401
|
LRRK2 and neuroinflammation: partners in crime in Parkinson's disease? J Neuroinflammation 2014; 11:52. [PMID: 24655756 PMCID: PMC3994422 DOI: 10.1186/1742-2094-11-52] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/25/2014] [Indexed: 02/07/2023] Open
Abstract
It is now well established that chronic inflammation is a prominent feature of several neurodegenerative disorders including Parkinson’s disease (PD). Growing evidence indicates that neuroinflammation can contribute greatly to dopaminergic neuron degeneration and progression of the disease. Recent literature highlights that leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in both autosomal-dominantly inherited and sporadic PD cases, modulates inflammation in response to different pathological stimuli. In this review, we outline the state of the art of LRRK2 functions in microglia cells and in neuroinflammation. Furthermore, we discuss the potential role of LRRK2 in cytoskeleton remodeling and vesicle trafficking in microglia cells under physiological and pathological conditions. We also hypothesize that LRRK2 mutations might sensitize microglia cells toward a pro-inflammatory state, which in turn results in exacerbated inflammation with consequent neurodegeneration.
Collapse
|
402
|
Yanguas-Casás N, Barreda-Manso MA, Nieto-Sampedro M, Romero-Ramírez L. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation. J Neuroinflammation 2014; 11:50. [PMID: 24645669 PMCID: PMC4000131 DOI: 10.1186/1742-2094-11-50] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/28/2014] [Indexed: 11/18/2022] Open
Abstract
Background Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. Methods The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. Results TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. Conclusions We show a triple anti-inflammatory effect of TUDCA on glial cells: i) reduced glial cell activation, ii) reduced microglial cell migratory capacity, and iii) reduced expression of chemoattractants (e.g., MCP-1) and vascular adhesion proteins (e.g., VCAM-1) required for microglial migration and blood monocyte invasion to the CNS inflammation site. Our results present a novel TUDCA anti-inflammatory mechanism, with therapeutic implications for inflammatory CNS diseases.
Collapse
Affiliation(s)
| | | | - Manuel Nieto-Sampedro
- Laboratorio de Plasticidad Neural, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain.
| | | |
Collapse
|
403
|
Han D, Moon S, Kim Y, Min H, Kim Y. Characterization of the membrane proteome and N-glycoproteome in BV-2 mouse microglia by liquid chromatography-tandem mass spectrometry. BMC Genomics 2014; 15:95. [PMID: 24495382 PMCID: PMC3938046 DOI: 10.1186/1471-2164-15-95] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 02/03/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Microglial cells are resident macrophages of the central nervous system and important cellular mediators of the immune response and neuroinflammatory processes. In particular, microglial activation and communication between microglia, astrocytes, and neurons are hallmarks of the pathogenesis of several neurodegenerative diseases. Membrane proteins and their N-linked glycosylation mediate this microglial activation and regulate many biological process including signal transduction, cell-cell communication, and the immune response. Although membrane proteins and N-glycosylation represent a valuable source of drug target and biomarker discovery, the knowledge of their expressed proteome in microglia is very limited. RESULTS To generate a large-scale repository, we constructed a membrane proteome and N-glycoproteome from BV-2 mouse microglia using a novel integrated approach, comprising of crude membrane fractionation, multienzyme-digestion FASP, N-glyco-FASP, and various mass spectrometry. We identified 6928 proteins including 2850 membrane proteins and 1450 distinct N-glycosylation sites on 760 N-glycoproteins, of which 556 were considered novel N-glycosylation sites. Especially, a total of 114 CD antigens are identified via MS-based analysis in normal conditions of microglia for the first time. Our bioinformatics analysis provides a rich proteomic resource for examining microglial function in, for example, cell-to-cell communication and immune responses. CONCLUSIONS Herein, we introduce a novel integrated proteomic approach for improved identification of membrane protein and N-glycosylation sites. To our knowledge, this workflow helped us to obtain the first and the largest membrane proteomic and N-glycoproteomic datesets for mouse microglia. Collectively, our proteomics and bioinformatics analysis significantly expands the knowledge of the membrane proteome and N-glycoproteome expressed in microglia within the brain and constitutes a foundation for ongoing proteomic studies and drug development for various neurological diseases.
Collapse
Affiliation(s)
| | | | | | | | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799, Korea.
| |
Collapse
|
404
|
Yao Y, Tsirka SE. Monocyte chemoattractant protein-1 and the blood-brain barrier. Cell Mol Life Sci 2014; 71:683-97. [PMID: 24051980 PMCID: PMC3946874 DOI: 10.1007/s00018-013-1459-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/20/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that maintains the homeostasis of the brain and thus proper neurological functions. BBB compromise has been found in many pathological conditions, including neuroinflammation. Monocyte chemoattractant protein-1 (MCP1), a chemokine that is transiently and significantly up-regulated during inflammation, is able to disrupt the integrity of BBB and modulate the progression of various diseases, including excitotoxic injury and hemorrhage. In this review, we first introduce the biochemistry and biology of MCP1, and then summarize the effects of MCP1 on BBB integrity as well as individual BBB components.
Collapse
Affiliation(s)
- Yao Yao
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, BST8-192, Stony Brook University, Stony Brook, NY 11794-8651 USA
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10065 USA
| | - Stella E. Tsirka
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, BST8-192, Stony Brook University, Stony Brook, NY 11794-8651 USA
| |
Collapse
|
405
|
Dilshara MG, Lee KT, Choi YH, Moon DO, Lee HJ, Yun SG, Kim GY. Potential chemoprevention of LPS-stimulated nitric oxide and prostaglandin E₂ production by α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyl-3-indolecarbonate in BV2 microglial cells through suppression of the ROS/PI3K/Akt/NF-κB pathway. Neurochem Int 2014; 67:39-45. [PMID: 24486459 DOI: 10.1016/j.neuint.2014.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/15/2014] [Accepted: 01/23/2014] [Indexed: 11/19/2022]
Abstract
α-l-Rhamnopyranosyl-(1→6)-β-d-glucopyranosyl-3-indolecarbonate (RG3I) is a chemical constituent isolated from the commonly used Asian traditional medicinal plant, Clematis mandshurica; however, no studies have been reported on its anti-inflammatory properties. In the present study, we found that RG3I attenuates the lipopolysaccharide (LPS)-induced DNA-binding activity of nuclear factor-κB (NF-κB) via the dephosphorylation of PI3K/Akt in BV2 microglial cells, leading to a suppression of nitric oxide (NO) and prostaglandin E2 (PGE2) production, along with that of their regulatory genes, inducible NO synthase (iNOS) and cyclooxygenase-2 (Cox-2). Further, the PI3K/Akt inhibitor, LY294002 diminished the expression of LPS-stimulated iNOS and COX-2 genes by suppressing NF-κB activity. Moreover, RG3I significantly inhibited LPS-induced reactive oxygen species (ROS) generation similar to the ROS inhibitors, N-acetylcysteine (NAC) and glutathione (GSH). Notably, NAC and GSH abolished the LPS-induced expression of iNOS and Cox-2 in BV2 microglial cells by inhibiting NF-κB activity. Taken together, our data indicate that RG3I suppresses the production of proinflammatory mediators such as NO and PGE2 as well as their regulatory genes in LPS-stimulated BV2 microglial cells by inhibiting the PI3K/Akt- and ROS-dependent NF-κB signaling pathway, suggesting that RG3I may be a good candidate to regulate LPS-induced inflammatory response.
Collapse
Affiliation(s)
- Matharage Gayani Dilshara
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Ara-1 dong, Jeju 690-756, Republic of Korea
| | - Kyoung-Tae Lee
- Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute, 57 Hoegiro, Dongdaemun-gu, Seoul 130-712, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 614-050, Republic of Korea
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-714, Republic of Korea
| | - Hak-Ju Lee
- Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute, 57 Hoegiro, Dongdaemun-gu, Seoul 130-712, Republic of Korea
| | - Sung Gyu Yun
- Department of Biology Education, Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-714, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Ara-1 dong, Jeju 690-756, Republic of Korea.
| |
Collapse
|
406
|
Viscomi MT, Molinari M. Remote neurodegeneration: multiple actors for one play. Mol Neurobiol 2014; 50:368-89. [PMID: 24442481 DOI: 10.1007/s12035-013-8629-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
Remote neurodegeneration significantly influences the clinical outcome in many central nervous system (CNS) pathologies, such as stroke, multiple sclerosis, and traumatic brain and spinal cord injuries. Because these processes develop days or months after injury, they are accompanied by a therapeutic window of opportunity. The complexity and clinical significance of remote damage is prompting many groups to examine the factors of remote degeneration. This research is providing insights into key unanswered questions, opening new avenues for innovative neuroprotective therapies. In this review, we evaluate data from various remote degeneration models to describe the complexity of the systems that are involved and the importance of their interactions in reducing damage and promoting recovery after brain lesions. Specifically, we recapitulate the current data on remote neuronal degeneration, focusing on molecular and cellular events, as studied in stroke and brain and spinal cord injury models. Remote damage is a multifactorial phenomenon in which many components become active in specific time frames. Days, weeks, or months after injury onset, the interplay between key effectors differentially affects neuronal survival and functional outcomes. In particular, we discuss apoptosis, inflammation, oxidative damage, and autophagy-all of which mediate remote degeneration at specific times. We also review current findings on the pharmacological manipulation of remote degeneration mechanisms in reducing damage and sustaining outcomes. These novel treatments differ from those that have been proposed to limit primary lesion site damage, representing new perspectives on neuroprotection.
Collapse
Affiliation(s)
- Maria Teresa Viscomi
- Experimental Neurorehabilitation Laboratory, Santa Lucia Foundation I.R.C.C.S., Via del Fosso di Fiorano 65, 00143, Rome, Italy,
| | | |
Collapse
|
407
|
Sil S, Goswami AR, Dutta G, Ghosh T. Effects of naproxen on immune responses in a colchicine-induced rat model of Alzheimer's disease. Neuroimmunomodulation 2014; 21:304-21. [PMID: 24662962 DOI: 10.1159/000357735] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The components of the immune system have been indicated to be linked with the neurotoxicity in Alzheimer's disease (AD). The participation of the immune system in the neurodegeneration in a rat model of colchicine-induced AD has not been explored. METHODS In the present study, hippocampal neurodegeneration along with reactive oxygen species (ROS), nitrite and TNF-α in the hippocampus and some systemic immune responses were measured after 15 and 21 days of intracerebroventricular colchicine injection in rats and again after oral administration of different doses of the anti-inflammatory drug naproxen in AD rats. RESULTS Chromatolysis and amyloid plaques were found along with higher ROS, nitrite and TNF-α levels in the hippocampus of colchicine-induced AD rats, and these changes were prevented by naproxen in a dose-dependent manner. Alterations in immunological parameters [increased phagocytic activity of white blood cells and splenic polymorphonuclear cells (PMN), increased cytotoxicity and decreased leucocyte adhesive inhibition index (LAI) of splenic mononuclear cells (MNC)] were also observed in colchicine-injected rats, which showed a dose-dependent recovery after oral administration of naproxen in AD rats. The number of plaques, chromatolysis of Nissl granules, TNF-α, nitrite and ROS levels in the hippocampus, phagocytic activity of splenic PMN and LAI of splenic MNC in AD rats showed greater changes in the 21- than in the 15-day study, and the recovery of these parameters after administration of naproxen differed between the two study durations. CONCLUSION The present study shows that colchicine-induced neurodegeneration is time dependent and mediated by cyclooxygenase-induced neuroinflammation, which is reflected in the systemic immunological responses.
Collapse
Affiliation(s)
- Susmita Sil
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, Kolkata, India
| | | | | | | |
Collapse
|
408
|
Holder MK, Blaustein JD. Puberty and adolescence as a time of vulnerability to stressors that alter neurobehavioral processes. Front Neuroendocrinol 2014; 35:89-110. [PMID: 24184692 PMCID: PMC3946873 DOI: 10.1016/j.yfrne.2013.10.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 01/30/2023]
Abstract
Puberty and adolescence are major life transitions during which an individual's physiology and behavior changes from that of a juvenile to that of an adult. Here we review studies documenting the effects of stressors during pubertal and adolescent development on the adult brain and behavior. The experience of complex or compound stressors during puberty/adolescence generally increases stress reactivity, increases anxiety and depression, and decreases cognitive performance in adulthood. These behavioral changes correlate with decreased hippocampal volumes and alterations in neural plasticity. Moreover, stressful experiences during puberty disrupt behavioral responses to gonadal hormones both in sexual performance and on cognition and emotionality. These behavioral changes correlate with altered estrogen receptor densities in some estrogen-concentrating brain areas, suggesting a remodeling of the brain's response to hormones. A hypothesis is presented that activation of the immune system results in chronic neuroinflammation that may mediate the alterations of hormone-modulated behaviors in adulthood.
Collapse
Affiliation(s)
- Mary K Holder
- Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA; Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA.
| | - Jeffrey D Blaustein
- Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA; Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA.
| |
Collapse
|
409
|
Yao ZA, Xu L, Wu HG. Immunomodulatory function of κ-carrageenan oligosaccharides acting on LPS-activated microglial cells. Neurochem Res 2013; 39:333-43. [PMID: 24357352 DOI: 10.1007/s11064-013-1228-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/22/2013] [Accepted: 12/11/2013] [Indexed: 01/08/2023]
Abstract
The major neurodegenerative diseases are characterized by increasing of activated-microglial cells and inflammatory cytokines in the central nervous system. Carrageenan extracted from red algae is a kind of polysaccharide with sulfate groups. The oligosaccharides were obtained from carrageenan by enzymatic degradation. To detect the immunomodulatory activity of κ-carrageenan oligosaccharides (KOS) on microglial cells and the relationship to the sulfate group content, the desulfated derivatives of KOS (DSK) were obtained by dimethyl sulfoxide-methanol-pyridine method. KOS was labeled with fluorescein isothiocyanate. The effect of KOS and DSK on lipopolysaccharide (LPS)-activated microglial cells was detected. Hematoxylin-eosin staining and flow cytometric were used to detect the cell viability. The "scratch" migration assay, ornithine analysis and RT-PCR were used to determine the cell migration, arginase and TNF-α released by microglial cells, respectively. The effect of LPS and KOS on microglial cells was determined by flow cytometry and laser scanning confocal microscopy. The results showed that KOS and DSK could inhibit the cell viability, arginase and TNF-α released by LPS-activated microglia cell with concentration dependent manner. But the effect of DSK was weaker than that of KOS. KOS aggregated on the cell surface firstly, and then they enter into the cell to the nucleus, spread over the entire cell finally. But the exist of LPS could prevent the entrance of KOS. It could be concluded that KOS could protect microglial cells from being activated by LPS, and its inhibition function had relationship to the sulfate group content of KOS, while there were competition between LPS and KOS.
Collapse
Affiliation(s)
- Zi-Ang Yao
- College of Life Science and Technology, Dalian University, Dalian, 116622, China
| | | | | |
Collapse
|
410
|
Bruynsteen L, Erkens T, Peelman LJ, Ducatelle R, Janssens GPJ, Harris PA, Hesta M. Expression of inflammation-related genes is associated with adipose tissue location in horses. BMC Vet Res 2013; 9:240. [PMID: 24295090 PMCID: PMC4220830 DOI: 10.1186/1746-6148-9-240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
Background In humans, adipose tissue (AT) originating from different depots shows varying gene expression profiles. In horses, the risk of certain metabolic disorders may also be influenced by the impact of specific AT depots. Macrophage infiltration in human and rat AT is considered to be a source of inflammatory changes. In horses, this relationship has not been extensively studied yet. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), a useful method to evaluate differences in mRNA expression across different tissues, can be used to evaluate differences between equine AT depots. For a correct interpretation of the RT-qPCR results, expression data have to be normalized by the use of validated reference genes. The main objectives of this study were to compare mRNA expression of inflammation-related genes, as well as adipocyte morphology and number between different equine AT depots; and in addition, to investigate the presence of antigen presenting cells in equine AT and any potential relationship with adipokine mRNA expression. Results In this study, the mRNA expression of inflammation-related genes (leptin, chemokine ligand 5, interleukin 1β, interleukin 6, interleukin 10, adiponectin, matrix metalloproteinase 2, and superoxide dismutase 2) and candidate reference gene stability was investigated in 8 different AT depots collected from the nuchal, abdominal (mesenteric, retroperitoneal, and peri-renal) and subcutaneous (tail head and loin) AT region. By using GeNorm analysis, HPRT1, RPL32, and GAPDH were found to be the most stable genes in equine AT. The mRNA expression of leptin, chemokine ligand 5, interleukin 10, interleukin 1β, adiponectin, and matrix metalloproteinase 2 significantly differed across AT depots (P < 0.05). No significant AT depot effect was found for interleukin 6 and superoxide dismutase 2 (P > 0.05). Adipocyte area and number of antigen presenting cells per adipocyte significantly differed between AT depots (P < 0.05). Conclusions Adipose tissue location was associated with differences in mRNA expression of inflammation-related genes. This depot-specific difference in mRNA expression suggests that the overall inflammatory status of horses could be partially determined by the relative proportion of the different AT depots.
Collapse
Affiliation(s)
- Lien Bruynsteen
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke 9820, Belgium.
| | | | | | | | | | | | | |
Collapse
|
411
|
Dambach H, Hinkerohe D, Prochnow N, Stienen MN, Moinfar Z, Haase CG, Hufnagel A, Faustmann PM. Glia and epilepsy: Experimental investigation of antiepileptic drugs in an astroglia/microglia co-culture model of inflammation. Epilepsia 2013; 55:184-92. [DOI: 10.1111/epi.12473] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Hannes Dambach
- Department of Neuroanatomy and Molecular Brain Research; Ruhr University Bochum; Bochum Germany
| | - Daniel Hinkerohe
- Department of Neurology; Ruhr-University Bochum; Knappschafts Hospital; Bochum Germany
| | - Nora Prochnow
- Department of Neuroanatomy and Molecular Brain Research; Ruhr University Bochum; Bochum Germany
- International Graduate School of Neuroscience (IGSN); Ruhr University Bochum; Bochum Germany
| | - Martin N. Stienen
- Department of Neuroanatomy and Molecular Brain Research; Ruhr University Bochum; Bochum Germany
| | - Zahra Moinfar
- Department of Neuroanatomy and Molecular Brain Research; Ruhr University Bochum; Bochum Germany
- International Graduate School of Neuroscience (IGSN); Ruhr University Bochum; Bochum Germany
| | - Claus G. Haase
- Department of Neurology; Holy Spirit Hospital; Köln Germany
| | | | - Pedro M. Faustmann
- Department of Neuroanatomy and Molecular Brain Research; Ruhr University Bochum; Bochum Germany
- International Graduate School of Neuroscience (IGSN); Ruhr University Bochum; Bochum Germany
| |
Collapse
|
412
|
Zhao P, Yang Y, Feng H, Zhao L, Qin J, Zhang T, Wang H, Yang S, Xia X. Global gene expression changes in BV2 microglial cell line during rabies virus infection. INFECTION GENETICS AND EVOLUTION 2013; 20:257-69. [DOI: 10.1016/j.meegid.2013.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/02/2013] [Accepted: 09/12/2013] [Indexed: 12/25/2022]
|
413
|
Zhao GW, Wang Y, Li YC, Jiang ZL, Sun L, Xi X, He P, Wang GH, Xu SH, Ma DM, Ke KF. The neuroprotective effect of modified "Shengyu" decoction is mediated through an anti-inflammatory mechanism in the rat after traumatic brain injury. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:694-703. [PMID: 24296086 DOI: 10.1016/j.jep.2013.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Shengyu" decoction, a traditional Chinese medicine, has been used to treat diseases with deficit in "qi" and "blood" induced frequently by profound loss of blood or by long sores with heavy pus, in which a potential anti-inflammatory effect is implied. The modified "Shengyu" decoction (MSD) used in the present study was designed on the basis of the "Shengyu" decoction, additional four herbs were added in. Many ingredients in these herbs have been demonstrated to be anti-inflammatory and thus MSD may be used for the treatment of traumatic brain injury (TBI). To evaluate the neuroprotective effect and the underlying mechanisms of MSD on the rat brain after TBI. MATERIALS AND METHODS TBI was induced in the right cerebral cortex of male adult rats using Feeney's weight-drop method. The rats were administered a gavage of MSD (0.5, 1.0 or 2.0 ml/200 g) 6h after TBI. The neurological functions, brain water content, contusion volume, and neuron loss were determined. The levels of TNF-α, IL-1β, IL-6, and IL-10 and the number of GFAP- and Iba1-positive cells in the brain ipsilateral to TBI were also measured. Moreover, the influence of MSD on these variables was observed at the same time. RESULTS The neurological deficits, brain water content, and neuron loss were significantly reduced after 1.0 or 2.0 ml/200 g of MSD treatment but not after 0.5 ml/200 g. In addition, treatment with MSD (1.0 ml/200 g) significantly increased the level of IL-10 and reduced the level of TNF-α and IL-1β and the number of GFAP- and Iba1-positive cells after TBI. However, the contusion volume of brain tissue and the expression of IL-6 were not significantly changed. CONCLUSION MSD may be a potential therapeutic for the treatment of TBI because MSD alleviated secondary brain injury induced by TBI. In addition, MSD inhibited the inflammatory response through reducing the expression of inflammatory cytokines and the activation of microglial cells and astrocytes in the brain tissue of rats after TBI. Therefore, a potential anti-inflammatory mechanism of the "Shengyu" decoction was confirmed, which may be one of the main reasons of "Shengyu" decoction used to treat diseases with obvious inflammatory responses.
Collapse
Affiliation(s)
- Guang-Wei Zhao
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Nantong, Jiangsu 226001, China; Department of Neurology, Affiliated Hospital, Nantong University, 20 Xishi Road, Chongchuan District, Nantong, Jiangsu 226001, China; Department of Neurology, The People's Hospital of Gaocheng, Hebei 052160, China
| | - Yong Wang
- Department of Neurosurgery and Chinese Medicine, The People's Hospital of Nantong, Jiangsu 226001, China
| | - Yong-Cai Li
- Department of Neurosurgery, The People's Hospital of Ningxia, Yinchuan, Ningxia 750021, China.
| | - Zheng-Lin Jiang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Nantong, Jiangsu 226001, China; Department of Neurology, Affiliated Hospital, Nantong University, 20 Xishi Road, Chongchuan District, Nantong, Jiangsu 226001, China.
| | - Li Sun
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Nantong, Jiangsu 226001, China
| | - Xin Xi
- Department of Neurosurgery and Chinese Medicine, The People's Hospital of Nantong, Jiangsu 226001, China
| | - Peng He
- Department of Neurosurgery, The People's Hospital of Ningxia, Yinchuan, Ningxia 750021, China
| | - Guo-Hua Wang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Nantong, Jiangsu 226001, China
| | - Shi-Hui Xu
- Department of Neurosurgery, The People's Hospital of Ningxia, Yinchuan, Ningxia 750021, China
| | - Dong-Ming Ma
- Department of Neurosurgery, The People's Hospital of Ningxia, Yinchuan, Ningxia 750021, China
| | - Kai-Fu Ke
- Department of Neurology, Affiliated Hospital, Nantong University, 20 Xishi Road, Chongchuan District, Nantong, Jiangsu 226001, China
| |
Collapse
|
414
|
Shin JW, Moon JY, Seong JW, Song SH, Cheong YJ, Kang C, Sohn NW. Effects of Tetramethylpyrazine on Microglia Activation in Spinal Cord Compression Injury of Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:1361-76. [PMID: 24228606 DOI: 10.1142/s0192415x13500912] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Secondary mechanisms, including inflammation and microglia activation, serve as targets for the development and application of pharmacological strategies in the management of spinal cord injury (SCI). Tetramethylpyrazine (TMP), an active ingredient of Ligusticum wallichii (chuanxiong), has shown anti-inflammatory and neuroprotective effects against SCI. However, it remains uncertain whether the inflammation-suppressive effects of TMP play a modulatory role over microglia activation in SCI. The present study investigated the effects of TMP on microglia activation and pro-inflammatory cytokines in spinal cord compression injury in mice. For a real-time PCR measurement of pro-inflammatory cytokines, SCI was induced in mice by the clip compression method (30 g force, 1 min) and TMP (15 or 30 mg/kg, i.p.) was administered once, 30 minutes before the SCI induction. For immunohistochemistry, TMP (30 mg/kg, i.p.) treatment was given three times during the first 48 hours after the SCI. 30 mg/kg of TMP treatment reduced the up-regulation of TNF-α, IL-1β and COX-2 mRNA in the spinal tissue at four hours after the SCI induction. TMP also significantly attenuated microglia activation and neutrophil infiltration at 48 hours after the SCI induction. In addition, iNOS expression in the spinal tissue was attenuated with TMP treatment. These results suggest that TMP plays a modulatory role in microglia activation and may protect the spinal cord from or potentially delay secondary spinal cord injury.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Ja-Young Moon
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Ju-Won Seong
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Sang-Hoon Song
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Young-Jin Cheong
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Chulhun Kang
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Nak-Won Sohn
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| |
Collapse
|
415
|
Microglia: an active player in the regulation of synaptic activity. Neural Plast 2013; 2013:627325. [PMID: 24303218 PMCID: PMC3835777 DOI: 10.1155/2013/627325] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 12/18/2022] Open
Abstract
Synaptic plasticity is critical for elaboration and adaptation in the developing and developed brain. It is well established that astrocytes play an important role in the maintenance of what has been dubbed “the tripartite synapse”. Increasing evidence shows that a fourth cell type, microglia, is critical to this maintenance as well. Microglia are the resident macrophages of the central nervous system (CNS). Because of their well-characterized inflammatory functions, research has primarily focused on their innate immune properties. The role of microglia in the maintenance of synapses in development and in homeostasis is not as well defined. A number of significant findings have shed light on the critical role of microglia at the synapse. It is becoming increasingly clear that microglia play a seminal role in proper synaptic development and elimination.
Collapse
|
416
|
Jha MK, Seo M, Kim JH, Kim BG, Cho JY, Suk K. The secretome signature of reactive glial cells and its pathological implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2418-28. [PMID: 23269363 DOI: 10.1016/j.bbapap.2012.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022]
|
417
|
Jha MK, Kim JH, Suk K. Proteome of brain glia: the molecular basis of diverse glial phenotypes. Proteomics 2013; 14:378-98. [PMID: 24124134 DOI: 10.1002/pmic.201300236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/16/2013] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
Abstract
Several different types of nonneuronal glial cells with diverse phenotypes are present in the CNS, and all have distinct indispensible functions. Although glial cells primarily provide neurons with metabolic and structural support in the healthy brain, they may switch phenotype from a "resting" to a "reactive" state in response to pathological insults. Furthermore, this reactive gliosis is an invariant feature of the pathogeneses of CNS maladies. The glial proteome serves as a signature of glial phenotype, and not only executes physiological functions, but also acts as a molecular mediator of the reactive glial phenotype. The glial proteome is also involved in intra- and intercellular communications as exemplified by glia-glia and neuron-glia interactions. The utilization of authoritative proteomic tools and the bioinformatic analyses have helped to profile the brain glial proteome and explore the molecular mechanisms of diverse glial phenotypes. Furthermore, technologic innovations have equipped the field of "glioproteomics" with refined tools for studies of the expression, interaction, and function of glial proteins in the healthy and in the diseased CNS. Glioproteomics is expected to contribute to the elucidation of the molecular mechanisms of CNS pathophysiology and to the discovery of biomarkers and theragnostic targets in CNS disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, South Korea
| | | | | |
Collapse
|
418
|
Bhaskar K, Maphis N, Xu G, Varvel NH, Kokiko-Cochran ON, Weick JP, Staugaitis SM, Cardona A, Ransohoff RM, Herrup K, Lamb BT. Microglial derived tumor necrosis factor-α drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis 2013; 62:273-85. [PMID: 24141019 DOI: 10.1016/j.nbd.2013.10.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/01/2013] [Accepted: 10/06/2013] [Indexed: 01/06/2023] Open
Abstract
Massive neuronal loss is a key pathological hallmark of Alzheimer's disease (AD). However, the mechanisms are still unclear. Here we demonstrate that neuroinflammation, cell autonomous to microglia, is capable of inducing neuronal cell cycle events (CCEs), which are toxic for terminally differentiated neurons. First, oligomeric amyloid-beta peptide (AβO)-mediated microglial activation induced neuronal CCEs via the tumor-necrosis factor-α (TNFα) and the c-Jun Kinase (JNK) signaling pathway. Second, adoptive transfer of CD11b+ microglia from AD transgenic mice (R1.40) induced neuronal cyclin D1 expression via TNFα signaling pathway. Third, genetic deficiency of TNFα in R1.40 mice (R1.40-Tnfα(-/-)) failed to induce neuronal CCEs. Finally, the mitotically active neurons spatially co-exist with F4/80+ activated microglia in the human AD brain and that a portion of these neurons are apoptotic. Together our data suggest a cell-autonomous role of microglia, and identify TNFα as the responsible cytokine, in promoting neuronal CCEs in the pathogenesis of AD.
Collapse
Affiliation(s)
- Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Nicole Maphis
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Guixiang Xu
- Department of Neurosciences, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Nicholas H Varvel
- Department of Cellular Neurology, University of Tübingen, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 27, 72076 Tübingen, Germany.
| | - Olga N Kokiko-Cochran
- Department of Neurosciences, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico, MSC08 4740, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Susan M Staugaitis
- Department of Neurosciences, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Astrid Cardona
- Department of Biology, University of Texas San Antonio, West Campus/Tobin lab MBT 1.216, San Antonio, TX 78249, USA.
| | - Richard M Ransohoff
- Department of Neurosciences, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Karl Herrup
- Department of Cell Biology and Neuroscience, Rutgers University, Nelson Hall, Busch Campus, Piscataway, NJ 08855, USA.
| | - Bruce T Lamb
- Department of Neurosciences, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
419
|
Wang L, Jiang Q, Chu J, Lin L, Li XG, Chai GS, Wang Q, Wang JZ, Tian Q. Expression of Tau40 induces activation of cultured rat microglial cells. PLoS One 2013; 8:e76057. [PMID: 24146816 PMCID: PMC3795725 DOI: 10.1371/journal.pone.0076057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulation of microtubule-associated protein tau has been observed in the brain of aging and tauopathies. Tau was observed in microglia, but its role is not illustrated. By immunofluorescence staining and the fractal dimension value assay in the present study, we observed that microglia were activated in the brains of rats and mice during aging, simultaneously, the immunoreactivities of total tau and the phosphorylated tau were significantly enhanced in the activated microglia. Furtherly by transient transfection of tau40 (human 2N/4R tau) into the cultured rat microglia, we demonstrated that expression of tau40 increased the level of Iba1, indicating activation of microglia. Moreover, expression of tau40 significantly enhanced the membranous localization of the phosphorylated tau at Ser396 in microglia possibly by a mechanism involving protein phosphatase 2A, extracellular signal-regulated kinase and glycogen synthase kinase-3β. It was also found that expression of tau40 promoted microglial migration and phagocytosis, but not proliferation. And we observed increased secretion of several cytokines, including interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α and nitric oxide after the expression of tau40. These data suggest a novel role of human 2N/4R tau in microglial activation.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Qian Jiang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chu
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Guang Li
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao-Shang Chai
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (JZW); (QT)
| | - Qing Tian
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (JZW); (QT)
| |
Collapse
|
420
|
Agrawal RG, Owen JA, Levin PS, Hewetson A, Berman AE, Franklin SR, Hogue RJ, Chen Y, Walz C, Colvard BD, Nguyen J, Velasquez O, Al-Hasan Y, Blednov YA, Fowler AK, Syapin PJ, Bergeson SE. Bioinformatics analyses reveal age-specific neuroimmune modulation as a target for treatment of high ethanol drinking. Alcohol Clin Exp Res 2013; 38:428-37. [PMID: 24125126 DOI: 10.1111/acer.12288] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/16/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Use of in silico bioinformatics analyses has led to important leads in the complex nature of alcoholism at the genomic, epigenomic, and proteomic level, but has not previously been successfully translated to the development of effective pharmacotherapies. In this study, a bioinformatics approach led to the discovery of neuroimmune pathways as an age-specific druggable target. Minocycline, a neuroimmune modulator, reduced high ethanol (EtOH) drinking in adult, but not adolescent, mice as predicted a priori. METHODS Age and sex-divergent effects in alcohol consumption were quantified in FVB/NJ × C57BL/6J F1 mice given access to 20% alcohol using a 4 h/d, 4-day drinking-in-dark (DID) paradigm. In silico bioinformatics pathway overrepresentation analysis for age-specific effects of alcohol in brain was performed using gene expression data collected in control and DID-treated, adolescent and adult, male mice. Minocycline (50 mg/kg i.p., once daily) or saline alone was tested for an effect on EtOH intake in the F1 and C57BL/6J (B6) mice across both age and gender groups. Effects of minocycline on the pharmacokinetic properties of alcohol were evaluated by comparing the rates of EtOH elimination between the saline- and minocycline-treated F1 and B6 mice. RESULTS Age and gender differences in DID consumption were identified. Only males showed a clear developmental increase difference in drinking over time. In silico analyses revealed neuroimmune-related pathways as significantly overrepresented in adult, but not in adolescent, male mice. As predicted, minocycline treatment reduced drinking in adult, but not adolescent, mice. The age effect was present for both genders, and in both the F1 and B6 mice. Minocycline had no effect on the pharmacokinetic elimination of EtOH. CONCLUSIONS Our results are a proof of concept that bioinformatics analysis of brain gene expression can lead to the generation of new hypotheses and a positive translational outcome for individualized pharmacotherapeutic treatment of high alcohol consumption.
Collapse
Affiliation(s)
- Rajiv G Agrawal
- Department of Pharmacology and Neuroscience, South Plains Alcohol and Addiction Research Center, Texas Tech University Health Science Center, Lubbock, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
421
|
Duncan KA, Moon J, Vartosis D, Zee I. Injury-induced expression of glial androgen receptor in the zebra finch brain. J Neurotrauma 2013; 30:1919-24. [PMID: 23819447 DOI: 10.1089/neu.2013.2951] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Astrogliosis occurs following injury to the zebra finch brain. To date, only estrogen synthase (aromatase) has been identified in injury-induced astrocytes. The expression of other steroidogenic enzymes or their receptors remains unknown in the avian brain. However, in mammals, an upregulation of androgen receptors has been identified in glial cells. The aim of this study was to determine if the androgen receptor is upregulated following injury in adult zebra finches. Finches were given a single penetrating injury and brain tissue was collected 24 or 72 h later. Expression of androgen receptor was examined using immunohistochemistry and quantified using quantitative polymerase chain reaction (qPCR) analysis. Androgen receptors were localized to astrocytes versus neurons, further solidifying the role for astrocytes in neural recovery.
Collapse
Affiliation(s)
- Kelli A Duncan
- Department of Biology, Vassar College , Poughkeepsie, New York
| | | | | | | |
Collapse
|
422
|
Hossain MM, Sonsalla PK, Richardson JR. Coordinated role of voltage-gated sodium channels and the Na+/H+ exchanger in sustaining microglial activation during inflammation. Toxicol Appl Pharmacol 2013; 273:355-64. [PMID: 24070585 DOI: 10.1016/j.taap.2013.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/23/2013] [Accepted: 09/13/2013] [Indexed: 11/18/2022]
Abstract
Persistent neuroinflammation and microglial activation play an integral role in the pathogenesis of many neurological disorders. We investigated the role of voltage-gated sodium channels (VGSC) and Na(+)/H(+) exchangers (NHE) in the activation of immortalized microglial cells (BV-2) after lipopolysaccharide (LPS) exposure. LPS (10 and 100 ng/ml) caused a dose- and time-dependent accumulation of intracellular sodium [(Na(+))i] in BV-2 cells. Pre-treatment of cells with the VGSC antagonist tetrodotoxin (TTX, 1 μM) abolished short-term Na(+) influx, but was unable to prevent the accumulation of (Na(+))i observed at 6 and 24h after LPS exposure. The NHE inhibitor cariporide (1 μM) significantly reduced accumulation of (Na(+))i 6 and 24h after LPS exposure. Furthermore, LPS increased the mRNA expression and protein level of NHE-1 in a dose- and time-dependent manner, which was significantly reduced after co-treatment with TTX and/or cariporide. LPS increased production of TNF-α, ROS, and H2O2 and expression of gp91(phox), an active subunit of NADPH oxidase, in a dose- and time-dependent manner, which was significantly reduced by TTX or TTX+cariporide. Collectively, these data demonstrate a closely-linked temporal relationship between VGSC and NHE-1 in regulating function in activated microglia, which may provide avenues for therapeutic interventions aimed at reducing neuroinflammation.
Collapse
Affiliation(s)
- Muhammad M Hossain
- Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | | |
Collapse
|
423
|
Glat M, Skaat H, Menkes-Caspi N, Margel S, Stern EA. Age-dependent effects of microglial inhibition in vivo on Alzheimer's disease neuropathology using bioactive-conjugated iron oxide nanoparticles. J Nanobiotechnology 2013; 11:32. [PMID: 24059692 PMCID: PMC3851539 DOI: 10.1186/1477-3155-11-32] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/16/2013] [Indexed: 11/25/2022] Open
Abstract
Background Tau dysfunction is believed to be the primary cause of neurodegenerative disorders referred to as tauopathies, including Alzheimer’s disease, Pick’s disease, frontotemporal dementia and Parkinsonism. The role of microglial cells in the pathogenesis of tauopathies is still unclear. The activation of microglial cells has been correlated with neuroprotective effects through the release of neurotrophic factors and through clearance of cell debris and phagocytosis of cells with intracellular inclusions. In contrast, microglial activation has also been linked with chronic neuroinflammation contributing to the development of neurodegenerative diseases such as tauopathies. Microglial activation has been recently reported to precede tangle formation and the attenuation of tau pathology occurs after immunosuppression of transgenic mice. Methods Here we report the specific inhibition of microglial cells in rTg4510 tau-mutant mice by using fibrin γ377-395 peptide conjugated to iron oxide (γ-Fe2O3) nanoparticles of 21 ± 3.5 nm diameter. Results Stabilization of the peptide by its covalent conjugation to the γ-Fe2O3 nanoparticles significantly decreased the number of the microglial cells compared to the same concentration of the free peptide. The specific microglial inhibition induces different effects on tau pathology in an age dependent manner. The reduction of activation of microglial cells at an early age increases the number of neurons with hyperphosphorylated tau in transgenic mice. In contrast, reduction of activation of microglial cells reduced the severity of the tau pathology in older mice. The number of neurons with hyperphosphorylated tau and the number of neurons with tangles are reduced than those in animals not receiving the fibrin γ377-395 peptide-nanoparticle conjugate. Conclusions These results demonstrate a differential effect of microglial activity on tau pathology using the fibrin γ377-395 peptide-nanoparticle conjugate, depending on age and/or stage of the neuropathological accumulation and aggregation.
Collapse
Affiliation(s)
- Micaela Glat
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | | | |
Collapse
|
424
|
Won SY, Kim SR, Maeng S, Jin BK. Interleukin-13/Interleukin-4-induced oxidative stress contributes to death of prothrombinkringle-2 (pKr-2)-activated microglia. J Neuroimmunol 2013; 265:36-42. [PMID: 24090651 DOI: 10.1016/j.jneuroim.2013.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 01/28/2023]
Abstract
The present study examined whether Interleukin-13 (IL-13) or IL-4, an anti-inflammatory cytokine, could induce cell death of activated microglia by prothrombin kringle-2 (pKr-2) which is a domain of prothrombin distinct from thrombin. Microglia cell death was detected at eight days after co-treatment of pKr-2 with IL-13/IL-4 in vitro. This cell death was assessed by live assay, dead assay, TUNEL and MTT assay. In parallel, reactive oxygen species (ROS) production was evident as assessed by superoxide assay, WST-1 and analyzing DCF in combination of pKr-2 and IL-13 or IL-4 treated microglia. The IL-13/IL-4-enhanced ROS production and cell death in pKr-2 activated microglia was partially inhibited by an NADPH oxidase inhibitor, apocynin and/or by several antioxidants. Moreover, Western blot analysis showed a significant increase in cyclooxygenase-2 (COX-2) expression in combination of pKr-2 and IL-13 or IL-4 treated microglia, which was partially inhibited by apocynin and an antioxidant, trolox. Additional studies demonstrated that microglia cell death was reversed by treatment with COX-2 inhibitor, NS398. Our data strongly suggest that oxidative stress and COX-2 activation through NADPH oxidase may contribute to IL-13/IL-4 induced cell death of pKr-2 activated microglia.
Collapse
Affiliation(s)
- So-Yoon Won
- Department of Biochemistry and Medical Research Center, Chungbuk National University College of Medicine, Cheongju 361-763, South Korea
| | | | | | | |
Collapse
|
425
|
Wu HY, Chung MC, Wang CC, Huang CH, Liang HJ, Jan TR. Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells. Part Fibre Toxicol 2013; 10:46. [PMID: 24047432 PMCID: PMC3851143 DOI: 10.1186/1743-8977-10-46] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/09/2013] [Indexed: 11/17/2022] Open
Abstract
Background Superparamagnetic iron oxide nanoparticles (IONPs) have been used as magnetic resonance imaging contrast agents for various research and diagnostic purposes, such as the detection of neuroinflammation and blood-brain-barrier integrity. As the central resident macrophage-like cells, microglia are responsible for managing foreign agents invading the CNS. The present study investigated the direct effect of IONPs on the production of pro-inflammatory cytokines by murine microglia stimulated with lipopolysaccharide (LPS). Methods Primary murine microglial cells were pretreated with IONPs (1–50 μg Fe/mL) for 30 min and then stimulated with LPS (100 ng/mL) for 24 h. Confocal microscopy is used to visualize the intracellular IONP distribution and secretory lysosomes after staining with LysoTracker and Rab27a, respectively. The production of interleukin (IL)-1β and tumor necrosis factor (TNF)-α was quantified by ELISA. The activity of IL-1β converting enzyme (ICE) and TNF-α converting enzyme (TACE) was measured by fluorescent microplate assay using specific substrates. The lysosomal number, alkalinity, permeability and cathepsin B activity were determined by flow cytometry with ectodermal dysplasia-1, lysosensor and acridine orange staining, and using cathepsin B specific substrate, respectively. Results Confocal imaging revealed that IONPs were markedly engulfed by microglia. Exposure to IONPs attenuated the production of IL-1β, but not TNF-α. Concordantly, the activity of ICE, but not the TACE, was suppressed in IONP-treated cells. Mechanistic studies showed that IONPs accumulated in lysosomes and the number of lysosomes was increased in IONP-treated cells. In addition, exposure to IONPs increased lysosomal permeability and alkalinity, but decreased the activity of cathepsin B, a secretory lysosomal enzyme involved in the activation of ICE. Conclusions Our results demonstrated a contrasting effect of IONPs on the production of IL-1β and TNF-α by LPS-stimulated microglia, in which the attenuation of IL-1β by IONPs was mediated by inhibiting the secretory lysosomal pathway of cytokine processing.
Collapse
Affiliation(s)
- Hsin-Ying Wu
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No,1, Sec, 4, Roosevelt Road, Taipei 10617, Taiwan.
| | | | | | | | | | | |
Collapse
|
426
|
Han D, Moon S, Kim Y, Kim J, Jin J, Kim Y. In-depth proteomic analysis of mouse microglia using a combination of FASP and StageTip-based, high pH, reversed-phase fractionation. Proteomics 2013; 13:2984-8. [PMID: 23943505 DOI: 10.1002/pmic.201300091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/02/2013] [Accepted: 07/20/2013] [Indexed: 11/07/2022]
Abstract
Microglia are major immune cells in the central nervous system. A characterization of microglia proteome would facilitate on the study of microglial functions in association with various neurodegenerative diseases. To build a reference proteome, we established a BV-2 microglial proteome to a depth of 5494 unique protein groups using a novel strategy that combined FASP, StageTip-based high pH fractionation, and high-resolution MS quickly and cost efficiently. By bioinformatics analysis, the BV-2 proteome is a valuable resource for studies of microglial function, such as in the immune response, inflammatory response, and phagocytosis. All MS data have been deposited in the ProteomeXchange with identifier PXD000168.
Collapse
Affiliation(s)
- Dohyun Han
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea; Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
427
|
Woller SA, Hook MA. Opioid administration following spinal cord injury: implications for pain and locomotor recovery. Exp Neurol 2013; 247:328-41. [PMID: 23501709 PMCID: PMC3742731 DOI: 10.1016/j.expneurol.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries.
Collapse
Affiliation(s)
- Sarah A Woller
- Texas A&M Institute for Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | |
Collapse
|
428
|
JNK and NADPH oxidase involved in fluoride-induced oxidative stress in BV-2 microglia cells. Mediators Inflamm 2013; 2013:895975. [PMID: 24072958 PMCID: PMC3773420 DOI: 10.1155/2013/895975] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022] Open
Abstract
Excessive fluoride may cause central nervous system (CNS) dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS), and NADPH oxidase (NOX) is the major enzyme for the production of extracellular superoxide in microglia. ROS have been characterized as an important secondary messenger and modulator for various mammalian intracellular signaling pathways, including the MAPK pathways. In this study we examined ROS production and TNF-α, IL-1β inflammatory cytokines releasing, and the expression of MAPKs in BV-2 microglia cells treated with fluoride. We found that fluoride increased JNK phosphorylation level of BV-2 cells and pretreatment with JNK inhibitor SP600125 markedly reduced the levels of intracellular O2·− and NO. NOX inhibitor apocynin and iNOS inhibitor SMT dramatically decreased NaF-induced ROS and NO generations, respectively. Antioxidant melatonin (MEL) resulted in a reduction in JNK phosphorylation in fluoride-stimulated BV-2 microglia. The results confirmed that NOX and iNOS played an important role in fluoride inducing oxidative stress and NO production and JNK took part in the oxidative stress induced by fluoride and meanwhile also could be activated by ROS in fluoride-treated BV-2 cells.
Collapse
|
429
|
Zhang J, Niu N, Li B, McNutt MA. Neuron-derived IgG protects neurons from complement-dependent cytotoxicity. J Histochem Cytochem 2013; 61:869-79. [PMID: 23979841 DOI: 10.1369/0022155413504196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Passive immunity of the nervous system has traditionally been thought to be predominantly due to the blood-brain barrier. This concept must now be revisited based on the existence of neuron-derived IgG. The conventional concept is that IgG is produced solely by mature B lymphocytes, but it has now been found to be synthesized by murine and human neurons. However, the function of this endogenous IgG is poorly understood. In this study, we confirm IgG production by rat cortical neurons at the protein and mRNA levels, with 69.0 ± 5.8% of cortical neurons IgG-positive. Injury to primary-culture neurons was induced by complement leading to increases in IgG production. Blockage of neuron-derived IgG resulted in more neuronal death and early apoptosis in the presence of complement. In addition, FcγRI was found in microglia and astrocytes. Expression of FcγR I in microglia was increased by exposure to neuron-derived IgG. Release of NO from microglia triggered by complement was attenuated by neuron-derived IgG, and this attenuation could be reversed by IgG neutralization. These data demonstrate that neuron-derived IgG is protective of neurons against injury induced by complement and microglial activation. IgG appears to play an important role in maintaining the stability of the nervous system.
Collapse
|
430
|
Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 2013; 10:106. [PMID: 23971414 PMCID: PMC3765323 DOI: 10.1186/1742-2094-10-106] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022] Open
Abstract
Background Previous studies have shown beneficial effects of mesenchymal stem cell (MSC) transplantation in central nervous system (CNS) injuries, including traumatic brain injury (TBI). Potential repair mechanisms involve transdifferentiation to replace damaged neural cells and production of growth factors by MSCs. However, few studies have simultaneously focused on the effects of MSCs on immune cells and inflammation-associated cytokines in CNS injury, especially in an experimental TBI model. In this study, we investigated the anti-inflammatory and immunomodulatory properties of MSCs in TBI-induced neuroinflammation by systemic transplantation of MSCs into a rat TBI model. Methods/results MSCs were transplanted intravenously into rats 2 h after TBI. Modified neurologic severity score (mNSS) tests were performed to measure behavioral outcomes. The effect of MSC treatment on neuroinflammation was analyzed by immunohistochemical analysis of astrocytes, microglia/macrophages, neutrophils and T lymphocytes and by measuring cytokine levels [interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-10, IL-17, tumor necrosis factor-α, interferon-γ, RANTES, macrophage chemotactic protein-1, macrophage inflammatory protein 2 and transforming growth factor-β1] in brain homogenates. The immunosuppression-related factors TNF-α stimulated gene/protein 6 (TSG-6) and nuclear factor-κB (NF-κB) were examined by reverse transcription-polymerase chain reaction and Western blotting. Intravenous MSC transplantation after TBI was associated with a lower density of microglia/macrophages and peripheral infiltrating leukocytes at the injury site, reduced levels of proinflammatory cytokines and increased anti-inflammatory cytokines, possibly mediated by enhanced expression of TSG-6, which may suppress activation of the NF-κB signaling pathway. Conclusions The results of this study suggest that MSCs have the ability to modulate inflammation-associated immune cells and cytokines in TBI-induced cerebral inflammatory responses. This study thus offers a new insight into the mechanisms responsible for the immunomodulatory effect of MSC transplantation, with implications for functional neurological recovery after TBI.
Collapse
Affiliation(s)
- Run Zhang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
431
|
Yamada J, Jinno S. Novel objective classification of reactive microglia following hypoglossal axotomy using hierarchical cluster analysis. J Comp Neurol 2013; 521:1184-201. [PMID: 22987820 DOI: 10.1002/cne.23228] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/01/2012] [Accepted: 09/10/2012] [Indexed: 12/30/2022]
Abstract
A total of 136 microglia were intracellularly labeled and their morphological features were evaluated by 3D morphometric measurement. According to hierarchical cluster analysis, microglia were objectively categorized into four groups termed types I-IV. The validity of this classification was confirmed by principal component analysis and linear discriminant analysis. Type I microglia were found in sham-operated mice and in mice sacrificed 28 days (D28) after axotomy. The appearance of type I cells was similar to so-called ramified microglia in a resting state. Type II microglia were mainly seen in D14 mice, which exhibited small cell bodies with thin and short processes. Interestingly, none of the already-known morphological types of microglia seemed to be comparable to type II cells. We thus named type II microglia "small ramified" cells. Types III and IV microglia were mainly seen in D3 and D7 mice and their appearances were similar to hypertrophied and bushy cells, respectively. Proliferating cell nuclear antigen (PCNA), a mitosis marker, was almost exclusively expressed in D3 mice. On the other hand, voltage-dependent potassium channels (Kv1.3/1.5), neurotoxicity-related molecules, were most highly expressed in D14 mice. Increased expression of Kv1.3/1.5 in D14 mice was suppressed by minocycline treatment. These findings indicate that type II and III microglia may be involved in neurotoxicity and mitosis, respectively. Type IV microglial cells are assumed to be in the process of losing mitotic activity and gaining neurotoxicity. Our data also suggest that type II microglia can be a potential therapeutic target against neurodegenerative diseases.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Developmental Molecular Anatomy, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
432
|
Barkauskas DS, Evans TA, Myers J, Petrosiute A, Silver J, Huang AY. Extravascular CX3CR1+ cells extend intravascular dendritic processes into intact central nervous system vessel lumen. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:778-90. [PMID: 23642852 PMCID: PMC3933819 DOI: 10.1017/s1431927613000482] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Within the central nervous system (CNS), antigen-presenting cells (APCs) play a critical role in orchestrating inflammatory responses where they present CNS-derived antigens to immune cells that are recruited from the circulation to the cerebrospinal fluid, parenchyma, and perivascular space. Available data indicate that APCs do so indirectly from outside of CNS vessels without direct access to luminal contents. Here, we applied high-resolution, dynamic intravital two-photon laser scanning microscopy to directly visualize extravascular CX3CR1+ APC behavior deep within undisrupted CNS tissues in two distinct anatomical sites under three different inflammatory stimuli. Surprisingly, we observed that CNS-resident APCs dynamically extend their cellular processes across an intact vessel wall into the vascular lumen with preservation of vessel integrity. While only a small number of APCs displayed intravascular extensions in intact, noninflamed vessels in the brain and the spinal cord, the frequency of projections increased over days in an experimental autoimmune encephalomyelitis model, whereas the number of projections remained stable compared to baseline days after tissue injury such as CNS tumor infiltration and aseptic spinal cord trauma. Our observation of this unique behavior by parenchyma CX3CR1+ cells in the CNS argues for further exploration into their functional role in antigen sampling and immune cell recruitment.
Collapse
Affiliation(s)
- Deborah S. Barkauskas
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Teresa A. Evans
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jay Myers
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Agne Petrosiute
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alex Y. Huang
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
433
|
Abstract
Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.
Collapse
|
434
|
Microglial phenotype and adaptation. J Neuroimmune Pharmacol 2013; 8:807-23. [PMID: 23881706 DOI: 10.1007/s11481-013-9490-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 07/08/2013] [Indexed: 12/14/2022]
Abstract
Microglia are the prime innate immune cells of the central nervous system. They can transit from a (so-called) resting state under homeostatic conditions towards a pro-inflammatory activation state upon homeostatic disturbances. Under neurodegenerative conditions, microglia have been largely perceived as neurotoxic cells. It is now becoming clear that resting microglia are not inactive but that they serve house-keeping functions. Moreover, microglia activity is not limited to proinflammatory responses, but covers a spectrum of reactive profiles. Depending on the actual situation, activated microglia display specific effector functions supporting inflammation, tissue remodeling, synaptic plasticity and neurogenesis. Many of these functions not only relate to the current state of the local neural environment but also depend on previous experience. In this review, we address microglia functions with respect to determining factors, phenotypic presentations, adaptation to environmental signals and aging. Finally, we point out primary mechanisms of microglia activation, which may comprise therapeutic targets to control neuro-inflammatory and neurodegenerative activity.
Collapse
|
435
|
Iovino F, Orihuela CJ, Moorlag HE, Molema G, Bijlsma JJE. Interactions between blood-borne Streptococcus pneumoniae and the blood-brain barrier preceding meningitis. PLoS One 2013; 8:e68408. [PMID: 23874613 PMCID: PMC3713044 DOI: 10.1371/journal.pone.0068408] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/29/2013] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a Gram-positive bacterium and the predominant cause of bacterial meningitis. Meningitis is thought to occur as the result of pneumococci crossing the blood-brain barrier to invade the Central Nervous System (CNS); yet little is known about the steps preceding immediate disease development. To study the interactions between pneumococci and the vascular endothelium of the blood-brain barrier prior to meningitis we used an established bacteremia-derived meningitis model in combination with immunofluorescent imaging. Brain tissue of mice infected with S. pneumoniae strain TIGR4, a clinical meningitis isolate, was investigated for the location of the bacteria in relation to the brain vasculature in various compartments. We observed that S. pneumoniae adhered preferentially to the subarachnoid vessels, and subsequently, over time, reached the more internal cerebral areas including the cerebral cortex, septum, and choroid plexus. Interestingly, pneumococci were not detected in the choroid plexus till 8 hours-post infection. In contrast to the lungs, little to no leukocyte recruitment to the brain was observed over time, though Iba-1 and GFAP staining showed that microglia and astrocytes were activated as soon as 1 hour post-infection. Our results imply that i) the local immune system of the brain is activated immediately upon entry of bacteria into the bloodstream and that ii) adhesion to the blood brain barrier is spatiotemporally controlled at different sites throughout the brain. These results provide new information on these two important steps towards the development of pneumococcal meningitis.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
436
|
Dehlin M, Bjersing J, Erlandsson M, Andreasen N, Zetterberg H, Mannerkorpi K, Bokarewa M. Cerebrospinal Flt3 ligand correlates to tau protein levels in primary Sjögren's syndrome. Scand J Rheumatol 2013; 42:394-9. [PMID: 23837643 DOI: 10.3109/03009742.2013.809143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Primary Sjögren's syndrome (pSS) is an autoimmune disease affecting the exocrine glands and internal organs including the central nervous system (CNS). The fms-related tyrosine kinase 3 ligand (Flt3L) is a maturation factor essential for brain homeostasis. Blood levels of Flt3L are increased in inflammatory diseases including the inflamed salivary glands in pSS. The present study evaluated the role of Flt3L in the CNS of patients with pSS and in two non-autoimmune conditions, fibromyalgia (FM) and Alzheimer's disease (AD). METHOD Levels of Flt3L were measured in cerebrospinal fluid (CSF) and serum of patients with pSS (n = 15), FM (n = 29), and AD (n = 39) and related to CNS symptoms and to markers of inflammation and degeneration. RESULTS Levels of CSF Flt3L in pSS and AD were significantly lower than in FM (p = 0.005 and p = 0.0003, respectively). Flt3L in pSS correlated to tau proteins [total tau (T-tau), r = 0.679; phosphorylated tau (P-tau), r = 0.646] and to a marker for microglia activation, monocyte chemoattractant protein 1 (MCP-1). Similar correlations were present in FM and AD patients. One-third of pSS patients had low levels of CSF Flt3L. This group had decreased levels of amyloid precursor protein metabolites (Aβ40 and Aβ42) in CSF, which was not seen in FM patients. CONCLUSIONS This study shows a strong correlation between CSF Flt3L and tau proteins in pSS patients suggesting ongoing degradation/remodelling in the CNS. In pSS patients, low levels of Flt3L were linked to changes in amyloid turnover and may represent processes similar to those in AD.
Collapse
Affiliation(s)
- M Dehlin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg , Göteborg , Sweden
| | | | | | | | | | | | | |
Collapse
|
437
|
Aluminum Oxide Nanoparticles Upregulate ED1 Expression in Rat Olfactory Bulbs by Repeated Intranasal Instillation. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/amr.716.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Respiratory route is one of the major exposure routes to nanoparticles. The environmental agent aluminum is intensively investigated for the association with development of neurodegeneration. To evaluate potential neurotoxicity induced by aluminum oxide (Al2O3) nanoparticles, male rats were intranasally instilled with 0.1 or 1 (Al) mg/kg nanoAl2O3 or aluminum chloride (AlCl3) every two days for 60 days, using pure water as vehicle control. Neurotoxicity effects were determined by behavioural studies and immunohistochemistry staining of ED1 and beta-amyloid precursor protein (Aβ). Neither of nanoAl2O3 treated groups showed significant alterations in Morris water maze tests, however, increased escape latency were observed in 1mg/kg AlCl3 treated rats. Further, upregulation of ED1 expression were showed in olfactory bulb of 1 mg/kg nanoAl2O3 and AlCl3 exposed rats. Massive Aβ expressions were observed in whole brain of 1mg/kg (Al) AlCl3 treated rats. ED1 expression is a marker of microglia/macrophages activation, suggesting stimulus of Al2O3 nanoparticles to microglia/macrophages located in olfactory bulb and perivascular areas. In these studies, Al2O3 nanoparticles didnt show any alterations on spacial learning behaviours of rats and expression of Aβ of neuron, therefore, display lower neural effects than AlCl3.
Collapse
|
438
|
The leech nervous system: a valuable model to study the microglia involvement in regenerative processes. Clin Dev Immunol 2013; 2013:274019. [PMID: 23878582 PMCID: PMC3710617 DOI: 10.1155/2013/274019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/07/2013] [Indexed: 11/25/2022]
Abstract
Microglia are intrinsic components of the central nervous system (CNS). During pathologies in mammals, inflammatory processes implicate the resident microglia and the infiltration of blood cells including macrophages. Functions of microglia appear to be complex as they exhibit both neuroprotective and neurotoxic effects during neuropathological conditions in vivo and in vitro. The medicinal leech Hirudo medicinalis is a well-known model in neurobiology due to its ability to naturally repair its CNS following injury. Considering the low infiltration of blood cells in this process, the leech CNS is studied to specify the activation mechanisms of only resident microglial cells. The microglia recruitment is known to be essential for the usual sprouting of injured axons and does not require any other glial cells. The present review will describe the questions which are addressed to understand the nerve repair. They will discuss the implication of leech factors in the microglial accumulation, the identification of nerve cells producing these molecules, and the study of different microglial subsets. Those questions aim to better understand the mechanisms of microglial cell recruitment and their crosstalk with damaged neurons. The study of this dialog is necessary to elucidate the balance of the inflammation leading to the leech CNS repair.
Collapse
|
439
|
Kannan V, Brouwer N, Hanisch UK, Regen T, Eggen BJL, Boddeke HWGM. Histone deacetylase inhibitors suppress immune activation in primary mouse microglia. J Neurosci Res 2013; 91:1133-42. [PMID: 23686642 DOI: 10.1002/jnr.23221] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 01/17/2023]
Abstract
Neuroinflammation is required for tissue clearance and repair after infections or insults. To prevent excessive damage, it is crucial to limit the extent of neuroinflammation and thereby the activation of its principal effector cell, microglia. The two main major innate immune cell types in the CNS are astrocytes and microglia. Histone deacetylases (HDACs) have been implicated in regulating the innate inflammatory response, and here we addressed their role in pure astrocyte and microglia cultures. Endogenous HDAC expression levels were determined in microglia and astrocytes and after treatment with lipopolysaccharide (LPS) or LPS and interferon γ (IFNγ). The relative expression level of HDACs was reduced in LPS- or LPS/IFNγ (with the exception of HDAC1 and -7)-stimulated astrocytes and increased in microglia after LPS treatment both in primary cultures and in microglia acutely isolated from LPS-treated mice, so we focused on the inflammatory response in microglia. Primary microglia cultures were treated with LPS in the presence or absence of HDAC inhibitors (HDACi). Expression and release of inflammatory cytokines was determined by quantitative RT-PCR, flow cytometry, and ELISA. HDACi strongly suppressed LPS-induced cytokine expression and release by microglia. Furthermore, expression of M1- and M2-associated activation markers was suppressed, and the migratory behavior of microglia was attenuated. Our findings strongly suggest that HDACi suppress innate immune activation in microglia.
Collapse
Affiliation(s)
- Vishnu Kannan
- Department of Neuroscience, Section of Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
440
|
Lindblom RPF, Aeinehband S, Parsa R, Ström M, Al Nimer F, Zhang XM, Dominguez CA, Flytzani S, Diez M, Piehl F. Genetic variability in the rat Aplec C-type lectin gene cluster regulates lymphocyte trafficking and motor neuron survival after traumatic nerve root injury. J Neuroinflammation 2013; 10:60. [PMID: 23656637 PMCID: PMC3661385 DOI: 10.1186/1742-2094-10-60] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/16/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND C-type lectin (CLEC) receptors are important for initiating and shaping immune responses; however, their role in inflammatory reactions in the central nervous system after traumatic injuries is not known. The antigen-presenting lectin-like receptor gene complex (Aplec) contains a few CLEC genes, which differ genetically among inbred rat strains. It was originally thought to be a region that regulates susceptibility to autoimmune arthritis, autoimmune neuroinflammation and infection. METHODS The inbred rat strains DA and PVG differ substantially in degree of spinal cord motor neuron death following ventral root avulsion (VRA), which is a reproducible model of localized nerve root injury. A large F2 (DAxPVG) intercross was bred and genotyped after which global expressional profiling was performed on spinal cords from F2 rats subjected to VRA. A congenic strain, Aplec, created by transferring a small PVG segment containing only seven genes, all C-type lectins, ontoDA background, was used for further experiments together with the parental strains. RESULTS Global expressional profiling of F2 (DAxPVG) spinal cords after VRA and genome-wide eQTL mapping identified a strong cis-regulated difference in the expression of Clec4a3 (Dcir3), a C-type lectin gene that is a part of the Aplec cluster. Second, we demonstrate significantly improved motor neuron survival and also increased T-cell infiltration into the spinal cord of congenic rats carrying Aplec from PVG on DA background compared to the parental DA strain. In vitro studies demonstrate that the Aplec genes are expressed on microglia and upregulated upon inflammatory stimuli. However, there were no differences in expression of general microglial activation markers between Aplec and parental DA rats, suggesting that the Aplec genes are involved in the signaling events rather than the primary activation of microglia occurring upon nerve root injury. CONCLUSIONS In summary, we demonstrate that a genetic variation in Aplec occurring among inbred strains regulates both survival of axotomized motor neurons and the degree of lymphocyte infiltration. These results demonstrate a hitherto unknown role for CLECs for intercellular communication that occurs after damage to the nervous system, which is relevant for neuronal survival.
Collapse
Affiliation(s)
- Rickard P F Lindblom
- Department of Clinical Neuroscience, Unit for Neuroimmunology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
441
|
Sanchez-Guajardo V, Barnum C, Tansey M, Romero-Ramos M. Neuroimmunological processes in Parkinson's disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 2013; 5:113-39. [PMID: 23506036 PMCID: PMC3639751 DOI: 10.1042/an20120066] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
The role of neuroinflammation and the adaptive immune system in PD (Parkinson's disease) has been the subject of intense investigation in recent years, both in animal models of parkinsonism and in post-mortem PD brains. However, how these processes relate to and modulate α-syn (α-synuclein) pathology and microglia activation is still poorly understood. Specifically, how the peripheral immune system interacts, regulates and/or is induced by neuroinflammatory processes taking place during PD is still undetermined. We present herein a comprehensive review of the features and impact that neuroinflamation has on neurodegeneration in different animal models of nigral cell death, how this neuroinflammation relates to microglia activation and the way microglia respond to α-syn in vivo. We also discuss a possible role for the peripheral immune system in animal models of parkinsonism, how these findings relate to the state of microglia activation observed in these animal models and how these findings compare with what has been observed in humans with PD. Together, the available data points to the need for development of dual therapeutic strategies that modulate microglia activation to change not only the way microglia interact with the peripheral immune system, but also to modulate the manner in which microglia respond to encounters with α-syn. Lastly, we discuss the immune-modulatory strategies currently under investigation in animal models of parkinsonism and the degree to which one might expect their outcomes to translate faithfully to a clinical setting.
Collapse
Key Words
- lymphocytes
- m1/m2 phenotype
- microglia
- neuroinflammation
- parkinson’s disease
- α-synuclein
- 6-ohda, 6-hydroxydopamine
- ad, alzheimer’s disease
- apc, antigen-presenting cell
- α-syn, α-synuclein
- bbb, brain–blood barrier
- bcg, bacille calmette–guérin
- bm, bone marrow
- cfa, complete freund’s adjuvant
- cm, conditioned media
- cns, central nervous system
- cox, cyclooxygenase
- cr, complement receptor
- csf, cerebrospinal fluid
- da, dopamine
- eae, experimental autoimmune encephalomyelitis
- ga, galatiramer acetate
- gdnf, glial-derived neurotrophic factor
- gfp, green fluorescent protein
- hla-dr, human leucocyte antigen type dr
- ifnγ, interferon γ
- igg, immunoglobulin g
- il, interleukin
- inos, inducible nitric oxide synthase
- lamp, lysosome-associated membrane protein
- lb, lewy body
- lps, lipopolysaccharide
- mhc, major histocompatibility complex
- mptp, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- nfκb, nuclear factor κb
- nk, natural killer
- no, nitric oxide
- pd, parkinson’s disease
- pet, positron-emission tomography
- prp, prion protein
- raav, recombinant adeno-associated virus
- rns, reactive nitrogen species
- ros, reactive oxygen species
- sn, substantia nigra
- snp, single nucleotide polymorphism
- tcr, t-cell receptor
- tgfβ, tumour growth factor β
- th, tyrosine hydroxylase
- th1, t helper 1
- tlr, toll-like receptor
- tnf, tumour necrosis factor
- treg, regulatory t-cell
- vip, vasoactive intestinal peptide
- wt, wild-type
Collapse
Affiliation(s)
- Vanesa Sanchez-Guajardo
- *CNS Disease Modeling Group, Department of Biomedicine, Ole Worms Allé 3,
Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christopher J. Barnum
- †Department of Physiology, Emory University, School of Medicine, Atlanta, GA
30233, U.S.A
| | - Malú G. Tansey
- †Department of Physiology, Emory University, School of Medicine, Atlanta, GA
30233, U.S.A
| | - Marina Romero-Ramos
- *CNS Disease Modeling Group, Department of Biomedicine, Ole Worms Allé 3,
Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
442
|
Sobin C, Montoya MGF, Parisi N, Schaub T, Cervantes M, Armijos RX. Microglial disruption in young mice with early chronic lead exposure. Toxicol Lett 2013; 220:44-52. [PMID: 23598043 DOI: 10.1016/j.toxlet.2013.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 01/24/2023]
Abstract
The mechanisms by which early chronic lead (Pb) exposure alter brain development have not been identified. We examined neuroimmune system effects in C57BL/6J mice with Pb exposure, including levels that may be common among children in lower socioeconomic income environments. Pups were exposed via dams' drinking water from birth to post-natal day 28 to low, high or no Pb conditions. We compared gene expression of neuroinflammatory markers (study 1); and microglial mean cell body volume and mean cell body number in dentate gyrus, and dentate gyrus volume (study 2). Blood Pb levels in exposed animals at sacrifice (post-natal day 28) ranged from 2.66 to 20.31μg/dL. Only interleukin-6 (IL6) differed between groups and reductions were dose-dependent. Microglia cell body number also differed between groups and reductions were dose-dependent. As compared with controls, microglia cell body volume was greater but highly variable in only low-dose animals; dentate gyri volumes in low- and high-dose animals were reduced. The results did not support a model of increased neuroinflammation. Instead, early chronic exposure to Pb disrupted microglia via damage to, loss of, or lack of proliferation of microglia in the developing brains of Pb-exposed animals.
Collapse
Affiliation(s)
- Christina Sobin
- Department of Public Health Sciences, College of Health Sciences, University of Texas, El Paso, USA.
| | | | | | | | | | | |
Collapse
|
443
|
Jarry U, Jeannin P, Pineau L, Donnou S, Delneste Y, Couez D. Efficiently stimulated adult microglia cross-prime naive CD8+ T cells injected in the brain. Eur J Immunol 2013; 43:1173-84. [PMID: 23529826 DOI: 10.1002/eji.201243040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/31/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
Abstract
Microglia are the major myeloid-immune cells of the brain parenchyma. In a steady state, microglia monitor their environment for pathogens or damaged cells. In response to neural injury or inflammation, microglia become competent APCs able to prime CD4(+) and CD8(+) T lymphocytes. We previously demonstrated that neonatal and adult microglia cross-present exogenous soluble Ags in vitro. However, whether microglia are able to cross-present Ag to naive CD8(+) T cells in vivo, within the brain microenvironment, remains undetermined. Here, we have designed an original protocol in order to exclude the involvement in cross-presentation activity of peripheral migrating APCs and of CNS-associated APCs. In C57Bl/6 mice, in which the body but not the head has been properly irradiated, we analyzed the ability of resident microglia to stimulate intracerebrally injected CD8(+) T cells in vivo. This study demonstrates for the first time that adult microglia cross-present Ag to naive CD8(+) T cells in vivo and that full microglia activation is required to overcome the inhibitory constrains of the brain and to render microglia able to cross-prime naive CD8(+) T cells injected in the brain. These observations offer new insights in brain-tumor immunotherapy based on the induction of cytotoxic antitumoral T cells.
Collapse
Affiliation(s)
- Ulrich Jarry
- L'UNAM Université, Université d'Angers, Angers, France
| | | | | | | | | | | |
Collapse
|
444
|
Absence of TLR4 reduces neurovascular unit and secondary inflammatory process after traumatic brain injury in mice. PLoS One 2013; 8:e57208. [PMID: 23555560 PMCID: PMC3610903 DOI: 10.1371/journal.pone.0057208] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Background Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. Toll-like receptors (TLRs) are signaling receptors in the innate immune system, although emerging evidence indicates their role in brain injury. We have therefore investigated the role played by TLR4 signaling pathway in the development of mechanisms of secondary inflammatory process in traumatic brain injury (TBI) differ in mice that lack a functional TLR4 signaling pathway. Methods/Principal Findings Controlled cortical impact injury was performed on TLR4 knockout (KO) mice (C57BL/10ScNJ) and wild-type (WT) mice (C57BL/10ScNJ). TBI outcome was evaluated by determination of infarct volume and assessment of neurological scores. Brains were collected at 24 h after TBI. When compared to WT mice, TLR4 KO mice had lower infarct volumes and better outcomes in neurological and behavioral tests (evaluated by EBST and rotarod test). Mice that lacked TLR4 had minor expression of TBI-induced GFAP, Chymase, Tryptase, IL-1β, iNOS, PARP and Nitrotyrosine mediators implicated in brain damage. The translocation of expression of p-JNK, IκB-α and NF-κB pathway were also lower in brains from TLR4 KO mice. When compared to WT mice, resulted in significant augmentation of all the above described parameters. In addition, apoptosis levels in TLR4 KO mice had minor expression of Bax while on the contrary with Bcl-2. Conclusions/Significance Our results clearly demonstrated that absence of TLR4 reduces the development of neuroinflammation, tissues injury events associated with brain trauma and may play a neuroprotective role in TBI in mice.
Collapse
|
445
|
El-Kebir M, van der Kuip M, van Furth AM, Kirschner DE. Computational modeling of tuberculous meningitis reveals an important role for tumor necrosis factor-α. J Theor Biol 2013; 328:43-53. [PMID: 23542051 DOI: 10.1016/j.jtbi.2013.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 12/30/2022]
Abstract
Tuberculosis is a global health issue with annually about 1.5 million deaths and 2 billion infected people worldwide. Extra-pulmonary tuberculosis comprises 13% of all cases of which tuberculous meningitis is the most severe. It has a high mortality and is often diagnosed once irreversible neurological damage has already occurred. Development of diagnostic and treatment strategies requires a thorough understanding of the pathogenesis of tuberculous meningitis. This disease is characterized by the formation of a cerebral granuloma, which is a collection of immune cells that attempt to immunologically restrain, and physically contain bacteria. The cytokine tumor necrosis factor-α is known for its important role in granuloma formation. Because traditional experimental animal studies exploring tuberculous meningitis are difficult and expensive, another approach is needed to begin to address this important and significant disease outcome. Here, we present an in silico model capturing the unique immunological environment of the brain that allows us to study the key mechanisms driving granuloma formation in time. Uncertainty and sensitivity analysis reveals a dose-dependent effect of tumor necrosis factor-α on bacterial load and immune cell numbers thereby influencing the onset of tuberculous meningitis. Insufficient levels result in bacterial overgrowth, whereas high levels lead to uncontrolled inflammation being detrimental to the host. These findings have important implications for the development of immuno-modulating treatment strategies for tuberculous meningitis.
Collapse
Affiliation(s)
- M El-Kebir
- Department of Pediatric Infectious diseases and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
446
|
Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol 2013; 716:106-19. [PMID: 23500198 DOI: 10.1016/j.ejphar.2013.01.072] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 12/13/2022]
Abstract
Glia plays a crucial role in the maintenance of neuronal homeostasis in the central nervous system. The microglial production of immune factors is believed to play an important role in nociceptive transmission. Pain may now be considered a neuro-immune disorder, since it is known that the activation of immune and immune-like glial cells in the dorsal root ganglia and spinal cord results in the release of both pro- and anti-inflammatory cytokines, as well as algesic and analgesic mediators. In this review we presented an important role of cytokines (IL-1alfa, IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-15, IL-18, TNFalpha, IFNgamma, TGF-beta 1, fractalkine and CCL2); complement components (C1q, C3, C5); metaloproteinases (MMP-2,-9) and many other factors, which become activated on spinal cord and DRG level under neuropathic pain. We discussed the role of the immune system in modulating chronic pain. At present, unsatisfactory treatment of neuropathic pain will seek alternative targets for new drugs and it is possible that anti-inflammatory factors like IL-10, IL-4, IL-1alpha, TGF-beta 1 would fulfill this role. Another novel approach for controlling neuropathic pain can be pharmacological attenuation of glial and immune cell activation. It has been found that propentofylline, pentoxifylline, minocycline and fluorocitrate suppress the development of neuropathic pain. The other way of pain control can be the decrease of pro-nociceptive agents like transcription factor synthesis (NF-kappaB, AP-1); kinase synthesis (MEK, p38MAPK, JNK) and protease activation (cathepsin S, MMP9, MMP2). Additionally, since it is known that the opioid-induced glial activation opposes opioid analgesia, some glial inhibitors, which are safe and clinically well tolerated, are proposed as potential useful ko-analgesic agents for opioid treatment of neuropathic pain. This review pointed to some important mechanisms underlying the development of neuropathic pain, which led to identify some possible new approaches to the treatment of neuropathic pain, based on the more comprehensive knowledge of the interaction between the nervous system and glial and immune cells.
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| | | | | | | | | |
Collapse
|
447
|
Abstract
Obesity is characterized by a chronic and low-grade inflammation in tissues including the hypothalamus. Hypothalamic inflammation is considered an early and determining factor for the onset of obesity, a factor that occurs even before body weight gain. Within the hypothalamus, microglia and astrocytes produce cytokines that drive inflammatory responses. Astrocytes are directly affected by nutrient excess and might play a unique role in promoting hypothalamic inflammatory responses in obesity. This article reviews evidence supporting the role of hypothalamic astrocytes in obesity, and suggests a new approach for neuroendocrine research designed to reveal pathogenesis and develop novel treatment strategies against obesity.
Collapse
Affiliation(s)
- Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Centre Munich, 85748 Garching, Munich, Germany
| | | | | |
Collapse
|
448
|
Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 2013; 18:206-14. [PMID: 22869038 DOI: 10.1038/mp.2012.110] [Citation(s) in RCA: 451] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Upregulation of the immune response may be involved in the pathogenesis of schizophrenia with changes occurring in both peripheral blood and brain tissue. To date, microarray technology has provided a limited view of specific inflammatory transcripts in brain perhaps due to sensitivity issues. Here we used SOLiD Next Generation Sequencing to quantify neuroimmune mRNA expression levels in the dorsolateral prefrontal cortex of 20 individuals with schizophrenia and their matched controls. We detected 798 differentially regulated transcripts present in people with schizophrenia compared with controls. Ingenuity pathway analysis identified the inflammatory response as a key change. Using quantitative real-time PCR we confirmed the changes in candidate cytokines and immune modulators, including interleukin (IL)-6, IL-8, IL-1β and SERPINA3. The density of major histocompatibility complex-II-positive cells morphologically resembling microglia was significantly increased in schizophrenia and correlated with IL-1β expression. A group of individuals, most of whom had schizophrenia, were found to have increased inflammatory mRNA expression. In summary, we have demonstrated changes in an inflammatory response pathway that are present in ∼40% of people diagnosed with schizophrenia. This suggests that therapies aimed at immune system attenuation in schizophrenia may be of direct benefit in the brain.
Collapse
Affiliation(s)
- S G Fillman
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
449
|
Hurley LL, Tizabi Y. Neuroinflammation, neurodegeneration, and depression. Neurotox Res 2013; 23:131-44. [PMID: 22895696 PMCID: PMC3751583 DOI: 10.1007/s12640-012-9348-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/19/2022]
Abstract
Neurodegeneration and depression are two common co-morbid conditions, particularly within the aging population. Research has linked neuroinflammation as a major contributing factor to both of these diseases. The key to neuroinflammation effects on neurodegeneration and depression appears to lie within the dysregulation of the control and release of pro- and anti-inflammatory cytokines. This can come from an internal or external insult to the system, or from changes in the individual due to aging that culminate in immune dysregulation. The need to reduce neuroinflammation has led to extensive research into neuroprotectants. We discuss the efficacy found with nicotine, alcohol, resveratrol, curcumin, and ketamine. Our main focus will be on what research tells us about the connections between neuroinflammation, neurodegeneration, and depression, and the hope that neuroprotectants research gives people suffering from neurodegeneration and depression stemming from neuroinflammation. We will conclude by making suggestions for future research in this area.
Collapse
Affiliation(s)
- Laura L. Hurley
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059
| |
Collapse
|
450
|
Browne TC, McQuillan K, McManus RM, O’Reilly JA, Mills KHG, Lynch MA. IFN-γ Production by Amyloid β–Specific Th1 Cells Promotes Microglial Activation and Increases Plaque Burden in a Mouse Model of Alzheimer’s Disease. THE JOURNAL OF IMMUNOLOGY 2013; 190:2241-51. [DOI: 10.4049/jimmunol.1200947] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|