4051
|
Zhao Q, Zhang H, Wang T, Chen S, Dai S. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics 2013; 82:230-53. [PMID: 23385356 DOI: 10.1016/j.jprot.2013.01.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 12/29/2022]
Abstract
Salinity is one of the major abiotic stresses that limits agricultural productivity worldwide. Plant roots function as the primary site of salinity perception. Salt responses in roots are essential for maintaining root functionality, as well as for transmitting the salt signal to shoot for proper salt response and adaptation in the entire plant. Therefore, a thorough understanding of signaling and metabolic mechanisms of salt response in roots is critical for improving plant salt tolerance. Current proteomic studies have provided salt-responsive expression patterns of 905 proteins in 14 plant species. Through integrative analysis of salt-responsive proteins and previous physiological and molecular findings, this review summarizes current understanding of salt responses in roots and highlights proteomic findings on the molecular mechanisms in the fine-tuned salt-responsive networks. At the proteome level, the following processes become dominant in root salt response: (i) salt signal perception and transduction; (ii) detoxification of reactive oxygen species (ROS); (iii) salt uptake/exclusion and compartmentalization; (iv) protein translation and/or turnover dynamics; (v) cytoskeleton/cell wall dynamics; (vi) carbohydrate and energy metabolism; and (vii) other salt-responsive metabolisms. These processes work together to gain cellular homeostasis in roots and determine the overall phenotype of plant growth and development under salt stress.
Collapse
Affiliation(s)
- Qi Zhao
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | |
Collapse
|
4052
|
Puerma E, Aguadé M. Polymorphism at genes involved in salt tolerance in Arabidopsis thaliana (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:384-390. [PMID: 23345415 DOI: 10.3732/ajb.1200332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PREMISE OF THE STUDY Genes involved in relevant functions for environmental adaptation can be considered primary candidates for their variation having been shaped by natural selection. Detecting recent selective events through their footprint on nucleotide variation constitutes a challenging task in species with a complex demographic history such as Arabidopsis thaliana. We have surveyed nucleotide variation in this species at nine genes involved in salt tolerance. The available genomewide information for this species has allowed us to contrast the levels and patterns of variation detected at the candidate genes with empirical distributions obtained from noncandidate regions. METHODS We sequenced nine genes involved in salt tolerance (~32 kb) in 20 ecotypes of A. thaliana and analyzed polymorphism and divergence at the individual gene and multilocus levels. KEY RESULTS Variation at the nine genes studied was characterized by a generalized skew toward polymorphisms with low-frequency variants. Except for genes RCD1 and NHX8, this pattern was similar to that generally detected in the A. thaliana genome and could thus be primarily explained by the species demographic history. The more extreme deviation at the NHX8 gene and its excess of polymorphism relative to divergence points to the recent action of selection on this gene. CONCLUSIONS The analysis of nucleotide polymorphism and divergence at nine genes involved in salt tolerance provided little evidence for the recent action of positive selection. Only the signals detected at NHX8 from both polymorphism and divergence were suggestive of the putative contribution of this gene to local adaptation.
Collapse
Affiliation(s)
- Eva Puerma
- Departament de Genètica, Facultat de Biologia, i Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | | |
Collapse
|
4053
|
Nebauer SG, Sánchez M, Martínez L, Lluch Y, Renau-Morata B, Molina RV. Differences in photosynthetic performance and its correlation with growth among tomato cultivars in response to different salts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:61-69. [PMID: 23232248 DOI: 10.1016/j.plaphy.2012.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/07/2012] [Indexed: 06/01/2023]
Abstract
Previous works into photosynthesis regulation under salt stress have focused on the effect of NaCl, although other salts may significantly contribute to the toxicity of saline soils. In this paper, the effects of different salt sources (NaCl, Na(2)SO(4), MgCl(2) and MgSO(4)) on photosynthesis and vegetative growth in three tomato (Solanum lycopersicum L.) cultivars (Marmande RAF, Leader and Daniela) are presented. Differences were found in the net photosynthetic rate and vegetative growth among the studied cultivars and salinity treatments. Cultivar photosynthetic performance related not only to capability for toxic ion exclusion, but also to the maintenance of appropriate essential macronutrient concentrations in leaves. In addition, the role of metabolic and diffusion limitations in regulating photosynthesis varied depending on the studied genotypes. These data, along with variation in biomass and ion distribution in leaves and roots, show that distinct tomato cultivars can address salt tolerance differently, which should be considered when designing strategies to overcome plant sensitivity to salt stress.
Collapse
Affiliation(s)
- Sergio G Nebauer
- Departamento de Producción Vegetal, Universitat Politécnica de València, Camino de vera s.n., Valencia 46022, Spain.
| | | | | | | | | | | |
Collapse
|
4054
|
Mu Oz N, Rodriguez M, Robert G, Lascano R. Negative short-term salt effects on the soybean-Bradyrhizobium japonicum interaction and partial reversion by calcium addition. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 41:96-105. [PMID: 32480970 DOI: 10.1071/fp13085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 07/19/2013] [Indexed: 06/11/2023]
Abstract
The short-term (2h) effects of salt stress (50 and 150mM NaCl) on early events of soybean- Bradyrhizobium japonicum (rhizobia) interaction were analysed, determining the following parameters in root hair with or without calcium addition: deformation, apoplastic superoxide radical production (O2⚫-), root hair death and sodium/potassium ion content. We also analysed whether this short-term salt stress influenced later formation of crown and noncrown nodules, determining the number and weight of nodules. The negative effect of salt stress on these characters was attenuated by the addition of 5mM CaCl2. We also analysed the expression of pathogenesis-related proteins (PRP) genes PR-1, PR-2, PR-3, and four isoforms of PR-5. The expression of PR-2 increased under saline conditions and decreased in osmotic treatment and saline treatment supplemented with calcium in the presence of the symbiont. The changes in PR-2 expression levels, together with the death of root hairs provide a possible mechanism for the inhibition of infection by the symbiont under salinity, and suggests a possible overlap with responses to plant pathogens.
Collapse
Affiliation(s)
- Nacira Mu Oz
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Camino a 60 Cuadras Km 5 y ½, Córdoba Argentina
| | - Marianela Rodriguez
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Camino a 60 Cuadras Km 5 y ½, Córdoba Argentina
| | - German Robert
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Camino a 60 Cuadras Km 5 y ½, Córdoba Argentina
| | - Ramiro Lascano
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Camino a 60 Cuadras Km 5 y ½, Córdoba Argentina
| |
Collapse
|
4055
|
Guzmán-Murillo MA, Ascencio F, Larrinaga-Mayoral JA. Germination and ROS detoxification in bell pepper (Capsicum annuum L.) under NaCl stress and treatment with microalgae extracts. PROTOPLASMA 2013; 250:33-42. [PMID: 22234834 DOI: 10.1007/s00709-011-0369-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
We evaluated the salt tolerance of hybrids of pepper (Capsicum annuum L.) during germination. Treatments were applied at 0, 25, and 50 mM NaCl with preparations of supplemental extracts of the microalgae Dunaliella salina and Phaeodactylum tricornutum to determine the percentage germination rate as well as measured indicators of oxidative stress caused by the salt treatments during seed germination. We found that root growth was favorably influenced by the microalgae leading to increased germination rate. Tissues were analyzed in terms of superoxide radical production, lipid peroxidation, and activity of antioxidant enzymes viz. superoxide dismutase, catalase, and glutathione peroxidase. Our results suggest that application of microalgae extracts significantly reduced (p < 0.05) superoxide radical production, as well as lower lipid peroxidation in comparison to plants without extracts of microalgae. The antioxidant enzymes increased in the presence of microalgae showing a significant difference (p < 0.05). The results suggest differences in oxidative metabolism in response to the magnitude of salt stress and concentrations of microalgae help mitigate salt stress in plants during the germination process.
Collapse
Affiliation(s)
- María A Guzmán-Murillo
- Centro de Investigaciones Biológicas del Noroeste, S C, Mar Bermejo 195, Colonia Playa Palo de Santa Rita, La Paz, Baja California Sur 23090, Mexico.
| | | | | |
Collapse
|
4056
|
Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G. Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 2013; 8:e55431. [PMID: 23383190 PMCID: PMC3561194 DOI: 10.1371/journal.pone.0055431] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/22/2012] [Indexed: 12/18/2022] Open
Abstract
A thorough understanding of the mechanisms underlying barley salt tolerance and exploitation of elite genetic resource are essential for utilizing wild barley germplasm in developing barley varieties with salt tolerance. In order to reveal the physiological and molecular difference in salt tolerance between Tibetan wild barley (Hordeum spontaneum) and cultivated barley (Hordeum vulgare), profiles of 82 key metabolites were studies in wild and cultivated barley in response to salinity. According to shoot dry biomass under salt stress, XZ16 is a fast growing and salt tolerant wild barley. The results of metabolite profiling analysis suggested osmotic adjustment was a basic mechanism, and polyols played important roles in developing salt tolerance only in roots, and high level of sugars and energy in roots and active photosynthesis in leaves were important for barley to develop salt tolerance. The metabolites involved in tolerance enhancement differed between roots and shoots, and also between genotypes. Tibetan wild barley, XZ16 had higher chlorophyll content and higher contents of compatible solutes than CM72, while the cultivated barley, CM72 probably enhanced its salt tolerance mainly through increasing glycolysis and energy consumption, when the plants were exposed to high salinity. The current research extends our understanding of the mechanisms involved in barley salt tolerance and provides possible utilization of Tibetan wild barley in developing barley cultivars with salt tolerance.
Collapse
Affiliation(s)
- Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shengguan Cai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Mingxian Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lingzhen Ye
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhonghua Chen
- School of Science and Health, University of Western Sydney, Penrith, New South Wales, Australia
| | - Haitao Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Fei Dai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Feibo Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
4057
|
mRNA-seq analysis of the Gossypium arboreum transcriptome reveals tissue selective signaling in response to water stress during seedling stage. PLoS One 2013; 8:e54762. [PMID: 23382961 PMCID: PMC3557298 DOI: 10.1371/journal.pone.0054762] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/14/2012] [Indexed: 02/06/2023] Open
Abstract
The cotton diploid species, Gossypium arboreum, shows important properties of stress tolerance and good genetic stability. In this study, through mRNA-seq, we de novo assembled the unigenes of multiple samples with 3h H2O, NaCl, or PEG treatments in leaf, stem and root tissues and successfully obtained 123,579 transcripts of G. arboreum, 89,128 of which were with hits through BLAST against known cotton ESTs and draft genome of G. raimondii. About 36,961 transcripts (including 1,958 possible transcription factor members) were identified with differential expression under water stresses. Principal component analysis of differential expression levels in multiple samples suggested tissue selective signalling responding to water stresses. Venn diagram analysis showed the specificity and intersection of transcripts’ response to NaCl and PEG treatments in different tissues. Self-organized mapping and hierarchical cluster analysis of the data also revealed strong tissue selectivity of transcripts under salt and osmotic stresses. In addition, the enriched gene ontology (GO) terms for the selected tissue groups were differed, including some unique enriched GO terms such as photosynthesis and tetrapyrrole binding only in leaf tissues, while the stem-specific genes showed unique GO terms related to plant-type cell wall biogenesis, and root-specific genes showed unique GO terms such as monooxygenase activity. Furthermore, there were multiple hormone cross-talks in response to osmotic and salt stress. In summary, our multidimensional mRNA sequencing revealed tissue selective signalling and hormone crosstalk in response to salt and osmotic stresses in G. arboreum. To our knowledge, this is the first such report of spatial resolution of transcriptome analysis in G. arboreum. Our study will potentially advance understanding of possible transcriptional networks associated with water stress in cotton and other crop species.
Collapse
|
4058
|
Shadiac N, Nagarajan Y, Waters S, Hrmova M. Close allies in membrane protein research: Cell-free synthesis and nanotechnology. Mol Membr Biol 2013; 30:229-45. [DOI: 10.3109/09687688.2012.762125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4059
|
Kravchik M, Bernstein N. Effects of salinity on the transcriptome of growing maize leaf cells point at cell-age specificity in the involvement of the antioxidative response in cell growth restriction. BMC Genomics 2013; 14:24. [PMID: 23324477 PMCID: PMC3599246 DOI: 10.1186/1471-2164-14-24] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/18/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Salinity inhibits growth and development of most plants. The response to salinity is complex and varies between plant organs and stages of development. It involves challenges of ion toxicities and deficiencies as well as osmotic and oxidative stresses. The range of functions affected by the stress is reflected in elaborate changes to the transcriptome. The mechanisms involved in the developmental-stage specificity of the inhibitory responses are not fully understood. The present study took advantage of the well characterized developmental progression that exists along the maize leaf, for identification of salinity induced, developmentally-associated changes to the transcriptome. Differential subtraction screening was conducted for cells of two developmental stages: from the center of the growth zone where the expansion rate is highest, and from older cells at a more distal location of the growing zone where the expansion rate is lower and the salinity restrictive effects are more pronounced. Real-Time PCR analysis was used for validation of the expression of selected genes. RESULTS The salinity-induced changes demonstrated an age-related response of the growing tissue, with elevation of salinity-damages with increased age. Growth reduction, similar to the elevation of percentage dry matter (%DM), and Na and Cl concentrations were more pronounced in the older cells. The differential subtraction screening identified genes encoding to proteins involved in antioxidant defense, electron transfer and energy, structural proteins, transcription factors and photosynthesis proteins. Of special interest is the higher induced expression of genes involved in antioxidant protection in the young compared to older cells, which was accompanied by suppressed levels of reactive oxygen species (H2O2 and O2-). This was coupled with heightened expression in the older cells of genes that enhance cell-wall rigidity, which points at reduced potential for cell expansion. CONCLUSIONS The results demonstrate a cell-age specificity in the salinity response of growing cells, and point at involvement of the antioxidative response in cell growth restriction. Processes involved in reactive oxygen species (ROS) scavenging are more pronounced in the young cells, while the higher growth sensitivity of older cells is suggested to involve effects on cell-wall rigidity and lower protein protection.
Collapse
Affiliation(s)
- Michael Kravchik
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, 50-250, Bet-Dagan, Israel
| | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, 50-250, Bet-Dagan, Israel
| |
Collapse
|
4060
|
Zörb C, Geilfus CM, Mühling KH, Ludwig-Müller J. The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:220-224. [PMID: 23181973 DOI: 10.1016/j.jplph.2012.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 05/20/2023]
Abstract
The plant hormones abscisic acid (ABA) and auxin (IAA, IBA) play important roles in plant responses to environmental stresses such as salinity. Recent breeding improvements in terms of salt resistance of maize have lead to a genotype with improved growth under saline conditions. By comparing this salt-resistant hybrid with a sensitive hybrid, it was possible to show differences in hormone concentrations in expanding leaves and roots. In response to salinity, the salt-resistant maize significantly increased IBA concentrations in growing leaves and maintained IAA concentration in roots. These hormonal adaptations may help to establish favorable conditions for growth-promoting agents such as β-expansins and maintain growth of resistant maize hybrids under salt stress. Moreover, ABA concentrations significantly increased in resistant maize leaves under salt stress, which may contribute to acidifying the apoplast, which in turn is a prerequisite for growth.
Collapse
Affiliation(s)
- Christian Zörb
- Institute of Biology, Botany, University Leipzig, Johannisalle 21-23, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
4061
|
Comparative proteomic analysis of Puccinellia tenuiflora leaves under Na2CO3 stress. Int J Mol Sci 2013; 14:1740-62. [PMID: 23322023 PMCID: PMC3565345 DOI: 10.3390/ijms14011740] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/31/2012] [Accepted: 01/06/2013] [Indexed: 11/29/2022] Open
Abstract
Soil salt-alkalinization is a widespread environmental stress that limits crop growth and agricultural productivity. The influence of soil alkalization caused by Na2CO3 on plants is more severe than that of soil salinization. Plants have evolved some unique mechanisms to cope with alkali stress; however, the plant alkaline-responsive signaling and molecular pathways are still unknown. In the present study, Na2CO3 responsive characteristics in leaves from 50-day-old seedlings of halophyte Puccinellia tenuiflora were investigated using physiological and proteomic approaches. Comparative proteomics revealed 43 differentially expressed proteins in P. tenuiflora leaves in response to Na2CO3 treatment for seven days. These proteins were mainly involved in photosynthesis, stress and defense, carbohydrate/energy metabolism, protein metabolism, signaling, membrane and transport. By integrating the changes of photosynthesis, ion contents, and stress-related enzyme activities, some unique Na2CO3 responsive mechanisms have been discovered in P. tenuiflora. This study provides new molecular information toward improving the alkali tolerance of cereals.
Collapse
|
4062
|
Bose J, Xie Y, Shen W, Shabala S. Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K⁺ retention via regulation of the plasma membrane H⁺-ATPase and by altering SOS1 transcript levels in roots. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:471-81. [PMID: 23307916 PMCID: PMC3542042 DOI: 10.1093/jxb/ers343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) production is a common denominator in a variety of biotic and abiotic stresses, including salinity. In recent years, haem oxygenase (HO; EC 1.14.99.3) has been described as an important component of the antioxidant defence system in both mammalian and plant systems. Moreover, a recent report on Arabidopsis demonstrated that HO overexpression resulted in an enhanced salinity tolerance in this species. However, physiological mechanisms and downstream targets responsible for the observed salinity tolerance in these HO mutants remain elusive. To address this gap, ion transport characteristics (K(+) and H(+) fluxes and membrane potentials) and gene expression profiles in the roots of Arabidopsis thaliana HO-overexpressing (35S:HY1-1/2/3/4) and loss-of-function (hy-100, ho2, ho3, and ho4) mutants were compared during salinity stress. Upon acute salt stress, HO-overexpressing mutants retained more K(+) (less efflux), and exhibited better membrane potential regulation (maintained more negative potential) and higher H(+) efflux activity in root epidermis, compared with loss-of-function mutants. Pharmacological experiments suggested that high activity of the plasma membrane H(+)-ATPase in HO overexpressor mutants provided the proton-motive force required for membrane potential maintenance and, hence, better K(+) retention. The gene expression analysis after 12h and 24h of salt stress revealed high expression levels of H(+)-ATPases (AHA1/2/3) and Na(+)/H(+) antiporter [salt overly sensitive1 (SOS1)] transcripts in the plasma membrane of HO overexpressors. It is concluded that HO modifies salinity tolerance in Arabidopsis by controlling K(+) retention via regulation of the plasma membrane H(+)-ATPase and by altering SOS1 transcript levels in roots.
Collapse
Affiliation(s)
- Jayakumar Bose
- Tasmanian Institute of Agriculture and School of Agricultural Sciences, University of Tasmania, Hobart, TAS 7001, Australia.
| | | | | | | |
Collapse
|
4063
|
Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Aouani ME, Polidoros AN. Alternative oxidase 1 (Aox1) gene expression in roots of Medicago truncatula is a genotype-specific component of salt stress tolerance. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:111-4. [PMID: 23079242 DOI: 10.1016/j.jplph.2012.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 05/22/2023]
Abstract
Alternative oxidase (AOX) is the central component of the non-phosphorylating alternative respiratory pathway in plants and may be important for mitochondrial function during environmental stresses. Recently it has been proposed that Aox can be used as a functional marker for breeding stress tolerant plant varieties. This requires characterization of Aox alleles in plants with different degree of tolerance in a certain stress, affecting plant phenotype in a recognizable way. In this study we examined Aox1 gene expression levels in Medicago truncatula genotypes differing in salt stress tolerance, in order to uncover any correlation between Aox expression and tolerance to salt stress. Results demonstrated a specific induction of Aox1 gene expression in roots of the tolerant genotype that presented the lowest modulation in phenotypic and biochemical stress indices such as morphologic changes, protein level, lipid peroxidation and ROS generation. Similarly, in a previous study we reported that induction of antioxidant gene expression in the tolerant genotype contributed to the support of the antioxidant cellular machinery and stress tolerance. Correlation between expression patterns of the two groups of genes was revealed mainly in 48 h treated roots. Taken together, results from both experiments suggest that M. truncatula tolerance to salt stress may in part due to an efficient control of oxidative balance thanks to (i) induction of antioxidant systems and (ii) involvement of the AOX pathway. This reinforces the conclusion that differences in antioxidant mechanisms can be essential for salt stress tolerance in M. truncatula and possibly the corresponding genes, especially Aox, could be utilized as functional marker.
Collapse
Affiliation(s)
- Haythem Mhadhbi
- Laboratory of Legumes (LL), CBBC, PB 901, 2050 Hammam lif, Tunisia.
| | | | | | | | | | | |
Collapse
|
4064
|
Jlassi A, Zorrig W, El Khouni A, Lakhdar A, Smaoui A, Abdelly C, Rabhi M. Phytodesalination of a moderately-salt-affected soil by Sulla carnosa. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2013; 15:398-404. [PMID: 23488005 DOI: 10.1080/15226514.2012.716104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aim of this investigation was to evaluate the ability of the indifferent halophyte Sulla carnosa Desf. to desalinize a moderately-salt-affected soil. Seeds were sown on a fertile soil added or not with 1.5 g NaCl. kg(-1). Analogous treatments without plantation (control and salinized) were also used. Plant culture was performed under greenhouse conditions in non-perforated pots containing 10 kg soil each and irrigated with non-saline tap water. After 80 days of treatment, shoots were harvested. Soil samples were also collected after division of soil column in each pot into two horizons. Our results showed that salt addition increased electrical conductivity of saturation paste extract (ECe)from 3.3 to 8.4 dS. m(-1) and soluble sodium concentration from 0.32 to 1.15 g. kg(-1) soil in the upper horizon. In the lower horizon however, Na+ concentration was quasi-constant and then ECe was less increased. Plant culture inversed this pattern of sodium accumulation and salinity. Its productivity and phytodesalination capacity in 80 days were 5.0 t DW. ha(-1) and 0.3 t Na+. ha(-1) (24% of the added quantity), respectively. Interestingly, sodium dilution within biomass (41.5-45.6 mg. g(-1) DW) and the non-altered nutrition make this plant suitable for forage as second use after phytodesalination.
Collapse
Affiliation(s)
- Arwa Jlassi
- Laboratory of Extremophile Plants (LPE), Biotechnology Centre of Borj-Cedria, Hammam-Lif Tunisia
| | | | | | | | | | | | | |
Collapse
|
4065
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23785372 DOI: 10.3389/fpls.2013.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
- Janelle K H Jung
- Department of Plant Breeding and Genetics, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
4066
|
|
4067
|
Jung JKH, McCouch S. Getting to the roots of it: Genetic and hormonal control of root architecture. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23785372 DOI: 10.3389/fpls.2013.00186/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants.
Collapse
Affiliation(s)
- Janelle K H Jung
- Department of Plant Breeding and Genetics, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
4068
|
Llanes A, Bertazza G, Palacio G, Luna V. Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15 Suppl 1:118-125. [PMID: 22747518 DOI: 10.1111/j.1438-8677.2012.00626.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The success of Prosopis strombulifera in growing under high NaCl concentrations involves a carefully controlled balance among different processes, including compartmentation of Cl(-) and Na(+) in leaf vacuoles, exclusion of Na(+) in roots, osmotic adjustment and low transpiration. In contrast, Na(2) SO(4) causes growth inhibition and toxicity. We propose that protection of the cytoplasm can be achieved through production of high endogenous levels of specific compatible solutes. To test our hypothesis, we examined endogenous levels of compatible solutes in roots and leaves of 29-, 40- and 48-day-old P. strombulifera plants grown in media containing various concentrations of NaCl, Na(2) SO(4) or in mixtures of both, with osmotic potentials of -1.0,-1.9 and -2.6 MPa, as correlated with changes in hydric parameters. At 24 h after the last pulse plants grown in high NaCl concentrations had higher relative water content and relatively higher osmotic potential than plants grown in Na(2) SO(4) (at 49 days). These plants also had increased synthesis of proline, pinitol and mannitol in the cytoplasm, accompanied by normal carbon metabolism. When the sulphate anion is present in the medium, the capacities for ion compartmentalisation and osmotic adjustment are reduced, resulting in water imbalance and symptoms of toxicity due to altered carbon metabolism, e.g. synthesis of sorbitol instead of mannitol, reduced sucrose production and protein content. This inhibition was partially mitigated when both anions were present together in the solution, demonstrating a detrimental effect of the sulphate ion on plant growth.
Collapse
Affiliation(s)
- A Llanes
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, Río Cuarto-Córdoba, Argentina
| | | | | | | |
Collapse
|
4069
|
Shavrukov Y. Salt stress or salt shock: which genes are we studying? JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:119-127. [PMID: 23186621 DOI: 10.1093/jxb/ers316] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Depending on the method of NaCl application, whether gradual or in a single step, plants may experience either salt stress or salt shock, respectively. The first phase of salt stress is osmotic stress. However, in the event of salt shock, plants suffer osmotic shock, leading to cell plasmolysis and leakage of osmolytes, phenomena that do not occur with osmotic stress. Patterns of gene expression are different in response to salt stress and salt shock. Salt stress initiates relatively smooth changes in gene expression in response to osmotic stress and a more pronounced change in expression of significant numbers of genes related to the ionic phase of salt stress. There is a considerable time delay between changes in expression of genes related to the osmotic and ionic phases of salt stress. In contrast, osmotic shock results in strong, rapid changes in the expression of genes with osmotic function, and fewer changes in ionic-responsive genes that occur earlier. There are very few studies in which the effects of salt stress and salt shock are described in parallel experiments. However, the patterns of changes in gene expression observed in these studies are consistently as described above, despite the use of diverse plant species. It is concluded that gene expression profiles are very different depending the method of salt application. Imposition of salt stress by gradual exposure to NaCl rather than salt shock with a single application of a high concentration of NaCl is recommended for genetic and molecular studies, because this more closely reflects natural incidences of salinity.
Collapse
Affiliation(s)
- Yuri Shavrukov
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, SA 5064, Australia.
| |
Collapse
|
4070
|
Wong TH, Li MW, Yao XQ, Lam HM. The GmCLC1 protein from soybean functions as a chloride ion transporter. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:101-4. [PMID: 22921676 DOI: 10.1016/j.jplph.2012.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 05/13/2023]
Abstract
Soil salinization is a global issue that hampers agricultural production. Chloride is one of the prominent anions on saline land that cause toxicity to the plant. We previously identified the GmCLC1 gene from soybean (Glycine max) that encodes a putative tonoplast-localized chloride transporter. In this study, using electrophysiological analysis, we demonstrated the chloride transport function of GmCLC1. Interestingly, this chloride transport activity is pH dependent, suggesting that GmCLC1 is probably a chloride/proton antiporter. When the cDNA of GmCLC1 was expressed in tobacco BY-2 cells under the control of a constitutive promoter, the protective effect against salinity stress in transgenic tobacco BY-2 cells was also found to be pH sensitive. In the native host soybean, the expression of GmCLC1 gene is regulated by pH. All these findings support the notion that the function of GmCLC1 is regulated by pH.
Collapse
Affiliation(s)
- Tak-Hong Wong
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | | | | | | |
Collapse
|
4071
|
Abou Jaoudé R, de Dato G, Palmegiani M, De Angelis P. Impact of fresh and saline water flooding on leaf gas exchange in two Italian provenances of Tamarix africana Poiret. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15 Suppl 1:109-117. [PMID: 22612790 DOI: 10.1111/j.1438-8677.2012.00597.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In Mediterranean coastal areas, changes in precipitation patterns and seawater levels are leading to increased frequency of flooding and to salinization of estuaries and freshwater systems. Tamarix spp. are often the only woody species growing in such environments. These species are known for their tolerance to moderate salinity; however, contrasting information exists regarding their tolerance to flooding, and the combination of the two stresses has never been studied in Tamarix spp. Here, we analyse the photosynthetic responses of T. africana Poiret to temporary flooding (45 days) with fresh or saline water (200 mm) in two Italian provenances (Simeto and Baratz). The measurements were conducted before and after the onset of flooding, to test the possible cumulative effects of the treatments and effects on twig aging, and to analyse the responses of twigs formed during the experimental period. Full tolerance was evident in T. africana with respect to flooding with fresh water, which did not affect photosynthetic performances in either provenance. Saline flooding was differently tolerated by the two provenances. Moreover, salinity tolerance differently affected the two twig generations. In particular, a reduction in net assimilation rate (-48.8%) was only observed in Baratz twigs formed during the experimental period, compared to pre-existing twigs. This reduction was a consequence of non-stomatal limitations (maximum carboxylation rate and electron transport), probably as a result of higher Na transport to the twigs, coupled with reduced Na storage in the roots.
Collapse
Affiliation(s)
- R Abou Jaoudé
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | | | | | | |
Collapse
|
4072
|
Wojtyla Ł, Kosmala A, Garnczarska M. Lupine embryo axes under salinity stress. II. Mitochondrial proteome response. ACTA PHYSIOLOGIAE PLANTARUM 2013; 35:2383-2392. [PMID: 25834294 PMCID: PMC4372824 DOI: 10.1007/s11738-013-1273-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/13/2013] [Accepted: 03/19/2013] [Indexed: 05/09/2023]
Abstract
Germination is the first step of plant growth in plant life cycle. An embryonic radicle protruding the seed coat is the first part of plant which has direct contact with external environment including salt-affected soil. In embryo axes, mitochondria are the main energy producer. To understand better salinity impact on mitochondria functioning, this study was focused on the effect of NaCl stress onto mitochondria proteome. Mitochondria were isolated from yellow lupine (Lupine luteus L. 'Mister') embryo axes cultured in vitro for 12 h with 250 and 500 mM NaCl. Two-dimensional gel electrophoresis of mitochondrial proteins isolated from NaCl-treated axes demonstrated significant changes in proteins abundances as a response to salinity treatment. Twenty-one spots showing significant changes in protein expression profiles both under 250 and 500 mM NaCl treatment were selected for tandem mass spectrometry identification. This approach revealed proteins associated with different metabolic processes that represent enzymes of tricarboxylic acid cycle, mitochondrial electron transport chain, enzymes and proteins involved in mitochondria biogenesis and stresses response. Among proteins involved in mitochondria biogenesis, mitochondrial import inner membrane translocase, subunit Tim17/22, mitochondrial-processing peptidase subunit alpha-1, mitochondrial elongation factor Tu and chaperonins CPN60 were revealed. Finally, formate dehydrogenase 1 was found to accumulate in lupine embryo axes mitochondria under salinity. The functions of identified proteins are discussed in relation to salinity stress response, including salinity-induced PCD.
Collapse
Affiliation(s)
- Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Arkadiusz Kosmala
- Laboratory of Cytogenetics, Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479 Poznań, Poland
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
4073
|
Mizoi J, Yamaguchi-Shinozaki K. Molecular approaches to improve rice abiotic stress tolerance. Methods Mol Biol 2013; 956:269-83. [PMID: 23135859 DOI: 10.1007/978-1-62703-194-3_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abiotic stress is a major factor limiting productivity of rice crops in large areas of the world. Because plants cannot avoid abiotic stress by moving, they have acquired various mechanisms for stress tolerance in the course of their evolution. Enhancing or introducing such mechanisms in rice is one effective way to develop stress-tolerant cultivars. Based on physiological studies on stress responses, recent progress in plant molecular biology has enabled discovery of many genes involved in stress tolerance. These genes include regulatory genes, which regulate stress response (e.g., transcription factors and protein kinases), and functional genes, which protect the cell (e.g., enzymes for generating protective metabolites and proteins). Both kinds of genes are used to increase stress tolerance in rice. In addition, several quantitative trait loci (QTLs) associated with higher stress tolerance have been cloned, contributing to the discovery of significantly important genes for stress tolerance.
Collapse
Affiliation(s)
- Junya Mizoi
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
4074
|
Meychik NR, Nikolaeva YI, Yermakov IP. Physiological Response of Halophyte (<i>Suaeda altissima</i> (L.) Pall.) and Glycophyte (<i>Spinacia oleracea</i> L.) to Salinity. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.42a055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4075
|
Rocco M, Lomaglio T, Loperte A, Satriani A. Metapontum Forest Reserve: Salt Stress Responses in <i>Pinus halepensis</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.43a086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4076
|
Ben Ahmed C, Magdich S, Ben Rouina B, Boukhris M, Ben Abdullah F. Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 113:538-544. [PMID: 22572465 DOI: 10.1016/j.jenvman.2012.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 09/03/2011] [Accepted: 03/08/2012] [Indexed: 05/31/2023]
Abstract
The shortage of water resources of good quality is becoming an issue in arid and semi arid regions. Per consequent, the use of water resources of marginal quality is becoming an important consideration, particularly in arid regions in Tunisia, where large quantities of saline water are used for irrigation. Nevertheless, the use of these waters in irrigated lands requires the control of soil salinity and a comprehensive analysis even beyond the area where water is applied. The aim of this study was to investigate the effects of saline water irrigation on soil salinity distribution and some physiological traits of field-grown adult olive trees (Olea europaea L. cv. Chemlali) under contrasting environmental conditions of the arid region in the south of Tunisia. The plants were subjected, over two growing seasons, to two drip irrigated treatments: fresh water (ECe=1.2 dS m(-1), FW) and saline water (ECe=7.5 dS m(-1), SW). Saline water irrigation (SW) has led to a significant increase in soil salinity. Furthermore, these results showed that soil salinity and soil moisture variations are not only dependent on water salinity level but are also controlled by a multitude of factors particularly the soil texture, the distance from the irrigation source and climatic conditions (rainfall pattern, temperature average, …). On the other hand, salt treatment reduced leaf midday water potential (LMWP), relative water content and photosynthetic activity and increased the leaf proline content, and this increase was season-dependent. Indeed, LMWP in SW plants decreased to -3.71 MPa. Furthermore, the highest level of proline in SW plants was registered during summer period (2.19 μmol/mg Fw). The proline accumulation recorded in stressed plants has allowed them to preserve appropriate leaf water status and photosynthetic activity. More to the point, this olive cultivar seems to be more sensible to soil salinity during the intense growth phase. Such tendencies would help to better manage water resources for irrigation, particularly under actual climatic conditions of water scarcity. For example, in the case of the availability of different water qualities, it would be better to preserve those of high quality for olive irrigation during the intense vegetative growth phase, in coincidence with high salt sensitive period, and those of low quality for irrigation during partial growth and plant rest phases. What's more, the urgent use of saline water for irrigation should not be applied without taking into consideration the different surroundings conditions where it is used, particularly the water salinity level, the soil type, the adopted irrigation system, the degree of the crop salt tolerance, the plant growth phase and the climatic conditions of the experimental site.
Collapse
Affiliation(s)
- Chedlia Ben Ahmed
- Laboratory of Environment and Biology of Arid Area, Department of Life Sciences, Faculty of Sciences of Sfax, Tunisia.
| | | | | | | | | |
Collapse
|
4077
|
Sun J, Zhang X, Deng S, Zhang C, Wang M, Ding M, Zhao R, Shen X, Zhou X, Lu C, Chen S. Extracellular ATP signaling is mediated by H₂O₂ and cytosolic Ca²⁺ in the salt response of Populus euphratica cells. PLoS One 2012; 7:e53136. [PMID: 23285259 PMCID: PMC3532164 DOI: 10.1371/journal.pone.0053136] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 11/27/2012] [Indexed: 12/02/2022] Open
Abstract
Extracellular ATP (eATP) has been implicated in mediating plant growth and antioxidant defense; however, it is largely unknown whether eATP might mediate salinity tolerance. We used confocal microscopy, a non-invasive vibrating ion-selective microelectrode, and quantitative real time PCR analysis to evaluate the physiological significance of eATP in the salt resistance of cell cultures derived from a salt-tolerant woody species, Populus euphratica. Application of NaCl (200 mM) shock induced a transient elevation in [eATP]. We investigated the effects of eATP by blocking P2 receptors with suramin and PPADS and applying an ATP trap system of hexokinase-glucose. We found that eATP regulated a wide range of cellular processes required for salt adaptation, including vacuolar Na+ compartmentation, Na+/H+ exchange across the plasma membrane (PM), K+ homeostasis, reactive oxygen species regulation, and salt-responsive expression of genes related to K+/Na+ homeostasis and PM repair. Furthermore, we found that the eATP signaling was mediated by H2O2 and cytosolic Ca2+ released in response to high salt in P. euphratica cells. We concluded that salt-induced eATP was sensed by purinoceptors in the PM, and this led to the induction of downstream signals, like H2O2 and cytosolic Ca2+, which are required for the up-regulation of genes linked to K+/Na+ homeostasis and PM repair. Consequently, the viability of P. euphratica cells was maintained during a prolonged period of salt stress.
Collapse
Affiliation(s)
- Jian Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xuan Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shurong Deng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chunlan Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Meijuan Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingquan Ding
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rui Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaoyang Zhou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cunfu Lu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|
4078
|
Yang C, Zhang T, Wang H, Zhao N, Liu B. Heritable alteration in salt-tolerance in rice induced by introgression from wild rice (Zizania latifolia). RICE (NEW YORK, N.Y.) 2012; 5:36. [PMID: 24280025 PMCID: PMC4883729 DOI: 10.1186/1939-8433-5-36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 12/10/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Introgression as a means of generating phenotypic novelty, including altered stress tolerance, is increasingly being recognized as common. The underlying basis for de novo genesis of phenotypic variation in the introgression lines remains largely unexplored. In this investigation, we used a rice line (RZ35) derived from introgressive hybridization between rice (Oryza sativa L.) and wild rice (Zizania latifolia Griseb.), along with its rice parental line (cv. Matsumae) as the experimental materials. We compared effects of salt stress on growth, ion homeostasis, and relevant gene expression between RZ35 and Matsumae, to explore possible mechanisms of heritable alteration in stress tolerance induced by the introgression. RESULTS Contrary to our expectation, the results showed that the inhibitory effect of salt stress on growth of RZ35 was significantly greater than that of Matsumae. We further found that a major underlying cause for this outcome is that the introgression process weakened the capacity in Na+ exclusion under the salt stress condition, and hence, escalated the injuries of Na+ and Cl- in shoots of RZ35. Accordingly, based on q-RT-PCR analysis, four genes known to be involved in the Na+ exclusion, i.e., OsHKT1;5, OsSOS1, OsCIPK24 and OsCBL4, were found to be significantly down-regulated in roots of RZ35 relative to its rice parental line under the salt stress condition, thus implicating a gene expression regulation-based molecular mechanism underlying the difference in salt stress-tolerance between the introgression line and its rice parental line. CONCLUSIONS We show that introgression represents a potent means for rapidly generating de novo heritable variations in physiological traits like stress tolerance in plants, although the direction of the alteration appears unpredictable.
Collapse
Affiliation(s)
- Chunwu Yang
- />Key laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Tianyuan Zhang
- />Key laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Huan Wang
- />Key laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Na Zhao
- />Department of Agronomy, Jilin Agricultural University, Changchun, 130118 China
| | - Bao Liu
- />Key laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| |
Collapse
|
4079
|
Batelli G, Massarelli I, Van Oosten M, Nurcato R, Vannini C, Raimondi G, Leone A, Zhu JK, Maggio A, Grillo S. Asg1 is a stress-inducible gene which increases stomatal resistance in salt stressed potato. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1849-57. [PMID: 22854180 PMCID: PMC3586823 DOI: 10.1016/j.jplph.2012.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 05/08/2023]
Abstract
The identification of critical components in plant salt stress adaptation has greatly benefitted, in the last two decades, from fundamental discoveries in Arabidopsis and close model systems. Nevertheless, this approach has also highlighted a non-complete overlap between stress tolerance mechanisms in Arabidopsis and agricultural crops. Within a long-running research program aimed at identifying salt stress genetic determinants in potato by functional screening in Escherichia coli, we isolated Asg1, a stress-related gene with an unknown function. Asg1 is induced by salt stress in both potato and Arabidopsis and by abscisic acid in Arabidopsis. Asg1 is actively transcribed in all plant tissues. Furthermore, Asg1 promoter analysis confirmed its ubiquitous expression, which was remarkable in pollen, a plant tissue that undergoes drastic dehydration/hydration processes. Fusion of Asg1 with green fluorescent protein showed that the encoded protein is localized close to the plasma membrane with a non-continuous pattern of distribution. In addition, Arabidopsis knockout asg1 mutants were insensitive to both NaCl and sugar hyperosmotic environments during seed germination. Transgenic potato plants over-expressing the Asg1 gene revealed a stomatal hypersensitivity to NaCl stress which, however, did not result in a significantly improved tuber yield in stress conditions. Altogether, these data suggest that Asg1 might interfere with components of the stress signaling pathway by promoting stomatal closure and participating in stress adaptation.
Collapse
Affiliation(s)
- Giorgia Batelli
- CNR Institute of Plant Genetics (CNR-IGV), Via Universita’, 133 80055 Portici, Italy
| | - Immacolata Massarelli
- CNR Institute of Plant Genetics (CNR-IGV), Via Universita’, 133 80055 Portici, Italy
| | - Michael Van Oosten
- Department of Agricultural Engineering and Agronomy, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Roberta Nurcato
- CNR Institute of Plant Genetics (CNR-IGV), Via Universita’, 133 80055 Portici, Italy
| | - Candida Vannini
- Department of Environment, Health and Safety, University of Insubria, Via J. H. Dunant, 3, 21100 Varese, Italy
| | - Giampaolo Raimondi
- Department of Agricultural Engineering and Agronomy, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Antonella Leone
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, 47907 West Lafayette, IN, USA
| | - Albino Maggio
- Department of Agricultural Engineering and Agronomy, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Stefania Grillo
- CNR Institute of Plant Genetics (CNR-IGV), Via Universita’, 133 80055 Portici, Italy
- Corresponding author at: National Research Council, Institute of Plant Genetics (CNR-IGV), Via Universita’, 133 80055 Portici (NA), Italy. Tel.: +39 081 2539213/2539205; fax: +39 081 7753579., (S. Grillo)
| |
Collapse
|
4080
|
Wang Z, Chen Z, Cheng J, Lai Y, Wang J, Bao Y, Huang J, Zhang H. QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PLoS One 2012; 7:e51202. [PMID: 23236455 PMCID: PMC3516561 DOI: 10.1371/journal.pone.0051202] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/30/2012] [Indexed: 11/30/2022] Open
Abstract
The key to plant survival under NaCl salt stress is maintaining a low Na(+) level or Na(+)/K(+) ratio in the cells. A population of recombinant inbred lines (RILs, F(2:9)) derived from a cross between the salt-tolerant japonica rice variety Jiucaiqing and the salt-sensitive indica variety IR26, was used to determine Na(+) and K(+) concentrations in the roots and shoots under three different NaCl stress conditions (0, 100 and 120 mM NaCl). A total of nine additive QTLs were identified by QTL Cartographer program using single-environment phenotypic values, whereas eight additive QTLs were identified by QTL IciMapping program. Among these additive QTLs, five were identified by both programs. Epistatic QTLs and QTL-by-environment interactions were detected by QTLNetwork program in the joint analyses of multi-environment phenotypic values, and one additive QTL and nine epistatic QTLs were identified. There were three epistatic QTLs identified for Na(+) in roots (RNC), three additive QTLs and two epistatic QTLs identified for Na(+) in shoots (SNC), four additive QTLs identified for K(+) in roots (RKC), four additive QTLs and three epistatic QTLs identified for K(+) in shoots (SKC) and one additive QTL and one epistatic QTL for salt tolerance rating (STR). The phenotypic variation explained by each additive, epistatic QTL and QTL×environment interaction ranged from 8.5 to 18.9%, 0.5 to 5.3% and 0.7 to 7.5%, respectively. By comparing the chromosomal positions of these additive QTLs with those previously identified, five additive QTLs, qSNC9, qSKC1, qSKC9, qRKC4 and qSTR7, might represent novel salt tolerance loci. The identification of salt tolerance in selected RILs showed that a major QTL qSNC11 played a significant role in rice salt tolerance, and could be used to improve salt tolerance of commercial rice varieties with marker-assisted selection (MAS) approach.
Collapse
Affiliation(s)
- Zhoufei Wang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Zhiwei Chen
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jinping Cheng
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yanyan Lai
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jianfei Wang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yongmei Bao
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Ji Huang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Hongsheng Zhang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
4081
|
Identification of early response genes to salt stress in roots of melon (Cucumis melo L.) seedlings. Mol Biol Rep 2012; 40:2915-26. [PMID: 23212618 DOI: 10.1007/s11033-012-2307-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
In order to better understand the mechanisms by which muskmelons (Cucumis melo L.) respond to salt stress, a cDNA library was constructed using suppression subtractive hybridization (SSH) from the root tissue of a salt-tolerant melon cultivar, Bingxuecui. A total of 339 clones were sequenced from the SSH library, leading to 312 high quality expressed sequence tags (ESTs), with an average size of 450 bp; representing 262 uni-ESTs comprising 29 contigs and 233 singletons. Blast analysis of the deduced protein sequences revealed that 283 ESTs had a high similarity to proteins in the non-redundant database, while 29 had low identity or no similarities. Many of the annotated sequences were homologous to genes involved in abiotic or biotic stress in plants. Functional categorization of the proteins revealed that salt tolerance could be largely determined by various proteins involved in metabolism, energy, transcription, signal transduction, protein fate, cell rescue and defense, implying a complex response to salt stress exists in melon plants. Twenty-seven ESTs were selected and analyzed by real-time PCR; the results confirmed that a high proportion of the ESTs were activated by salt stress. The complete sequences and a detailed functional analysis of these ESTs is required, in order to fully understand the broader impact of these genes in plants subjected to a high salinity environment.
Collapse
|
4082
|
Horie T, Karahara I, Katsuhara M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. RICE (NEW YORK, N.Y.) 2012; 5:11. [PMID: 27234237 PMCID: PMC5520831 DOI: 10.1186/1939-8433-5-11] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/22/2012] [Indexed: 05/04/2023]
Abstract
Elevated Na(+) levels in agricultural lands are increasingly becoming a serious threat to the world agriculture. Plants suffer osmotic and ionic stress under high salinity due to the salts accumulated at the outside of roots and those accumulated at the inside of the plant cells, respectively. Mechanisms of salinity tolerance in plants have been extensively studied and in the recent years these studies focus on the function of key enzymes and plant morphological traits. Here, we provide an updated overview of salt tolerant mechanisms in glycophytes with a particular interest in rice (Oryza sativa) plants. Protective mechanisms that prevent water loss due to the increased osmotic pressure, the development of Na(+) toxicity on essential cellular metabolisms, and the movement of ions via the apoplastic pathway (i.e. apoplastic barriers) are described here in detail.
Collapse
Affiliation(s)
- Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567 Japan
| | - Ichirou Karahara
- Department of Biology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555 Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, 20-1, Chuo-2-chome, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
4083
|
Zhou H, Zhao J, Yang Y, Chen C, Liu Y, Jin X, Chen L, Li X, Deng XW, Schumaker KS, Guo Y. Ubiquitin-specific protease16 modulates salt tolerance in Arabidopsis by regulating Na(+)/H(+) antiport activity and serine hydroxymethyltransferase stability. THE PLANT CELL 2012; 24:5106-22. [PMID: 23232097 PMCID: PMC3556978 DOI: 10.1105/tpc.112.106393] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/31/2012] [Accepted: 11/20/2012] [Indexed: 05/19/2023]
Abstract
Protein ubiquitination is a reversible process catalyzed by ubiquitin ligases and ubiquitin-specific proteases (UBPs). We report the identification and characterization of UBP16 in Arabidopsis thaliana. UBP16 is a functional ubiquitin-specific protease and its enzyme activity is required for salt tolerance. Plants lacking UBP16 were hypersensitive to salt stress and accumulated more sodium and less potassium. UBP16 positively regulated plasma membrane Na(+)/H(+) antiport activity. Through yeast two-hybrid screening, we identified a putative target of UBP16, SERINE HYDROXYMETHYLTRANSFERASE1 (SHM1), which has previously been reported to be involved in photorespiration and salt tolerance in Arabidopsis. We found that SHM1 is degraded in a 26S proteasome-dependent process, and UBP16 stabilizes SHM1 by removing the conjugated ubiquitin. Ser hydroxymethyltransferase activity is lower in the ubp16 mutant than in the wild type but higher than in the shm1 mutant. During salt stress, UBP16 and SHM1 function in preventing cell death and reducing reactive oxygen species accumulation, activities that are correlated with increasing Na(+)/H(+) antiport activity. Overexpression of SHM1 in the ubp16 mutant partially rescues its salt-sensitive phenotype. Taken together, our results suggest that UBP16 is involved in salt tolerance in Arabidopsis by modulating sodium transport activity and repressing cell death at least partially through modulating SMH1stability and activity.
Collapse
Affiliation(s)
- Huapeng Zhou
- College of Life Science, Beijing Normal University, Beijing 100875, China
- National Institute of Biological Sciences, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Changxi Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanfen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xuehua Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | | | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
4084
|
Haq IU, Khan AA, Khan IA, Azmat MA. Comprehensive screening and selection of okra (Abelmoschus esculentus) germplasm for salinity tolerance at the seedling stage and during plant ontogeny. J Zhejiang Univ Sci B 2012; 13:533-44. [PMID: 22761245 DOI: 10.1631/jzus.b1200027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The okra germplasm was screened for salinity tolerance at the seedling stage and during plant ontogeny. Substantial variation existed in okra for salinity tolerance at the seedling stage. An 80 mmol/L NaCl concentration was suitable for discriminating tolerant and non-tolerant okra genotypes. The pooled ranking of the genotypes, based on individual rankings for each trait (root and shoot length, germination percentage, and relative Na(+) and K(+)) in individual NaCl concentrations, was effective for selecting tolerant genotypes. Genotypes selected at the seedling stage maintained their tolerance to NaCl during plant ontogeny, suggesting that screening of the germplasm entries and advanced breeding materials for salt tolerance at the seedling stage is effective. Among 39 okra genotypes, five were identified as the most tolerant genotypes and showed potential for use in breeding programs that focus on the development of salt-tolerant, high-yield okra cultivars.
Collapse
Affiliation(s)
- Ikram-ul Haq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | | | | | | |
Collapse
|
4085
|
Al-Khalaf RA, Al-Awadhi HA, Al-Beloshei N, Afzal M. Lipid and fatty acid profile of Geobacillus kaustophilus in response to abiotic stress. Can J Microbiol 2012; 59:117-25. [PMID: 23461519 DOI: 10.1139/cjm-2012-0601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Geobacillus kaustophilus is an important food-borne, spore-forming, thermotolerant bacterium. It has a good potential for biotransformation of steroid hormones, such as progesterone and testosterone. In this study, we report G. kaustophilus membrane lipid modifications in response to temperature shock, salinity, incubation time, and pH. Total lipids significantly increased in response to increasing temperature, incubation time, and salt concentration. However, the bacterium presented a significant decrease in the accumulation of total lipids in response to pH shock. The ratio of branched-chain fatty acids/straight-chain fatty acids decreased significantly under all stress conditions. With an increase in temperature, incubation time, and salt concentration, the ratio of iso-fatty acids/anteiso-fatty acids increased significantly, while this ratio remained unaffected by changes in the pH of the growth medium. Our results suggest a modification occurs in the bacterial membrane structure in response to temperature, salinity, incubation time, and pH shock. The variable abiotic stress resulted in a multiple increase in odd-numbered-carbon and low-melting-point anteiso-branched-chain fatty acids, helping the membrane keep its integrity, fluidity, and function for growth of the bacteria under abiotic stress conditions.
Collapse
Affiliation(s)
- Ranya A Al-Khalaf
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait
| | | | | | | |
Collapse
|
4086
|
Xie Y, Mao Y, Lai D, Zhang W, Shen W. H(2) enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS One 2012. [PMID: 23185443 PMCID: PMC3504229 DOI: 10.1371/journal.pone.0049800] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background The metabolism of hydrogen gas (H2) in bacteria and algae has been extensively studied for the interesting of developing H2-based fuel. Recently, H2 is recognized as a therapeutic antioxidant and activates several signalling pathways in clinical trials. However, underlying physiological roles and mechanisms of H2 in plants as well as its signalling cascade remain unknown. Methodology/Principal Findings In this report, histochemical, molecular, immunological and genetic approaches were applied to characterize the participation of H2 in enhancing Arabidopsis salt tolerance. An increase of endogenous H2 release was observed 6 hr after exposure to 150 mM NaCl. Arabidopsis pretreated with 50% H2-saturated liquid medium, mimicking the induction of endogenous H2 release when subsequently exposed to NaCl, effectively decreased salinity-induced growth inhibition. Further results showed that H2 pretreatment modulated genes/proteins of zinc-finger transcription factor ZAT10/12 and related antioxidant defence enzymes, thus significantly counteracting the NaCl-induced reactive oxygen species (ROS) overproduction and lipid peroxidation. Additionally, H2 pretreatment maintained ion homeostasis by regulating the antiporters and H+ pump responsible for Na+ exclusion (in particular) and compartmentation. Genetic evidence suggested that SOS1 and cAPX1 might be the target genes of H2 signalling. Conclusions Overall, our findings indicate that H2 acts as a novel and cytoprotective regulator in coupling ZAT10/12-mediated antioxidant defence and maintenance of ion homeostasis in the improvement of Arabidopsis salt tolerance.
Collapse
Affiliation(s)
- Yanjie Xie
- College of Life Sciences, Co. Laboratory of Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Carl Zeiss Far East, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yu Mao
- College of Life Sciences, Co. Laboratory of Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Carl Zeiss Far East, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Diwen Lai
- College of Life Sciences, Co. Laboratory of Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Carl Zeiss Far East, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Wei Zhang
- College of Life Sciences, Co. Laboratory of Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Carl Zeiss Far East, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Wenbiao Shen
- College of Life Sciences, Co. Laboratory of Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Carl Zeiss Far East, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
4087
|
Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae). Heredity (Edinb) 2012; 110:181-93. [PMID: 23149455 DOI: 10.1038/hdy.2012.76] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spartina species have a critical ecological role in salt marshes and represent an excellent system to investigate recurrent polyploid speciation. Using the 454 GS-FLX pyrosequencer, we assembled and annotated the first reference transcriptome (from roots and leaves) for two related hexaploid Spartina species that hybridize in Western Europe, the East American invasive Spartina alterniflora and the Euro-African S. maritima. The de novo read assembly generated 38 478 consensus sequences and 99% found an annotation using Poaceae databases, representing a total of 16 753 non-redundant genes. Spartina expressed sequence tags were mapped onto the Sorghum bicolor genome, where they were distributed among the subtelomeric arms of the 10 S. bicolor chromosomes, with high gene density correlation. Normalization of the complementary DNA library improved the number of annotated genes. Ecologically relevant genes were identified among GO biological function categories in salt and heavy metal stress response, C4 photosynthesis and in lignin and cellulose metabolism. Expression of some of these genes had been found to be altered by hybridization and genome duplication in a previous microarray-based study in Spartina. As these species are hexaploid, up to three duplicated homoeologs may be expected per locus. When analyzing sequence polymorphism at four different loci in S. maritima and S. alterniflora, we found up to four haplotypes per locus, suggesting the presence of two expressed homoeologous sequences with one or two allelic variants each. This reference transcriptome will allow analysis of specific Spartina genes of ecological or evolutionary interest, estimation of homoeologous gene expression variation using RNA-seq and further gene expression evolution analyses in natural populations.
Collapse
|
4088
|
McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, van der Does D, Laurière C, Munnik T, Haring MA, Testerink C. The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:436-49. [PMID: 22738204 PMCID: PMC3533798 DOI: 10.1111/j.1365-313x.2012.05089.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/19/2012] [Accepted: 06/22/2012] [Indexed: 05/18/2023]
Abstract
The sucrose non-fermenting-1-related protein kinase 2 (SnRK2) family represents a unique family of plant-specific protein kinases implicated in cellular signalling in response to osmotic stress. In our studies, we observed that two class 1 SnRK2 kinases, SnRK2.4 and SnRK2.10, are rapidly and transiently activated in Arabidopsis roots after exposure to salt. Under saline conditions, snrk2.4 knockout mutants had a reduced primary root length, while snrk2.10 mutants exhibited a reduction in the number of lateral roots. The reduced lateral root density was found to be a combinatory effect of a decrease in the number of lateral root primordia and an increase in the number of arrested lateral root primordia. The phenotypes were in agreement with the observed expression patterns of genomic yellow fluorescent protein (YFP) fusions of SnRK2.10 and -2.4, under control of their native promoter sequences. SnRK2.10 was found to be expressed in the vascular tissue at the base of a developing lateral root, whereas SnRK2.4 was expressed throughout the root, with higher expression in the vascular system. Salt stress triggered a rapid re-localization of SnRK2.4-YFP from the cytosol to punctate structures in root epidermal cells. Differential centrifugation experiments of isolated Arabidopsis root proteins confirmed recruitment of endogenous SnRK2.4/2.10 to membranes upon exposure to salt, supporting their observed binding affinity for the phospholipid phosphatidic acid. Together, our results reveal a role for SnRK2.4 and -2.10 in root growth and architecture in saline conditions.
Collapse
Affiliation(s)
- Fionn McLoughlin
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section of Plant Physiology, Postbus 94215, 1090GE Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
4089
|
Zhu Z, Chen J, Zheng HL. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. TREE PHYSIOLOGY 2012; 32:1378-88. [PMID: 23100256 DOI: 10.1093/treephys/tps097] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Salinity is a major abiotic stress that is responsible for growth reduction in most higher plants. Bruguiera gymnorrhiza (L.) Lam., a mangrove plant, is a halophyte and is one of the most salt-tolerant plant species. Physiological and proteomic characteristics of B. gymnorrhiza were investigated under three NaCl concentrations (0, 200 and 500 mM) in this study. Maximum seedling growth occurred at 200 mM NaCl. Leaf osmotic potential was more negative as salt levels increased further. Physiological results revealed that inorganic ions (especially Na(+) and Cl(-)) played a key role in osmotic adjustment of B. gymnorrhiza leaves under salinity treatments. Comparative proteomic analysis revealed 23 salt-responsive proteins in B. gymnorrhiza leaves, which were differentially expressed under salt treatment compared with control. Ten protein spots were analyzed by liquid chromatography-tandem mass spectrometry, leading to identification of proteins involved in photosynthesis, antioxidation, protein folding, cell organization and metabolism. Salt-responsive mechanism was different between 200 and 500 mM NaCl-treated plants on the basis of the physiological and proteomic analyses. Salt tolerance under 200 mM NaCl treatment was due to effective osmotic adjustment, accumulation of inorganic ions (especially Na(+) and Cl(-)) as well as increased expression of photosynthesis-related proteins and antioxidant enzymes, which improved the salt tolerance of B. gymnorrhiza, and furthermore promoted plant growth. On the other hand, 500 mM NaCl reduced the growth of B. gymnorrhiza, which appears to have been caused by the accumulation of NaCl (ionic effect) and energy consumption by organic solute synthesis. Moreover, the repressed expression of photosynthesis-related proteins and antioxidant enzymes led to the reduction of growth. Protein folding and degradation-related proteins and cell organization-related protein were up-regulated and played important roles in salt tolerance of B. gymnorrhiza under severe salt stress.
Collapse
Affiliation(s)
- Zhu Zhu
- Center for Evolutionary Biology and Institute of Biodiversity Science, Fudan University, Shanghai 200433, China
| | | | | |
Collapse
|
4090
|
Poorter H, Fiorani F, Stitt M, Schurr U, Finck A, Gibon Y, Usadel BR, Munns R, Atkin OK, Tardieu FO, Pons TL. The art of growing plants for experimental purposes: a practical guide for the plant biologist. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:821-838. [PMID: 32480833 DOI: 10.1071/fp12028] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/19/2012] [Indexed: 06/11/2023]
Abstract
Every year thousands of experiments are conducted using plants grown under more-or-less controlled environmental conditions. The aim of many such experiments is to compare the phenotype of different species or genotypes in a specific environment, or to study plant performance under a range of suboptimal conditions. Our paper aims to bring together the minimum knowledge necessary for a plant biologist to set up such experiments and apply the environmental conditions that are appropriate to answer the questions of interest. We first focus on the basic choices that have to be made with regard to the experimental setup (e.g. where are the plants grown; what rooting medium; what pot size). Second, we present practical considerations concerning the number of plants that have to be analysed considering the variability in plant material and the required precision. Third, we discuss eight of the most important environmental factors for plant growth (light quantity, light quality, CO2, nutrients, air humidity, water, temperature and salinity); what critical issues should be taken into account to ensure proper growth conditions in controlled environments and which specific aspects need attention if plants are challenged with a certain a-biotic stress factor. Finally, we propose a simple checklist that could be used for tracking and reporting experimental conditions.
Collapse
Affiliation(s)
- Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Fabio Fiorani
- Plant Sciences (IBG-2), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm, Germany
| | - Uli Schurr
- Plant Sciences (IBG-2), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Alex Finck
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm, Germany
| | - Yves Gibon
- INRA, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, 71 Avenue Edouard Bourlaux, F-33883 Villenave d'Ornon, France
| | - Bj Rn Usadel
- RWTH Aachen, Worringer Weg 1, 52074 Aachen, Germany
| | - Rana Munns
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Fran Ois Tardieu
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 2 Place Viala, F-34820 Montpellier, France
| | - Thijs L Pons
- Institute of Environmental Biology, Utrecht University, PO Box 800.84, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
4091
|
Gattward JN, Almeida AAF, Souza JO, Gomes FP, Kronzucker HJ. Sodium-potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition. PHYSIOLOGIA PLANTARUM 2012; 146:350-62. [PMID: 22443491 DOI: 10.1111/j.1399-3054.2012.01621.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In ecological setting, sodium (Na(+)) can be beneficial or toxic, depending on plant species and the Na(+) level in the soil. While its effects are more frequently studied at high saline levels, Na(+) has also been shown to be of potential benefit to some species at lower levels of supply, especially in C4 species. Here, clonal plants of the major tropical C3 crop Theobroma cacao (cacao) were grown in soil where potassium (K(+)) was partially replaced (at six levels, up to 50% replacement) by Na(+), at two concentrations (2.5 and 4.0 mmol(c) dm(-3)). At both concentrations, net photosynthesis per unit leaf area (A) increased more than twofold with increasing substitution of K(+) by Na(+). Concomitantly, instantaneous (A/E) and intrinsic (A/g(s)) water-use efficiency (WUE) more than doubled. Stomatal conductance (g(s)) and transpiration rate (E) exhibited a decline at 2.5 mmol dm(-3), but remained unchanged at 4 mmol dm(-3). Leaf nitrogen content was not impacted by Na(+) supplementation, whereas sulfur (S), calcium (Ca(2+)), magnesium (Mg(2+)) and zinc (Zn(2+)) contents were maximized at 2.5 mmol dm(-3) and intermediate (30-40%) replacement levels. Leaf K(+) did not decline significantly. In contrast, leaf Na(+) content increased steadily. The resultant elevated Na(+)/K(+) ratios in tissue correlated with increased, not decreased, plant performance. The results show that Na(+) can partially replace K(+) in the nutrition of clonal cacao, with significant beneficial effects on photosynthesis, WUE and mineral nutrition in this major perennial C3 crop.
Collapse
Affiliation(s)
- James N Gattward
- Departamento de Ciências Agrárias e ambientais, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.
| | | | | | | | | |
Collapse
|
4092
|
Hakeem KR, Chandna R, Ahmad P, Iqbal M, Ozturk M. Relevance of Proteomic Investigations in Plant Abiotic Stress Physiology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:621-35. [DOI: 10.1089/omi.2012.0041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Khalid Rehman Hakeem
- Molecular Ecology Laboratory, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Ruby Chandna
- Molecular Ecology Laboratory, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Parvaiz Ahmad
- Department of Botany, Amar Singh College, University of Kashmir, Srinagar, India
| | - Muhammad Iqbal
- Molecular Ecology Laboratory, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Munir Ozturk
- Department of Botany, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
4093
|
Wang H, Zhang M, Guo R, Shi D, Liu B, Lin X, Yang C. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2012; 12:194. [PMID: 23082824 PMCID: PMC3496643 DOI: 10.1186/1471-2229-12-194] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/17/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND It is well known that salt stress has different effects on old and young tissues. However, it remains largely unexplored whether old and young tissues have different regulatory mechanism during adaptation of plants to salt stress. The aim of this study was to investigate whether salt stress has different effects on the ion balance and nitrogen metabolism in the old and young leaves of rice, and to compare functions of both organs in rice salt tolerance. RESULTS Rice protected young leaves from ion harm via the large accumulation of Na+ and Cl- in old leaves. The up-regulation of OsHKT1;1, OsHAK10 and OsHAK16 might contribute to accumulation of Na+ in old leaves under salt stress. In addition, lower expression of OsHKT1;5 and OsSOS1 in old leaves may decrease frequency of retrieving Na+ from old leaf cells. Under salt stress, old leaves showed higher concentration of NO3- content than young leaves. Up-regulation of OsNRT1;2, a gene coding nitrate transporter, might contribute to the accumulation of NO3- in the old leaves of salt stressed-rice. Salt stress clearly up-regulated the expression of OsGDH2 and OsGDH3 in old leaves, while strongly down-regulated expression of OsGS2 and OsFd-GOGAT in old leaves. CONCLUSIONS The down-regulation of OsGS2 and OsFd-GOGAT in old leaves might be a harmful response to excesses of Na+ and Cl-. Under salt stress, rice might accumulate Na+ and Cl- to toxic levels in old leaves. This might influence photorespiration process, reduce NH4+ production from photorespiration, and immediately down-regulate the expression of OsGS2 and OsFd-GOGAT in old leaves of salt stressed rice. Excesses of Na+ and Cl- also might change the pathway of NH4+ assimilation in old leaves of salt stressed rice plants, weaken GOGAT/GS pathway and elevate GDH pathway.
Collapse
Affiliation(s)
- Huan Wang
- Key laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 Jilin Province, China
| | - Meishan Zhang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Rui Guo
- Institute of Environment and Sustainable Development in Agriculture(IEDA), Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Dry land Agriculture, MOA, Beijing, 100081, China
| | - Decheng Shi
- Key laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 Jilin Province, China
| | - Bao Liu
- Key laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 Jilin Province, China
| | - Xiuyun Lin
- Rice Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin Province, China
| | - Chunwu Yang
- Key laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024 Jilin Province, China
| |
Collapse
|
4094
|
ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. EMBO J 2012; 31:4359-70. [PMID: 23064146 PMCID: PMC3501220 DOI: 10.1038/emboj.2012.273] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/12/2012] [Indexed: 01/12/2023] Open
Abstract
Sodium (Na) is ubiquitous in soils, and is transported to plant shoots via transpiration through xylem elements in the vascular tissue. However, excess Na is damaging. Accordingly, control of xylem-sap Na concentration is important for maintenance of shoot Na homeostasis, especially under Na stress conditions. Here we report that shoot Na homeostasis of Arabidopsis thaliana plants grown in saline soils is conferred by reactive oxygen species (ROS) regulation of xylem-sap Na concentrations. We show that lack of A. thaliana respiratory burst oxidase protein F (AtrbohF; an NADPH oxidase catalysing ROS production) causes hypersensitivity of shoots to soil salinity. Lack of AtrbohF-dependent salinity-induced vascular ROS accumulation leads to increased Na concentrations in root vasculature cells and in xylem sap, thus causing delivery of damaging amounts of Na to the shoot. We also show that the excess shoot Na delivery caused by lack of AtrbohF is dependent upon transpiration. We conclude that AtrbohF increases ROS levels in wild-type root vasculature in response to raised soil salinity, thereby limiting Na concentrations in xylem sap, and in turn protecting shoot cells from transpiration-dependent delivery of excess Na.
Collapse
|
4095
|
Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco. BMC PLANT BIOLOGY 2012; 12:188. [PMID: 23057782 PMCID: PMC3548769 DOI: 10.1186/1471-2229-12-188] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 10/01/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na(+)/H(+) antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. RESULTS The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K(+)/Na(+) ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na(+) content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na(+) content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na(+) loading to xylem from root and leaf tissues. Transgenic lines also showed increased K(+) and Ca(2+) content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. CONCLUSIONS Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na(+) efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na(+) content in different organs and also affect the other transporters activity indirectly. These results broaden the role of SbSOS1 in planta and suggest that this gene could be used to develop salt-tolerant transgenic crops.
Collapse
Affiliation(s)
- Narendra Singh Yadav
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, Gujarat, 364002, India
| | - Pushp Sheel Shukla
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, Gujarat, 364002, India
| | - Anupama Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, Gujarat, 364002, India
| | - Pradeep K Agarwal
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, Gujarat, 364002, India
| | - Bhavanath Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, (Council of Scientific and Industrial Research), G.B. Road, Bhavnagar, Gujarat, 364002, India
| |
Collapse
|
4096
|
|
4097
|
Azzabi G, Pinnola A, Betterle N, Bassi R, Alboresi A. Enhancement of non-photochemical quenching in the Bryophyte Physcomitrella patens during acclimation to salt and osmotic stress. PLANT & CELL PHYSIOLOGY 2012; 53:1815-25. [PMID: 22952250 DOI: 10.1093/pcp/pcs124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought and salt stress are major abiotic constraints affecting plant growth worldwide. Under these conditions, the production of reactive oxygen species (ROS) is a common phenomenon taking place mainly in chloroplasts, peroxisomes, mitochondria and apoplasts, especially when associated with high light stress. ROS are harmful because of their high reactivity to cell components, thereby leading to cytotoxicity and cell death. During the Ordovician and early Devonian period, photosynthetic organisms colonized terrestrial habitats, and the acquisition of desiccation tolerance has been a major component of their evolution. We have studied the capacity for acclimation to drought and salt stress of the moss Physcomitrella patens, a representative of the early land colonization stage. Exposure to high concentrations of NaCl and sorbitol strongly affects chloroplast development, the Chl content and the thylakoid protein composition in this moss. Under sublethal conditions (0.2 M NaCl and 0.4 M sorbitol), the photosynthetic apparatus of P. patens responds to oxidative stress by increasing non-photochemical quenching (NPQ). Surprisingly, the accumulation of PSBS and LHCSR, the two polypeptides essential for NPQ in P. patens, was not up-regulated in these conditions. Rather, an increased NPQ amplitude correlated with the overaccumulation of zeaxanthin and the presence of the enzyme violaxanthin de-epoxidase. These results suggest that the regulation of excess energy dissipation through control of PSBS and LHCSR is mainly driven by light conditions, while osmotic and salt stress act through acclimative regulation of the xanthophyll cycle. We conclude that regulation of the xanthophyll cycle is an important anticipatory strategy against photoinhibition by high light.
Collapse
Affiliation(s)
- Ghazi Azzabi
- Università di Verona, Dipartimento di Biotecnologie. Strada le Grazie 15-I, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
4098
|
Natural Arabidopsis brx Loss-of-Function Alleles Confer Root Adaptation to Acidic Soil. Curr Biol 2012; 22:1962-8. [DOI: 10.1016/j.cub.2012.08.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/19/2012] [Accepted: 08/14/2012] [Indexed: 01/06/2023]
|
4099
|
Alla MMN, Hassan NM. A possible role for C4 photosynthetic enzymes in tolerance of Zea mays to NaCl. PROTOPLASMA 2012; 249:1109-17. [PMID: 22130690 DOI: 10.1007/s00709-011-0356-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/21/2011] [Indexed: 05/16/2023]
Abstract
Treatment of 14-day-old maize cultivars (Hybrid351 and Giza2) with 250 mM NaCl significantly reduced shoot fresh and dry weights and protein content during the subsequent 12 days. The magnitude of reduction was more pronounced in Giza than Hybrid. Both cultivars contained converging levels of protein for the enzymes phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), pyruvate phosphate dikinase (PPDK) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) under normal conditions; however, NaCl led to increase these levels in Hybrid and decrease them in Giza. Moreover, NaCl significantly inhibited the activities of PEPC, MDH and PPDK in both cultivars during the first 2 days, thereafter the inhibition nullified only in Hybrid; nonetheless, Rubisco was the least affected enzyme in both cultivars. In addition, NaCl slightly increased V (max) of PEPC, MDH and PPDK in Hybrid with no change in K (m); nevertheless V (max) dropped in Giza with an increase in K (m) of only PEPC and MDH. Also K (cat), K (cat)/K (m) and V (max)/K (m) of all enzymes were lower in treated Giza than in treated Hybrid. The increased V (max) of all enzymes in only Hybrid by NaCl confirms that they were synthesised more in Hybrid than in Giza. However, the decreased V (max) in Giza concomitant with the increased K (m) points to an interference of salinity with synthesis of enzymes and their structural integrity. This would lead to a noncompetitive inhibition for the enzymes. These findings declare that maize tolerance to NaCl was larger in Hybrid compared to Giza due to a role for C4 enzymes.
Collapse
Affiliation(s)
- Mamdouh M Nemat Alla
- Botany Department, Faculty of Science at Damietta, Mansoura University, Damietta, P.O. Box 34517, Egypt.
| | | |
Collapse
|
4100
|
Marchesini VA, Fernández RJ, Jobbágy EG. Salt leaching leads to drier soils in disturbed semiarid woodlands of central Argentina. Oecologia 2012; 171:1003-12. [DOI: 10.1007/s00442-012-2457-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
|