoxicity in fibroblasts remains unknown. This study evaluated NG against cadmium (CdCl2) toxicity utilizing network pharmacology and in silico molecular docking, and was further validated experimentally in rat fibroblast F111 cells. Using network pharmacology, 25 possible targets, including the top 10 targets of NG against cadmium, were identified. Molecular docking of interleukin 6 (IL6), the top potential target with NG, showed robust binding with an inhibition constant (Ki) of 58.76 μM, supporting its potential therapeutic potential. Pathway enrichment analysis suggested that "response to reactive oxygen species" and "negative regulation of small molecules metabolic process" were the topmost pathways targeted by NG against cadmium. In vitro analysis showed that NG (10 μM) attenuated CdCl2-induced oxidative stress by reducing altered intracellular ROS, mitochondrial mass, and membrane potential. Also, NG reversed CdCl2-mediated nuclear damage, G2/M phase arrest, and apoptosis. GC/MS-based metabolomics of F111 cells revealed CdCl2 reduced cholesterol levels, which led to alterations in primary bile acid, steroid and steroid hormone biosynthesis pathways, whereas, NG restored these alterations. In summary, combined in silico and in vitro analysis suggested that NG protected cells from CdCl2 toxicity by mitigating oxidative stress and metabolic pathway alterations, providing a comprehensive understanding of its protective mechanisms against cadmium-induced toxicity.
Collapse
Affiliation(s)
- Komal Priya
- Biochemistry and Environmental Toxicology Laboratory, Lab. #103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashim Chandra Roy
- Biochemistry and Environmental Toxicology Laboratory, Lab. #103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Prasad
- Biochemistry and Environmental Toxicology Laboratory, Lab. #103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Prabhat Kumar
- Biochemistry and Environmental Toxicology Laboratory, Lab. #103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology Laboratory, Lab. #103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
355
|
Chen X, Deng Z, Zhang C, Zheng S, Pan Y, Wang H, Li H. WITHDRAWN: Is antioxidant activity of flavonoids mainly through the hydrogen-atom transfer mechanism? Food Res Int 2024; 196:108081. [PMID: 39614461 DOI: 10.1016/j.foodres.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/08/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; Institute for Advanced Study, University of Nanchang, Nanchang 330031, China
| | - Chengyue Zhang
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China
| | - Shilian Zheng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China
| | - Yao Pan
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, China
| | - Hongming Wang
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China.
| |
Collapse
|
356
|
Sitarek P, Merecz-Sadowska A, Sikora J, Dudzic M, Wiertek-Płoszaj N, Picot L, Śliwiński T, Kowalczyk T. Flavonoids and their derivatives as DNA topoisomerase inhibitors with anti-cancer activity in various cell models: Exploring a novel mode of action. Pharmacol Res 2024; 209:107457. [PMID: 39389401 DOI: 10.1016/j.phrs.2024.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Flavonoids, a diverse group of plant-derived secondary metabolites, have garnered significant attention for their potential anti-cancer properties. This review explores the role of flavonoids as inhibitors of DNA topoisomerases, key enzymes essential for DNA replication, transcription, and cell division. The article offers a comprehensive overview of flavonoid classification, biosynthesis, and their widespread natural occurrence. It further delves into the molecular mechanisms through which flavonoids exert their anti-cancer effects, emphasizing their interactions with topoisomerases. The review provides a thorough analysis of both in vitro and in vivo studies that highlight the topoisomerase inhibitory activities of various flavonoids and their derivatives. Key findings demonstrate that flavonoids can function as catalytic inhibitors, poisons, or DNA intercalators, affecting both type I and type II topoisomerases. The structure-activity relationships of flavonoids concerning their topoisomerase inhibitory potency are also examined. This review underscores the potential of flavonoids as promising lead compounds for the development of novel topoisomerase inhibitors, which could have important implications for cancer therapy. However, it also acknowledges the need for further research to fully understand the intricate interactions between flavonoids and topoisomerases within the cellular environment.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, Lodz 90-151, Poland.
| | - Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, Lodz 90-214, Poland
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, Lodz 90-151, Poland
| | - Malwina Dudzic
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Lodz 90-151, Poland
| | - Natasza Wiertek-Płoszaj
- Students Research Group, Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| | - Laurent Picot
- Littoral Environnement et Sociétés UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle 17042, France
| | - Tomasz Śliwiński
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| |
Collapse
|
357
|
Chakraborty P, Dewanjee S. Unrevealing the mechanisms behind the cardioprotective effect of wheat polyphenolics. Arch Toxicol 2024; 98:3543-3567. [PMID: 39215839 DOI: 10.1007/s00204-024-03850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases pose a major threat to both life expectancy and quality of life worldwide, and a concerning level of disease burden has been attained, particularly in middle- and low-income nations. Several drugs presently in use lead to multiple adverse events. Thus, it is urgently needed to develop safe, affordable, and effective management of cardiovascular diseases. Emerging evidence reveals a positive association between polyphenol consumption and cardioprotection. Whole wheat grain and allied products are good sources of polyphenolic compounds bearing enormous cardioprotective potential. Polyphenolic extract of the entire wheat grain contains different phenolic compounds viz. ferulic acid, caffeic acid, chlorogenic acid, p-coumaric acid, sinapic acid, syringic acid, vanillic acid, apigenin, quercetin, luteolin, etc. which exert cardioprotection by reducing oxidative stress and interfering with different toxicological processes. The antioxidant capacity has been thought to exert the cardioprotective mechanism of wheat grain polyphenolics, which predominantly suppresses oxidative stress, inflammation and fibrosis by downregulating several pathogenic signaling events. However, the combined effect of polyphenolics appears to be more prominent than that of a single molecule, which might be attained due to the synergy resulting in multimodal cardioprotective benefits from multiple phenolics. The current article covers the bioaccessibility and possible effects of wheat-derived polyphenolics in protecting against several cardiovascular disorders. This review discusses the mechanistic pharmacology of individual wheat polyphenols on the cardiovascular system. It also highlights the comparative superiority of polyphenolic extracts over a single phenolic.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
358
|
Singh S, Singh TG. Unlocking the mechanistic potential of Thuja occidentalis for managing diabetic neuropathy and nephropathy. J Tradit Complement Med 2024; 14:581-597. [PMID: 39850604 PMCID: PMC11752125 DOI: 10.1016/j.jtcme.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 01/25/2025] Open
Abstract
Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. Thuja occidentalis, a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition. The present comprehensive review evaluates the therapeutic potential of Thuja occidentalis in managing diabetic neuropathy and nephropathy, with a particular emphasis on elucidating the underlying cellular and molecular mechanisms. The review delves into the active constituents of Thuja occidentalis, such as essential oils, flavonoids, tannins, and proanthocyanidin compounds, which have demonstrated antioxidant, anti-inflammatory, and other beneficial properties in preclinical studies. Importantly, the review provides an in-depth analysis of the intricate signaling pathways modulated by Thuja occidentalis, including NF-κB, PI3K-Akt, JAK-STAT, JNK, MAPK/ERK, and Nrf2 cascades. These pathways are intricately linked to oxidative stress, inflammation, and apoptosis processes, which play pivotal roles in the pathogenesis of diabetic neuropathy and nephropathy. Furthermore, the review critically evaluates the evidence-based toxicological data of Thuja occidentalis as a more effective and comprehensive therapeutic strategy in diabetes complications. Therefore, the current review aims to provide a comprehensive understanding of the therapeutic potential of Thuja occidentalis as an adjunctive treatment strategy for diabetic neuropathy and nephropathy while highlighting the need for further research to optimize its clinical translation.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
359
|
Sultana S, Hossain ML, Sostaric T, Lim LY, Foster KJ, Locher C. Investigating Flavonoids by HPTLC Analysis Using Aluminium Chloride as Derivatization Reagent. Molecules 2024; 29:5161. [PMID: 39519802 PMCID: PMC11547264 DOI: 10.3390/molecules29215161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
This is the first study to report on high performance thin layer chromatography (HPTLC) generated spectrophotometric data to systematically capture flavonoid compounds using optimized derivatization with either AlCl3 or NaNO2-AlCl3-NaOH as visualisation reagents. While the traditional AlCl3 colorimetric method using UV-Vis analysis provides valuable insights into the presence of flavonoids and allows derivation of the total flavonoid content (TFC) of a sample, HPTLC fingerprints obtained after spraying with AlCl3 or NaNO2-AlCl3-NaOH enable the visualization of the various flavonoids present in a sample based on their respective absorption shifts, thus complementing the traditional TFC assay. In this study, 40 different flavonoids representing different classes (flavonols, flavanolols, flavan-3-ol, flavones, flavanones, and isoflavonoids) were analysed. Upon derivatization with AlCl3 most of the investigated flavonoids recorded bathochromic shifts, yielding characteristic λmax values between 370 and 420 nm, while spraying with NaNO2-AlCl3-NaOH triggered hyperchromic shifts, and thus an increase in absorbance intensity in flavonoids with particular substitution patterns. A few non-flavonoid components with structural similarities to flavonoids (e.g., rosmarinic acid, gallic acid, aspirin, salicylic acid) served as the negative control in this study to determine whether the derivatization reagents allowed exclusive detection of flavonoids. The method was then applied to the analysis of flavonoid containing supplements as well as red clover honey to demonstrate the method's application in the analysis of natural products.
Collapse
Affiliation(s)
- Sharmin Sultana
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (M.L.H.); (T.S.); (L.Y.L.)
- Institute for Pediatric Perioperative Excellence, The University of Western Australia, Perth 6009, Australia
| | - Md Lokman Hossain
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (M.L.H.); (T.S.); (L.Y.L.)
- Institute for Pediatric Perioperative Excellence, The University of Western Australia, Perth 6009, Australia
| | - Tom Sostaric
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (M.L.H.); (T.S.); (L.Y.L.)
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (M.L.H.); (T.S.); (L.Y.L.)
- Institute for Pediatric Perioperative Excellence, The University of Western Australia, Perth 6009, Australia
| | - Kevin J. Foster
- School of Agriculture and Environment, University of Western Australia, Crawley 6009, Australia;
- Department of Primary Industries and Regional Department, Perth 6000, Australia
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth 6009, Australia; (S.S.); (M.L.H.); (T.S.); (L.Y.L.)
- Institute for Pediatric Perioperative Excellence, The University of Western Australia, Perth 6009, Australia
| |
Collapse
|
360
|
Kulawik A, Cielecka-Piontek J, Czerny B, Kamiński A, Zalewski P. The Relationship Between Lycopene and Metabolic Diseases. Nutrients 2024; 16:3708. [PMID: 39519540 PMCID: PMC11547539 DOI: 10.3390/nu16213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Metabolic syndrome, obesity, and type 2 diabetes are closely related. They are characterized by chronic inflammation and oxidative stress. Obesity is the most important risk factor for metabolic syndrome and type 2 diabetes. Metabolic syndrome is characterized by insulin resistance and elevated blood glucose levels, among other conditions. These disorders contribute to the development of type 2 diabetes, which can exacerbate other metabolic problems. Methods: Numerous studies indicate that diet and nutrients can have a major impact on preventing and treating these conditions. One such ingredient is lycopene. It is a naturally occurring carotenoid with a unique chemical structure. It exhibits strong antioxidant and anti-inflammatory properties due to its conjugated double bonds and its ability to neutralize reactive oxygen species. Its properties make lycopene indirectly affect many cellular processes. The article presents studies in animal models and humans on the activity of this carotenoid in metabolic problems. Results: The findings suggest that lycopene's antioxidant and anti-inflammatory activities make it a promising candidate for the prevention and treatment of metabolic syndrome, obesity, and type 2 diabetes. Conclusions: This review underscores the potential of lycopene as a beneficial dietary supplement in improving metabolic health and reducing the risk of associated chronic diseases. The conditions described are population diseases, so research into compounds with properties such as lycopene is growing in popularity.
Collapse
Affiliation(s)
- Anna Kulawik
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Wartą, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego Str. 71b, 60-630 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| |
Collapse
|
361
|
Zhang S, Wu Y, Ren Y, Xu Y, An H, Zhao Q, Wang Y, Li H. Widely metabolomic combined with transcriptome analysis to build a bioactive compound regulatory network for the fruit growth cycle in Pseudocydonia sinensis. Food Chem 2024; 456:139933. [PMID: 38852462 DOI: 10.1016/j.foodchem.2024.139933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/06/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Neglected and underutilised plants such as Pseudocydonia sinensis (Chinese quince) have garnered global interest as invaluable sources of natural bioactive compounds. Herein, a wide-targeted metabolomics-based approach revealed 1199 concurrent metabolites, with further analysis of their fluctuations across with the five stages of fruit growth. The bioactive compounds in Chinese quince primarily comprised sugars and organic acids, flavonoids, and terpenoids. Moreover, 395 metabolites were identified as having medicinal properties and rutin was the most content of them. Transcriptome analysis further provided a molecular basis for the metabolic changes observed during fruit development. By thoroughly analysing metabolite and transcriptome data, we revealed changes in bioactive compounds and related genes throughout fruit development. This study has yielded valuable insights into the ripening process of Chinese quince fruit, presenting substantial implications for industrial applications, particularly in quality control.
Collapse
Affiliation(s)
- Shuangyu Zhang
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Yang Wu
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Yanshen Ren
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Yaping Xu
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Hong An
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Qianyi Zhao
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Yu Wang
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| | - Houhua Li
- Research Institute for Landscape and Ornamental plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
362
|
Khalid S, Bashir S, Mehboob R, Anwar T, Ali M, Hashim M, Waseem H, Basharat S. Effects of magnesium and potassium supplementation on insomnia and sleep hormones in patients with diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1370733. [PMID: 39534260 PMCID: PMC11554482 DOI: 10.3389/fendo.2024.1370733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/30/2024] [Indexed: 11/16/2024] Open
Abstract
Objectives Diabetes mellitus is a metabolic condition with hyperglycemia. Literature has shown a correlation between poor sleep quality and duration with an increased incidence of insomnia in diabetic individuals. The goal of this study was to determine the magnesium and potassium supplementation effect among diabetic individuals with insomnia. Methods A randomized controlled trial (single blind) was conducted on 320 patients with diabetes; after 2 months of follow-up, 290 patients completed the trial. The Insomnia Severity Index (ISI) was used to assess the severity and duration of insomnia, before and after the trial. Tablets containing supplements were prepared: placebo (T1), magnesium (Mg, T2), potassium (K, T3), and a combination of Mg and K (T4). Melatonin and cortisol (sleep hormones) were measured from blood (serum) using an enzyme-linked immunosorbent assay (ELISA), before and after the trial. Results The study included 93 (32.1%) male and 197 (67.9%) female participants. According to the analysis, there was a significant association between the treatment groups and ISI after the trial (post-trial), p = 0.0001. Analysis showed that there was significant association between pre- and post-serum cortisol levels in treatment groups 2, 3, and 4 (T2, T3, and T4) as p-values are 0.001, 0.001, and 0.001 respectively. Similar findings were observed for serum melatonin. Conclusions The study revealed that magnesium, potassium, and magnesium and potassium combined had a significant effect on serum cortisol and melatonin levels (sleep hormones). In addition, supplementation significantly decreased the severity of insomnia among patients with diabetes by improving sleep duration.
Collapse
Affiliation(s)
- Sidra Khalid
- Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
- Lahore Medical Research Center, Lahore, Pakistan
| | - Shahid Bashir
- University Institute of Food Science and Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | | | | | - Muhammad Ali
- Lahore Medical Research Center, Lahore, Pakistan
| | | | | | - Shahnai Basharat
- Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
363
|
Wu J, Gong J, Chen Q, Hao W, He J, Wang M, Zhou Q. Unveiling kaempferol glycosides as the key antiglycative components in butterfly pea ( Clitoria ternatea) flower. Curr Res Food Sci 2024; 9:100896. [PMID: 39525386 PMCID: PMC11550770 DOI: 10.1016/j.crfs.2024.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Edible flowers have been used in dietary practices since ancient times. In recent years, they have garnered increasingly more attentions for their potentials in the prevention and amelioration of pathological conditions. The present study employed in vitro BSA models to evaluate the antiglycative effect of some edible flowers. Results showed that butterfly pea flower (BFPF) exhibited the highest potential in preventing advanced glycation end products (AGEs) formation, which had an inhibition rate of 92.11% at 1 g/mL, 56.99% at 0.1 g/mL, and 9.94% at 0.01 g/mL, respectively. Moreover, the antiglycative components in BFPF were identified as four flavonol glycosides through chromatographic and spectral analyses, which were manghaslin (quercetin 3-2″-rhamnosylrutinoside, QCT-Rh), clitorin (kaempferol 3-2″-rhamnosylrutinoside, KFR-Rh), rutin (quercetin 3-rutinoside), and kaempferol 3-neohesperidoside (KFR-Ne). Notably, KFR-Rh and KFR-Ne were presented in higher concentrations in BFPF (764.31 mg/kg and 1135.10 mg/kg dry matter) and significantly contributed to the antiglycative activity (IC50 = 182.17 μM and IC50 = 131.03 μM). Molecular docking (MD) and nuclear magnetic resonance (NMR) analyses revealed that KFR-Rh and KFR-Ne formed hydrogen bonds and hydrophobic interactions with BSA, while KFR-Ne demonstrating a stronger interaction than KFR-Rh. Collectively, our findings highlight the beneficial effects of BFPF with clearly identified active components, which might further promote its application in functional food and medical industry.
Collapse
Affiliation(s)
- Jun Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jun Gong
- Central Laboratory of YunFu People's Hospital, Yunfu, 527300, China
| | - Qiaochun Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Wen Hao
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266000, China
- Qingdao Institute of Preventive Medicine, Qingdao, 266000, China
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qian Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
364
|
Martínez-Lobos M, Silva V, Villena J, Jara-Gutiérrez C, Vera Quezada WE, Montenegro I, Madrid A. Phytoconstituents, Antioxidant Activity and Cytotoxicity of Puya chilensis Mol. Extracts in Colon Cell Lines. PLANTS (BASEL, SWITZERLAND) 2024; 13:2989. [PMID: 39519908 PMCID: PMC11548438 DOI: 10.3390/plants13212989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Puya chilensis Mol. is a plant of the Bromeliaceae family, which has been traditionally used for medicinal applications in various digestive disorders. In this study, the phytoconstituents of six extracts of stems and flowers of P. chilensis were evaluated: phenols, flavonoids and total anthraquinones, as well as their antioxidant capacity and cytotoxicity in colon cancer cell lines HT-29. The data demonstrate that the ethyl acetate extract of P. chilensis flowers is cytotoxic in HT-29 cell lines (IC50 = 41.70 µg/mL) without causing toxic effects on healthy colon cells (IC50 > 100 µg/mL); also, this extract concentrated the highest amount of phenols (4.63 μg GAE/g d.e.), flavonoids (31.5 μg QE/g d.e.) and anthraquinones (12.60 μg EE/g d.e.) among all the extracts tested, which also correlated with its highlighted antioxidant capacity (DPPH∙IC50 = 4.15 mg/mL and FRAP 26.52 mM TEAC) over the other extracts. About thirty-five compounds were identified in this extract-the fatty acid esters present have been shown to have therapeutic effects on several types of cancer and could explain its antiproliferative activity.
Collapse
Affiliation(s)
- Manuel Martínez-Lobos
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (M.M.-L.); (V.S.)
| | - Valentina Silva
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (M.M.-L.); (V.S.)
| | - Joan Villena
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Carlos Jara-Gutiérrez
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Medicina, Escuela de Kinesiología, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Waleska E. Vera Quezada
- Laboratorio de Química de Metabolitos Bioactivos, Escuela de Química y Farmacia, Facultad de Farmacia, Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Iván Montenegro
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Obstetricia, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile; (M.M.-L.); (V.S.)
| |
Collapse
|
365
|
Mitea G, Schröder V, Iancu IM, Mireșan H, Iancu V, Bucur LA, Badea FC. Molecular Targets of Plant-Derived Bioactive Compounds in Oral Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3612. [PMID: 39518052 PMCID: PMC11545343 DOI: 10.3390/cancers16213612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND With a significant increase in both incidence and mortality, oral cancer-particularly oral squamous cell carcinoma (OSCC)-is one of the main causes of death in developing countries. Even though there is evidence of advances in surgery, chemotherapy, and radiotherapy, the overall survival rate for patients with OSCC has improved, but by a small percentage. This may be due, on the one hand, to the fact that the disease is diagnosed when it is at a too-advanced stage, when metastases are already present. METHODS This review explores the therapeutic potential of natural herbal products and their use as adjuvant therapies in the treatment of oral cancer from online sources in databases (PubMed, Web of Science, Google Scholar, Research Gate, Scopus, Elsevier). RESULTS Even if classic therapies are known to be effective, they often produce many serious side effects and can create resistance. Certain natural plant compounds may offer a complementary approach by inducing apoptosis, suppressing tumor growth, and improving chemotherapy effectiveness. The integration of these compounds with conventional treatments to obtain remarkable synergistic effects represents a major point of interest to many authors. This review highlights the study of molecular mechanisms and their efficiency in in vitro and in vivo models, as well as the strategic ways in which drugs can be administered to optimize their use in real contexts. CONCLUSIONS This review may have a significant impact on the oncology community, creating new inspirations for the development of more effective, safer cancer therapies with less toxic potential.
Collapse
Affiliation(s)
- Gabriela Mitea
- Department of Pharmacology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Irina Mihaela Iancu
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Horațiu Mireșan
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Valeriu Iancu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Laura Adriana Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Florin Ciprian Badea
- Department of Dental Medicine, Faculty of Dental Medicine, Ovidius University of Constanta, 900684 Constanta, Romania;
| |
Collapse
|
366
|
Izu GO, Mashele SS, Chukwuma CI. Investigating the Phytochemistry and Underlying Glycemic Control Mechanisms of Litchi chinensis Sonn. (Litchi) Peel Ethyl Acetate Extract in a Fructose/Streptozotocin Diabetic Model of Rats. Nutrients 2024; 16:3644. [PMID: 39519477 PMCID: PMC11547722 DOI: 10.3390/nu16213644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The glycemic control potential and flavonoid profile of litchi have been documented for its hydroalcoholic extracts, while there is scarce information regarding its ethyl acetate extract. This study investigated the flavonoid profile, as well as the ameliorative potential and possible underlying mechanisms of litchi peel ethyl acetate extract on type 2 diabetes-related pathologies in a fructose/streptozotocin (STZ) model of diabetic rats. Sprague Dawley rats were induced with diabetes by administering 10% fructose for 2 weeks and a single i.p. injection of low-dose (40 mg/kg bw) STZ. Thereafter, the animals were orally administered with a low-dose (150 mg/kg bw) and high-dose (300 mg/kg bw) of the peel extract (LDPE and HDPE, respectively) and metformin (200 mg/kg bw). Compared to untreated diabetic rats (AUC = 1004 mg.h/dL), the HDPE significantly (p < 0.05) improved glucose tolerance (AUC = 847 mg.h/dL), which was statistically comparable (p ˃ 0.05) to the effect of metformin (AUC = 903 mg.h/dL). Serum insulin and pancreatic histology data showed that the STZ-induced pancreatic damage and insulin depletion was improved by the HDPE, which could be linked to the observed ameliorative effect of the extract on pancreatic lipid peroxidation and SOD and catalase activity. The extract further improved liver and muscle glycogen storage, as well as muscle hexokinase activity and Akt phosphorylation, suggesting that the extract exerts glycemic control by enhancing glycogen storage and modulating insulin-mediated signaling of glucose uptake and utilization. LC-MS data and documented reports suggest that flavonoids, such as epicatechin, cinnamtannin B2, procyanidin B5, and proanthocyanidin A2, are the possible influencing compounds. The ethyl acetate extract of litchi peel could be a source of bioactive flavonoids that can potentiate glycemic control in diabetes and mitigate oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Gloria O. Izu
- Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa;
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9300, Free State, South Africa;
| | - Samson S. Mashele
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9300, Free State, South Africa;
| | - Chika I. Chukwuma
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9300, Free State, South Africa;
| |
Collapse
|
367
|
Ding LL, Zhang M, Zhang T, Liu H, Liu PF. MFGE8 promotes gastric cancer progression by activating the IL-6/JAK/STAT3 signaling. Cell Signal 2024; 125:111486. [PMID: 39490801 DOI: 10.1016/j.cellsig.2024.111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Gastric cancer is malignant cancer with high morbidity and mortality worldwide. Milk fat globule EGF and factor V/VIII domain containing (MFGE8) was involved in many cancers. Nevertheless, the role of MFGE8 in gastric cancer remained indistinct. To probe the role of MFGE8 in gastric cancer and further explore the regulating mechanism. METHODS GEPIA was employed for analysis of MFGE8 expression and survival of gastric cancer patients. MFGE8 expression in gastric cancer was determined by immunohistochemistry, PCR, and western blot. The effect of MFGE8 on gastric cancer cells were evaluated by a series of cell function experiments. The mechanism of MFGE8 on gastric cancer was analyzed by GSEA and verified by in vitro and in vivo experiments. RESULTS MFGE8 was over-expressed in gastric cancer. Silence of MFGE8 suppressed cell viability, proliferated ability, migrated and invasive ability, and EMT, but accelerated cell apoptosis. The opposite results were obtained in MFGE8-overexpressed gastric cancer cells. Zinc finger and BTB domain containing 7 A (ZBTB7A) was a transcription factor of MFGE8. ZBTB7A overexpression eliminated the effect of MFGE8 on gastric cancer cells. MFGE8 activated the IL-6/JAK/STAT3 signaling. Inhibition of IL-6/JAK/STAT3 signaling by Stattic (pathway inhibitor) could eliminate the promoting effect of MFGE8 on IL-6/JAK/STAT3 signaling. In addition, MFGE8 shRNA inhibited tumor growth. CONCLUSION MFGE8 promoted cell proliferation, EMT progress, and tumor growth of gastric cancer by activating the IL-6/JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Long-Long Ding
- Department of Gastrointestinal surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257091, Shandong, China
| | - Meng Zhang
- Department of Gastrointestinal surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257091, Shandong, China
| | - Tao Zhang
- Department of General Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong, China
| | - Hui Liu
- Department of Gastrointestinal surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257091, Shandong, China.
| | - Peng-Fei Liu
- Department of Gastrointestinal surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257091, Shandong, China.
| |
Collapse
|
368
|
Statilko O, Tsiaka T, Sinanoglou VJ, Strati IF. Overview of Phytochemical Composition of Brassica oleraceae var. capitata Cultivars. Foods 2024; 13:3395. [PMID: 39517179 PMCID: PMC11544802 DOI: 10.3390/foods13213395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The Brassicaceae family includes a wide range of horticultural crops of economic and traditional importance, consumed either fresh, cooked, or fermented. Cabbage (Brassica oleraceae var. capitata) is one of the most important crops of the family. The present review analyzes the most important phytochemicals present in cabbage, focusing on variation of phytochemical composition between cultivars of B. oleraceae var. capitata f. alba, B. oleraceae var. capitata f. rubra, B. oleraceae var. capitata f. acuta, and B. oleraceae var. capitata f. sabauda. Cabbage form and cultivars significantly affect phytochemical compositions. B. oleraceae var. capitata f. rubra cultivars are generally great sources of phenolic compounds, especially anthocyanins, whereas B. oleraceae var. capitata f. alba cultivars display the highest concentration of glucosinolates; nevertheless, their levels are also dependent on the specific cultivar. B. oleraceae var. capitata f. acuta cultivars may be considered advantageous due to their high glucosinolate content and consistent phytochemical composition. Recognizing the benefits of specific cultivars can be valuable for consumers seeking a healthier lifestyle, as well as for scientists aiming to enhance cultivars through breeding programs or use plants' extracts to produce high quality pigments and dietary supplements.
Collapse
Affiliation(s)
| | | | | | - Irini F. Strati
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece; (O.S.); (T.T.); (V.J.S.)
| |
Collapse
|
369
|
Liao Y, Lv F, Quan T, Wang C, Li J. Flavonoids in natural products for the therapy of liver diseases: progress and future opportunities. Front Pharmacol 2024; 15:1485065. [PMID: 39512816 PMCID: PMC11540641 DOI: 10.3389/fphar.2024.1485065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
The liver is the largest, important organ and the site for essential biochemical reactions in the human body. It has the function to detoxify toxic substances and synthesize useful biomolecules. Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. For centuries, flavonoids and their preparations which have the beneficial health effects in chronic diseases have been used to treat various human illnesses. Flavonoids mainly include flavones, isoflavones, flavanols, dihydroflavones, dihydroflavonols, anthocyanins and chalcones. The primary objective of this review is to assess the efficacy and safety of flavonoids, mainly from a clinical point of view and considering clinically relevant end-points. We summarized the recent progress in the research of hepatoprotective and molecular mechanisms of different flavonoids bioactive ingredients and also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in flavonoids and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
Affiliation(s)
- Yanmei Liao
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Fei Lv
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Tianwen Quan
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Jike Li
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
370
|
Saha S, Alshammari A, Albekairi NA, Zulfiquar TN, Shakil MS, Mondal KR, Kundu MK, Mondal M, Mubarak MS. Exploring the antioxidant and protective effects of Marsdenia thyrsiflora Hook.f. leaf extract against carbon tetrachloride-induced hepatic damage in rat models. Front Pharmacol 2024; 15:1463922. [PMID: 39502533 PMCID: PMC11534673 DOI: 10.3389/fphar.2024.1463922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Medicinal plants are vital to healthcare, yet many remain unexplored. Marsdenia thyrsiflora Hook.f., from Bangladesh's Bhawal Forest, lacks research on its medicinal properties, especially its antioxidant capacities and protection against CCl4-induced liver toxicity. This study aims to evaluate the antioxidant properties of M. thyrsiflora leaf extract to determine its protective effects on rodents against CCl4-induced liver injury. Methods After extraction, the total phenol, flavonoid content, and antioxidant capacity of the leaf extract were measured using established protocols. Free radical scavenging abilities were evaluated with 2,2'-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) assays. Additionally, reducing power was assessed through cupric-reducing and ferric-reducing assays. Based on the OECD 420 recommendation, acute toxicity was tested on Swiss albino mice to establish an effective and safe dosage. For the hepatoprotective study, Sprague-Dawley rats were pre-treated with M. thyrsiflora leaf methanolic extract (MTLM) at 250 and 500 mg/kg body weight, and CCl4 was administered to induce liver damage. Serum hepatic enzyme levels (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT)), lipid profile (total cholesterol, triglycerides), total bilirubin, and markers of lipid peroxidation (Malondialdehyde (MDA)) were measured. The activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) were also evaluated to assess oxidative stress. Results The results demonstrated that MTLM, rich in phenolic and flavonoid content, exhibits significant antioxidant activities in DPPH and NO radical scavenging assays, as well as in reducing power assays. The acute toxicity study confirmed the safety of MTLM, with no adverse effects observed even at high doses. For the hepatoprotective study, rats were administered CCl4 to induce liver damage, followed by treatment with MTLM. Results showed that MTLM significantly reduces liver damage markers such as elevated serum hepatic enzyme levels, lipid profile, total bilirubin, and lipid peroxidation and improves the activities of GSH and key antioxidant enzymes such as SOD and CAT. Histopathological analysis corroborated these findings, displaying reduced necrosis, inflammation, and edema in liver tissues treated with MTLM. Conclusion MTLM extract exhibits potent antioxidant and hepatoprotective properties. Its ability to attenuate oxidative stress, enhance antioxidant enzyme activities, and facilitate histopathological changes in the liver highlights its potential as a natural therapeutic agent for liver damage. However, further investigation is required to understand its molecular processes, safety profiles, and active component characterization.
Collapse
Affiliation(s)
- Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tasniya Nahiyan Zulfiquar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | | | - Milton Kumar Kundu
- Department of Chemistry, Tennessee State University, Nashville, TN, United States
| | - Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amman, Jordan
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| |
Collapse
|
371
|
Huang H, Zhang Y, Hu C. Study on the crystallinity of PEG on the crystalline size of flavonoids in a crystalline dispersion system. Eur J Pharm Biopharm 2024:114536. [PMID: 39442763 DOI: 10.1016/j.ejpb.2024.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Poor water solubility and low bioavailability of flavonoids present significant barriers to their development and application. To address these challenges, this study explores the use of crystalline solid dispersions (CSDs) to reduce drug crystalline size and enhance in vivo bioavailability. The CSDs were prepared using a spray-drying technique with chrysin (CHY) and quercetin (QUR) as model drugs and various molecular weights of polyethylene glycol (PEG) as carriers. The authors systematically investigated the factors influencing the interaction between flavonoids and PEG in CSDs. These factors included the relationships between intermolecular interactions and PEG molecular weight, crystallinity, microstructures such as crystalline domain size and crystal morphology of the flavonoids and PEG in CSDs, crystalline size of the drug in CSDs, and in vitro dissolution rate and in vivo pharmacokinetics. Our results indicated that the interaction between flavonoids and PEG in CSDs was influenced more by PEG crystallinity than by its molecular weight. Lower crystallinity of PEG, achieved through recrystallization, led to stronger intermolecular interactions with the drugs. Specifically, PEG8000 exhibited the lowest crystallinity, indicating a higher content of PEG in the amorphous state, which interacted more effectively with the amorphous drug in CSDs. This interaction significantly inhibited drug crystallization growth, resulting in a marked decrease in drug crystalline domain size and crystalline size. Consequently, PEG8000 was identified as the optimal carrier for preparing CSDs, achieving the best cumulative dissolution percentage. The QUR/PEG8000-CSD formulation increased the cumulative dissolution percentage and oral bioavailability of QUR by 18.76 and 20.66 times, respectively, compared to QUR alone. This study demonstrates that PEG crystallinity, following recrystallization, directly affects its intermolecular interactions with the drug, thereby impacting drug crystalline size and dissolution rate.
Collapse
Affiliation(s)
- Hua Huang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810001, Qinghai, People's Republic of China
| | - Yong Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810001, Qinghai, People's Republic of China
| | - Chunhui Hu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810001, Qinghai, People's Republic of China.
| |
Collapse
|
372
|
Nkoana JK, Mphahlele MJ, More GK, Choong YS. Exploring the 3,5-Dibromo-4,6-dimethoxychalcones and Their Flavone Derivatives as Dual α-Glucosidase and α-Amylase Inhibitors with Antioxidant and Anticancer Potential. Antioxidants (Basel) 2024; 13:1255. [PMID: 39456508 PMCID: PMC11505200 DOI: 10.3390/antiox13101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The rising levels of type 2 diabetes mellitus (T2DM) and the poor medical effects of the commercially available antidiabetic drugs necessitate the development of potent analogs to treat this multifactorial metabolic disorder. It has been demonstrated that targeting two or more biochemical targets associated with the onset and progression of diabetes along with oxidative stress and/or cancer could be a significant strategy for treating complications related to this metabolic disorder. The 3,5-dibromo-4,6-dimethoxychalcones (2a-f) and the corresponding flavone derivatives (3a-f) were synthesized and characterized using spectroscopic (NMR, HR-MS and FT-IR) techniques. The inhibitory effect of both series of compounds against α-glucosidase and α-amylase was evaluated in vitro through enzymatic assays. Selected compounds were also evaluated for potential to activate or inhibit superoxide dismutase. Compound 3c was selected as a representative model for the flavone series and evaluated spectrophotometrically for potential to coordinate Cu(II) and/or Zn(II) ions implicated in the metal-catalyzed free radical generation. A plausible mechanism for metal-chelation of the test compounds is presented. Furthermore, the most active compounds from each series against the test carbohydrate-hydrolyzing enzymes were selected and evaluated for their antigrowth effect on the human breast (MCF-7) and lung (A549) cancer cell lines and for cytotoxicity against the African Green Monkey kidney (Vero) cell line. The parent chalcone 2a and flavone derivatives 3a, 3c and 3e exhibited relatively high inhibitory activity against the MCF-7 cells with IC50 values of 4.12 ± 0.55, 8.50 ± 0.82, 5.10 ± 0.61 and 6.96 ± 0.66 μM, respectively. The chalcones 2a and 2c exhibited significant cytotoxicity against the A549 cells with IC50 values of 7.40 ± 0.67 and 9.68 ± 0.80 μM, respectively. Only flavone 3c exhibited relatively strong and comparable cytotoxicity against the MCF-7 and A549 cell lines with IC50 values of 6.96 ± 0.66 and 6.42 ± 0.79 μM, respectively. Both series of compounds exhibited strong activity against the MCF-7 and A549 cell lines compared to the analogous quercetin (IC50 = 35.40 ± 1.78 and 35.38 ± 1.78 μM, respectively) though moderate compared to nintedanib (IC50 = 0.53 ± 0.11 and 0.74 ± 0.15 μM, respectively). The test compounds generally exhibited reduced cytotoxicity against the Vero cells compared to this anticancer drug. Molecular docking revealed strong alignment of the test compounds with the enzyme backbone to engage in hydrogen bonding interaction/s and hydrophobic contacts with the residues in the active sites of α-glucosidase and α-amylase. The test compounds possess favorable drug-likeness properties, supporting their potential as therapeutic candidates against T2DM.
Collapse
Affiliation(s)
- Jackson K. Nkoana
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Malose J. Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Garland K. More
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, George Town 11800, Penang, Malaysia;
| |
Collapse
|
373
|
Quintana Soares Lopes L, Fortes Guerim PH, Maldonado ME, Wagner R, Hadlich Xavier AC, Gutknecht da Silva JL, Bittencourt da Rosa Leal D, de Freitas Daudt N, Christ Vianna Santos R, Kolling Marquezan P. Chemical composition, cytotoxicity, antimicrobial, antibiofilm, and anti-quorum sensing potential of Mentha Piperita essential oil against the oral pathogen Streptococcus mutans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:824-835. [PMID: 38984907 DOI: 10.1080/15287394.2024.2375731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Dental caries is a highly prevalent oral disease affecting billions of individuals globally. The disease occurs chemically as a result of breakdown of the tooth surface attributed to metabolic activity in colonizing biofilm. Biofilms, composed of exopolysaccharides and proteins, protect bacteria like Streptococcus mutans, which is notable for its role in tooth decay due to its acid-producing abilities. While various antimicrobial agents may prevent biofilm formation, these drugs often produce side effects including enamel erosion and taste disturbances. This study aimed to examine utilization of the Mentha piperita essential oil as a potential antibiofilm activity agent against S. mutans. M. piperita oil significantly (1) reduced bacterial biofilm, (2) exhibited a synergistic effect when combined with chlorhexidine, and (3) did not induce cell toxicity. Chemical analysis identified the essential oil with 99.99% certainty, revealing menthol and menthone as the primary components, constituting approximately 42% and 26%, respectively. Further, M. piperita oil eradicated preformed biofilms and inhibited biofilm formation at sub-inhibitory concentrations. M. piperita oil also interfered with bacterial quorum sensing communication and did not produce any apparent cell toxicity in immortalized human keratinocytes (HaCaT). M. piperita represented an alternative substance for combating S. mutans and biofilm formation and a potential combination option with chlorhexidine to minimize side effects. An in-situ performance assessment requires further studies.
Collapse
Affiliation(s)
- Leonardo Quintana Soares Lopes
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Pedro Henrique Fortes Guerim
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Maria Eduarda Maldonado
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Roger Wagner
- Department of Food Science and Technology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil
| | - Ana Carolina Hadlich Xavier
- Department of Food Science and Technology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil
| | - Jean Lucas Gutknecht da Silva
- Laboratory of Experimental and Applied Immunobiology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Daniella Bittencourt da Rosa Leal
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Experimental and Applied Immunobiology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Natália de Freitas Daudt
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Roberto Christ Vianna Santos
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Patrícia Kolling Marquezan
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
374
|
Li Y, Li XM, Wei LS, Ye JF. Advancements in mitochondrial-targeted nanotherapeutics: overcoming biological obstacles and optimizing drug delivery. Front Immunol 2024; 15:1451989. [PMID: 39483479 PMCID: PMC11524880 DOI: 10.3389/fimmu.2024.1451989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
In recent decades, nanotechnology has significantly advanced drug delivery systems, particularly in targeting subcellular organelles, thus opening new avenues for disease treatment. Mitochondria, critical for cellular energy and health, when dysfunctional, contribute to cancer, neurodegenerative diseases, and metabolic disorders. This has propelled the development of nanomedicines aimed at precise mitochondrial targeting to modulate their function, marking a research hotspot. This review delves into the recent advancements in mitochondrial-targeted nanotherapeutics, with a comprehensive focus on targeting strategies, nanocarrier designs, and their therapeutic applications. It emphasizes nanotechnology's role in enhancing drug delivery by overcoming biological barriers and optimizing drug design for specific mitochondrial targeting. Strategies exploiting mitochondrial membrane potential differences and specific targeting ligands improve the delivery and mitochondrial accumulation of nanomedicines. The use of diverse nanocarriers, including liposomes, polymer nanoparticles, and inorganic nanoparticles, tailored for effective mitochondrial targeting, shows promise in anti-tumor and neurodegenerative treatments. The review addresses the challenges and future directions in mitochondrial targeting nanotherapy, highlighting the need for precision, reduced toxicity, and clinical validation. Mitochondrial targeting nanotherapy stands at the forefront of therapeutic strategies, offering innovative treatment perspectives. Ongoing innovation and research are crucial for developing more precise and effective treatment modalities.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Li-si Wei
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
375
|
Alizadeh A, Pourfallah-Taft Y, Khoshnazar M, Safdari A, Komari SV, Zanganeh M, Sami N, Valizadeh M, Faridzadeh A, Alijanzadeh D, Mazhari SA, Khademi R, Kheirandish A, Naziri M. Flavonoids against depression: a comprehensive review of literature. Front Pharmacol 2024; 15:1411168. [PMID: 39478958 PMCID: PMC11521854 DOI: 10.3389/fphar.2024.1411168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024] Open
Abstract
Background Depression is a state of low mood and aversion to activity, which affects a person's thoughts, behavior, motivation, feelings, and sense of wellbeing. Pharmacologic therapies are still the best effective treatment of depression. Still, most antidepressant drugs have low efficacy and delayed onset of therapeutic action, have different side effects, and even exacerbate depression. Such conditions make it possible to look for alternatives. Consequently, we decided to summarize the impact of flavonoids on depression in this review. Methods We searched scientific databases such as SCOPUS, PubMed, and Google Scholar to find relevant studies until July 2022. Results A wide variety of natural components have been shown to alleviate depression, one of which is flavonoids. Due to the growing tendency to use natural antidepressant drugs, scientific studies are increasingly being conducted on flavonoids. This study aims to review the latest scientific researches that indicate the antidepressant potential of flavonoids. Various mechanisms include neurotransmitter system modulation and dopaminergic, noradrenergic, and serotonergic pathways regulation in the central nervous system. Different compounds of flavonoids have antidepressant properties in vivo or in vitro experiments or clinical trials and can be used as alternative and complementary treatments for depression. In general, it was observed that there were no severe side effects. Conclusion Our study proves the antidepressant potential of flavonoids, and considering the limited side effects, they can be used as complementary medicine for depressed patients.
Collapse
Affiliation(s)
- Alaleh Alizadeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Yeganeh Pourfallah-Taft
- Student’s Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khoshnazar
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aysan Safdari
- Student Research Committee, Faculty of Nursing and Midwifery, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Saba Vafadar Komari
- Student Research Committee, Faculty of Nursing and Midwifery, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mehrnaz Zanganeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Valizadeh
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Alijanzadeh
- Student’s Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Khademi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdyieh Naziri
- Students Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
376
|
Trisal A, Singh AK. Clinical Insights on Caloric Restriction Mimetics for Mitigating Brain Aging and Related Neurodegeneration. Cell Mol Neurobiol 2024; 44:67. [PMID: 39412683 PMCID: PMC11485046 DOI: 10.1007/s10571-024-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Aging, an inevitable physiological process leading to a progressive decline in bodily functions, has been an abundantly researched domain with studies attempting to slow it down and reduce its debilitating effects. Investigations into the cellular and molecular pathways associated with aging have allowed the formulation of therapeutic strategies. Of these, caloric restriction (CR) has been implicated for its role in promoting healthy aging by modulating key molecular targets like Insulin/IGF-1, mTOR, and sirtuins. However, CR requires dedication and commitment to a strict regimen which poses a difficulty in maintaining consistency. To maneuver around cumbersome diets, Caloric Restriction Mimetics (CRMs) have emerged as promising alternatives by mimicking the beneficial effects of CR. This review elucidates the molecular foundations enabling CRMs like rapamycin, metformin, resveratrol, spermidine, and many more to function as suitable anti-aging molecules. Moreover, it explores clinical trials (retrieved from the clinicaltrials.gov database) aimed at demonstrating the efficacy of CRMs as effective candidates against age-related neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Anchal Trisal
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110 025, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnatak, Manipal, 576 104, India.
| |
Collapse
|
377
|
Alam NF, Ahmed R, Mahmud Z, Tamanna S, Shaon MA, Howlader MZH. Genetic association and computational analysis of MTHFR gene polymorphisms rs1801131 and rs1801133 with breast cancer in the Bangladeshi population. Sci Rep 2024; 14:24232. [PMID: 39414907 PMCID: PMC11484754 DOI: 10.1038/s41598-024-75656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) plays a crucial role in regulating one-carbon metabolism. Polymorphisms within the MTHFR gene have been found to increase the risk of breast cancer in different populations. In this study, we evaluated the association of polymorphisms of the MTHFR gene (rs1801133 and rs1801131) with the risk of breast cancer in the Bangladeshi population. This case‒control study included 202 breast cancer patients and 104 healthy controls. After the organic extraction of DNA, genotyping was performed via the PCR-RFLP method. Sanger sequencing was performed to validate the RFLP data. Statistical analyses were performed to evaluate the associations of the polymorphisms. Different computational tools were used to predict the structural and functional consequences of the SNPs. Our study revealed that the MTHFR gene polymorphism rs1801131 is associated with an increased risk of developing breast cancer (p < 0.001, OR = 3.85, 95% CI = 2.06-7.25 for the AC genotype and p < 0.001, OR = 7.82, 95% CI = 2.69-22.05 for the CC genotype). An association was also observed in the dominant model (AC + CC) (p < 0.001, OR = 4.19, 95% CI = 2.28-7.78). For rs1801131, premenopausal status was significantly associated with breast cancer risk (p < 0.001). For rs1801133, no significant association was found with breast cancer risk (p > 0.05, OR = 1.57, 95% CI = 0.90-2.74 for the CT genotype; p > 0.05, OR = 1.35, 95% CI = 0.36-4.92 for the TT genotype). Computational analyses predicted rs1801131 to be tolerated and rs1801133 to be deleterious. Structural analyses demonstrated no significant changes in protein structure but revealed alterations in neighboring interactions according to both bond distances and angles. In conclusion, rs1801131 but not rs1801133 is significantly associated with breast cancer risk in the Bangladeshi population. Moreover, in silico analyses demonstrated changes in the interaction pattern of polymorphic residues with adjacent amino acids.
Collapse
Affiliation(s)
- Nazia Fairooz Alam
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rubaiat Ahmed
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, 1349, Bangladesh
| | - Zimam Mahmud
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sonia Tamanna
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Akeruzzaman Shaon
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Zakir Hossain Howlader
- Laboratory of Nutrition and Health Research, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
378
|
Samant C, Kale R, Pai KSR, Nandakumar K, Bhonde M. Role of Wnt/β-catenin pathway in cancer drug resistance: Insights into molecular aspects of major solid tumors. Biochem Biophys Res Commun 2024; 729:150348. [PMID: 38986260 DOI: 10.1016/j.bbrc.2024.150348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/β-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/β-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/β-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/β-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/β-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.
Collapse
Affiliation(s)
- Charudatt Samant
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Ramesh Kale
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
379
|
Xiong F, Shen K, Long D, Zhou S, Ruan P, Xin Y, Xiao Y, Peng W, Yang M, Wu H, Lu Q. Quercetin ameliorates lupus symptoms by promoting the apoptosis of senescent Tfh cells via the Bcl-2 pathway. Immun Ageing 2024; 21:69. [PMID: 39407236 PMCID: PMC11476537 DOI: 10.1186/s12979-024-00474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that commonly affects the skin, kidneys, joints, and various other systemic tissues, with its development intricately linked to the process of immunosenescence. Quercetin (QC), a phytochemical that occurs naturally, demonstrates many different biological capabilities, such as antibacterial, antioxidant, and anti-inflammatory activities. Our investigation found that QC effectively reduced kidney damage and relieved mesenteric lymph nodes (mLNs) swelling in MRL/lpr lupus mice. Moreover, QC has been found to decrease the number of senescent follicular helper T (Tfh) cells, a pivotal kind of T cells that contribute to the progression of SLE. In vitro, QC exhibited the capacity to modulate mRNA expression levels, with the downregulation of IL-6, IL21-AS1, IL-27, BCL6, and BCL2L12, and the upregulation of FOXP1 and BIM. This modulation resulted in the suppression of Tfh cells differentiation and the enhancement of apoptosis in senescent CD4+ T cells. In addition, the HuProtTM Human Proteome Microarray revealed that QC can directly bind to BCL-2 protein and therefore promote the apoptosis of senescent CD4+ T cell. As a result, our investigative elucidate the potent inhibitory action of QC on the ontogeny of Tfh cells, along with its capacity to abrogate the immunosenescent phenotype. This positions QC as a promising therapeutic strategy for treating SLE.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Kai Shen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Di Long
- Department of Dermatology, The Second Affiliated Hospital, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Suqing Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Pinglang Ruan
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yue Xin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yuezheng Xiao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
380
|
Oumeddour DZ, Al-Dalali S, Zhao L, Zhao L, Wang C. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochem Biophys Res Commun 2024; 729:150344. [PMID: 38976946 DOI: 10.1016/j.bbrc.2024.150344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic β-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Dounya Zad Oumeddour
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb, 70270, Yemen.
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
381
|
Nxumalo MB, Ntanzi N, Kumalo HM, Khan RB. Mitigating Hyperglycaemic Oxidative Stress in HepG2 Cells: The Role of Carica papaya Leaf and Root Extracts in Promoting Glucose Uptake and Antioxidant Defence. Nutrients 2024; 16:3496. [PMID: 39458491 PMCID: PMC11510471 DOI: 10.3390/nu16203496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Diabetes often goes undiagnosed, with 60% of people in Africa unaware of their condition. Type 2 diabetes mellitus (T2DM) is associated with insulin resistance and is treated with metformin, despite the undesirable side effects. Medicinal plants with therapeutic potential, such as Carica papaya, have shown promising anti-diabetic properties. This study explored the role of C. papaya leaf and root extracts compared to metformin in reducing hyperglycaemia-induced oxidative stress and their impact on liver function using HepG2 as a reference. Methods: The cytotoxicity was assessed through the MTT assay. At the same time, glucose uptake and metabolism (ATP and ∆Ψm) in HepG2 cells treated with C. papaya aqueous leaf and root extract were evaluated using a luminometry assay. Additionally, antioxidant properties (SOD2, GPx1, GSH, and Nrf2) were measured using qPCR and Western blot following the detection of MDA, NO, and iNOS, indicators of free radicals. Results: The MTT assay showed that C. papaya extracts did not exhibit toxicity in HepG2 cells and enhanced glucose uptake compared to the hyperglycaemic control (HGC) and metformin. The glucose levels in C. papaya-treated cells increased ATP production (p < 0.05), while the ∆Ψm was significantly increased in HGR1000-treated cells (p < 0.05). Furthermore, C. papaya leaf extract upregulated GPx1 (p < 0.05), GSH, and Nrf2 gene (p < 0.05), while SOD2 and Nrf2 proteins were reduced (p > 0.05), ultimately lowering ROS (p > 0.05). Contrarily, the root extract stimulated SOD2 (p > 0.05), GPx1 (p < 0.05), and GSH levels (p < 0.05), reducing Nrf2 gene and protein expression (p < 0.05) and resulting in high MDA levels (p < 0.05). Additionally, the extracts elevated NO levels and iNOS expression (p < 0.05), suggesting potential RNS activation. Conclusion: Taken together, the leaf extract stimulated glucose metabolism and triggered ROS production, producing a strong antioxidant response that was more effective than the root extract and metformin. However, the root extract, particularly at high concentrations, was less effective at neutralising free radicals as it did not stimulate Nrf2 production, but it did maintain elevated levels of SOD2, GSH, and GPx1 antioxidants.
Collapse
Affiliation(s)
- Mthokozisi Bongani Nxumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (N.N.); (H.M.K.); (R.B.K.)
| | | | | | | |
Collapse
|
382
|
Li P, Alenazi KKK, Dally J, Woods EL, Waddington RJ, Moseley R. Role of oxidative stress in impaired type II diabetic bone repair: scope for antioxidant therapy intervention? FRONTIERS IN DENTAL MEDICINE 2024; 5:1464009. [PMID: 39917650 PMCID: PMC11797775 DOI: 10.3389/fdmed.2024.1464009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/02/2024] [Indexed: 02/09/2025] Open
Abstract
Impaired bone healing is a significant complication observed in individuals with type 2 diabetes mellitus (T2DM), leading to prolonged recovery, increased risk of complications, impaired quality of life, and increased risk of patient morbidity. Oxidative stress, resulting from an imbalance between the generation of reactive oxygen species (ROS) and cellular/tissue antioxidant defence mechanisms, has been identified as a critical contributor to the pathogenesis of impaired bone healing in T2DM. Antioxidants have shown promise in mitigating oxidative stress and promoting bone repair, particularly non-enzymic antioxidant entities. This comprehensive narrative review aims to explore the underlying mechanisms and intricate relationship between oxidative stress, impaired bone healing and T2DM, with a specific focus on the current preclinical and clinical evidence advocating the potential of antioxidant therapeutic interventions in improving bone healing outcomes in individuals with T2DM. From the ever-emerging evidence available, it is apparent that exogenously supplemented antioxidants, especially non-enzymic antioxidants, can ameliorate the detrimental effects of oxidative stress, inflammation, and impaired cellular function on bone healing processes during uncontrolled hyperglycaemia; and therefore, hold considerable promise as novel efficacious therapeutic entities. However, despite such conclusions, several important gaps in our knowledge remain to be addressed, including studies involving more sophisticated enzymic antioxidant-based delivery systems, further mechanistic studies into how these antioxidants exert their desirable reparative effects; and more extensive clinical trial studies into the optimisation of antioxidant therapy dosing, frequency, duration and their subsequent biodistribution and bioavailability. By enhancing our understanding of such crucial issues, we can fully exploit the oxidative stress-neutralising properties of these antioxidants to develop effective antioxidant interventions to mitigate impaired bone healing and reduce the associated complications in such T2DM patient populations.
Collapse
Affiliation(s)
- Pui Li
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Kuraym Khalid Kuraym Alenazi
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jordanna Dally
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Emma Louise Woods
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rachel Jane Waddington
- Biomaterials Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ryan Moseley
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
383
|
Izu GO, Mapasa NP, Nambooze J, Chukwuma MS, Njoya EM, Tabakam GT, Bonnet SL, Makhafola TJ, Mashele SS, Chukwuma CI. Epicatechin Isolated from Litchi chinensis Sonn. (Litchi) Fruit Peel Ethyl Acetate Extract Modulated Glucose Uptake in Chang Cells and Suppressed ROS Production in RAW 264.7 Macrophages. Antioxidants (Basel) 2024; 13:1233. [PMID: 39456487 PMCID: PMC11505627 DOI: 10.3390/antiox13101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Bioactive flavonoid epicatechin has been reported in the peel of litchi fruit but isolated from its hydroalcoholic extracts. This study isolated epicatechin with cellular glucose uptake modulatory and ROS production inhibitory properties from the ethyl acetate (EtOAc) extract using a bioassay-guided approach. The fruit peel was defatted with hexane and sequentially extracted using dichloromethane (DCM), EtOAc, methanol (MeOH) and water. In vitro phytochemical models, namely antioxidant (Fe3+ reducing, radical scavenging and anti-linoleic acid peroxidative) and glycaemic control (α-glucosidase and α-amylase inhibitory and glucose uptake modulatory), were employed for the bioassay-guided isolation, while the isolated compound was characterised using NMR and mass spectrometry and assessed for dose-dependent inhibition of α-glucosidase and lipopolysaccharide (LPS)-induced cellular ROS production, as well as modulation of cellular glucose uptake. Relative to the other extracts, the EtOAc extract had appreciable phenol and flavonoid contents, which perhaps influenced its potent anti-lipid peroxidative (65.0%) and α-glucosidase inhibitory (52.4%) effects. The α-glucosidase inhibitory potency of the fractions (1-8) from the EtOAc extracts correlated with their flavonoid contents, with fraction 5 outperforming other fractions. The fraction comprised a pool of fractions obtained from the DCM:MeOH:water (7:3:0.281 v/v/v) solvent system. LC-MS revealed the predominant presence of epicatechin in fraction 5, which was later isolated from one of the sub-fractions (sub-fraction 4) of fraction 5. This sub-fraction had stronger anti-lipid peroxidative (65.5%), α-glucosidase inhibitory (65.8%) and glucose uptake modulatory (38.2%) effects than the other sub-fractions from fraction 5, which could have been influenced by the isolated epicatechin. Moreover, the isolated epicatechin inhibited α-glucosidase (IC50 = 35.3 µM), modulated cellular glucose uptake (EC50 = 78.5 µM) and inhibited LPS-induced ROS production in RAW 264.7 macrophages in a dose-dependent fashion [IC50 = 18.9 µM; statistically comparable (p > 0.05) to ascorbic acid, IC50 = 9.57 µM]. Epicatechin from litchi peel EtOAc extract could potentiate glucose uptake modulatory, α-glucosidase inhibitory and ROS suppressive capacities, which could be influential in the use of litchi fruit peel for managing diabetes and associated oxidative damage.
Collapse
Affiliation(s)
- Gloria O. Izu
- Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa; (G.O.I.); (N.P.M.)
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa; (E.M.N.); (G.T.T.); (T.J.M.); (S.S.M.)
| | - Nomonde P. Mapasa
- Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa; (G.O.I.); (N.P.M.)
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa; (E.M.N.); (G.T.T.); (T.J.M.); (S.S.M.)
| | - Jennifer Nambooze
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, Free State, South Africa; (J.N.); (M.S.C.); (S.L.B.)
| | - Maria S. Chukwuma
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, Free State, South Africa; (J.N.); (M.S.C.); (S.L.B.)
| | - Emmanuel Mfotie Njoya
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa; (E.M.N.); (G.T.T.); (T.J.M.); (S.S.M.)
| | - Gaetan T. Tabakam
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa; (E.M.N.); (G.T.T.); (T.J.M.); (S.S.M.)
| | - Susanna L. Bonnet
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, Free State, South Africa; (J.N.); (M.S.C.); (S.L.B.)
| | - Tshepiso J. Makhafola
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa; (E.M.N.); (G.T.T.); (T.J.M.); (S.S.M.)
| | - Samson S. Mashele
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa; (E.M.N.); (G.T.T.); (T.J.M.); (S.S.M.)
| | - Chika I. Chukwuma
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, Free State, South Africa; (E.M.N.); (G.T.T.); (T.J.M.); (S.S.M.)
| |
Collapse
|
384
|
Gumisiriza H, Olet EA, Mwikali L, Akatuhebwa R, Omara T, Lejju JB, Sesaazi DC. Antibacterial and Antioxidant Activities of Flavonoids, Phenolic and Flavonoid Glycosides from Gouania longispicata Leaves. MICROBIOLOGY RESEARCH 2024; 15:2085-2101. [DOI: 10.3390/microbiolres15040140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The leaves of Gouania longispicata Engl. (GLE) have been traditionally used to treat more than forty ailments in Uganda, including stomachache, lung and skin cancers, syphilis, toothache, and allergies. In this study, pure compounds were isolated from the methanolic extract of GLE leaves and their structures elucidated using ultraviolet visible spectroscopy, liquid chromatography–tandem mass spectrometry, high performance liquid chromatography, and 1D and 2D NMR techniques. The antibacterial and antioxidant activities of the compounds were assessed using the broth dilution and DPPH assays, respectively. Two known flavonoid glycosides (kaempferol-3-O-α-rhamnopyranoside and rutin), a phenolic glycoside (4,6-dihydroxy-3-methylacetophenone-2-O-β-D-glucopyranoside), and flavonoids (kaempferol and quercetin) were characterized. This is the first time that the kaempferol derivative, the acetophenone as well as free forms of quercetin, kaempferol, and rutin, are being reported in GLE and the Gouania genus. The compounds exhibited antibacterial activity against Streptococcus pneumoniae and Escherichia coli with minimum inhibitory concentrations between 16 µg/mL and 125 µg/mL. The radical scavenging activities recorded half-minimum inhibitory concentrations (IC50) ranging from 18.6 ± 1.30 µg/mL to 28.1 ± 0.09 µg/mL. The IC50 of kaempferol and quercetin were not significantly different from that of ascorbic acid (p > 0.05), highlighting their potential as natural antioxidant agents. These results lend credence to the use of GLE leaves in herbal treatment of microbial infections and oxidative stress-mediated ailments.
Collapse
Affiliation(s)
- Hannington Gumisiriza
- Department of Chemistry, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Eunice Apio Olet
- Department of Biology, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Lydia Mwikali
- Department of Chemistry, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Racheal Akatuhebwa
- Department of Agriculture, Agribusiness, and Environment, Bishop Stuart University, Mbarara P.O. Box 09, Uganda
| | - Timothy Omara
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Julius Bunny Lejju
- Department of Biology, Faculty of Science, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Duncan Crispin Sesaazi
- Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| |
Collapse
|
385
|
Eghbal E, Aliniaeifard S, Mehrjerdi MZ, Abdi S, Hassani SB, Rassaie T, Gruda NS. Growth, phytochemical, and phytohormonal responses of basil to different light durations and intensities under constant daily light integral. BMC PLANT BIOLOGY 2024; 24:935. [PMID: 39379825 PMCID: PMC11462769 DOI: 10.1186/s12870-024-05637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Horticulture in controlled environments has been increasingly used to tackle limitations on crop production. As a crucial environmental factor, light regulate plant growth and metabolism. In the present study, basil plants were subjected to different light durations and intensities considering constant daily light integral (DLI). The lighting environment included 200, 300, and 400 µmol m- 2 s- 1 intensities for 18, 12, and 9 h, respectively. DLI amounted to 12.96 mol m- 2 d- 1 among all light treatments (LI200 for 18 h, LI300 for 12 h, and LI400 for 9 h). Half of the plants under each light treatment were exposed to 30 µmol m- 2 s- 1 of far-red light. The results indicated the general negative impact of LI400/9 on the growth of basils. Exposure to far-red light hurt the growth of the shoot, while it enhanced stem and petiole elongation. This effect was due to higher gibberellin accumulation, which resulted in shade avoidance responses. Exposure to far-red light also reduced anthocyanin and flavonoid contents, as two important nutritional components. Soluble carbohydrates increased, while storage carbohydrates decreased by increasing lighting duration/decreasing light intensity or by far-red light inclusion. The lowest antioxidant activity was detected in LI400/9. In the LI200/18, the highest level of auxin and the lowest level of cytokinin were detected, while the LI300/12 exhibited the highest level of gibberellin hormone. Low light intensity and long photoperiod enhanced plant biomass and phytochemical production and are recommended for basil production in controlled environments.
Collapse
Affiliation(s)
- Elyas Eghbal
- Photosynthesis Laboratory, Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran.
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran.
| | - Mahboobeh Zare Mehrjerdi
- Photosynthesis Laboratory, Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
| | - Sahar Abdi
- Photosynthesis Laboratory, Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Pakdasht, Tehran, Iran
| | - Seyedeh Batool Hassani
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Tina Rassaie
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Nazim S Gruda
- Department of Horticultural Science, INRES-Institute of Crop Science and Resource Conservation, University of Bonn, 53121, Bonn, Germany.
| |
Collapse
|
386
|
Huang J, Ma Q, Su Z, Cheng X. Advancements in the Development of Anti-SARS-CoV-2 Therapeutics. Int J Mol Sci 2024; 25:10820. [PMID: 39409149 PMCID: PMC11477007 DOI: 10.3390/ijms251910820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19, and so far, it has occurred five noteworthy variants of concern (VOC). SARS-CoV-2 invades cells by contacting its Spike (S) protein to its receptor on the host cell, angiotensin-converting enzyme 2 (ACE2). However, the high frequency of mutations in the S protein has limited the effectiveness of existing drugs against SARS-CoV-2 variants, particularly the Omicron variant. Therefore, it is critical to develop drugs that have highly effective antiviral activity against both SARS-CoV-2 and its variants in the future. This review provides an overview of the mechanism of SARS-CoV-2 infection and the current progress on anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Junjie Huang
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China;
| | - Qianqian Ma
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Zhengding Su
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Xiyao Cheng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China;
| |
Collapse
|
387
|
Elbeialy A, Sawy SE, Elzomor H, Haddad R. Environmental pollution impact on the severity of some rheumatic diseases: a comparative analytical study on inflammatory and non-inflammatory samples. BMC Rheumatol 2024; 8:50. [PMID: 39380067 PMCID: PMC11460183 DOI: 10.1186/s41927-024-00420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Environmental pollution of heavy metals is increasingly a problem and has become of great concern due to the adverse effects it causes worldwide. Heavy metal exposure has been implicated in health problems, including fibromyalgia and rheumatoid arthritis. We aim to evaluate the rule of chronic heavy metals toxicity on the induction of vitamin D3 (VD) deficiency and parathyroid hormone (PTH) disturbances in an inflammatory disease like rheumatoid arthritis (RA) and non-inflammatory disease like fibromyalgia syndrome (FMS). METHODS This comparative analytical study was conducted on sixty adults (age ≥ 18 years). Participants were divided into three groups. Group I: twenty patients diagnosed with RA according to the specific ACR/EULAR criteria for RA. Group II: twenty patients diagnosed with FMS according to the specific 2010 (ACR) criteria for FMS. Group III: twenty healthy adults. All patients and controls were subjected to routine laboratory tests as well as the measurement of PTH, VD and estimation of serum levels of lead, cadmium, and chromium. RESULTS VD was significantly inversely correlated to PTH, lead, cadmium, chromium, and activity scores in the RA and FMS groups. Lead, Cadmium and Chromium had a significant independent risk on the VD level in RA patients, while lead had a significant independent risk on the VD level in FMS patients. CONCLUSION Heavy metals may affect VD synthesis, leading to hypovitaminosis D and secondary hyperparathyroidism in RA and FMS patients. Heavy metals play a key role in the pathogenesis of RA, FMS, and their disease activity.
Collapse
Affiliation(s)
- Adel Elbeialy
- Rheumatology and Rehabilitation, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt.
| | - Soaad El Sawy
- Rheumatology and Rehabilitation, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Hala Elzomor
- Rheumatology and Rehabilitation, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Rana Haddad
- Rheumatology and Rehabilitation, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| |
Collapse
|
388
|
Dvorska D, Mazurakova A, Lackova L, Sebova D, Kajo K, Samec M, Brany D, Svajdlenka E, Treml J, Mersakova S, Strnadel J, Adamkov M, Lasabova Z, Biringer K, Mojzis J, Büsselberg D, Smejkal K, Kello M, Kubatka P. Aronia melanocarpa L. fruit peels show anti-cancer effects in preclinical models of breast carcinoma: The perspectives in the chemoprevention and therapy modulation. Front Oncol 2024; 14:1463656. [PMID: 39435289 PMCID: PMC11491292 DOI: 10.3389/fonc.2024.1463656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Within oncology research, there is a high effort for new approaches to prevent and treat cancer as a life-threatening disease. Specific plant species that adapt to harsh conditions may possess unique properties that may be utilized in the management of cancer. Hypothesis Chokeberry fruit is rich in secondary metabolites with anti-cancer activities potentially useful in cancer prevention and treatment. Aims of the study and Methods Based on mentioned hypothesis, the main goal of our study was to evaluate the antitumor effects of dietary administered Aronia melanocarpa L. fruit peels (in two concentrations of 0.3 and 3% [w/w]) in the therapeutic syngeneic 4T1 mouse adenocarcinoma model, the chemopreventive model of chemically induced mammary carcinogenesis in rats, a cell antioxidant assay, and robust in vitro analyses using MCF-7 and MDA-MB-231 cancer cells. Results The dominant metabolites in the A. melanocarpa fruit peel extract tested were phenolic derivatives classified as anthocyanins and procyanidins. In a therapeutic model, aronia significantly reduced the volume of 4T1 tumors at both higher and lower doses. In the same tumors, we noted a significant dose-dependent decrease in the mitotic activity index compared to the control. In the chemopreventive model, the expression of Bax was significantly increased by aronia at both doses. Additionally, aronia decreased Bcl-2 and VEGF levels, increasing the Bax/Bcl-2 ratio compared to the control group. The cytoplasmic expression of caspase-3 was significantly enhanced when aronia was administered at a higher dosage, in contrast to both the control group and the aronia group treated with a lower dosage. Furthermore, the higher dosage of aronia exhibited a significant reduction in the expression of the tumor stem cell marker CD133 compared to the control group. In addition, the examination of aronia`s epigenetic impact on tumor tissue through in vivo analyses revealed significant alterations in histone chemical modifications, specifically H3K4m3 and H3K9m3, miRNAs expression (miR155, miR210, and miR34a) and methylation status of tumor suppressor genes (PTEN and TIMP3). In vitro studies utilizing a methanolic extract of A.melanocarpa demonstrated significant anti-cancer properties in the MCF-7 and MDA-MB-231 cell lines. Various analyses, including Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential, were conducted in this regard. Additionally, the aronia extract enhanced the responsiveness to epirubicin in both cancer cell lines. Conclusion This study is the first to analyze the antitumor effect of A. melanocarpa in selected models of experimental breast carcinoma in vivo and in vitro. The utilization of the antitumor effects of aronia in clinical practice is still minimal and requires precise and long-term clinical evaluations. Individualized cancer-type profiling and patient stratification are crucial for effectively implementing plant nutraceuticals within targeted anti-cancer strategies in clinical oncology.
Collapse
Affiliation(s)
- Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Lackova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dominika Sebova
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Brany
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Emil Svajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Jakub Treml
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Sandra Mersakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
389
|
Pérez-Valero Á, Magadán-Corpas P, Dulak K, Matera A, Ye S, Huszcza E, Popłoński J, Villar CJ, Lombó F. Identification of a polyphenol O-methyltransferase with broad substrate flexibility in Streptomyces albidoflavus J1074. Microb Cell Fact 2024; 23:265. [PMID: 39369216 PMCID: PMC11453095 DOI: 10.1186/s12934-024-02541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
Flavonoids are a large and important group of phytochemicals with a great variety of bioactivities. The addition of methyl groups during biosynthesis of flavonoids and other polyphenols enhances their bioactivities and increases their stability. In a previous study of our research group, we detected a novel flavonoid O-methyltransferase activity in Streptomyces albidoflavus J1074, which led to the heterologous biosynthesis of homohesperetin from hesperetin in feeding cultures. In this study, we identify the O-methyltransferase responsible for the generation of this methylated flavonoid through the construction of a knockout mutant of the gene XNR_0417, which was selected after a blast analysis using the sequence of a caffeic acid 3'-O-methyltransferase from Zea mays against the genome of S. albidoflavus J1074. This mutant strain, S. albidoflavus ∆XNR_0417, was no longer able to produce homohesperetin after hesperetin feeding. Subsequently, we carried out a genetic complementation of the mutant strain in order to confirm that the enzyme encoded by XNR_0417 is responsible for the observed O-methyltransferase activity. This new strain, S. albidoflavus SP43-XNR_0417, was able to produce not only homohesperetin from hesperetin, but also different mono-, di-, tri- and tetra-methylated derivatives on other flavanones, flavones and stilbenes, revealing a broad substrate flexibility. Additionally, in vitro experiments were conducted using the purified enzyme on the substrates previously tested in vivo, demonstrating doubtless the capability of XNR_0417 to generate various methylated derivatives.
Collapse
Affiliation(s)
- Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Patricia Magadán-Corpas
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Agata Matera
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Suhui Ye
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Claudio J Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain.
| |
Collapse
|
390
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
391
|
Liu Z, Petinrin OO, Chen N, Toseef M, Liu F, Zhu Z, Qi F, Wong KC. Identification and evaluation of candidate COVID-19 critical genes and medicinal drugs related to plasma cells. BMC Infect Dis 2024; 24:1099. [PMID: 39363208 PMCID: PMC11451256 DOI: 10.1186/s12879-024-10000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, represents one of the most significant global health crises in recent history. Despite extensive research into the immune mechanisms and therapeutic options for COVID-19, there remains a paucity of studies focusing on plasma cells. In this study, we utilized the DESeq2 package to identify differentially expressed genes (DEGs) between COVID-19 patients and controls using datasets GSE157103 and GSE152641. We employed the xCell algorithm to perform immune infiltration analyses, revealing notably elevated levels of plasma cells in COVID-19 patients compared to healthy individuals. Subsequently, we applied the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm to identify COVID-19 related plasma cell module genes. Further, positive cluster biomarker genes for plasma cells were extracted from single-cell RNA sequencing data (GSE171524), leading to the identification of 122 shared genes implicated in critical biological processes such as cell cycle regulation and viral infection pathways. We constructed a robust protein-protein interaction (PPI) network comprising 89 genes using Cytoscape, and identified 20 hub genes through cytoHubba. These genes were validated in external datasets (GSE152418 and GSE179627). Additionally, we identified three potential small molecules (GSK-1070916, BRD-K89997465, and idarubicin) that target key hub genes in the network, suggesting a novel therapeutic approach. These compounds were characterized by their ability to down-regulate AURKB, KIF11, and TOP2A effectively, as evidenced by their low free binding energies determined through computational analyses using cMAP and AutoDock. This study marks the first comprehensive exploration of plasma cells' role in COVID-19, offering new insights and potential therapeutic targets. It underscores the importance of a systematic approach to understanding and treating COVID-19, expanding the current body of knowledge and providing a foundation for future research.
Collapse
Affiliation(s)
- Zhe Liu
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fang Liu
- Rocgene (Beijing) Technology Co., Ltd, Beijing, Beijing, 102200, China
| | - Zhongxu Zhu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Furong Qi
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China.
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
392
|
Diz-de Almeida S, Cruz R, Luchessi AD, Lorenzo-Salazar JM, de Heredia ML, Quintela I, González-Montelongo R, Nogueira Silbiger V, Porras MS, Tenorio Castaño JA, Nevado J, Aguado JM, Aguilar C, Aguilera-Albesa S, Almadana V, Almoguera B, Alvarez N, Andreu-Bernabeu Á, Arana-Arri E, Arango C, Arranz MJ, Artiga MJ, Baptista-Rosas RC, Barreda-Sánchez M, Belhassen-Garcia M, Bezerra JF, Bezerra MAC, Boix-Palop L, Brion M, Brugada R, Bustos M, Calderón EJ, Carbonell C, Castano L, Castelao JE, Conde-Vicente R, Cordero-Lorenzana ML, Cortes-Sanchez JL, Corton M, Darnaude MT, De Martino-Rodríguez A, Del Campo-Pérez V, de Bustamante AD, Domínguez-Garrido E, Eirós R, Fariñas MC, Fernandez-Nestosa MJ, Fernández-Robelo U, Fernández-Rodríguez A, Fernández-Villa T, Gago-Dominguez M, Gil-Fournier B, Gómez-Arrue J, Álvarez BG, Bernaldo de Quirós FG, González-Neira A, González-Peñas J, Gutiérrez-Bautista JF, Herrero MJ, Herrero-Gonzalez A, Jimenez-Sousa MA, Lattig MC, Borja AL, Lopez-Rodriguez R, Mancebo E, Martín-López C, Martín V, Martinez-Nieto O, Martinez-Lopez I, Martinez-Resendez MF, Martinez-Perez A, Mazzeu JF, Macías EM, Minguez P, Cuerda VM, Oliveira SF, Ortega-Paino E, Parellada M, Paz-Artal E, Santos NPC, Pérez-Matute P, Perez P, Pérez-Tomás ME, Perucho T, Pinsach-Abuin M, Pita G, Pompa-Mera EN, Porras-Hurtado GL, Pujol A, León SR, Resino S, Fernandes MR, Rodríguez-Ruiz E, Rodriguez-Artalejo F, Rodriguez-Garcia JA, Ruiz-Cabello F, Ruiz-Hornillos J, Ryan P, Soria JM, Souto JC, et alDiz-de Almeida S, Cruz R, Luchessi AD, Lorenzo-Salazar JM, de Heredia ML, Quintela I, González-Montelongo R, Nogueira Silbiger V, Porras MS, Tenorio Castaño JA, Nevado J, Aguado JM, Aguilar C, Aguilera-Albesa S, Almadana V, Almoguera B, Alvarez N, Andreu-Bernabeu Á, Arana-Arri E, Arango C, Arranz MJ, Artiga MJ, Baptista-Rosas RC, Barreda-Sánchez M, Belhassen-Garcia M, Bezerra JF, Bezerra MAC, Boix-Palop L, Brion M, Brugada R, Bustos M, Calderón EJ, Carbonell C, Castano L, Castelao JE, Conde-Vicente R, Cordero-Lorenzana ML, Cortes-Sanchez JL, Corton M, Darnaude MT, De Martino-Rodríguez A, Del Campo-Pérez V, de Bustamante AD, Domínguez-Garrido E, Eirós R, Fariñas MC, Fernandez-Nestosa MJ, Fernández-Robelo U, Fernández-Rodríguez A, Fernández-Villa T, Gago-Dominguez M, Gil-Fournier B, Gómez-Arrue J, Álvarez BG, Bernaldo de Quirós FG, González-Neira A, González-Peñas J, Gutiérrez-Bautista JF, Herrero MJ, Herrero-Gonzalez A, Jimenez-Sousa MA, Lattig MC, Borja AL, Lopez-Rodriguez R, Mancebo E, Martín-López C, Martín V, Martinez-Nieto O, Martinez-Lopez I, Martinez-Resendez MF, Martinez-Perez A, Mazzeu JF, Macías EM, Minguez P, Cuerda VM, Oliveira SF, Ortega-Paino E, Parellada M, Paz-Artal E, Santos NPC, Pérez-Matute P, Perez P, Pérez-Tomás ME, Perucho T, Pinsach-Abuin M, Pita G, Pompa-Mera EN, Porras-Hurtado GL, Pujol A, León SR, Resino S, Fernandes MR, Rodríguez-Ruiz E, Rodriguez-Artalejo F, Rodriguez-Garcia JA, Ruiz-Cabello F, Ruiz-Hornillos J, Ryan P, Soria JM, Souto JC, Tamayo E, Tamayo-Velasco A, Taracido-Fernandez JC, Teper A, Torres-Tobar L, Urioste M, Valencia-Ramos J, Yáñez Z, Zarate R, de Rojas I, Ruiz A, Sánchez P, Real LM, Guillen-Navarro E, Ayuso C, Parra E, Riancho JA, Rojas-Martinez A, Flores C, Lapunzina P, Carracedo Á. Novel risk loci for COVID-19 hospitalization among admixed American populations. eLife 2024; 13:RP93666. [PMID: 39361370 PMCID: PMC11449485 DOI: 10.7554/elife.93666] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The genetic basis of severe COVID-19 has been thoroughly studied, and many genetic risk factors shared between populations have been identified. However, reduced sample sizes from non-European groups have limited the discovery of population-specific common risk loci. In this second study nested in the SCOURGE consortium, we conducted a genome-wide association study (GWAS) for COVID-19 hospitalization in admixed Americans, comprising a total of 4702 hospitalized cases recruited by SCOURGE and seven other participating studies in the COVID-19 Host Genetic Initiative. We identified four genome-wide significant associations, two of which constitute novel loci and were first discovered in Latin American populations (BAZ2B and DDIAS). A trans-ethnic meta-analysis revealed another novel cross-population risk locus in CREBBP. Finally, we assessed the performance of a cross-ancestry polygenic risk score in the SCOURGE admixed American cohort. This study constitutes the largest GWAS for COVID-19 hospitalization in admixed Latin Americans conducted to date. This allowed to reveal novel risk loci and emphasize the need of considering the diversity of populations in genomic research.
Collapse
Affiliation(s)
- Silvia Diz-de Almeida
- ERN-ITHACA-European Reference Network, Soria, Spain
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain
- CIBERER, ISCIII, Madrid, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Cruz
- ERN-ITHACA-European Reference Network, Soria, Spain
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain
- CIBERER, ISCIII, Madrid, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andre D Luchessi
- Universidade Federal do Rio Grande do Norte, Departamento de Analises Clinicas e Toxicologicas, Natal, Brazil
| | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | | | - Inés Quintela
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | | | - Vivian Nogueira Silbiger
- Universidade Federal do Rio Grande do Norte, Departamento de Analises Clinicas e Toxicologicas, Natal, Brazil
| | - Marta Sevilla Porras
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Jair Antonio Tenorio Castaño
- ERN-ITHACA-European Reference Network, Soria, Spain
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Julian Nevado
- ERN-ITHACA-European Reference Network, Soria, Spain
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Jose María Aguado
- Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0002), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
| | | | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain
- Navarra Health Service, NavarraBioMed Research Group, Pamplona, Spain
| | | | - Berta Almoguera
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Nuria Alvarez
- Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Eunate Arana-Arri
- Biocruces Bizkai HRI, Bizkaia, Spain
- Cruces University Hospital, Osakidetza, Bizkaia, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - María J Arranz
- Fundació Docència I Recerca Mutua Terrassa, Barcelona, Spain
| | | | - Raúl C Baptista-Rosas
- Hospital General de Occidente, Zapopan Jalisco, Mexico
- Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá Jalisco, Mexico
- Centro de Investigación Multidisciplinario en Salud, Universidad de Guadalajara, Tonalá Jalisco, Mexico
| | - María Barreda-Sánchez
- Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Moncef Belhassen-Garcia
- Hospital Universitario de Salamanca-IBSAL, Servicio de Medicina Interna-Unidad de Enfermedades Infecciosas, Salamanca, Spain
| | - Joao F Bezerra
- Escola Tecnica de Saúde, Laboratorio de Vigilancia Molecular Aplicada, Brasilia, Brazil
| | - Marcos A C Bezerra
- Federal University of Pernambuco, Genetics Postgraduate Program, Recife, Brazil
| | | | - María Brion
- Instituto de Investigación Sanitaria de Santiago (IDIS), Xenética Cardiovascular, Santiago de Compostela, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Ramón Brugada
- CIBERCV, ISCIII, Madrid, Spain
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona (IDIBGI), Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Hospital Josep Trueta, Cardiology Service, Girona, Spain
| | - Matilde Bustos
- Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)- University of Seville- Virgen del Rocio University Hospital, Seville, Spain
| | - Enrique J Calderón
- Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)- University of Seville- Virgen del Rocio University Hospital, Seville, Spain
- Departamento de Medicina, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
- CIBERESP, ISCIII, Madrid, Spain
| | - Cristina Carbonell
- Hospital Universitario de Salamanca-IBSAL, Servicio de Medicina Interna, Salamanca, Spain
- Universidad de Salamanca, Salamanca, Spain
| | - Luis Castano
- CIBERER, ISCIII, Madrid, Spain
- Biocruces Bizkai HRI, Bizkaia, Spain
- Osakidetza, Cruces University Hospital, Bizkaia, Spain
- Centre for Biomedical Network Research on Diabetes and Metabolic Associated Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- University of Pais Vasco, UPV/EHU, Bizkaia, Spain
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galego de Saúde, Vigo, Spain
| | | | - M Lourdes Cordero-Lorenzana
- Servicio de Medicina intensiva, Complejo Hospitalario Universitario de A Coruña (CHUAC), Sistema Galego de Saúde (SERGAS), A Coruña, Spain
| | - Jose L Cortes-Sanchez
- Tecnológico de Monterrey, Monterrey, Mexico
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Marta Corton
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | | | - Alba De Martino-Rodríguez
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain
| | - Victor Del Campo-Pérez
- Preventive Medicine Department, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galego de Saúde, Vigo, Spain
| | | | | | - Rocío Eirós
- Hospital Universitario de Salamanca-IBSAL, Servicio de Cardiología, Salamanca, Spain
| | - María Carmen Fariñas
- IDIVAL, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
| | | | - Uxía Fernández-Robelo
- Urgencias Hospitalarias, Complejo Hospitalario Universitario de A Coruña (CHUAC), Sistema Galego de Saúde (SERGAS), A Coruña, Spain
| | - Amanda Fernández-Rodríguez
- CIBERINFEC, ISCIII, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tania Fernández-Villa
- CIBERESP, ISCIII, Madrid, Spain
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS) - Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- IDIS, Seongnam, Republic of Korea
| | | | - Javier Gómez-Arrue
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain
| | - Beatriz González Álvarez
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain
| | | | - Anna González-Neira
- Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
| | - Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan F Gutiérrez-Bautista
- Hospital Universitario Virgen de las Nieves, Servicio de Análisis Clínicos e Inmunología, Granada, Spain
| | - María José Herrero
- IIS La Fe, Plataforma de Farmacogenética, Valencia, Spain
- Universidad de Valencia, Departamento de Farmacología, Valencia, Spain
| | - Antonio Herrero-Gonzalez
- Data Analysis Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - María A Jimenez-Sousa
- CIBERINFEC, ISCIII, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Claudia Lattig
- Universidad de los Andes, Facultad de Ciencias, Bogotá, Colombia
- SIGEN Alianza Universidad de los Andes - Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Rosario Lopez-Rodriguez
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Esther Mancebo
- Hospital Universitario 12 de Octubre, Department of Immunology, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Transplant Immunology and Immunodeficiencies Group, Madrid, Spain
| | | | - Vicente Martín
- CIBERESP, ISCIII, Madrid, Spain
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS) - Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Oscar Martinez-Nieto
- SIGEN Alianza Universidad de los Andes - Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Fundación Santa Fe de Bogota, Departamento Patologia y Laboratorios, Bogotá, Colombia
| | - Iciar Martinez-Lopez
- Unidad de Genética y Genómica Islas Baleares, Islas Baleares, Spain
- Hospital Universitario Son Espases, Unidad de Diagnóstico Molecular y Genética Clínica, Islas Baleares, Spain
| | | | - Angel Martinez-Perez
- Genomics of Complex Diseases Unit, Research Institute of Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Juliana F Mazzeu
- Universidade de Brasília, Faculdade de Medicina, Brasília, Brazil
- Programa de Pós-Graduação em Ciências Médicas (UnB), Brasília, Brazil
- Programa de Pós-Graduação em Ciencias da Saude (UnB), Brazila, Brazil
| | | | - Pablo Minguez
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Victor Moreno Cuerda
- Hospital Universitario Mostoles, Medicina Interna, Madrid, Spai, Spain
- Universidad Francisco de Vitoria, Madrid, Spain
| | - Silviene F Oliveira
- Programa de Pós-Graduação em Ciencias da Saude (UnB), Brazila, Brazil
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
- Programa de Pós-Graduação em Biologia Animal (UnB), Brasília, Brazil
- Programa de Pós-Graduação Profissional em Ensino de Biologia (UnB), Brasília, Brazil
| | - Eva Ortega-Paino
- Spanish National Cancer Research Centre, CNIO Biobank, Madrid, Spain
| | - Mara Parellada
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Estela Paz-Artal
- Hospital Universitario 12 de Octubre, Department of Immunology, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Transplant Immunology and Immunodeficiencies Group, Madrid, Spain
- Universidad Complutense de Madrid, Department of Immunology, Ophthalmology and ENT, Madrid, Spain
| | - Ney P C Santos
- Universidade Federal do Pará, Núcleo de Pesquisas em Oncologia, Belém, Brazil
| | - Patricia Pérez-Matute
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | | | - M Elena Pérez-Tomás
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | | | - Mellina Pinsach-Abuin
- CIBERCV, ISCIII, Madrid, Spain
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona (IDIBGI), Girona, Spain
| | - Guillermo Pita
- Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
| | - Ericka N Pompa-Mera
- Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Mexico City, Mexico
- Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional La Raza, Hospital de Infectología, Mexico City, Mexico
| | | | - Aurora Pujol
- CIBERER, ISCIII, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Neurometabolic Diseases Laboratory, L'Hospitalet de Llobregat, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Salvador Resino
- CIBERINFEC, ISCIII, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marianne R Fernandes
- Universidade Federal do Pará, Núcleo de Pesquisas em Oncologia, Belém, Brazil
- Hospital Ophir Loyola, Departamento de Ensino e Pesquisa, Belém, Brazil
| | - Emilio Rodríguez-Ruiz
- IDIS, Seongnam, Republic of Korea
- Unidad de Cuidados Intensivos, Hospital Clínico Universitario de Santiago (CHUS), Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Fernando Rodriguez-Artalejo
- CIBERESP, ISCIII, Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain
- IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | | | - Francisco Ruiz-Cabello
- IDIS, Seongnam, Republic of Korea
- Instituto de Investigación Biosanitaria de Granada (ibs GRANADA), Granada, Spain
- Universidad de Granada, Departamento Bioquímica, Biología Molecular e Inmunología III, Granada, Spain
| | - Javier Ruiz-Hornillos
- Hospital Infanta Elena, Allergy Unit, Valdemoro, Madrid, Spain
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Pablo Ryan
- CIBERINFEC, ISCIII, Madrid, Spain
- Hospital Universitario Infanta Leonor, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - José Manuel Soria
- Genomics of Complex Diseases Unit, Research Institute of Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Juan Carlos Souto
- Haemostasis and Thrombosis Unit, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Eduardo Tamayo
- Hospital Clinico Universitario de Valladolid, Servicio de Anestesiologia y Reanimación, Valladolid, Spain
- Universidad de Valladolid, Departamento de Cirugía, Valladolid, Spain
| | - Alvaro Tamayo-Velasco
- Hospital Clinico Universitario de Valladolid, Servicio de Hematologia y Hemoterapia, Valladolid, Spain
| | - Juan Carlos Taracido-Fernandez
- Data Analysis Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Alejandro Teper
- Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | | | - Miguel Urioste
- Spanish National Cancer Research Centre, Familial Cancer Clinical Unit, Madrid, Spain
| | | | - Zuleima Yáñez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Ruth Zarate
- Centro para el Desarrollo de la Investigación Científica, Asunción, Paraguay
| | - Itziar de Rojas
- Centre for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Agustín Ruiz
- Centre for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pascual Sánchez
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Luis Miguel Real
- Hospital Universitario de Valme, Unidad Clínica de Enfermedades Infecciosas y Microbiología, Sevilla, Spain
| | - Encarna Guillen-Navarro
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
- Sección Genética Médica - Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Servicio Murciano de Salud, Murcia, Spain
- Departamento Cirugía, Pediatría, Obstetricia y Ginecología, Facultad de Medicina, Universidad de Murcia (UMU), Murcia, Spain
- Grupo Clínico Vinculado, Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ayuso
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Esteban Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Canada
| | - José A Riancho
- CIBERER, ISCIII, Madrid, Spain
- IDIVAL, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
| | | | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, Santa Cruz de Tenerife, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Centre for Biomedical Network Research on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Lapunzina
- ERN-ITHACA-European Reference Network, Soria, Spain
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Ángel Carracedo
- CIBERER, ISCIII, Madrid, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- IDIS, Seongnam, Republic of Korea
| |
Collapse
|
393
|
Nabeel-Shah S, Pu S, Burns JD, Braunschweig U, Ahmed N, Burke GL, Lee H, Radovani E, Zhong G, Tang H, Marcon E, Zhang Z, Hughes TR, Blencowe BJ, Greenblatt JF. C2H2-zinc-finger transcription factors bind RNA and function in diverse post-transcriptional regulatory processes. Mol Cell 2024; 84:3810-3825.e10. [PMID: 39303720 DOI: 10.1016/j.molcel.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Cys2-His2 zinc-finger proteins (C2H2-ZNFs) constitute the largest class of DNA-binding transcription factors (TFs) yet remain largely uncharacterized. Although certain family members, e.g., GTF3A, have been shown to bind both DNA and RNA, the extent to which C2H2-ZNFs interact with-and regulate-RNA-associated processes is not known. Using UV crosslinking and immunoprecipitation (CLIP), we observe that 148 of 150 analyzed C2H2-ZNFs bind directly to RNA in human cells. By integrating CLIP sequencing (CLIP-seq) RNA-binding maps for 50 of these C2H2-ZNFs with data from chromatin immunoprecipitation sequencing (ChIP-seq), protein-protein interaction assays, and transcriptome profiling experiments, we observe that the RNA-binding profiles of C2H2-ZNFs are generally distinct from their DNA-binding preferences and that they regulate a variety of post-transcriptional processes, including pre-mRNA splicing, cleavage and polyadenylation, and m6A modification of mRNA. Our results thus define a substantially expanded repertoire of C2H2-ZNFs that bind RNA and provide an important resource for elucidating post-transcriptional regulatory programs.
Collapse
Affiliation(s)
- Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - James D Burns
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Nujhat Ahmed
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Giovanni L Burke
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyunmin Lee
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ernest Radovani
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Guoqing Zhong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hua Tang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhaolei Zhang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
394
|
Adzhiakhmetova SL, Chervonnaya NM, Pozdnyakov DI, Popova OI, Oganisyan ET. Component Composition and Features of Biological Activity of Viscum album (Viscaceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:116-132. [PMID: 39128961 DOI: 10.1134/s0012496624701072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 08/13/2024]
Abstract
The review summarizes the data on the chemical composition and some features of biological activity of the European mistletoe Viscum album L. (Viscaceae Batsch). Among secondary metabolites, viscotoxins, lectins, carbohydrates, amino acids, flavonoids, triterpene acids, and nitrogenous compounds predominate in V. album. Mistletoe extracts and their indivdiual components exert various biological activities, including antitumor, immunomodulatory, and antidiabetic activities, and improve cognitive functions.
Collapse
Affiliation(s)
- S L Adzhiakhmetova
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia.
| | - N M Chervonnaya
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia
| | - D I Pozdnyakov
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia
| | - O I Popova
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia
| | - E T Oganisyan
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia
| |
Collapse
|
395
|
Oduro-Kwateng E, Soliman ME. DON/DRP-104 as potent serine protease inhibitors implicated in SARS-CoV-2 infection: Comparative binding modes with human TMPRSS2 and novel therapeutic approach. J Cell Biochem 2024; 125:e30528. [PMID: 38284235 DOI: 10.1002/jcb.30528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Human transmembrane serine protease 2 (TMPRSS2) is an important member of the type 2 transmembrane serine protease (TTSP) family with significant therapeutic markings. The search for potent TMPRSS2 inhibitors against severe acute respiratory syndrome coronavirus 2 infection with favorable tissue specificity and off-site toxicity profiles remains limited. Therefore, probing the anti-TMPRSS2 potential of enhanced drug delivery systems, such as nanotechnology and prodrug systems, has become compelling. We report the first in silico study of TMPRSS2 against a prodrug, [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] also known as DRP-104 synthesized from 6-Diazo-5-oxo-l-norleucine (DON). We performed comparative studies on DON and DRP-104 against a clinically potent TMPRSS2 inhibitor, nafamostat, and a standard serine protease inhibitor, 4-(2-Aminoethyl) benzenesulfonyl fluoride (AEBSF) against TMPRSS2 and found improved TMPRSS2 inhibition through synergistic binding of the S1/S1' subdomains. Both DON and DRP-104 had better thermodynamic profiles than AEBSF and nafamostat. DON was found to confer structural stability with strong positive correlated inter-residue motions, whereas DRP-104 was found to confer kinetic stability with restricted residue displacements and reduced loop flexibility. Interestingly, the Scavenger Receptor Cysteine-Rich (SRCR) domain of TMPRSS2 may be involved in its inhibition mechanics. Two previously unidentified loops, designated X (270-275) and Y (293-296) underwent minimal and major structural transitions, respectively. In addition, residues 273-277 consistently transitioned to a turn conformation in all ligated systems, whereas unique transitions were identified for other transitioning residue groups in each TMPRSS2-inhibitor complex. Intriguingly, while both DON and DRP-104 showed similar loop transition patterns, DRP-104 preserved loop structural integrity. As evident from our systematic comparative study using experimentally/clinically validated inhibitors, DRP-104 may serve as a potent and novel TMPRSS2 inhibitor and warrants further clinical investigation.
Collapse
Affiliation(s)
- Ernest Oduro-Kwateng
- School of Health Sciences, Molecular Bio-Computation and Drug Design Research Group, Westville Campus, University of KwaZulu Natal, Durban, South Africa
| | - Mahmoud E Soliman
- School of Health Sciences, Molecular Bio-Computation and Drug Design Research Group, Westville Campus, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
396
|
Sudershan A, Bharti S, Sudershan S, Bhagat M, Bhagat S, Behlam I, Panjalyia RK, Kumar P, Kumar P. North India Cancer Risk: A Detailed Review with Focus on Jammu and Kashmir Demographics. Asian Pac J Cancer Prev 2024; 25:3489-3506. [PMID: 39471015 PMCID: PMC11711370 DOI: 10.31557/apjcp.2024.25.10.3489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND Cancer is a global medical challenge, and research is at its peak to understand the unique mechanisms of cancer cells. The expanding field of epidemiology, including molecular and environmental studies, helps us better understand the distribution of molecular changes and environmental risk factors in the population. AIM In the present review, we aimed to find out the different genes and environmental factors that are associated with different cancers in the Jammu & Kashmir (J&K) region of the North Indian population. METHOD A Systematic approach of literature survey was used to curate research data based on genetic and environmental epidemiology specifying the J&K region. RESULT Of 640 articles found initially and screening of 490 records, 97 studies were included for the final review. It was observed that numerous genes that are strongly linked to various cancer types have been discovered as a result of the rising genotyping trend, which has grown in the demography exponentially over the last few decades. The majority of these genes are related to cell cycle regulation, cell growth signaling, and apoptosis regulation. Additionally, high promoter hypermethylation of various genes which were found to be attributed to the presence of distinct dietary patterns. The most important environmental risk attributes were salt tea consumption and dried pickles. DISCUSSION & CONCLUSION In conclusion, the J&K population possesses many common polymorphisms in various genes with a small effect size that makes individuals more prone to different forms of cancers interacting with different environmental factors. What we can't do is, change the gene sequence or molecular changes which are the main changes for determining the susceptibility of any altered condition but what we can do is lower/ limit the exposure to the environmental factors which is a key element playing with the susceptibility's threshold. Therefore, limiting exposure to environmental factors could be a major step in lowering the risk of disease.
Collapse
Affiliation(s)
- Amrit Sudershan
- Institute of Human Genetics, University of Jammu, Jammu, Jammu and Kashmir, India.
- Department of Human Genetics, Sri Pratap College, Srinagar, Jammu and Kashmir, India.
| | - Shikha Bharti
- Department of Zoology, Lovely Professional University, Punjab, India.
| | - Srishty Sudershan
- Department of Zoology, Central University of Jammu, Samba, Jammu and Kashmir, India.
| | - Meenakshi Bhagat
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir, India.
| | - Sheetal Bhagat
- Department of Psychology, Government Degree College Billawar, University of Jammu, Kathua, Jammu, Jammu & Kashmir, India.
| | - Ishan Behlam
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Science & Research, Mullana, Ambala, Haryana, India.
| | - Rakesh K Panjalyia
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir, India.
| | - Pawan Kumar
- Department of Oncology, Government Medical College Kathua, Jammu, Jammu & Kashmir, India.
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu, Jammu and Kashmir, India.
- Department of Zoology, University of Jammu, Jammu, Jammu and Kashmir, India.
| |
Collapse
|
397
|
Saha S, Ghosh M. Computational exploration of natural compounds targeting Staphylococcus aureus: inhibiting AgrA promoter binding for antimicrobial intervention. J Biomol Struct Dyn 2024; 42:8256-8267. [PMID: 37578046 DOI: 10.1080/07391102.2023.2246566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Staphylococcus aureus is a highly virulent nosocomial pathogen that poses a significant threat to individuals exposed to healthcare settings. Due to its sophisticated machinery for producing virulence factors, S. aureus can cause severe and potentially fatal infections in humans. This study focuses on the response regulator AgrA, which plays a crucial role in regulating the production of virulence factors in S. aureus. The objective is to identify natural compounds that can inhibit the binding of AgrA to its promoter site, thus inhibiting the expression of virulence genes. To achieve this, a pharmacophore model was generated using known drugs and applied to screen the ZINC natural product database. The resulting compounds were subjected to molecular docking-based virtual screening against the C-terminal DNA binding domain of AgrA. Three compounds, namely ZINC000077269178, ZINC000051012304, and ZINC000004266026, were shortlisted based on their strong affinity for key residues involved in DNA binding and transcription initiation. Subsequently, the unbound and ligand-bound complexes were subjected to a 200 ns molecular dynamics simulation to assess their conformational stability. Various analyses, including RMSD, RMSF, Rg, SASA, Principal Component Analysis, and Gibbs free energy landscape, were conducted on the simulation trajectory. The RMSD profile indicated similar fluctuations in both bound and unbound structures, while the Rg profile demonstrated the compactness of the protein without any unfolding during the simulation. Furthermore, Principal component analysis revealed that ligand binding reduced the overall atomic motion of the protein whereas free energy landscape suggested the energy variations obtained in complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subhadip Saha
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Monidipa Ghosh
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| |
Collapse
|
398
|
Rabaan AA, Halwani MA, Garout M, Alotaibi J, AlShehail BM, Alotaibi N, Almuthree SA, Alshehri AA, Alshahrani MA, Othman B, Alqahtani A, Alissa M. Exploration of phytochemical compounds against Marburg virus using QSAR, molecular dynamics, and free energy landscape. Mol Divers 2024; 28:3261-3278. [PMID: 37925643 DOI: 10.1007/s11030-023-10753-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Marburg virus disease (MVD) is caused by the Marburg virus, a one-of-a-kind zoonotic RNA virus from the genus Filovirus. Thus, this current study employed AI-based QSAR and molecular docking-based virtual screening for identifying potential binders against the target protein (nucleoprotein (NP)) of the Marburg virus. A total of 2727 phytochemicals were used for screening, out of which the top three compounds (74977521, 90470472, and 11953909) were identified based on their predicted bioactivity (pIC50) and binding score (< - 7.4 kcal/mol). Later, MD simulation in triplicates and trajectory analysis were performed which showed that 11953909 and 74977521 had the most stable and consistent complex formations and had the most significant interactions with the highest number of hydrogen bonds. PCA (principal component analysis) and FEL (free energy landscape) analysis indicated that these compounds had favourable energy states for most of the conformations. The total binding free energy of the compounds using the MM/GBSA technique showed that 11953909 (ΔGTOTAL = - 30.78 kcal/mol) and 74977521 (ΔGTOTAL = - 30 kcal/mol) had the highest binding affinity with the protein. Overall, this in silico pipeline proposed that the phytochemicals 11953909 and 74977521 could be the possible binders of NP. This study aimed to find phytochemicals inhibiting the protein's function and potentially treating MVD.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia.
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, 4781, Al Baha, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, 11564, Riyadh, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf Alotaibi
- Clinical pharmacy Department, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Souad A Almuthree
- Department of Infectious Disease, King Abdullah Medical City, 43442, Makkah, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Al Baha University, 65779, Al Baha, Saudi Arabia
| | - Abdulaziz Alqahtani
- Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, 61321, Abha, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia.
| |
Collapse
|
399
|
Khamlich J, Douiyeh I, Saih A, Moussamih S, Regragui A, Kettani A, Safi A. Identification of small molecule glucokinase activators for the treatment of diabetes based on plants from the traditional Chinese medicine: In silico analysis. Microb Pathog 2024; 195:106851. [PMID: 39197693 DOI: 10.1016/j.micpath.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
Mutations in glucokinase (GCK) can either enhance or inhibit insulin secretion, leading to different forms of diabetes, including gestational diabetes. While many glucokinase activators (GKAs) have been explored as treatments, their long-term effectiveness has often been unsatisfactory. However, recent interest has surged with the introduction of dorzagliatin and TTP399. This study investigates the efficacy of four previously studied compounds (Swertiamarin, Apigenin, Mangiferin, and Tatanan A) in activating GCK using computational methods. Initial molecular docking revealed binding affinities ranging from -6.7 to -8.6 kcal/mol. The compounds were then evaluated for drug-likeness and pharmacokinetic properties. Re-docking studies were performed for validation. Based on their favorable binding affinities and compliance with Lipinski's rule and ADMET criteria, three compounds (Swertiamarin, Apigenin, and Tatanan A) were selected for molecular dynamics (MD) simulations. MD simulations demonstrated that Swertiamarin showed excellent stability, as indicated by analyses of RMSD, RMSF, radius of gyration (Rg), hydrogen bonding, and principal component analysis (PCA). These results suggest that Swertiamarin holds promise for further investigation in in vivo and clinical settings to evaluate its potential in enhancing GCK activity and treating diabetes. This study assessed the potential of four compounds as GCK activators using molecular docking, pharmacokinetic profiling, and MD simulations. Swertiamarin, in particular, showed significant stability and adherence to drug-likeness criteria, making it a promising candidate for further research in combating diabetes.
Collapse
Affiliation(s)
- Jihane Khamlich
- Laboratory Biochemistry Environment and Agri-food, Department of Biology, Faculty of Science and Technics Mohammedia, Hassan II University Casablanca, Morocco; Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik Hassan II University of Casablanca, Morocco.
| | - Imane Douiyeh
- Laboratory Biochemistry Environment and Agri-food, Department of Biology, Faculty of Science and Technics Mohammedia, Hassan II University Casablanca, Morocco; Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik Hassan II University of Casablanca, Morocco.
| | - Asmae Saih
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik Hassan II University of Casablanca, Morocco.
| | - Samya Moussamih
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain chock, Hassan II University of Casablanca, Morocco.
| | - Anas Regragui
- Faculty of Medicine and Pharmacy Casablanca (FMPC), Hassan II University, Morocco.
| | - Anass Kettani
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'Sik Hassan II University of Casablanca, Morocco; Mohammed VI Center for Research & Innovation, Rabat, Morocco & Mohammed VI University of Health Sciences, Casablanca, Morocco.
| | - Amal Safi
- Laboratory Biochemistry Environment and Agri-food, Department of Biology, Faculty of Science and Technics Mohammedia, Hassan II University Casablanca, Morocco.
| |
Collapse
|
400
|
Okoh P, Olusanya DA, Erinne OC, Achara KE, Aboaba AO, Abiodun R, Gbigbi-Jackson GA, Abiodun RF, Oredugba A, Dieba R, Okobi OE. An Integrated Pathophysiological and Clinical Perspective of the Synergistic Effects of Obesity, Hypertension, and Hyperlipidemia on Cardiovascular Health: A Systematic Review. Cureus 2024; 16:e72443. [PMID: 39588433 PMCID: PMC11588357 DOI: 10.7759/cureus.72443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
This review paper explores the synergistic effects of obesity, hypertension (HTN), and hyperlipidemia on cardiovascular health by integrating pathophysiological and clinical perspectives. Obesity, characterized by excessive body fat, HTN, defined by elevated blood pressure, and hyperlipidemia, indicated by high blood lipid levels, are globally prevalent conditions that significantly increase the risk of cardiovascular diseases (CVDs). The interplay between these conditions exacerbates cardiovascular risk through mechanisms such as chronic inflammation, insulin resistance, endothelial dysfunction, arterial stiffness, and atherogenesis. This review synthesizes epidemiological evidence and highlights the prevalence and co-occurrence of these conditions, with an emphasis on their combined impact on cardiovascular health. The literature search encompassed various databases, and data extraction included key study characteristics and outcomes. The findings underscore the importance of integrated management strategies, involving lifestyle interventions, pharmacological treatments, and regular monitoring, to mitigate the heightened cardiovascular risk posed by these conditions. In addition, the various public health implications are addressed, advocating for community-based interventions and policy changes. Future research directions may include exploring novel therapeutic approaches, personalized medicine strategies, and longitudinal studies to enhance the understanding and management of the synergistic effects of obesity, HTN, and hyperlipidemia on cardiovascular health.
Collapse
Affiliation(s)
- Pedro Okoh
- Emergency Medicine, Lancashire Teaching Hospital, Preston, GBR
| | | | - Okechukwu C Erinne
- Epidemiology, University of Texas Health Science Center at Houston, Houston, USA
| | | | - Abiodun O Aboaba
- Family and Community Medicine, Avalon University School of Medicine, Madisonville, USA
| | - Rejoice Abiodun
- Department of Obstetrics and Gynecology, St. Ann's Bay Regional Hospital, St. Ann's Bay, JAM
| | | | - Rejoice F Abiodun
- Internal Medicine, Spartan Health Sciences University, Vieux Fort, JAM
| | - Adebimpe Oredugba
- Internal Medicine, Lister Hospital, East and North Hertfordshire NHS Trust, Hertfordshire, GBR
| | - Ron Dieba
- Family Medicine, International University of the Health Sciences, Toronto, CAN
| | - Okelue E Okobi
- Family Medicine, Medficient Health Systems, Laurel, USA
- Family Medicine, Lakeside Medical Center, Belle Glade, USA
- Family Medicine, Larkin Community Hospital Palm Springs Campus, Miami, USA
| |
Collapse
|