4251
|
Ziaf K, Loukehaich R, Gong P, Liu H, Han Q, Wang T, Li H, Ye Z. A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. PLANT & CELL PHYSIOLOGY 2011; 52:1055-67. [PMID: 21576192 DOI: 10.1093/pcp/pcr057] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wild species often show more tolerance to environmental stress factors than their cultivated counterparts. An early responsive-to-dehydration gene was cloned from a drought- and salt-tolerant wild tomato Solanum pennellii (SpERD15). SpERD15 transcript accumulated differentially in different organs, and was remarkably induced by dehydration, salinity, cold and treatment with plant growth regulators. The protein encoded by SpERD15 was predominantly localized in the nucleus. Interestingly, we found that the majority of the transgenic tobacco plants were co-suppressed along with the overexpressing line. Overexpressing plants manifested stress tolerance accompanied by the accumulation of more soluble sugars and proline, and limited lipid peroxidation compared with co-suppression lines, which were more sensitive than the wild type. The differential contents of these compatible solutes in different transgenic lines were related to the changes in the expression of the genes involved in the production of some important osmolytes (P5CS and Sucrose synthase). Reduced lipid peroxidation over a broad range of stress factors was in agreement with increased expression of stress-responsive genes (ADH and GAPDH). Overexpression of SpERD15 increased the efficiency of PSII (F(v)/F(m)) in transgenic tobacco plants by maintaining PSII quinone acceptors in a partially oxidized form. The results show that SpERD15 augments stress tolerance by enhancing the efficiency of PSII through the protection of cellular membranes, as conferred by the accumulation of compatible solutes and limited lipid peroxidation.
Collapse
MESH Headings
- Acclimatization
- Cells, Cultured
- Chlorophyll/analysis
- Cloning, Molecular
- Cold Temperature
- Droughts
- Gene Expression Regulation, Plant
- Genes, Plant
- Germination
- Lipid Peroxidation
- Malondialdehyde/analysis
- Oxidation-Reduction
- Phenotype
- Photosynthesis
- Photosystem II Protein Complex/physiology
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Proline/analysis
- RNA Interference
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Salinity
- Seeds/physiology
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Solanum/genetics
- Solanum/metabolism
- Solanum/physiology
- Stress, Physiological
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/physiology
Collapse
Affiliation(s)
- Khurram Ziaf
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
4252
|
Structural and functional analyses of PpENA1 provide insights into cation binding by type IID P-type ATPases in lower plants and fungi. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1483-92. [DOI: 10.1016/j.bbamem.2010.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/26/2010] [Accepted: 11/09/2010] [Indexed: 11/24/2022]
|
4253
|
Srivastava AK, Srivastava S, Penna S, D'Souza SF. Thiourea orchestrates regulation of redox state and antioxidant responses to reduce the NaCl-induced oxidative damage in Indian mustard (Brassica juncea (L.) Czern.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:676-86. [PMID: 21421325 DOI: 10.1016/j.plaphy.2011.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 02/17/2011] [Indexed: 05/15/2023]
Abstract
Thiourea (TU) has been found to enhance the stress tolerance of plants in our earlier field trials. In the present study, the TU mediated effect on the redox and antioxidant responses were studied in response to salinity (NaCl) stress in Indian mustard (Brassica juncea (L.) Czern.) seedlings. Biochemical analyses of reactive oxygen species (ROS) and lipid peroxidation revealed that TU supplementation to NaCl brought down their levels to near control values as compared to that of NaCl stress. These positive effects could be correlated to the significant increases in the 1,1-diphenyl-2-picrylhydrazyl (DPPH)-radical scavenging activity, in the levels of reduced glutathione (GSH) and GSH/GSSG (reduced/oxidized glutathione) ratio and in the activities of superoxide dismutase (SOD; EC 1.1.5.1.1) and glutathione reductase (GR; EC 1.6.4.2) in NaCl+TU treatment as compared to that of NaCl treatment. Further, TU supplementation allowed plants to avoid an over-accumulation of pyridine nucleotides, to stimulate alternative pathways (through higher glycolate oxidase activity; EC 1.1.3.15) for channeling reducing equivalents and thus, to maintain the redox state to near control levels. These positive responses were also linked to an increased energy utilization (analyzed in terms of ATP/ADP ratio) and presumably to an early signaling of the stress through stimulated activity of ascorbate oxidase (EC 1.10.3.3), an important component of stress signaling. A significant reduction observed in the level of sodium ion (Na(+)) accumulation indicated that TU mediated tolerance is attributable to salt avoidance. Thus, the present study suggested that TU treatment regulated redox and antioxidant machinery to reduce the NaCl-induced oxidative stress.
Collapse
Affiliation(s)
- Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | | | | | | |
Collapse
|
4254
|
Galvan-Ampudia CS, Testerink C. Salt stress signals shape the plant root. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:296-302. [PMID: 21511515 DOI: 10.1016/j.pbi.2011.03.019] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/18/2011] [Accepted: 03/29/2011] [Indexed: 05/19/2023]
Abstract
Plants use different strategies to deal with high soil salinity. One strategy is activation of pathways that allow the plant to export or compartmentalise salt. Relying on their phenotypic plasticity, plants can also adjust their root system architecture (RSA) and the direction of root growth to avoid locally high salt concentrations. Here, we highlight RSA responses to salt and osmotic stress and the underlying mechanisms. A model is presented that describes how salinity affects auxin distribution in the root. Possible intracellular signalling pathways linking salinity to root development and direction of root growth are discussed. These involve perception of high cytosolic Na+ concentrations in the root, activation of lipid signalling and protein kinase activity and modulation of endocytic pathways.
Collapse
Affiliation(s)
- Carlos S Galvan-Ampudia
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | | |
Collapse
|
4255
|
Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L, Revoredo-Giha C, Russell J, Steffenson BJ, Swanston JS, Thomas WTB, Waugh R, White PJ, Bingham IJ. Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur 2011. [DOI: 10.1007/s12571-011-0126-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4256
|
Roy SJ, Tucker EJ, Tester M. Genetic analysis of abiotic stress tolerance in crops. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:232-9. [PMID: 21478049 DOI: 10.1016/j.pbi.2011.03.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 05/19/2023]
Abstract
Abiotic stress tolerance is complex, but as phenotyping technologies improve, components that contribute to abiotic stress tolerance can be quantified with increasing ease. In parallel with these phenomics advances, genetic approaches with more complex genomes are becoming increasingly tractable as genomic information in non-model crops increases and even whole crop genomes can be re-sequenced. Thus, genetic approaches to elucidating the molecular basis to abiotic stress tolerance in crops are becoming more easily achievable.
Collapse
Affiliation(s)
- Stuart J Roy
- Australian Centre for Plant Functional Genomics and the University of Adelaide, Glen Osmond, SA 5064, Australia
| | | | | |
Collapse
|
4257
|
Ben Salah I, Slatni T, Gruber M, Mahmoudi H, Zribi K, Abdelly C. Variability in the response of six genotypes of N2-fixing Medicago ciliaris to NaCl. Symbiosis 2011. [DOI: 10.1007/s13199-011-0118-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4258
|
Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:137-48. [PMID: 21605713 DOI: 10.1016/j.bbagrm.2011.05.001] [Citation(s) in RCA: 587] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/11/2011] [Accepted: 05/05/2011] [Indexed: 01/01/2023]
Abstract
Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Basel Khraiwesh
- Center for Plant Stress Genomics and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | | | | |
Collapse
|
4259
|
Manaa A, Ben Ahmed H, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M. Salt and genotype impact on plant physiology and root proteome variations in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2797-813. [PMID: 21330356 DOI: 10.1093/jxb/erq460] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To evaluate the genotypic variation of salt stress response in tomato, physiological analyses and a proteomic approach have been conducted in parallel on four contrasting tomato genotypes. After a 14 d period of salt stress in hydroponic conditions, the genotypes exhibited different responses in terms of plant growth, particularly root growth, foliar accumulation of Na(+), and foliar K/Na ratio. As a whole, Levovil appeared to be the most tolerant genotype while Cervil was the most sensitive one. Roma and Supermarmande exhibited intermediary behaviours. Among the 1300 protein spots reproducibly detected by two-dimensional electrophoresis, 90 exhibited significant abundance variations between samples and were submitted to mass spectrometry for identification. A common set of proteins (nine spots), up- or down-regulated by salt-stress whatever the genotype, was detected. But the impact of the tomato genotype on the proteome variations was much higher than the salt effect: 33 spots that were not variable with salt stress varied with the genotype. The remaining number of variable spots (48) exhibited combined effects of the genotype and the salt factors, putatively linked to the degrees of genotype tolerance. The carbon metabolism and energy-related proteins were mainly up-regulated by salt stress and exhibited most-tolerant versus most-sensitive abundance variations. Unexpectedly, some antioxidant and defence proteins were also down-regulated, while some proteins putatively involved in osmoprotectant synthesis and cell wall reinforcement were up-regulated by salt stress mainly in tolerant genotypes. The results showed the effect of 14 d stress on the tomato root proteome and underlined significant genotype differences, suggesting the importance of making use of genetic variability.
Collapse
Affiliation(s)
- Arafet Manaa
- Unité d'Ecophysiologie et Nutrition des Plantes, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060 Tunisie
| | | | | | | | | | | | | |
Collapse
|
4260
|
Dang HQ, Tran NQ, Gill SS, Tuteja R, Tuteja N. A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. PLANT MOLECULAR BIOLOGY 2011; 76:19-34. [PMID: 21365356 DOI: 10.1007/s11103-011-9758-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 02/17/2011] [Indexed: 05/18/2023]
Abstract
The eukaryotic pre-replicative complex (Pre-RC), including heterohexameric minichromosome maintenance (MCM2-7) proteins, ensures that the DNA in genome is replicated only once per cell division cycle. The MCMs provide DNA unwinding function during the DNA replication. Since MCM proteins play essential role in cell division and most likely are affected during stress conditions therefore their overexpression in plants may help in stress tolerance. But the role of MCMs in abiotic stress tolerance in plants has not been reported so far. In this study we report that: a) the MCM6 transcript is upregulated in pea plant in response to high salinity and cold stress and not with ABA, drought and heat stress; b) MCM6 overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in tobacco plants confers salinity tolerance. The T(1) transgenics plants were able to grow to maturity and set normal viable seeds under continuous salinity stress, without yield penalty. It was observed that in salt-grown T(1) transgenic plants the Na(+) ions is mostly accumulated in mature leaves and not in seeds of T(1) transgenic lines as compared with the wild-type (WT) plants. T(1) transgenic plants exhibited better growth status under salinity stress conditions in comparison to WT plants. Furthermore, the T(1) transgenic plants maintained significantly higher levels of leaf chlorophyll content, net photosynthetic rate and therefore higher dry matter accumulation and yield with 200 mM NaCl as compared to the WT plants. Tolerance index data showed better salt tolerance potential of T(1) transgenic plants in comparison to WT. These findings provide first direct evidence that overexpression of single subunit MCM6 confers salinity stress tolerance without yield loss. The possible mechanism of salinity tolerance is discussed. These findings suggest that DNA replication machinery can be exploited for promoting stress tolerance in crop plants.
Collapse
Affiliation(s)
- Hung Quang Dang
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | |
Collapse
|
4261
|
James RA, Blake C, Byrt CS, Munns R. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2939-47. [PMID: 21357768 DOI: 10.1093/jxb/err003] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Two major genes for Na(+) exclusion in durum wheat, Nax1 and Nax2, that were previously identified as the Na(+) transporters TmHKT1;4-A2 and TmHKT1;5-A, were transferred into bread wheat in order to increase its capacity to restrict the accumulation of Na(+) in leaves. The genes were crossed from tetraploid durum wheat (Triticum turgidum ssp. durum) into hexaploid bread wheat (Triticum aestivum) by interspecific crossing and marker-assisted selection for hexaploid plants containing one or both genes. Nax1 decreased the leaf blade Na(+) concentration by 50%, Nax2 decreased it by 30%, and both genes together decreased it by 60%. The signature phenotype of Nax1, the retention of Na(+) in leaf sheaths resulting in a high Na(+) sheath:blade ratio, was found in the Nax1 lines. This conferred an extra advantage under a combination of waterlogged and saline conditions. The effect of Nax2 on lowering the Na(+) concentration in bread wheat was surprising as this gene is very similar to the TaHKT1;5-D Na(+) transporter already present in bread wheat, putatively at the Kna1 locus. The results indicate that both Nax genes have the potential to improve the salt tolerance of bread wheat.
Collapse
Affiliation(s)
- Richard A James
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | | | | |
Collapse
|
4262
|
Fernandez-Garcia N, Hernandez M, Casado-Vela J, Bru R, Elortza F, Hedden P, Olmos E. Changes to the proteome and targeted metabolites of xylem sap in Brassica oleracea in response to salt stress. PLANT, CELL & ENVIRONMENT 2011; 34:821-36. [PMID: 21276013 DOI: 10.1111/j.1365-3040.2011.02285.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root-to-shoot signalling via xylem sap is an important mechanism by which plants respond to stress. This signalling could be mediated by alteration in the concentrations of inorganic and/or organic molecules. The effect of salt stress on the contents of xylem sap in Brassica olarecea has been analysed by mass spectrometry in order to quantify these changes. Subcellular location of arabinogalactan proteins (AGPs) by immunogold labelling and peroxidase isozymes was also analysed by isoelectrofocusing. The xylem sap metabolome analysis demonstrated the presence of many organic compounds such as sugars, organic acids and amino acids. Of these, amino acid concentrations, particularly that of glutamine, the major amino acid in the sap, were substantially reduced by salt stress. The xylem sap proteome analysis demonstrated the accumulation of enzymes involved in xylem differentiation and lignification, such as cystein proteinases, acid peroxidases, and a putative hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase under salt stress. The peroxidase isozyme pattern showed that salt stress induced a high accumulation of an acid isoform. These results suggest that xylem differentiation and lignification is induced by salt stress. The combination of different methods to analyse the xylem sap composition provides new insights into mechanisms in plant development and signalling under salt stress.
Collapse
Affiliation(s)
- N Fernandez-Garcia
- Department of Abiotic Stress and Plant Pathology. CEBAS-CSIC. P.O. Box 164. Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
4263
|
Ghanem ME, Hichri I, Smigocki AC, Albacete A, Fauconnier ML, Diatloff E, Martinez-Andujar C, Lutts S, Dodd IC, Pérez-Alfocea F. Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance. PLANT CELL REPORTS 2011; 30:807-23. [PMID: 21298270 DOI: 10.1007/s00299-011-1005-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 05/09/2023]
Abstract
Since plant root systems capture both water and nutrients essential for the formation of crop yield, there has been renewed biotechnological focus on root system improvement. Although water and nutrient uptake can be facilitated by membrane proteins known as aquaporins and nutrient transporters, respectively, there is a little evidence that root-localised overexpression of these proteins improves plant growth or stress tolerance. Recent work suggests that the major classes of phytohormones are involved not only in regulating aquaporin and nutrient transporter expression and activity, but also in sculpting root system architecture. Root-specific expression of plant and bacterial phytohormone-related genes, using either root-specific or root-inducible promoters or grafting non-transformed plants onto constitutive hormone producing rootstocks, has examined the role of root hormone production in mediating crop stress tolerance. Root-specific traits such as root system architecture, sensing of edaphic stress and root-to-shoot communication can be exploited to improve resource (water and nutrients) capture and plant development under resource-limited conditions. Thus, root system engineering provides new opportunities to maintain sustainable crop production under changing environmental conditions.
Collapse
Affiliation(s)
- Michel Edmond Ghanem
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute (ELI-A), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4264
|
Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 2011; 98:47-55. [PMID: 21569837 DOI: 10.1016/j.ygeno.2011.04.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/09/2011] [Accepted: 04/15/2011] [Indexed: 11/20/2022]
Abstract
High salinity is one of the main factors limiting cotton growth and productivity. The genes that regulate salt stress in TM-1 upland cotton were monitored using microarray and real-time PCR (RT-PCR) with samples taken from roots. Microarray analysis showed that 1503 probe sets were up-regulated and 1490 probe sets were down-regulated in plants exposed for 3h to 100mM NaCl, and RT-PCR analysis validated 42 relevant/related genes. The distribution of enriched gene ontology terms showed such important processes as the response to water stress and pathways of hormone metabolism and signal transduction were induced by the NaCl treatment. Some key regulatory gene families involved in abiotic and biotic sources of stress such as WRKY, ERF, and JAZ were differentially expressed. Our transcriptome analysis might provide some useful insights into salt-mediated signal transduction pathways in cotton and offer a number of candidate genes as potential markers of tolerance to salt stress.
Collapse
|
4265
|
Aquino RS, Grativol C, Mourão PAS. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. PLoS One 2011; 6:e18862. [PMID: 21552557 PMCID: PMC3084243 DOI: 10.1371/journal.pone.0018862] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/19/2011] [Indexed: 11/18/2022] Open
Abstract
High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops.
Collapse
Affiliation(s)
- Rafael S Aquino
- Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
4266
|
Wakeel A, Asif AR, Pitann B, Schubert S. Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:519-26. [PMID: 20980072 DOI: 10.1016/j.jplph.2010.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 05/21/2023]
Abstract
Salinity is one of the major stress factors responsible for growth reduction of most of the higher plants. In this study, the effect of salt stress on protein pattern in shoots and roots of sugar beet (Beta vulgaris L.) was examined. Sugar beet plants were grown in hydroponics under control and 125 mM salt treatments. A significant growth reduction of shoots and roots was observed. The changes in protein expression, caused by salinity, were monitored using two-dimensional gel-electrophoresis. Most of the detected proteins in sugar beet showed stability under salt stress. The statistical analysis of detected proteins showed that the expression of only six proteins from shoots and three proteins from roots were significantly altered. At this stage, the significantly changed protein expressions we detected could not be attributed to sugar beet adaptation under salt stress. However, unchanged membrane bound proteins under salt stress did reveal the constitutive adaptation of sugar beet to salt stress at the plasma membrane level.
Collapse
Affiliation(s)
- Abdul Wakeel
- Institute of Plant Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | | | | | | |
Collapse
|
4267
|
Hauser MT, Aufsatz W, Jonak C, Luschnig C. Transgenerational epigenetic inheritance in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:459-68. [PMID: 21515434 DOI: 10.1016/j.bbagrm.2011.03.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/25/2011] [Accepted: 03/31/2011] [Indexed: 01/08/2023]
Abstract
Interest in transgenerational epigenetic inheritance has intensified with the boosting of knowledge on epigenetic mechanisms regulating gene expression during development and in response to internal and external signals such as biotic and abiotic stresses. Starting with an historical background of scantily documented anecdotes and their consequences, we recapitulate the information gathered during the last 60 years on naturally occurring and induced epialleles and paramutations in plants. We present the major players of epigenetic regulation and their importance in controlling stress responses. The effect of diverse stressors on the epigenetic status and its transgenerational inheritance is summarized from a mechanistic viewpoint. The consequences of transgenerational epigenetic inheritance are presented, focusing on the knowledge about its stability, and in relation to genetically fixed mutations, recombination, and genomic rearrangement. We conclude with an outlook on the importance of transgenerational inheritance for adaptation to changing environments and for practical applications. This article is part of a Special Issue entitled "Epigenetic control of cellular and developmental processes in plants".
Collapse
Affiliation(s)
- Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Austria
| | | | | | | |
Collapse
|
4268
|
Sanchez DH, Pieckenstain FL, Escaray F, Erban A, Kraemer U, Udvardi MK, Kopka J. Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. PLANT, CELL & ENVIRONMENT 2011; 34:605-17. [PMID: 21251019 DOI: 10.1111/j.1365-3040.2010.02266.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The legume genus Lotus includes glycophytic forage crops and other species adapted to extreme environments, such as saline soils. Understanding salt tolerance mechanisms will contribute to the discovery of new traits which may enhance the breeding efforts towards improved performance of legumes in marginal agricultural environments. Here, we used a combination of ionomic and gas chromatography-mass spectrometry (GC-MS)-based metabolite profilings of complete shoots (pooling leaves, petioles and stems) to compare the extremophile Lotus creticus, adapted to highly saline coastal regions, and two cultivated glycophytic grassland forage species, Lotus corniculatus and Lotus tenuis. L. creticus exhibited better survival after exposure to long-term lethal salinity and was more efficient at excluding Cl⁻ from the shoots than the glycophytes. In contrast, Na+ levels were higher in the extremophile under both control and salt stress, a trait often observed in halophytes. Ionomics demonstrated a differential rearrangement of shoot nutrient levels in the extremophile upon salt exposure. Metabolite profiling showed that responses to NaCl in L. creticus shoots were globally similar to those of the glycophytes, providing little evidence for metabolic pre-adaptation to salinity. This study is the first comparing salt acclimation responses between extremophile and non-extremophile legumes, and challenges the generalization of the metabolic salt pre-adaptation hypothesis.
Collapse
Affiliation(s)
- Diego H Sanchez
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | | | | | | | | | | | | |
Collapse
|
4269
|
Song J, Shi G, Gao B, Fan H, Wang B. Waterlogging and salinity effects on two Suaeda salsa populations. PHYSIOLOGIA PLANTARUM 2011; 141:343-51. [PMID: 21214881 DOI: 10.1111/j.1399-3054.2011.01445.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adaptations to combined salinity and waterlogging stress were evaluated in two Suaeda salsa populations from different saline environments. Seedlings were exposed to 1, 200 and 600 mM NaCl in drained or waterlogged sand for 22 days in a glasshouse. Waterlogging did not significantly affect the K(+) /Na(+) ratio or Cl(-) concentration in leaves of either population. Adventitious roots were produced only by the inland population and under the waterlogged condition. X-ray microanalysis showed that S. salsa roots of the intertidal population accumulated more [Na(+) ] and [Cl(-) ] in both the cortex and stele than the roots of the inland population. The ability of roots to exclude Na(+) and Cl(-) was greater in the intertidal population than in the inland population, which may explain why leaves of the intertidal population accumulated less Na(+) and Cl(-) than the leaves of the inland population. The lower level of Cl(-) than Na(+) in leaves of both populations may result from the greater ability of roots to exclude Cl(-) than Na(+) . These traits may help the two S. salsa populations adapt to their different saline environments.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | |
Collapse
|
4270
|
Zhang Y, Yang YX, Zhou X, Jia YH, Nie LL, Zhang Y, Chen SY, Wang JA, Liu ZQ. The continuous accumulation of Na + in detached leaf sections is associated with over-expression of NTHK1 and salt tolerance in poplar plants. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:236-245. [PMID: 32480880 DOI: 10.1071/fp10215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/23/2011] [Indexed: 06/11/2023]
Abstract
Detached leaf sections (2×2cm2) from transgenic poplar line 18-1 and its wild type (WT) (Populus× euramericana 'Neva') were used to test their salt tolerance and gene expression under controlled environment conditions. The sections from line 18-1 displayed better tolerance to NaCl stress, indicated by high chlorophyll retention and K+ content but low relative electrolyte leakage (REL). Transient overexpression of NTHK1 (Nicotiana tabacum histidine kinase 1) and V-H+-PPase was found in the detached young leaves from line 18-1 after they had been stressed for a few minutes. The activities of vacuolar-type H+-ATPase and H+-PPase in line 18-1 were boosted initially and then decreased to normal level as in unstressed leaves. After sections were stressed for 10 days, the maximal Na+ concentration in line 18-1 was much higher than that in the WT. The higher capacity for Na+ accumulation in line 18-1 may be due to stable Na+ sequestration into the vacuoles. Osmotic stress imposed little effect on REL and chlorophyll content of the sections. The capacity of detached leaf sections in NaCl solution to tolerate stress and to accumulate Na+ may be useful for identifying genotypes with good salt tolerance in poplar and other plants.
Collapse
Affiliation(s)
- Ying Zhang
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| | - Ying-Xia Yang
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| | - Xiangming Zhou
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| | - Yan-Hong Jia
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| | - Li-Li Nie
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| | - Yue Zhang
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| | - Shou-Yi Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing-An Wang
- College of Life Sciences, Tianjin Normal University, Tianjin 300384, China
| | - Zhong-Qi Liu
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| |
Collapse
|
4271
|
Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan A. Developing stress tolerant plants through in vitro selection—An overview of the recent progress. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2011. [PMID: 0 DOI: 10.1016/j.envexpbot.2010.10.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
4272
|
Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J. Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. TREE PHYSIOLOGY 2011; 31:452-61. [PMID: 21427158 DOI: 10.1093/treephys/tpr015] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Populus euphratica is well-adapted to extreme desert environments and is an important model species for studying the effects of abiotic stresses on trees. Here we present the first deep transcriptomic analysis of this species. To maximize representation of conditional transcripts, mRNA was obtained from living tissues of desert-grown trees and two types of callus (salt-stressed and unstressed). De novo assembly generated 86,777 Unigenes using Solexa sequence data. These sequences covered 92% of previously reported P. euphratica expressed sequence tags (ESTs) and 90% of the TIGR poplar ESTs, and a total of 58,499 high-quality unique sequences were annotated by BLAST similarity searches against public databases. We found that 27% of the total Unigenes were differentially expressed (up- or down-regulated) in response to salt stress in P. euphratica callus. These differentially expressed genes are mainly involved in transport, transcription, cellular communication and metabolism. In addition, we found that numerous putative genes involved in ABA regulation and biosynthesis were also differentially regulated. This study represents the deepest transcriptomic and gene-annotation analysis of P. euphratica to date. The genetic knowledge acquired should be very useful for future studies of the molecular adaptation of this tree species to abiotic stress and facilitate genetic manipulation of other poplar species.
Collapse
Affiliation(s)
- Qiang Qiu
- Molecular Ecology Group, Key Laboratory of Arid and Grassland Ecology, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
4273
|
Horie T, Kaneko T, Sugimoto G, Sasano S, Panda SK, Shibasaka M, Katsuhara M. Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. PLANT & CELL PHYSIOLOGY 2011; 52:663-75. [PMID: 21441236 DOI: 10.1093/pcp/pcr027] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Water homeostasis is crucial to the growth and survival of plants under water-related stress. Plasma membrane intrinsic proteins (PIPs) have been shown to be primary channels mediating water uptake in plant cells. Here we report the water transport activity and mechanisms for the regulation of barley (Hordeum vulgare) PIP aquaporins. HvPIP2 but not HvPIP1 channels were found to show robust water transport activity when expressed alone in Xenopus laevis oocytes. However, the co-expression of HvPIP1 with HvPIP2 in oocytes resulted in significant increases in activity compared with the expression of HvPIP2 alone, suggesting the participation of HvPIP1 in water transport together with HvPIP2 presumably through heteromerization. Severe salinity stress (200 mM NaCl) significantly reduced root hydraulic conductivity (Lp(r)) and the accumulation of six of 10 HvPIP mRNAs. However, under relatively mild stress (100 mM NaCl), only a moderate reduction in Lp(r) with no significant difference in HvPIP mRNA levels was observed. Sorbitol-mediated osmotic stress equivalent to 100 and 200 mM NaCl induced nearly identical Lp(r) reductions in barley roots. Furthermore, the water transport activity in intact barley roots was suggested to require phosphorylation that is sensitive to a kinase inhibitor, staurosporine. HvPIP2s also showed water efflux activity in Xenopus oocytes, suggesting a potential ability to mediate water loss from cells under hypertonic conditions. Water transport via HvPIP aquaporins and the significance of reductions of Lp(r) in barley plants during salinity stress are discussed.
Collapse
Affiliation(s)
- Tomoaki Horie
- Group of Molecular and Functional Plant Biology, Institute of Plant Science and Resources, Okayama University, 20-1 Chuo-2-chome, Kurashiki, Okayama 710-0046, Japan
| | | | | | | | | | | | | |
Collapse
|
4274
|
Kong XQ, Gao XH, Sun W, An J, Zhao YX, Zhang H. Cloning and functional characterization of a cation-chloride cotransporter gene OsCCC1. PLANT MOLECULAR BIOLOGY 2011; 75:567-78. [PMID: 21369877 DOI: 10.1007/s11103-011-9744-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 01/21/2011] [Indexed: 05/05/2023]
Abstract
Potassium (K+) and chloride (Cl-) are two essential elements for plant growth and development. While it is known that plants possess specific membrane transporters for transporting K+ and Cl-, it remains unclear if they actively use K+-coupled Cl- cotransporters (KCC), as used in animals, to transport K+ and Cl-. We have cloned an Oryza sativa cDNA encoding for a member of the cation-Cl- cotransporter (CCC) family. Phylogenetic analysis revealed that plant CCC proteins are highly conserved and that they have greater sequence similarity to the sub-family of animal K--Cl- cotransporters than to other cation-Cl- cotransporters. Real-time PCR revealed that the O. sativa cDNA, which was named OsCCC1, can be induced by KCl in the shoot and root and that the expression level was higher in the leaf and root tips than in any other part of the rice plant. The OsCCC1 protein was located not only in onion plasma membrane but also in O. sativa plasma membrane. The OsCCC1 gene-silenced plants grow more slowly than wild-type (WT) plants, especially under the KCl treatment regime. After 1 month of KCl treatment, the leaf tips of the gene-silenced lines were necrosed. In addition, seed germination, root length, and fresh and dry weight were distinctly lower in the gene-silenced lines than in WT plants, especially after KCl treatment. Analysis of Na+, K+, and Cl- contents of the gene-silenced lines and WT plants grown under the NaCl and KCl treatment regimes revealed that the former accumulated relatively less K+ and Cl- than the latter but that they did not differ in terms of Na+ contents, suggesting OsCCC1 may be involved in K+ and Cl- transport. Results from different tests indicated that the OsCCC1 plays a significant role in K+ and Cl- homeostasis and rice plant development.
Collapse
Affiliation(s)
- Xiang-Qiang Kong
- Kay Laborarory of Plant Stress Research, School of Life Science, Shandong Normal University, Jinan, Shandong Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
4275
|
Shen P, Wang R, Jing W, Zhang W. Rice phospholipase Dα is involved in salt tolerance by the mediation of H(+)-ATPase activity and transcription. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:289-99. [PMID: 21205187 DOI: 10.1111/j.1744-7909.2010.01021.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phospholipase Dα (PLDα) is involved in plant response to salt stress, but the mechanisms remain unclear. We investigated rice PLDα (OsPLDα) localization and its effect on tonoplast (TP) and plasma membrane (PM) H(+)-ATPase activity and transcription in response to NaCl. When rice suspension-cultured cells were treated with 100 mM NaCl, PLDα activity in cell extracts showed a transient activation with a threefold increase at 1 h. The amount of OsPLDα protein decreased slightly in the cytosolic fractions, whereas it increased significantly in the TP after NaCl treatment. OsPLDα1 knockdown cells were developed using RNA interference (RNAi) methods. The increase in TP and PM H(+)-ATPase activity induced by NaCl was significantly inhibited in OsPLDα1-RNAi cells. Knockdown of OsPLDα1 prevented the NaCl-induced increase in the transcript level of OsVHA-A (encodes TP H(+)-ATPase) and OSA2 (encodes PM H(+)-ATPase), as well as OsNHX1 (encodes TP Na(+) /H(+) antiporter). The cells died more in OsPLDα1-RNAi mutant than in wild type when they were treated with NaCl. These results suggest that OsPLDα is involved in salt tolerance in rice through the mediation of H(+)-ATPase activity and transcription.
Collapse
Affiliation(s)
- Peng Shen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | |
Collapse
|
4276
|
Kaldis A, Tsementzi D, Tanriverdi O, Vlachonasios KE. Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. PLANTA 2011; 233:749-62. [PMID: 21193996 DOI: 10.1007/s00425-010-1337-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 12/13/2010] [Indexed: 05/21/2023]
Abstract
The transcriptional co-activator ADA2b is a component of GCN5-containing complexes in eukaryotes. In Arabidopsis, ada2b mutants result in pleiotropic developmental defects and altered responses to low-temperature stress. SGF29 has recently been identified as another component of GCN5-containing complexes. In the Arabidopsis genome there are two orthologs of yeast SGF29, designated as SGF29a and SGF29b. We hypothesized that, in Arabidopsis, one or both SGF29 proteins may work in concert with ADA2b to regulate genes in response to abiotic stress, and we set out to explore the role of SGF29a and ADA2b in salt stress responses. In root growth and seed germination assays, sgf29a-1 mutants were more resistant to salt stress than their wild-type counterparts, whereas ada2b-1 mutant was hypersensitive. The sgf29a;ada2b double mutant displayed similar phenotypes to ada2b-1 mutant with reduced salt sensitivity. The expression of several abiotic stress-responsive genes was reduced in ada2b-1 mutants after 3 h of salt stress in comparison with sgf29a-1 and wild-type plants. In the sgf29a-1;ada2b-1 double mutant, the salt-induced gene expression was affected similarly to ada2b-1. These results suggest that under salt stress the function of SGF29a was masked by ADA2b and perhaps SGF29a could play an auxiliary role to ADA2b action. In chromatin immunoprecipitation assays, reduced levels of histone H3 and H4 acetylation in the promoter and coding region of COR6.6, RAB18, and RD29b genes were observed in ada2b-1 mutants relative to wild-type plants. In conclusion, ADA2b positively regulates salt-induced gene expression by maintaining the locus-specific acetylation of histones H4 and H3.
Collapse
Affiliation(s)
- Athanasios Kaldis
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | | | | |
Collapse
|
4277
|
Testerink C, Munnik T. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2349-61. [PMID: 21430291 DOI: 10.1093/jxb/err079] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphatidic acid (PA) is an essential phospholipid involved in membrane biosynthesis and signal transduction in all eukaryotes. This review focuses on its role as lipid second messenger during plant stress, metabolism, and development. The contribution of different individual isoforms of enzymes that generate and break down PA will be discussed and the downstream responses highlighted, with particular focus on proteins that bind PA. Through characterization of several of these PA targets, a molecular and genetic basis for PA's role in plant stress and development is emerging.
Collapse
Affiliation(s)
- Christa Testerink
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section of Plant Physiology, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
4278
|
Song Y, Zhang C, Ge W, Zhang Y, Burlingame AL, Guo Y. Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. J Proteomics 2011; 74:1045-67. [PMID: 21420516 DOI: 10.1016/j.jprot.2011.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/25/2011] [Accepted: 03/05/2011] [Indexed: 10/18/2022]
Abstract
Plants have evolved sophisticated systems to cope with adverse environmental conditions such as cold, drought, and salinity. Although a number of stress response networks have been proposed, the role of plant apoplast in plant stress response has been ignored. To investigate the role of apoplastic proteins in the salt stress response, 10-day old rice plants were treated with 200mM NaCl for 1, 6 or 12h, and the soluble apoplast proteins of rice shoot stems were extracted for differential analysis, compared with untreated controls, by 2-D DIGE saturation labeling techniques. One hundred twenty-two significantly changed spots were identified by LC-MS/MS, and 117 spots representing 69 proteins have been identified. Of these proteins, 37 are apoplastic proteins according to the bioinformatic analysis. These proteins are mainly involved in the processes of carbohydrate metabolism, oxido-reduction, and protein processing and degradation. According to their functional categories and cluster analysis, a stress response model of apoplastic proteins has been proposed. These data indicate that the apoplast is important in plant stress signal reception and response.
Collapse
Affiliation(s)
- Yun Song
- Institute of Molecular Cell Biology, Hebei Normal University, Shijiazhuang, Hebei Province, 050016, PR China
| | | | | | | | | | | |
Collapse
|
4279
|
Effect of La(NO 3) 3 on seedling growth and physiological characteristics of ryegrass under NaCl stress. ACTA ACUST UNITED AC 2011. [DOI: 10.3724/sp.j.1011.2011.00353] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4280
|
Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Appl Microbiol Biotechnol 2011; 90:1389-97. [PMID: 21365472 DOI: 10.1007/s00253-011-3162-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/27/2011] [Accepted: 01/29/2011] [Indexed: 10/18/2022]
Abstract
The ability of two strains of Azospirillum brasilense to mitigate NaCl stress in barley plants was evaluated. Barley seedlings were inoculated and subjected to 200 mM NaCl for 18 days. Several days after NaCl treatment, a significant decline in biomass as well as in height was observed in uninoculated plants. However, smaller reductions in biomass and height were detected in plants inoculated with strain Az39. All the stressed plants showed significantly higher Na(+) but lower K(+) contents in their shoots. The growth rate of uninoculated plants was adversely affected by saline treatment, which was associated with higher putrescine content and lower levels of HvPIP2;1 transcripts in the roots. Azospirillum inoculation triggered the transcription of this gene. Our results suggest that barley plants inoculated with A. brasilense may be better prepared to thrive under saline conditions. To our knowledge, this is the first report showing an effect of Azospirillum inoculation on the expression of PIP2;1, a gene involved in the synthesis of root water channels.
Collapse
|
4281
|
Qiu L, Wu D, Ali S, Cai S, Dai F, Jin X, Wu F, Zhang G. Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:695-703. [PMID: 20981400 DOI: 10.1007/s00122-010-1479-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 10/11/2010] [Indexed: 05/08/2023]
Abstract
Tibetan wild barley is rich in genetic diversity with potential allelic variation useful for salinity-tolerant improvement of the crop. The objectives of this study were to evaluate salinity tolerance and analysis of the allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Salinity tolerance of 189 Tibetan wild barley accessions was evaluated in terms of reduced dry biomass under salinity stress. In addition, Na(+) and K(+) concentrations of 48 representative accessions differing in salinity tolerance were determined. Furthermore, the allelic and functional diversity of HvHKT1 and HvHKT2 was determined by association analysis as well as gene expression assay. There was a wide variation among wild barley genotypes in salt tolerance, with some accessions being higher in tolerance than cultivated barley CM 72, and salinity tolerance was significantly associated with K(+)/Na(+) ratio. Association analysis revealed that HvHKT1 and HvHKT2 mainly control Na(+) and K(+) transporting under salinity stress, respectively, which was validated by further analysis of gene expression. The present results indicated that Tibetan wild barley offers elite alleles of HvHKT1 and HvHKT2 conferring salinity tolerance.
Collapse
Affiliation(s)
- Long Qiu
- Agronomy Department, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
4282
|
Comparison Between a Tetraploid Turnip and Its Diploid Progenitor (Brassica rapa L.): The Adaptation to Salinity Stress. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60015-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4283
|
Jha A, Joshi M, Yadav NS, Agarwal PK, Jha B. Cloning and characterization of the Salicornia brachiata Na(+)/H(+) antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 2011; 38:1965-73. [PMID: 20853145 DOI: 10.1007/s11033-010-0318-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
Salinity causes multifarious adverse effects to plants. Plants response to salt stress involves numerous processes that function in coordination to alleviate both cellular hyperosmolarity and ion disequilibrium. A Na(+)/H(+) antiporter NHX1 gene has been isolated from a halophytic plant Salicornia brachiata in this study. Predicted amino acid sequence similarity, protein topology and the presence of functional domains conserved in SbNHX1 classify it as a plant vacuolar NHX gene. The SbNHX1 cDNA has an open reading frame of 1,683 bp, encoding a polypeptide of 560 amino acid residues with an estimated molecular mass 62.44 kDa. The SbNHX1 shows high amino acid similarity with other halophytic NHX gene and belongs to Class-I type NHXs. TMpred suggests that SbNHX1 contains 11 strong transmembrane (TM). Real time PCR analysis revealed that SbNHX1 transcript expresses maximum at 0.5 M. Transcript increases gradually by increasing the treatment duration at 0.5 M NaCl, however, maximum expression was observed at 48 h. The overexpression of SbNHX1 gene in tobacco plant showed NaCl tolerance. This study shows that SbNHX1 is a potential gene for salt tolerance, and can be used in future for developing salt tolerant crops.
Collapse
Affiliation(s)
- Anupama Jha
- Discipline of Marine Biotechnology and Ecology, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar, 364 002 Gujarat, India
| | | | | | | | | |
Collapse
|
4284
|
Abogadallah GM. Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:540-7. [PMID: 21421402 DOI: 10.1016/j.plantsci.2010.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 05/08/2023]
Abstract
The tolerant C3 plant Pancratium maritimum L. was used to investigate the contribution of photorespiration to the oxidative load under salt and drought stress. 7-weeks old plants were salt-stressed by 150 or 300 mM NaCl or drought-stressed by withholding water for 11 or 21 days. The growth, photosynthesis (A) and transpiration rates (E) were reduced by all stress treatments proportionally to the severity of stress. The rate of photorespiration was remarkably higher under moderate stresses than under severe stresses as revealed by large increase in the photorespiratory indicators Gly/Ser ratio and glyoxylate content and as substantiated by higher expression levels of photorespiratory enzymes. Nonetheless, indicators of oxidative stress namely, malondialdehyde (MDA) and hydrogen peroxide (H₂O₂) contents showed greater increase under severe stresses suggesting that the increase in the oxidative load under severe stresses is independent of photorespiration rate. The lower contents of MDA and H₂O₂ under moderate stresses (compared to these under severe stresses) in spite of the strong upregulation of photorespiration indicate efficient detoxification of photorespiration-generated H₂O₂ as shown by efficient upregulation of catalase (CAT) and peroxidase (POD). It is thus concluded that photorespiration may not be major contributor to the oxidative load under salt and drought stress.
Collapse
|
4285
|
Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK. Additive effects of Na+ and Cl- ions on barley growth under salinity stress. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2189-203. [PMID: 21273334 PMCID: PMC3060698 DOI: 10.1093/jxb/erq422] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/25/2010] [Accepted: 11/25/2010] [Indexed: 05/18/2023]
Abstract
Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. It has previously been suggested that Cl(-) toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na(+) and Cl(-) reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na(+), Cl(-), and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na(+) and Cl(-) stress. The results demonstrated that Na(+) and Cl(-) exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na(+) reduced K(+) and Ca(2+) uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl(-) concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown.
Collapse
Affiliation(s)
- Ehsan Tavakkoli
- School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, PMB 1 Glen Osmond, South Australia 5064.
| | | | | | | | | |
Collapse
|
4286
|
Li M, Li Y, Li H, Wu G. Overexpression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyrifera (L.) Vent. TREE PHYSIOLOGY 2011; 31:349-57. [PMID: 21512100 DOI: 10.1093/treephys/tpr003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Paper mulberry (Broussonetia papyrifera L. Vent) is well known for its bark fibers, which are used for making paper, cloth, rope, etc. It was found that, in addition to its well-documented role in the enhancement of plant salt tolerance, overexpression of the Na+/H+ antiporter (AtNHX5) gene in paper mulberry plants showed high drought tolerance. After exposure to water deficiency and salt stress, the wild-type (WT) plants all died, while the AtNHX5-overexpressing plants remained alive under high salt stress, and had a higher survival rate (>66%) under drought stress. Measurements of ion levels indicated that Na+ and K+ contents were all higher in AtNHX5-overexpressing leaves than in WT leaves in high saline conditions. The AtNHX5 plants had higher leaf water content and leaf chlorophyll contents, accumulated more proline and soluble sugars, and had less membrane damage than the WT plants under water deficiency and high saline conditions. Taken together, the results indicate that the AtNHX5 gene could enhance the tolerance of paper mulberry plants to multiple environmental stresses by promoting the accumulation of more effective osmolytes (ions, soluble sugars, proline) to counter the osmotic stress caused by abiotic factors.
Collapse
Affiliation(s)
- Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | | | | | | |
Collapse
|
4287
|
Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ, Wang F, Tong JX, Wang SZ, Chen HZ. Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC PLANT BIOLOGY 2011; 11:34. [PMID: 21324151 PMCID: PMC3050798 DOI: 10.1186/1471-2229-11-34] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 02/16/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND High Salinity is a major environmental stress influencing growth and development of rice. Comparative proteomic analysis of hybrid rice shoot proteins from Shanyou 10 seedlings, a salt-tolerant hybrid variety, and Liangyoupeijiu seedlings, a salt-sensitive hybrid variety, was performed to identify new components involved in salt-stress signaling. RESULTS Phenotypic analysis of one protein that was upregulated during salt-induced stress, cyclophilin 2 (OsCYP2), indicated that OsCYP2 transgenic rice seedlings had better tolerance to salt stress than did wild-type seedlings. Interestingly, wild-type seedlings exhibited a marked reduction in maximal photochemical efficiency under salt stress, whereas no such change was observed for OsCYP2-transgenic seedlings. OsCYP2-transgenic seedlings had lower levels of lipid peroxidation products and higher activities of antioxidant enzymes than wild-type seedlings. Spatiotemporal expression analysis of OsCYP2 showed that it could be induced by salt stress in both Shanyou 10 and Liangyoupeijiu seedlings, but Shanyou 10 seedlings showed higher OsCYP2 expression levels. Moreover, circadian rhythm expression of OsCYP2 in Shanyou 10 seedlings occurred earlier than in Liangyoupeijiu seedlings. Treatment with PEG, heat, or ABA induced OsCYP2 expression in Shanyou 10 seedlings but inhibited its expression in Liangyoupeijiu seedlings. Cold stress inhibited OsCYP2 expression in Shanyou 10 and Liangyoupeijiu seedlings. In addition, OsCYP2 was strongly expressed in shoots but rarely in roots in two rice hybrid varieties. CONCLUSIONS Together, these data suggest that OsCYP2 may act as a key regulator that controls ROS level by modulating activities of antioxidant enzymes at translation level. OsCYP2 expression is not only induced by salt stress, but also regulated by circadian rhythm. Moreover, OsCYP2 is also likely to act as a key component that is involved in signal pathways of other types of stresses-PEG, heat, cold, or ABA.
Collapse
Affiliation(s)
- Song-Lin Ruan
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Hua-Sheng Ma
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
| | - Shi-Heng Wang
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
| | - Ya-Ping Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ya Xin
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
| | - Wen-Zhen Liu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Fang Wang
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
| | - Jian-Xin Tong
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
| | - Shu-Zhen Wang
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
| | - Hui-Zhe Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| |
Collapse
|
4288
|
Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS One 2011; 6:e17094. [PMID: 21347266 PMCID: PMC3038935 DOI: 10.1371/journal.pone.0017094] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/19/2011] [Indexed: 11/28/2022] Open
Abstract
One of the objectives of plant translational genomics is to use knowledge and genes discovered in model species to improve crops. However, the value of translational genomics to plant breeding, especially for complex traits like abiotic stress tolerance, remains uncertain. Using comparative genomics (ionomics, transcriptomics and metabolomics) we analyzed the responses to salinity of three model and three cultivated species of the legume genus Lotus. At physiological and ionomic levels, models responded to salinity in a similar way to crop species, and changes in the concentration of shoot Cl− correlated well with tolerance. Metabolic changes were partially conserved, but divergence was observed amongst the genotypes. Transcriptome analysis showed that about 60% of expressed genes were responsive to salt treatment in one or more species, but less than 1% was responsive in all. Therefore, genotype-specific transcriptional and metabolic changes overshadowed conserved responses to salinity and represent an impediment to simple translational genomics. However, ‘triangulation’ from multiple genotypes enabled the identification of conserved and tolerant-specific responses that may provide durable tolerance across species.
Collapse
|
4289
|
Khan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IJ. Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.09.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4290
|
Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, Lun DS. Accurate inference of shoot biomass from high-throughput images of cereal plants. PLANT METHODS 2011; 7:2. [PMID: 21284859 PMCID: PMC3042986 DOI: 10.1186/1746-4811-7-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/01/2011] [Indexed: 05/18/2023]
Abstract
With the establishment of advanced technology facilities for high throughput plant phenotyping, the problem of estimating plant biomass of individual plants from their two dimensional images is becoming increasingly important. The approach predominantly cited in literature is to estimate the biomass of a plant as a linear function of the projected shoot area of plants in the images. However, the estimation error from this model, which is solely a function of projected shoot area, is large, prohibiting accurate estimation of the biomass of plants, particularly for the salt-stressed plants. In this paper, we propose a method based on plant specific weight for improving the accuracy of the linear model and reducing the estimation bias (the difference between actual shoot dry weight and the value of the shoot dry weight estimated with a predictive model). For the proposed method in this study, we modeled the plant shoot dry weight as a function of plant area and plant age. The data used for developing our model and comparing the results with the linear model were collected from a completely randomized block design experiment. A total of 320 plants from two bread wheat varieties were grown in a supported hydroponics system in a greenhouse. The plants were exposed to two levels of hydroponic salt treatments (NaCl at 0 and 100 mM) for 6 weeks. Five harvests were carried out. Each time 64 randomly selected plants were imaged and then harvested to measure the shoot fresh weight and shoot dry weight. The results of statistical analysis showed that with our proposed method, most of the observed variance can be explained, and moreover only a small difference between actual and estimated shoot dry weight was obtained. The low estimation bias indicates that our proposed method can be used to estimate biomass of individual plants regardless of what variety the plant is and what salt treatment has been applied. We validated this model on an independent set of barley data. The technique presented in this paper may extend to other plants and types of stresses.
Collapse
Affiliation(s)
- Mahmood R Golzarian
- Phenomics and Bioinformatics Research Centre, Australian Centre for Plant Functional Genomics, School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Ross A Frick
- School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Karthika Rajendran
- Australian Centre for Plant Functional Genomics, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Bettina Berger
- Australian Centre for Plant Functional Genomics, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Stuart Roy
- Australian Centre for Plant Functional Genomics, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Mark Tester
- Australian Centre for Plant Functional Genomics, University of Adelaide, Glen Osmond SA 5064, Australia
| | - Desmond S Lun
- Phenomics and Bioinformatics Research Centre, Australian Centre for Plant Functional Genomics, School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA, 5095, Australia
- Department of Computer Science and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| |
Collapse
|
4291
|
Wei A, He C, Li B, Li N, Zhang J. The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:216-29. [PMID: 20633239 DOI: 10.1111/j.1467-7652.2010.00548.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stress resistance has repeatedly been enhanced in plants by the transfer of a single gene using genetic engineering. However, further enhancement of resistance to abiotic stress is still necessary. In our research, maize plants that were transgenic for both betA (encoding choline dehydrogenase from Escherichia coli) and TsVP (encoding V-H+ -PPase from Thellungiella halophila) were produced by cross-pollination. The existence of the transgenes in the pyramided plants was demonstrated by PCR and Southern blotting. The stable expression of transgenes was confirmed by real-time RT-PCR (reverse transcription polymerase chain reaction) analysis. An examination of the drought resistance characteristics demonstrated that the pyramided transgenic plants had higher glycinebetaine contents and H+ -PPase activity compared with the parental lines, which had either betA or TsVP, and contained higher relative water content (RWC), greater solute accumulation and lower cell damage under drought stress treatment. The pyramided plants grew more vigorously with less growth retardation, shorter anthesis-silking interval and higher yields than their parental lines and the wild-type. We concluded that co-expression of the two genes involved in different metabolism pathways in pyramided transgenic maize helped to improve the drought resistance over their parental lines that contained either single transgene. Our study suggests that the co-expression of multiple, effective genes in transgenic plants could effectively enhance the resistance to abiotic stress and provide a feasible approach for obtaining maize plants with improved drought resistance.
Collapse
Affiliation(s)
- Aiying Wei
- Key Laboratory of Plant Cell engineering & germplasm creation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
4292
|
Carillo P, Parisi D, Woodrow P, Pontecorvo G, Massaro G, Annunziata MG, Fuggi A, Sulpice R. Salt-induced accumulation of glycine betaine is inhibited by high light in durum wheat. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:139-150. [PMID: 32480870 DOI: 10.1071/fp10177] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/23/2010] [Indexed: 06/11/2023]
Abstract
In this study, we determined the effects of both salinity and high light on the metabolism of durum wheat (Triticum durum Desf. cv. Ofanto) seedlings, with a special emphasis on the potential role of glycine betaine in their protection. Unexpectedly, it appears that high light treatment inhibits the synthesis of glycine betaine, even in the presence of salt stress. Additional solutes such as sugars and especially amino acids could partially compensate for the decrease in its synthesis upon exposure to high light levels. In particular, tyrosine content was strongly increased by high light, this effect being enhanced by salt treatment. Interestingly, a large range of well-known detoxifying molecules were also not induced by salt treatment in high light conditions. Taken together, our results question the role of glycine betaine in salinity tolerance under light conditions close to those encountered by durum wheat seedlings in their natural environment and suggest the importance of other mechanisms, such as the accumulation of minor amino acids.
Collapse
Affiliation(s)
- Petronia Carillo
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Danila Parisi
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Pasqualina Woodrow
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Giovanni Pontecorvo
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Giuseppina Massaro
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Grazia Annunziata
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Amodio Fuggi
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany
| |
Collapse
|
4293
|
Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci U S A 2011; 108:2611-6. [PMID: 21262798 DOI: 10.1073/pnas.1018921108] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plasma membrane sodium/proton exchanger Salt-Overly-Sensitive 1 (SOS1) is a critical salt tolerance determinant in plants. The SOS2-SOS3 calcium-dependent protein kinase complex up-regulates SOS1 activity, but the mechanistic details of this crucial event remain unresolved. Here we show that SOS1 is maintained in a resting state by a C-terminal auto-inhibitory domain that is the target of SOS2-SOS3. The auto-inhibitory domain interacts intramolecularly with an adjacent domain of SOS1 that is essential for activity. SOS1 is relieved from auto-inhibition upon phosphorylation of the auto-inhibitory domain by SOS2-SOS3. Mutation of the SOS2 phosphorylation and recognition site impeded the activation of SOS1 in vivo and in vitro. Additional amino acid residues critically important for SOS1 activity and regulation were identified in a genetic screen for hypermorphic alleles.
Collapse
|
4294
|
Nieves M, Nieves-Cordones M, Poorter H, Simón MD. Leaf nitrogen productivity is the major factor behind the growth reduction induced by long-term salt stress. TREE PHYSIOLOGY 2011; 31:92-101. [PMID: 21389005 DOI: 10.1093/treephys/tpq106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant growth response to salinity on a scale of years has not been studied in terms of growth analysis. To gain insights into this topic, 2-year-old Mediterranean Fan Palm (Chamaerops humilis L.) and Mexican Fan Palm (Washingtonia robusta H. Wendl) seedlings, each with its own distinct plant morphology, were grown for 2 years in a peat soil and irrigated with water of 2 dS m(-1) (control) or 8 dS m(-1) (saline). Plants were harvested on seven occasions and the time trends in relative growth rate (RGR, the rate of increase of biomass per unit of biomass already existing) and its components were analysed. In the long term, salinity produced a slight reduction in the mean RGR, values in both species. In the short term, salinity caused a reduction in RGR. However, during the second year, plants irrigated with 8 dS m(-1) grew somewhat more quickly than the control plants, probably as a result of delay in the growth kinetics due to salinity. Regarding RGR components, leaf nitrogen productivity (the rate of biomass gain per unit leaf N and time) was the major factor causing the differences in RGR resulting from salinity. Washingtonia robusta showed a relatively high plasticity in plant morphology by increasing root and decreasing stem biomass allocation in the presence of salinity. However, the long-term response of W. robusta to salinity, based to a great extent, on this morphological plasticity, was less effective than that of C. humilis, which is based mainly on the contribution of leaf N to RGR values.
Collapse
Affiliation(s)
- Manuel Nieves
- EPSO, Univ. Miguel Hernández, Ctra Beniel km 3.2, Orihuela, Alicante, Spain.
| | | | | | | |
Collapse
|
4295
|
Zhang Z, Zhang S, Zhang Y, Wang X, Li D, Li Q, Yue M, Li Q, Zhang YE, Xu Y, Xue Y, Chong K, Bao S. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. THE PLANT CELL 2011; 23:396-411. [PMID: 21258002 PMCID: PMC3051234 DOI: 10.1105/tpc.110.081356] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/15/2010] [Accepted: 01/04/2011] [Indexed: 05/19/2023]
Abstract
Plants adapt their growth and development in response to perceived salt stress. Although DELLA-dependent growth restraint is thought to be an integration of the plant's response to salt stress, little is known about how histone modification confers salt stress and, in turn, affects development. Here, we report that floral initiator Shk1 kinase binding protein1 (SKB1) and histone4 arginine3 (H4R3) symmetric dimethylation (H4R3sme2) integrate responses to plant developmental progress and salt stress. Mutation of SKB1 results in salt hypersensitivity, late flowering, and growth retardation. SKB1 associates with chromatin and thereby increases the H4R3sme2 level to suppress the transcription of FLOWERING LOCUS C (FLC) and a number of stress-responsive genes. During salt stress, the H4R3sme2 level is reduced, as a consequence of SKB1 disassociating from chromatin to induce the expression of FLC and the stress-responsive genes but increasing the methylation of small nuclear ribonucleoprotein Sm-like4 (LSM4). Splicing defects are observed in the skb1 and lsm4 mutants, which are sensitive to salt. We propose that SKB1 mediates plant development and the salt response by altering the methylation status of H4R3sme2 and LSM4 and linking transcription to pre-mRNA splicing.
Collapse
Affiliation(s)
- Zhaoliang Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Shupei Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Wang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiuling Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Minghui Yue
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Qun Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-e Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunyuan Xu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongbiao Xue
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- National Plant Gene Research Centre, Beijing 100101, China
| | - Kang Chong
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Plant Gene Research Centre, Beijing 100101, China
| | - Shilai Bao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
4296
|
Rahnama A, Munns R, Poustini K, Watt M. A screening method to identify genetic variation in root growth response to a salinity gradient. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:69-77. [PMID: 21118825 DOI: 10.1093/jxb/erq359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salinity as well as drought are increasing problems in agriculture. Durum wheat (Triticum turgidum L. ssp. durum Desf.) is relatively salt sensitive compared with bread wheat (Triticum aestivum L.), and yields poorly on saline soil. Field studies indicate that roots of durum wheat do not proliferate as extensively as bread wheat in saline soil. In order to look for genetic diversity in root growth within durum wheat, a screening method was developed to identify genetic variation in rates of root growth in a saline solution gradient similar to that found in many saline fields. Seedlings were grown in rolls of germination paper in plastic tubes 37 cm tall, with a gradient of salt concentration increasing towards the bottom of the tubes which contained from 50-200 mM NaCl with complete nutrients. Seedlings were grown in the light to the two leaf stage, and transpiration and evaporation were minimized so that the salinity gradient was maintained. An NaCl concentration of 150 mM at the bottom was found suitable to identify genetic variation. This corresponds to a level of salinity in the field that reduces shoot growth by 50% or more. The screen inhibited seminal axile root length more than branch root length in three out of four genotypes, highlighting changes in root system architecture caused by a saline gradient that is genotype dependent. This method can be extended to other species to identify variation in root elongation in response to gradients in salt, nutrients, or toxic elements.
Collapse
|
4297
|
Biochemical and molecular changes in buckwheat leaves during exposure to salt stress. ARCH BIOL SCI 2011. [DOI: 10.2298/abs1101067j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In spite of the great nutritive and pharmacological potentials of buckwheat,
data about the abiotic stress tolerance of this plant species are very
limited. The aim of this work was to analyze the biochemical and molecular
response of buckwheat plants in the middle vegetative phase against short-
and long-term salt stress. Changes in relative water content, level of lipid
peroxidation, content and localization of H2O2 as well as changes in
antioxidative enzyme activity and expression of ubiquitin and dehydrins, were
investigated. Reasons for observed buckwheat salt stress sensitivity as well
as possibilities for enhancing stress tolerance are discussed.
Collapse
|
4298
|
Huang YQ, Liu JQ, Gong H, Yang J, Li Y, Feng YQ. Use of isotope mass probes for metabolic analysis of the jasmonate biosynthetic pathway. Analyst 2011; 136:1515-22. [DOI: 10.1039/c0an00736f] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4299
|
Edelstein M, Plaut Z, Ben-Hur M. Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:177-84. [PMID: 20729482 PMCID: PMC2993908 DOI: 10.1093/jxb/erq255] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/25/2010] [Accepted: 07/27/2010] [Indexed: 05/18/2023]
Abstract
The effects of grafting on Na and Cl(-) uptake and distribution in plant tissues were quantified in a greenhouse experiment using six combinations of melon (Cucumis melo L. cv. Arava) and pumpkin (Cucurbita maxima Duchesne×Cucurbita moschata Duchesne cv. TZ-148): non-grafted, self-grafted, melons grafted on pumpkins, and pumpkins grafted on melons. Total Na concentration in shoots of plants with pumpkin or melon rootstocks was <60 mmol kg(-1) and >400 mmol kg(-1), respectively, regardless of the scion. In contrast, shoot Cl(-) concentrations were quite similar among the different scion-rootstock combinations. Na concentrations in exudates from cut stems of plants with a pumpkin rootstock were very low (<0.18 mM), whereas those in the exudates of plants with melon rootstocks ranged from 4.7 mM to 6.2 mM, and were quite similar to the Na concentration in the irrigation water. Root Na concentrations averaged 11.7 times those in the shoots of plants with pumpkin rootstocks, while in plants with melon rootstocks, values were similar. Two mechanisms could explain the decrease in shoot Na concentrations in plants with pumpkin rootstocks: (i) Na exclusion by the pumpkin roots; and (ii) Na retention and accumulation within the pumpkin rootstock. Quantitative analysis indicated that the pumpkin roots excluded ∼74% of available Na, while there was nearly no Na exclusion by melon roots. Na retention by the pumpkin rootstocks decreased its amount in the shoot by an average 46.9% compared with uniform Na distribution throughout the plant. In contrast, no retention of Na could be found in plants grafted on melons.
Collapse
Affiliation(s)
- M Edelstein
- Department of Vegetable Crops, Agricultural Research Organization, Newe Ya'ar Research Center, PO Box 1021, Ramat Yishay 300-95, Israel.
| | | | | |
Collapse
|
4300
|
Pardo JM, Rubio F. Na+ and K+ Transporters in Plant Signaling. SIGNALING AND COMMUNICATION IN PLANTS 2011. [DOI: 10.1007/978-3-642-14369-4_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|