401
|
Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity – Exercise-Induced Response of Peripheral Brain-Derived Neurotrophic Factor. Sports Med 2010; 40:765-801. [DOI: 10.2165/11534530-000000000-00000] [Citation(s) in RCA: 532] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
402
|
Ables JL, DeCarolis NA, Johnson MA, Rivera PD, Gao Z, Cooper DC, Radtke F, Hsieh J, Eisch AJ. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci 2010; 30:10484-92. [PMID: 20685991 PMCID: PMC2935844 DOI: 10.1523/jneurosci.4721-09.2010] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 01/24/2010] [Accepted: 05/24/2010] [Indexed: 12/11/2022] Open
Abstract
Notch1 regulates neural stem cell (NSC) number during development, but its role in adult neurogenesis is unclear. We generated nestin-CreER(T2)/R26R-YFP/Notch1(loxP/loxP) [Notch1inducible knock-out (iKO)] mice to allow tamoxifen (TAM)-inducible elimination of Notch1 and concomitant expression of yellow fluorescent protein (YFP) in nestin-expressing Type-1 NSCs and their progeny in the adult hippocampal subgranular zone (SGZ). Consistent with previous research, YFP+ cells in all stages of neurogenesis were evident in the subgranular zone (SGZ) of wild-type (WT) mice (nestin-CreER(T2)/R26R-YFP/Notch1(w/w)) after tamoxifen (post-TAM), producing adult-generated YFP+ dentate gyrus neurons. Compared with WT littermates, Notch1 iKO mice had similar numbers of total SGZ YFP+ cells 13 and 30 d post-TAM but had significantly fewer SGZ YFP+ cells 60 and 90 d post-TAM. Significantly fewer YFP+ Type-1 NSCs and transiently amplifying progenitors (TAPs) resulted in generation of fewer YFP+ granule neurons in Notch1 iKO mice. Strikingly, 30 d of running rescued this deficit, as the total YFP+ cell number in Notch iKO mice was equivalent to WT levels. This was even more notable given the persistent deficits in the Type-1 NSC and TAP reservoirs. Our data show that Notch1 signaling is required to maintain a reservoir of undifferentiated cells and ensure continuity of adult hippocampal neurogenesis, but that alternative Notch- and Type-1 NSC-independent pathways compensate in response to physical activity. These data shed light on the complex relationship between Type-1 NSCs, adult neurogenesis, the neurogenic niche, and environmental stimuli.
Collapse
Affiliation(s)
| | | | | | | | - Zhengliang Gao
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Don C. Cooper
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, Colorado 80309, and
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, Institut Suisse de Recherche Experimentale sur le Cancer, 1066 Epalinges, Switzerland
| | - Jenny Hsieh
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|
403
|
Ang ET, Tai YK, Lo SQ, Seet R, Soong TW. Neurodegenerative diseases: exercising toward neurogenesis and neuroregeneration. Front Aging Neurosci 2010; 2:25. [PMID: 20725635 PMCID: PMC2917219 DOI: 10.3389/fnagi.2010.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 06/14/2010] [Indexed: 12/20/2022] Open
Abstract
Currently, there is still no effective therapy for neurodegenerative diseases (NDD) such as Alzheimer's disease (AD) and Parkinson's disease (PD) despite intensive research and on-going clinical trials. Collectively, these diseases account for the bulk of health care burden associated with age-related neurodegenerative disorders. There is therefore an urgent need to further research into the molecular pathogenesis, histological differentiation, and clinical management of NDD. Importantly, there is also an urgency to understand the similarities and differences between these two diseases so as to identify the common or different upstream and downstream signaling pathways. In this review, the role iron play in NDD will be highlighted, as iron is key to a common underlying pathway in the production of oxidative stress. There is increasing evidence to suggest that oxidative stress predisposed cells to undergo damage to DNA, protein and lipid, and as such a common factor involved in the pathogenesis of AD and PD. The challenge then is to minimize elevated and uncontrolled oxidative stress levels while not affecting basal iron metabolism, as iron plays vital roles in sustaining cellular function. However, overload of iron results in increased oxidative stress due to the Fenton reaction. We discuss evidence to suggest that sustained exercise and diet restriction may be ways to slow the rate of neurodegeneration, by perhaps promoting neurogenesis or antioxidant-related pathways. It is also our intention to cover NDD in a broad sense, in the context of basic and clinical sciences to cater for both clinician's and the scientist's needs, and to highlight current research investigating exercise as a therapeutic or preventive measure.
Collapse
Affiliation(s)
- Eng-Tat Ang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | | | | | | | | |
Collapse
|
404
|
Schmidt-Kassow M, Kulka A, Gunter TC, Rothermich K, Kotz SA. Exercising during learning improves vocabulary acquisition: behavioral and ERP evidence. Neurosci Lett 2010; 482:40-4. [PMID: 20620190 DOI: 10.1016/j.neulet.2010.06.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/18/2010] [Accepted: 06/29/2010] [Indexed: 01/03/2023]
Abstract
Numerous studies have provided evidence that physical activity promotes cortical plasticity in the adult brain and in turn facilitates learning. However, until now, the effect of simultaneous physical activity (e.g. bicycling) on learning performance has not been investigated systematically. The current study aims at clarifying whether simultaneous motor activity influences verbal learning compared to learning in a physically passive situation. Therefore the learning behavior of 12 healthy subjects (4 male, 19-33 years) was monitored over a period of 3 weeks. During that time, behavioral and electrophysiological responses to memorized materials were measured. We found a larger N400 effect and better performance in vocabulary tests when subjects were physically active during the encoding phase. Thus, our data indicate that simultaneous physical activity during vocabulary learning facilitates memorization of new items.
Collapse
Affiliation(s)
- Maren Schmidt-Kassow
- Institute of Medical Psychology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
405
|
|
406
|
Derman EW, Whitesman S, Dreyer M, Patel DN, Nossel C, Schwellnus MP. Healthy lifestyle interventions in general practice: Part 12: Lifestyle and depression. S Afr Fam Pract (2004) 2010. [DOI: 10.1080/20786204.2010.10873989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
407
|
Esch T, Stefano GB. Endogenous reward mechanisms and their importance in stress reduction, exercise and the brain. Arch Med Sci 2010; 6:447-55. [PMID: 22371784 PMCID: PMC3282525 DOI: 10.5114/aoms.2010.14269] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/03/2010] [Accepted: 06/13/2010] [Indexed: 11/23/2022] Open
Abstract
Stress can facilitate disease processes and causes strain on the health care budgets. It is responsible or involved in many human ailments of our time, such as cardiovascular illnesses, particularly related to the psychosocial stressors of daily life, including work. Besides pharmacological or clinical medical treatment options, behavioral stress reduction is much-needed. These latter approaches rely on an endogenous healing potential via life-style modification. Hence, research has suggested different ways and approaches to self-treat stress or buffer against stressors and their impacts. These self-care-centred approaches are sometimes referred to as mind-body medicine or multi-factorial stress management strategies. They consist of various cognitive behavioral techniques, as well as relaxation exercises and nutritional counselling. However, a critical and consistent element of modern effective stress reduction strategies are exercise practices. With regard to underlying neurobiological mechanisms of stress relief, reward and motivation circuitries that are imbedded in the limbic regions of the brain are responsible for the autoregulatory and endogenous processing of stress. Exercise techniques clearly have an impact upon these systems. Thereby, physical activities have a potential to increase mood, i.e., decrease psychological distress by pleasure induction. For doing so, neurobiological signalling molecules such as endogenous morphine and coupled nitric oxide pathways get activated and finely tuned. Evolutionarily, the various activities and autoregulatory pathways are linked together, which can also be demonstrated by the fact that dopamine is endogenously converted into morphine which itself leads to enhanced nitric oxide release by activation of constitutive nitric oxide synthase enzymes. These molecules and mechanisms are clearly stress-reducing.
Collapse
Affiliation(s)
- Tobias Esch
- Division of Integrative Health Promotion, Coburg University of Applied Sciences, Coburg, Germany
- Neuroscience Research Institute, State University of New York, Old Westbury, USA
| | - George B. Stefano
- Neuroscience Research Institute, State University of New York, Old Westbury, USA
| |
Collapse
|
408
|
Marlatt MW, Lucassen PJ, van Praag H. Comparison of neurogenic effects of fluoxetine, duloxetine and running in mice. Brain Res 2010; 1341:93-9. [PMID: 20381469 PMCID: PMC2884062 DOI: 10.1016/j.brainres.2010.03.086] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/13/2010] [Accepted: 03/29/2010] [Indexed: 12/29/2022]
Abstract
Hippocampal neurogenesis can be regulated by extrinsic factors, such as exercise and antidepressants. While there is evidence that the selective serotonin reuptake inhibitor (SSRI) fluoxetine enhances neurogenesis, the new dual serotonergic-noradrenergic reuptake inhibitor (SNRI) duloxetine has not been evaluated in this context. In addition, it is unclear whether effects of antidepressants and running on cell genesis and behavior are of similar magnitude in mice. Here, we assessed neurogenesis and open-field behavior in 2-month-old female C57Bl/6 mice after 28days of treatment with either fluoxetine (18mg/kg), duloxetine (2, 6 or 18mg/kg) or exercise. New cell survival, as measured by 5-bromo-2'-deoxyuridine (BrdU)-labeled cells, was enhanced by 200% in the running group only. Both running and fluoxetine, but not duloxetine, increased the percentage of new cells that became neurons. In the open-field test, animals treated with either drug spent less time in the center than controls and runners. In addition, fluoxetine treatment resulted in reduced locomotor activity. Together, these data show that the neurogenic response to exercise is much stronger than to antidepressants and imply a low likelihood that anxiolytic effects of these drugs are mediated by adult neurogenesis in C57Bl/6 mice.
Collapse
Affiliation(s)
- Michael W. Marlatt
- Swammerdam Institute for Life Science – Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore MD, USA
| | - Paul J. Lucassen
- Swammerdam Institute for Life Science – Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Henriette van Praag
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore MD, USA
| |
Collapse
|
409
|
Mueller PJ. Physical (in)activity-dependent alterations at the rostral ventrolateral medulla: influence on sympathetic nervous system regulation. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1468-74. [PMID: 20357021 DOI: 10.1152/ajpregu.00101.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A sedentary lifestyle is a major risk factor for cardiovascular disease, and rates of inactivity and cardiovascular disease are highly prevalent in our society. Cardiovascular disease is often associated with overactivity of the sympathetic nervous system, which has both direct and indirect effects on multiple organ systems. Although it has been known for some time that exercise positively affects the brain in terms of memory and cognition, only recently have changes in how the brain regulates the cardiovascular system been examined in terms of physical activity and inactivity. This brief review will discuss the evidence for physical activity-dependent neuroplasticity related to control of sympathetic outflow. It will focus particularly on recent studies from our laboratory and others that have examined changes that occur in the rostral ventrolateral medulla (RVLM), considered one of the primary brain regions involved in the regulation and generation of sympathetic nervous system activity.
Collapse
Affiliation(s)
- Patrick J Mueller
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
410
|
Llorens-Martín M, Torres-Alemán I, Trejo JL. Exercise modulates insulin-like growth factor 1-dependent and -independent effects on adult hippocampal neurogenesis and behaviour. Mol Cell Neurosci 2010; 44:109-17. [PMID: 20206269 DOI: 10.1016/j.mcn.2010.02.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/24/2022] Open
Abstract
While physical exercise clearly has beneficial effects on the brain, fomenting neuroprotection as well as promoting neural plasticity and behavioural modifications, the cellular and molecular mechanisms mediating these effects are not yet fully understood. We have analyzed sedentary and exercised animals to examine the effects of activity on behaviour (spatial memory and anxiety--as measured by a fear/exploration conflict test), as well as on adult hippocampal neurogenesis (a well-known form of neural plasticity). We have found that the difference in activity between sedentary and exercised animals induced a decrease in the fear/exploration conflict scores (a measure usually accepted as an anxiolytic effect), while no changes are evident in terms of spatial memory learning. The short-term anxiolytic-like effect of exercise was IGF1-dependent and indeed, the recall of hippocampus-dependent spatial memory is impaired by blocking serum IGF1 (as observed by measuring serum IGF levels in the same animals used to analyze the behaviour), irrespective of the activity undertaken by the animals. On the other hand, activity affected neurogenesis as reflected by counting the numbers of several cell populations, while the dependence of this effect on IGF1 varied according to the differentiation state of the new neurons. Hence, while proliferating precursors and postmitotic immature neurons (measured by means of doublecortin and calretinin) are influenced by serum IGF1 levels in both sedentary and exercised animals, premitotic immature neurons (an intermediate stage) respond to exercise independently of serum IGF1. Therefore, we conclude that physical exercise has both serum IGF1-independent and -dependent effects on neural plasticity. Furthermore, several effects mediated by serum IGF1 are induced by physical activity while others are not (both in terms of behaviour and neural plasticity). These findings help to delimit the role of serum IGF1 as a mediator of the effects of exercise, as well as to extend the role of serum IGF1 in the brain in basal conditions. Moreover, these data reveal the complexity of the interaction between neurogenesis, behaviour, and IGF1 under different levels of physical activity.
Collapse
Affiliation(s)
- María Llorens-Martín
- Department of Molecular, Cellular, and Developmental Neurobiology, Institute Cajal, CSIC, Madrid, Spain
| | | | | |
Collapse
|
411
|
Ono Y, Yamamoto T, Kubo KY, Onozuka M. Occlusion and brain function: mastication as a prevention of cognitive dysfunction. J Oral Rehabil 2010; 37:624-40. [PMID: 20236235 DOI: 10.1111/j.1365-2842.2010.02079.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research in animals and humans has shown that mastication maintains cognitive function in the hippocampus, a brain area important for learning and memory. Reduced mastication, an epidemiological risk factor for the development of dementia in humans, attenuates spatial memory and causes hippocampal neurons to deteriorate morphologically and functionally, especially in aged animals. Active mastication rescues the stress-attenuated hippocampal memory process in animals and attenuates the perception of stress in humans by suppressing endocrinological and autonomic stress responses. Active mastication further improves the performance of sustained cognitive tasks by increasing the activation of the hippocampus and the prefrontal cortex, the brain regions that are essential for cognitive processing. Abnormal mastication caused by experimental occlusal disharmony in animals produces chronic stress, which in turn suppresses spatial learning ability. The negative correlation between mastication and corticosteroids has raised the hypothesis that the suppression of the hypothalamic-pituitary-adrenal (HPA) axis by masticatory stimulation contributes, in part, to preserving cognitive functions associated with mastication. In the present review, we examine research pertaining to the mastication-induced amelioration of deficits in cognitive function, its possible relationship with the HPA axis, and the neuronal mechanisms that may be involved in this process in the hippocampus.
Collapse
Affiliation(s)
- Y Ono
- Department of Physiology and Neuroscience, Kanagawa Dental College, Yokosuka, Japan.
| | | | | | | |
Collapse
|
412
|
Abstract
Increasing evidence suggests that regular exercise improves brain health and promotes synaptic plasticity and hippocampal neurogenesis. Exercise improves learning, but specific mechanisms of information processing influenced by physical activity are unknown. Here, we report that voluntary running enhanced the ability of adult (3 months old) male C57BL/6 mice to discriminate between the locations of two adjacent identical stimuli. Improved spatial pattern separation in adult runners was tightly correlated with increased neurogenesis. In contrast, very aged (22 months old) mice had impaired spatial discrimination and low basal cell genesis that was refractory to running. These findings suggest that the addition of newly born neurons may bolster dentate gyrus-mediated encoding of fine spatial distinctions.
Collapse
|
413
|
DeCarolis NA, Eisch AJ. Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 2010; 58:884-93. [PMID: 20060007 DOI: 10.1016/j.neuropharm.2009.12.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/09/2009] [Accepted: 12/14/2009] [Indexed: 12/21/2022]
Abstract
Over one-quarter of adult Americans are diagnosed with a mental illness like Major Depressive Disorder (MDD), Post-Traumatic Stress Disorder (PTSD), schizophrenia, and Alzheimer's Disease. In addition to the exceptional personal burden these disorders exert on patients and their families, they also have enormous cost to society. Although existing pharmacological and psychosocial treatments alleviate symptoms in many patients, the comorbidity, severity, and intractable nature of mental disorders strongly underscore the need for novel strategies. As the hippocampus is a site of structural and functional pathology in most mental illnesses, a hippocampal-based treatment approach has been proposed to counteract the cognitive deficits and mood dysregulation that are hallmarks of psychiatric disorders. In particular, preclinical and clinical research suggests that hippocampal neurogenesis, the generation of new neurons in the adult dentate gyrus, may be harnessed to treat mental illness. There are obvious applications and allures of this approach; for example, perhaps stimulating hippocampal neurogenesis would reverse the overt and noncontroversial hippocampal atrophy and functional deficits observed in Alzheimer's Disease and schizophrenia, or the more controversial hippocampal deficits seen in MDD and PTSD. However, critical examination suggests that neurogenesis may only correlate with mental illness and treatment, suggesting targeting neurogenesis alone is not a sufficient treatment strategy. Here we review the classic and causative links between adult hippocampal neurogenesis and mental disorders, and provide a critical evaluation of how (and if) our basic knowledge of new neurons in the adult hippocampus might eventually help combat or even prevent mental illness.
Collapse
Affiliation(s)
- Nathan A DeCarolis
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390-9070, USA
| | | |
Collapse
|
414
|
Mattson MP. Perspective: Does brown fat protect against diseases of aging? Ageing Res Rev 2010; 9:69-76. [PMID: 19969105 DOI: 10.1016/j.arr.2009.11.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 11/30/2009] [Indexed: 01/01/2023]
Abstract
The most commonly studied laboratory rodents possess a specialized form of fat called brown adipose tissue (BAT) that generates heat to help maintain body temperature in cold environments. In humans, BAT is abundant during embryonic and early postnatal development, but is absent or present in relatively small amounts in adults where it is located in paracervical and supraclavicular regions. BAT cells can 'burn' fatty acid energy substrates to generate heat because they possess large numbers of mitochondria in which oxidative phosphorylation is uncoupled from ATP production as a result of a transmembrane proton leak mediated by uncoupling protein 1 (UCP1). Studies of rodents in which BAT levels are either increased or decreased have revealed a role for BAT in protection against diet-induced obesity. Data suggest that individuals with low levels of BAT are prone to obesity, insulin resistance and cardiovascular disease, whereas those with higher levels of BAT maintain lower body weights and exhibit superior health as they age. BAT levels decrease during aging, and dietary energy restriction increases BAT activity and protects multiple organ systems including the nervous system against age-related dysfunction and degeneration. Future studies in which the effects of specific manipulations of BAT levels and thermogenic activity on disease processes in animal models (diabetes, cardiovascular disease, cancers, neurodegenerative diseases) are determined will establish if and how BAT affects the development and progression of age-related diseases. Data from animal studies suggest that BAT and mitochondrial uncoupling can be targeted for interventions to prevent and treat obesity and age-related diseases. Examples include: diet and lifestyle changes; specific regimens of mild intermittent stress; drugs that stimulate BAT formation and activity; induction of brown adipose cell progenitors in muscle and other tissues; and transplantation of brown adipose cells.
Collapse
|
415
|
Gagnon I, Galli C, Friedman D, Grilli L, Iverson GL. Active rehabilitation for children who are slow to recover following sport-related concussion. Brain Inj 2009; 23:956-64. [PMID: 19831492 DOI: 10.3109/02699050903373477] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
416
|
Greenwood BN, Strong PV, Foley TE, Fleshner M. A behavioral analysis of the impact of voluntary physical activity on hippocampus-dependent contextual conditioning. Hippocampus 2009; 19:988-1001. [PMID: 19115374 PMCID: PMC3287390 DOI: 10.1002/hipo.20534] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Voluntary physical activity induces molecular changes in the hippocampus consistent with improved hippocampal function, but few studies have explored the effects of wheel running on specific hippocampal-dependent learning and memory processes. The current studies investigated the impact of voluntary wheel running on learning and memory for context and extinction using contextual fear conditioning which is known to be dependent on the hippocampus. When conditioning occurred prior to the start of 6 weeks of wheel running, wheel running had no effect on memory for context or extinction (assessed with freezing). In contrast, when wheel running occurred for 6 weeks prior to conditioning, physical activity improved contextual memory during a retention test 24 h later, but did not affect extinction learning or memory. Wheel running had no effect on freezing immediately after foot shock presentation during conditioning, suggesting that physical activity does not affect the acquisition of the context-shock association or alter the expression of freezing, per se. Instead, it is argued that physical activity improves the consolidation of contextual memories in the hippocampus. Consistent with improved hippocampus-dependent context learning and memory, 6 weeks of wheel running also improved context discrimination and reduced the context pre-exposure time required to form a strong contextual memory. The effect of wheel running on brain-derived neurotrophic factor (BDNF) messenger ribonucleic acid (mRNA) in hippocampal and amygdala subregions was also investigated. Wheel running increased BDNF mRNA in the dentate gyrus, CA1, and the basolateral amygdala. Results are consistent with improved hippocampal function following physical activity.
Collapse
Affiliation(s)
- Benjamin N Greenwood
- Department of Integrative Physiology and the Center for Neuroscience, University of Colorado, Boulder, CO 80309-0354, USA.
| | | | | | | |
Collapse
|
417
|
Prolonged voluntary wheel-running stimulates neural precursors in the hippocampus and forebrain of adult CD1 mice. Hippocampus 2009; 19:913-27. [DOI: 10.1002/hipo.20621] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
418
|
Clark PJ, Brzezinska WJ, Puchalski EK, Krone DA, Rhodes JS. Functional analysis of neurovascular adaptations to exercise in the dentate gyrus of young adult mice associated with cognitive gain. Hippocampus 2009; 19:937-50. [PMID: 19132736 PMCID: PMC2791165 DOI: 10.1002/hipo.20543] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The discovery that aerobic exercise increases adult hippocampal neurogenesis and can enhance cognitive performance holds promise as a model for regenerative medicine. This study adds two new pieces of information to the rapidly growing field. First, we tested whether exercise increases vascular density in the granular layer of the dentate gyrus, whole hippocampus, and striatum in C57BL/6J mice known to display procognitive effects of exercise. Second, we determined the extent to which new neurons from exercise participate in the acute neuronal response to high levels of running in B6D2F1/J (F1 hybrid of C57BL/6J female by DBA/2J male). Mice were housed with or without a running wheel for 50 days (runner vs. sedentary). The first 10 days, they received daily injections of BrdU to label dividing cells. The last 10 days, mice were tested for performance on the Morris water maze and rotarod and then euthanized to measure neurogenesis, c-Fos induction from running and vascular density. In C57BL/6J, exercise increased neurogenesis, density of blood vessels in the dentate gyrus and striatum (but not whole hippocampus), and enhanced performance on the water maze and rotarod. In B6D2F1/J, exercise also increased hippocampal neurogenesis but not vascular density in the granular layer. Improvement on the water maze from exercise was marginal, and no gain was seen for rotarod, possibly because of a ceiling effect. Running increased the number of c-Fos positive neurons in the granular layer by fivefold, and level of running was strongly correlated with c-Fos within 90 min before euthanasia. In runners, approximately 3.3% (+/-0.008 S.E.) of BrdU-positive neurons in the middle of the granule layer displayed c-Fos when compared with 0.8% (+/-0.001) of BrdU-negative neurons. Results suggest that procognitive effects of exercise are associated with increased vascular density in the dentate gyrus and striatum in C57BL/6J mice, and that new neurons from exercise preferentially function in the neuronal response to running in B6D2F1/J.
Collapse
Affiliation(s)
- Peter J. Clark
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Weronika J. Brzezinska
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Emily K. Puchalski
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - David A. Krone
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Justin S. Rhodes
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
419
|
Olah M, Ping G, De Haas AH, Brouwer N, Meerlo P, Van Der Zee EA, Biber K, Boddeke HWGM. Enhanced hippocampal neurogenesis in the absence of microglia T cell interaction and microglia activation in the murine running wheel model. Glia 2009; 57:1046-61. [PMID: 19115394 DOI: 10.1002/glia.20828] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recently, activated microglia have been shown to be involved in the regulation of several aspects of neurogenesis under certain experimental conditions both in vitro and in vivo. A neurogenesis supportive microglia phenotype has been suggested to arise from the interaction of microglia with homing encephalitogenic T cells. However, a unified hypothesis regarding the exact nature of microglia activity that is supportive of neurogenesis is yet missing from the field. Our aim was to investigate the connection between microglia activity and adult hippocampal neurogenesis under physiological conditions. To address this question we compared the level of microglia activation in the hippocampus of mice, which had access to a running wheel for 10 days and that of sedentary controls. Surprisingly, despite elevated levels of proliferation of neural precursors and survival of newborn neurons in the dentate gyrus microglia remained in a "resting" state morphologically, antigenically, and at the transcriptional level. Moreover, neither T cells nor MHCII expressing microglia were present in the hippocampal brain parenchyma. Though microglia in the dentate gyrus of the runners proliferated at a higher level than in the sedentary controls, this difference was also present in non-neurogenic sites. Therefore, our findings suggest that classical signs of microglia activation and microglia activation arising from interaction with T cells in particular are not a prerequisite for the activity-induced increase in adult hippocampal neurogenesis in C57Bl/6 mice. Thus, our results draw attention on the species and model differences that might exist regarding the regulation of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Marta Olah
- Department of Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
420
|
Abstract
It is now well established that brain plasticity is an inherent property not only of the developing but also of the adult brain. Numerous beneficial effects of exercise, including improved memory, cognitive function and neuroprotection, have been shown to involve an important neuroplastic component. However, whether major adaptive cardiovascular adjustments during exercise, needed to ensure proper blood perfusion of peripheral tissues, also require brain neuroplasticity, is presently unknown. This review will critically evaluate current knowledge on proposed mechanisms that are likely to underlie the continuous resetting of baroreflex control of heart rate during/after exercise and following exercise training. Accumulating evidence indicates that not only somatosensory afferents (conveyed by skeletal muscle receptors, baroreceptors and/or cardiopulmonary receptors) but also projections arising from central command neurons (in particular, peptidergic hypothalamic pre-autonomic neurons) converge into the nucleus tractus solitarii (NTS) in the dorsal brainstem, to co-ordinate complex cardiovascular adaptations during dynamic exercise. This review focuses in particular on a reciprocally interconnected network between the NTS and the hypothalamic paraventricular nucleus (PVN), which is proposed to act as a pivotal anatomical and functional substrate underlying integrative feedforward and feedback cardiovascular adjustments during exercise. Recent findings supporting neuroplastic adaptive changes within the NTS-PVN reciprocal network (e.g. remodelling of afferent inputs, structural and functional neuronal plasticity and changes in neurotransmitter content) will be discussed within the context of their role as important underlying cellular mechanisms supporting the tonic activation and improved efficacy of these central pathways in response to circulatory demand at rest and during exercise, both in sedentary and in trained individuals. We hope this review will stimulate more comprehensive studies aimed at understanding cellular and molecular mechanisms within CNS neuronal networks that contribute to exercise-induced neuroplasticity and cardiovascular adjustments.
Collapse
Affiliation(s)
- Lisete C Michelini
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
421
|
Flensmark J. Physical activity, eccentric contractions of plantar flexors, and neurogenesis: Therapeutic potential of flat shoes in psychiatric and neurological disorders. Med Hypotheses 2009; 73:130-2. [DOI: 10.1016/j.mehy.2009.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 02/06/2023]
|
422
|
Karl A, Werner A. The use of proton magnetic resonance spectroscopy in PTSD research--meta-analyses of findings and methodological review. Neurosci Biobehav Rev 2009; 34:7-22. [PMID: 19559046 DOI: 10.1016/j.neubiorev.2009.06.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/11/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
Different neuroimaging techniques provided evidence for structural and functional brain alterations in posttraumatic stress disorder (PTSD). Due to technical improvements, especially concerning localization techniques and more reliable analysis methods, one technique, proton magnetic resonance spectroscopy ((1)H-MRS), has increasingly become of interest because it allows further insight into metabolic mechanisms that may contribute to these alterations. The aim of this article is, therefore, to review recent studies utilizing (1)H-MRS of the hippocampus and other brain structures in PTSD. Using meta-analytic methods, we attempted to answer the question if PTSD, as compared to different types of control samples, is accompanied by altered neurometabolite ratios and concentrations in the tissue of different brain regions. A second intent was to review methodological aspects to advise on a minimal standard for reliable results with respect to the application of (1)H-MRS in PTSD. Finally, we discussed the implications of the findings with respect to current PTSD models and future research.
Collapse
Affiliation(s)
- Anke Karl
- School of Psychology, University of Southampton, Building 44, Southampton, UK.
| | | |
Collapse
|
423
|
van Praag H. Exercise and the brain: something to chew on. Trends Neurosci 2009; 32:283-90. [PMID: 19349082 PMCID: PMC2680508 DOI: 10.1016/j.tins.2008.12.007] [Citation(s) in RCA: 380] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/14/2008] [Accepted: 12/15/2008] [Indexed: 12/14/2022]
Abstract
Evidence is accumulating that exercise has profound benefits for brain function. Physical activity improves learning and memory in humans and animals. Moreover, an active lifestyle might prevent or delay loss of cognitive function with aging or neurodegenerative disease. Recent research indicates that the effects of exercise on the brain can be enhanced by concurrent consumption of natural products such as omega fatty acids or plant polyphenols. The potential synergy between diet and exercise could involve common cellular pathways important for neurogenesis, cell survival, synaptic plasticity and vascular function. Optimal maintenance of brain health might depend on exercise and intake of natural products.
Collapse
Affiliation(s)
- Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
424
|
Davis JM, Murphy EA, Carmichael MD, Davis B. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1071-7. [DOI: 10.1152/ajpregu.90925.2008] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Quercetin is one of a broad group of natural polyphenolic flavonoid substances that are being investigated for their widespread health benefits. These benefits have generally been ascribed to its combination of antioxidant and anti-inflammatory activity, but recent in vitro evidence suggests that improved mitochondrial biogenesis could play an important role. In addition, the in vivo effects of quercetin on mitochondrial biogenesis exercise tolerance are unknown. We examined the effects of 7 days of quercetin feedings in mice on markers of mitochondrial biogenesis in skeletal muscle and brain, and on endurance exercise tolerance. Mice were randomly assigned to one of the following three treatment groups: placebo, 12.5 mg/kg quercetin, or 25 mg/kg quercetin. Following 7 days of treatment, mice were killed, and soleus muscle and brain were analyzed for mRNA expression of peroxisome proliferator-activated receptor-γ coactivator (PGC-1α) and sirtuin 1 (SIRT1), and mitochondrial DNA (mtDNA) and cytochrome c. Additional mice underwent a treadmill performance run to fatigue or were placed in voluntary activity wheel cages, and their voluntary activity (distance, time, and peak speed) was recorded. Quercetin increased mRNA expression of PGC-1α and SIRT1 ( P < 0.05), mtDNA ( P < 0.05) and cytochrome c concentration ( P < 0.05). These changes in markers of mitochondrial biogenesis were associated with an increase in both maximal endurance capacity ( P < 0.05) and voluntary wheel-running activity ( P < 0.05). These benefits of querectin on fitness without exercise training may have important implications for enhancement of athletic and military performance and may also extend to prevention and/or treatment of chronic diseases.
Collapse
|
425
|
aan het Rot M, Collins KA, Fitterling HL. Physical exercise and depression. ACTA ACUST UNITED AC 2009; 76:204-14. [DOI: 10.1002/msj.20094] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
426
|
Abstract
BACKGROUND This review summarizes promising approaches for the treatment of traumatic brain injury (TBI) that are in either preclinical or clinical trials. OBJECTIVE The pathophysiology underlying neurological deficits after TBI is described. An overview of select therapies for TBI with neuroprotective and neurorestorative effects is presented. METHODS A literature review of preclinical TBI studies and clinical TBI trials related to neuroprotective and neurorestorative therapeutic approaches is provided. RESULTS/CONCLUSION Nearly all Phase II/III clinical trials in neuroprotection have failed to show any consistent improvement in outcome for TBI patients. The next decade will witness an increasing number of clinical trials that seek to translate preclinical research discoveries to the clinic. Promising drug- or cell-based therapeutic approaches include erythropoietin and its carbamylated form, statins, bone marrow stromal cells, stem cells singularly or in combination or with biomaterials to reduce brain injury via neuroprotection and promote brain remodeling via angiogenesis, neurogenesis, and synaptogenesis with a final goal to improve functional outcome of TBI patients. In addition, enriched environment and voluntary physical exercise show promise in promoting functional outcome after TBI, and should be evaluated alone or in combination with other treatments as therapeutic approaches for TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Henry Ford Health System, Department of Neurosurgery, Detroit, MI 48202, USA
| | | | | |
Collapse
|
427
|
Hu S, Zhe Y, Gomez-Pinilla F, Frautschy SA. Exercise can increase small heat shock proteins (sHSP) and pre- and post-synaptic proteins in the hippocampus. Brain Res 2009; 1249:191-201. [PMID: 19014914 PMCID: PMC3307371 DOI: 10.1016/j.brainres.2008.10.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/25/2008] [Accepted: 10/17/2008] [Indexed: 11/21/2022]
Abstract
The molecular events mediating the complex interaction between exercise and cognition are not well-understood. Although many aspects of the signal transduction pathways mediate exercise induced improvement in cognition are elucidated, little is known about the molecular events interrelating physiological stress with synaptic proteins, following physical exercise. Small heat shock proteins (sHSP), HSP27 and alpha-B-crystallin are co-localized to synapses and astrocytes, but their role in the brain is not well-understood. We investigated whether their levels in the hippocampus were modulated by exercise, using a well characterized voluntary exercise paradigm. Since sHSP are known to be regulated by many intracellular signaling molecules in other cells types outside the brain, we investigated whether similar regulation may serve a role in the brain by measuring protein kinase B (PKB/Akt), pGSK3 and the mitogen activated protein (MAP) kinases, p38, phospho-extracellular signal-regulated kinase (pERK) and phospho-c-Jun kinase (pJNK). Results demonstrated exercise-dependent increases in HSP27 and alpha-B-crystallin levels. We observed that increases in sHSP coincided with robust elevations in the presynaptic protein, SNAP25 and the post-synaptic proteins NR2b and PSD95. Exercise had a differential impact on kinases, significantly reducing pAkt and pERK, while increasing p38 MAPK. In conclusion, we demonstrate four early novel hippocampal responses to exercise that have not been identified previously: the induction of (1) sHSPs (2) the synaptic proteins SNAP-25, NR2b, and PSD-95, (3) the MAP kinase p38 and (4) the immediate early gene product MKP1. We speculate that sHSP may play a role in synaptic plasticity in response to exercise.
Collapse
Affiliation(s)
- Shuxin Hu
- Geriatric Research and Education Clinical Center, Greater Los Angeles Healthcare System, Research 151, 16111 Plummer St, North Hills, CA 91343
- Dept. Medicine University of California, Los Angeles (UCLA)
| | - Ying Zhe
- Dept. Physiological Sciences, UCLA, 621 Charles E. Young Drive, Los Angeles, CA 90095, USA
- Division of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Dept. Physiological Sciences, UCLA, 621 Charles E. Young Drive, Los Angeles, CA 90095, USA
- Division of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA 90095, USA
| | - Sally Ann Frautschy
- Geriatric Research and Education Clinical Center, Greater Los Angeles Healthcare System, Research 151, 16111 Plummer St, North Hills, CA 91343
- Dept. Medicine University of California, Los Angeles (UCLA)
- Dept. Neurology, UCLA, Los Angeles
| |
Collapse
|
428
|
Liu-Ambrose T, Donaldson MG. Exercise and cognition in older adults: is there a role for resistance training programmes? Br J Sports Med 2009; 43:25-7. [PMID: 19019904 PMCID: PMC5298919 DOI: 10.1136/bjsm.2008.055616] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, there has been a strong interest in physical activity as a primary behavioural prevention strategy against cognitive decline. A number of large prospective cohort studies have highlighted the protective role of regular physical activity in lowering the risk of cognitive impairment and dementia. Most prospective intervention studies of exercise and cognition to date have focused on aerobic-based exercise training. These studies highlight that aerobic-based exercise training enhances both brain structure and function. However, it has been suggested that other types of exercise training, such as resistance training, may also benefit cognition. The purpose of this brief review is to examine the evidence regarding resistance training and cognitive benefits. Three recent randomised exercise trials involving resistance training among seniors provide evidence that resistance training may have cognitive benefits. Resistance training may prevent cognitive decline among seniors via mechanisms involving insulin-like growth factor I and homocysteine. A side benefit of resistance training, albeit a very important one, is its established role in reducing morbidity among seniors. Resistance training specifically moderates the development of sarcopenia. The multifactorial deleterious sequelae of sarcopenia include increased falls and fracture risk as well as physical disability. Thus, clinicians should consider encouraging their clients to undertake both aerobic-based exercise training and resistance training not only for "physical health" but also because of the almost certain benefits for "brain health".
Collapse
Affiliation(s)
- T Liu-Ambrose
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
429
|
|
430
|
Choi SH, Veeraraghavalu K, Lazarov O, Marler S, Ransohoff RM, Ramirez JM, Sisodia SS. Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation. Neuron 2008; 59:568-580. [PMID: 18760694 PMCID: PMC3489017 DOI: 10.1016/j.neuron.2008.07.033] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 05/30/2008] [Accepted: 07/22/2008] [Indexed: 11/22/2022]
Abstract
Presenilin 1 (PS1) regulates environmental enrichment (EE)-mediated neural progenitor cell (NPC) proliferation and neurogenesis in the adult hippocampus. We now report that transgenic mice that ubiquitously express human PS1 variants linked to early-onset familial Alzheimer's disease (FAD) neither exhibit EE-induced proliferation, nor neuronal lineage commitment of NPCs. Remarkably, the proliferation and differentiation of cultured NPCs from standard-housed mice expressing wild-type PS1 or PS1 variants are indistinguishable. On the other hand, wild-type NPCs cocultured with primary microglia from mice expressing PS1 variants exhibit impaired proliferation and neuronal lineage commitment, phenotypes that are recapitulated with mutant microglia conditioned media in which we detect altered levels of selected soluble signaling factors. These findings lead us to conclude that factors secreted from microglia play a central role in modulating hippocampal neurogenesis, and argue for non-cell-autonomous mechanisms that govern FAD-linked PS1-mediated impairments in adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Se Hoon Choi
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | | | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Seoan Marler
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - Richard M. Ransohoff
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic. Cleveland, Ohio 44195
| | - Jan Marino Ramirez
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - Sangram S. Sisodia
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
431
|
Yuan TF, Hoff R. Mirror neuron system based therapy for emotional disorders. Med Hypotheses 2008; 71:722-6. [PMID: 18703289 DOI: 10.1016/j.mehy.2008.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 01/13/2023]
Abstract
Mirror neuron system (MNS) represents one of the most important discoveries in the area of neuropsychology of past decades. More than 500 papers have been published in this area (PubMed), and the major functions of MNS include action understanding, imitation, empathy, all of which are critical for an individual to be social. Recent studies suggested that MNS can modulate emotion states possibly through the empathy mechanism. Here we propose that MNS-based therapies provide a non-invasive approach in treatments to emotional disorders that were observed in autism patients, post-stroke patients with depression as well as other mood dysregulation conditions.
Collapse
Affiliation(s)
- Ti-Fei Yuan
- Department of Anatomy, Li Kai Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong.
| | | |
Collapse
|