401
|
Petersen C, Orem N, Trueheart J, Thorner JW, Macara IG. Random mutagenesis and functional analysis of the Ran-binding protein, RanBP1. J Biol Chem 2000; 275:4081-91. [PMID: 10660567 DOI: 10.1074/jbc.275.6.4081] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ran GTPase is required for nucleocytoplasmic transport of many types of cargo. Several proteins that recognize Ran in its GTP-bound state (Ran x GTP) possess a conserved Ran-binding domain (RanBD). Ran-binding protein-1 (RanBP1) has a single RanBD and is required for RanGAP-mediated GTP hydrolysis and release of Ran from nuclear transport receptors (karyopherins). In budding yeast (Saccharomyces cerevisiae), RanBP1 is encoded by the essential YRB1 gene; expression of mouse RanBP1 cDNA rescues the lethality of Yrb1-deficient cells. We generated libraries of mouse RanBP1 mutants and examined 11 mutants in vitro and for their ability to complement a temperature-sensitive yrb1 mutant (yrb1-51(ts)) in vivo. In 9 of the mutants, the alteration was a change in a residue (or 2 residues) that is conserved in all known RanBDs. However, 4 of these 9 mutants displayed biochemical properties indistinguishable from that of wild-type RanBP1. These mutants bound to Ran x GTP, stimulated RanGAP, inhibited the exchange activity of RCC1, and rescued growth of the yrb1-51(ts) yeast cells. Two of the 9 mutants altered in residues thought to be essential for interaction with Ran were unable to rescue growth of the yrb1(ts) mutant and did not bind detectably to Ran in vitro. However, one of these 2 mutants (and 2 others that were crippled in other RanBP1 functions) retained some ability to co-activate RanGAP. A truncated form of RanBP1 (lacking its nuclear export signal) was able to complement the yrb1(ts) mutation. When driven from the YRB1 promoter, 4 of the 5 mutants most impaired for Ran binding were unable to rescue growth of the yrb1(ts) cells; remarkably, these mutants could nevertheless form ternary complexes with importin-5 or importin-beta and Ran-GTP. The same mutants stimulated only inefficiently RanGAP-mediated GTP hydrolysis of the Ran x GTP x importin-5 complex. Thus, the essential biological activity of RanBP1 in budding yeast correlates not with Ran x GTP binding per se or with the ability to form ternary complexes with karyopherins, but with the capacity to potentiate RanGAP activity toward GTP-bound Ran in these complexes.
Collapse
Affiliation(s)
- C Petersen
- Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
402
|
Hetzer M, Mattaj IW. An ATP-dependent, Ran-independent mechanism for nuclear import of the U1A and U2B" spliceosome proteins. J Cell Biol 2000; 148:293-303. [PMID: 10648562 PMCID: PMC2174293 DOI: 10.1083/jcb.148.2.293] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear import of the two uracil-rich small nuclear ribonucleoprotein (U snRNP) components U1A and U2B" is mediated by unusually long and complex nuclear localization signals (NLSs). Here we investigate nuclear import of U1A and U2B" in vitro and demonstrate that it occurs by an active, saturable process. Several lines of evidence suggest that import of the two proteins occurs by an import mechanism different to those characterized previously. No cross competition is seen with a variety of previously studied NLSs. In contrast to import mediated by members of the importin-beta family of nucleocytoplasmic transport receptors, U1A/U2B" import is not inhibited by either nonhydrolyzable guanosine triphosphate (GTP) analogues or by a mutant of the GTPase Ran that is incapable of GTP hydrolysis. Adenosine triphosphate is capable of supporting U1A and U2B" import, whereas neither nonhydrolyzable adenosine triphosphate analogues nor GTP can do so. U1A and U2B" import in vitro does not require the addition of soluble cytosolic proteins, but a factor or factors required for U1A and U2B" import remains tightly associated with the nuclear fraction of conventionally permeabilized cells. This activity can be solubilized in the presence of elevated MgCl(2). These data suggest that U1A and U2B" import into the nucleus occurs by a hitherto uncharacterized mechanism.
Collapse
Affiliation(s)
- Martin Hetzer
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Iain W. Mattaj
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| |
Collapse
|
403
|
Fasken MB, Saunders R, Rosenberg M, Brighty DW. A leptomycin B-sensitive homologue of human CRM1 promotes nuclear export of nuclear export sequence-containing proteins in Drosophila cells. J Biol Chem 2000; 275:1878-86. [PMID: 10636888 DOI: 10.1074/jbc.275.3.1878] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rev protein of human immunodeficiency virus is a nuclear shuttling protein that promotes nuclear export of mRNAs that encode the viral structural proteins Gag, Pol, and Env. Rev binds to a highly structured RNA motif, the Rev-responsive element (RRE), that is present in all Rev-responsive viral transcripts and facilitates their entry into a nuclear export pathway by recruiting cellular export factors. In mammalian and yeast cells, the principal export receptor engaged by Rev has been identified as the importin/transportin family member CRM1/exportin 1. CRM1 binds directly to a leucine-rich nuclear export sequence (NES) present in Rev, and similar motifs have been identified in a variety of cellular nuclear shuttling proteins. We and our colleagues previously demonstrated that, in transfected Drosophila cells, HIV-1 Rev is fully functional and promotes expression of the viral envelope glycoprotein. We now demonstrate that the fundamental mechanism of Rev action in insect cells is identical to that observed in the mammalian systems. In particular, we show that Drosophila cells express a leptomycin B-sensitive homologue of human CRM1 that supports Rev-dependent gene expression and is required for nuclear export of NES-containing proteins in insect cells.
Collapse
Affiliation(s)
- M B Fasken
- The Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, DD1 9SY, Scotland
| | | | | | | |
Collapse
|
404
|
Iborra FJ, Jackson DA, Cook PR. The path of RNA through nuclear pores: apparent entry from the sides into specialized pores. J Cell Sci 2000; 113 Pt 2:291-302. [PMID: 10633080 DOI: 10.1242/jcs.113.2.291] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The path that RNA takes through nuclear pores was mapped using two high-resolution techniques. Unexpectedly, no RNA in HL60 cells was detected by immunogold labelling in the central axis of the pore complex on its way to the transporter at the nuclear membrane; instead, it was distributed around the sides, apparently entering just before the membrane. In rat liver nuclei, poly(A)(+) RNA, hnRNPs A1 and C, mrnp 41, ASF, and a phosphorylated subset of SR proteins were also distributed like mRNA, as were various transport factors and their cargoes (NTF2, Ran, RCC1, karyopherin (beta), Rch1, transportin (alpha), m(2,2,7)-trimethylG). Many pores were associated with particular transport factors/cargoes to the exclusion of others; some were associated with poly(A)(+) RNA or phosphorylated SR proteins (but not NTF2), others with NTF2 (but not poly(A)(+) RNA or the SR proteins). Electron spectroscopic imaging confirmed these results. Some pores contained phosphorus-rich RNA apparently entering from the sides; others lacked any phosphorus, and were surrounded by a ribosome-free zone in the cytoplasm. The results also suggest that pores have different functional zones where SR proteins are dephosphorylated, and where hnRNP C is removed from messages.
Collapse
Affiliation(s)
- F J Iborra
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
405
|
Kosova B, Panté N, Rollenhagen C, Podtelejnikov A, Mann M, Aebi U, Hurt E. Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with nic96p. J Biol Chem 2000; 275:343-50. [PMID: 10617624 DOI: 10.1074/jbc.275.1.343] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A fraction of the yeast nucleoporin Nic96p is localized at the terminal ring of the nuclear basket. When Nic96p was affinity purified from glutaraldehyde-treated spheroplasts, it was found to be associated with Mlp2p. Mlp2p, together with Mlp1p, are the yeast Tpr homologues, which form the nuclear pore-attached intranuclear filaments (Strambio-de-Castillia, C., Blobel, G., and Rout, M. P. (1999) J. Cell Biol. 144, 839-855). Double disruption mutants of MLP1 and MLP2 are viable and apparently not impaired in nucleocytoplasmic transport. However, overproduction of MLP1 causes nuclear accumulation of poly(A)(+) RNA in a chromatin-free area of the nucleus.
Collapse
Affiliation(s)
- B Kosova
- BZH, Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
406
|
Nelson LM, Rose RC, LeRoux L, Lane C, Bruya K, Moroianu J. Nuclear import and DNA binding of human papillomavirus type 45 L1 capsid protein. J Cell Biochem 2000. [DOI: 10.1002/1097-4644(20001101)79:2<225::aid-jcb60>3.0.co;2-a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
407
|
Kjems J, Askjaer P. Rev protein and its cellular partners. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2000; 48:251-98. [PMID: 10987094 DOI: 10.1016/s1054-3589(00)48009-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J Kjems
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
408
|
Gamper C, van Eyndhoven WG, Schweiger E, Mossbacher M, Koo B, Lederman S. TRAF-3 interacts with p62 nucleoporin, a component of the nuclear pore central plug that binds classical NLS-containing import complexes. Mol Immunol 2000; 37:73-84. [PMID: 10781837 DOI: 10.1016/s0161-5890(00)00015-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The TRAF-3 gene encodes a number of splice-variant isoforms that function as adapter molecules in NF-kappaB signaling, in part by associating with the cytoplasmic tails of CD40 or other TNF-receptor (TNF-R) family members. To identify downstream molecules in TRAF-3 signaling, a yeast two-hybrid library was screened with a full-length TRAF-3 construct. Nine independent TRAF-3 interacting clones encoded fragments of p62 Nucleoporin (p62), a 522 amino acid (aa) component of the nuclear pore central plug, that is known to bind karyopherin-beta/classical-NLS import factor complexes. The interaction of p62 with TRAF-3 was specific, since p62 failed to interact with TRAF-2, -4, -5, or -6. Deletional analysis in yeast revealed that the p62:TRAF-3 interaction is mediated by a p62 carboxy (C)-terminal coiled-coil domain and TRAF-3's fifth zinc (Zn) finger and coiled-coil domain. In human 293 T cells, recombinant TRAF-3 or p62 specifically co-immunoprecipitates the other species. In addition, endogenous p62 co-precipitates over-expressed TRAF-3. The functional effects of over-expressing a TRAF-3 binding fragment, p62(aa 336-522) were studied on NF-kappaB-dependent, or control STAT1-dependent reporter activity in 293 T cells, either resting or after stimulation by CD40 or IFN-gamma, respectively. Over-expression of p62(aa 336-522) induces NF-kappaB activation in resting cells and augments CD40-induced NF-kappaB activation, but has no effect on control STAT1 reporter activity, either at baseline or after IFN-gamma induction. The finding that TRAF-3 binds p62, suggests that TRAF-3 may serve as an adapter molecule at the nuclear membrane, in addition to its known adapter function at the plasma membrane.
Collapse
Affiliation(s)
- C Gamper
- Laboratory of Molecular Immunology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
409
|
|
410
|
Abstract
Information can be transferred between the nucleus and the cytoplasm by translocating macromolecules across the nuclear envelope. Communication of extracellular or intracellular changes to the nucleus frequently leads to a transcriptional response that allows cells to survive in a continuously changing environment. Eukaryotic cells have evolved ways to regulate this movement of macromolecules between the cytoplasm and the nucleus such that the transfer of information occurs only under conditions in which a transcriptional response is required. This review focuses on the ways in which cells regulate movement of proteins across the nuclear envelope and the significance of this regulation for controlling diverse biological processes.
Collapse
Affiliation(s)
- A Kaffman
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448, USA
| | | |
Collapse
|
411
|
Abstract
The compartmentation of eukaryotic cells requires all nuclear proteins to be imported from the cytoplasm, whereas, for example, transfer RNAs, messenger RNAs, and ribosomes are made in the nucleus and need to be exported to the cytoplasm. Nuclear import and export proceed through nuclear pore complexes and can occur along a great number of distinct pathways, many of which are mediated by importin beta-related nuclear transport receptors. These receptors shuttle between nucleus and cytoplasm, and they bind transport substrates either directly or via adapter molecules. They all cooperate with the RanGTPase system to regulate the interactions with their cargoes. Another focus of our review is nuclear export of messenger RNA, which apparently largely relies on export mediators distinct from importin beta-related factors. We discuss mechanistic aspects and the energetics of transport receptor function and describe a number of pathways in detail.
Collapse
Affiliation(s)
- D Görlich
- Zentrum für Molekulare Biologie, Universität Heidelberg, Federal Republic of Germany.
| | | |
Collapse
|
412
|
Singh BB, Patel HH, Roepman R, Schick D, Ferreira PA. The zinc finger cluster domain of RanBP2 is a specific docking site for the nuclear export factor, exportin-1. J Biol Chem 1999; 274:37370-8. [PMID: 10601307 DOI: 10.1074/jbc.274.52.37370] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ran-binding protein 2 (RanBP2) is a large scaffold cyclophilin-related protein expressed in photoreceptor cells. Red/green opsin, Ran-GTPase, and the 19 S regulatory complex of the proteasome associate with specific RanBP2 structural modules. Some of these play a role in chaperoning the functional expression of opsin. RanBP2 localization at cytoplasmic fibrils emanating from the nuclear pore complex and interaction with the Ran-GTPase support also its role in nucleocytoplasmic transport processes. The degenerate nucleoporin repeat motifs FXFG, GLFG, and XXFG have been proposed to mediate the movement of nucleocytoplasmic transport factors. In particular, RanBP2 has been implicated in nuclear import processes. Here, we show the zinc fingers of RanBP2 associate with high specificity to the nuclear export factor, exportin-1 (CRM1). The bovine RanBP2 transcript contained only five of the eight zinc fingers reported in the human counterpart and are sufficient for exportin-1 association with RanBP2. In contrast to Ran interaction with RanBP2-exportin-1 complex, exportin-1 binding to the zinc finger cluster domain of RanBP2 is insensitive to leptomycin B and nucleotide-bound state of Ran-GTPase. Our results indicate that the zinc finger-rich domain of RanBP2 constitutes a docking site for exportin-1 during nuclear export. Thus, RanBP2 emerges as a key component of the nuclear export pathway.
Collapse
Affiliation(s)
- B B Singh
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
413
|
Affiliation(s)
- S Nakielny
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | |
Collapse
|
414
|
Kose S, Imamoto N, Yoneda Y. Distinct energy requirement for nuclear import and export of importin beta in living cells. FEBS Lett 1999; 463:327-30. [PMID: 10606747 DOI: 10.1016/s0014-5793(99)01641-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Importin beta can shuttle between the nucleus and cytoplasm through the nuclear pore complex (NPC). This study deals with the issue of how the energy is utilized during the NPC passage of importin beta. In chilled or ATP-depleted cells, importin beta was transported into the nucleus, while the nuclear export of importin beta was inhibited. Further, it was found that the nuclear export inhibition of importin beta is not due to nuclear retention via binding to nucleoporins or nuclear importin alpha. These data show that the nuclear export of importin beta involves energy-requiring step(s) in living cells.
Collapse
Affiliation(s)
- S Kose
- Department of Cell Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, Japan
| | | | | |
Collapse
|
415
|
Chan CK, Jans DA. Synergy of importin alpha recognition and DNA binding by the yeast transcriptional activator GAL4. FEBS Lett 1999; 462:221-4. [PMID: 10580123 DOI: 10.1016/s0014-5793(99)01515-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The N-terminus of the yeast transcriptional activator GAL4 contains partially overlapping nuclear targeting and DNA binding functions. We have previously shown that GAL4 is recognised with high affinity by importin beta and not by the conventional nuclear localisation sequence binding importin alpha subunit of the importin alpha/beta heterodimer. The present study uses ELISA-based binding and electrophoretic mobility shift assays to show that recognition of GAL4 by importin alpha can occur, but only when GAL4 is bound to its specific DNA recognition sequence. Intriguingly, binding by importin alpha enhances DNA binding on the part of GAL4, implying a synergistic co-operation between these two functions. The results implicate a possible role for importin alpha in the nucleus additional to its established role in nuclear transport, as well as having implications for the use of GAL4 as a DNA carrier in gene therapy applications.
Collapse
Affiliation(s)
- C K Chan
- Nuclear Signalling Laboratory, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, 0200, Canberra, A.C.T., Australia
| | | |
Collapse
|
416
|
Liang SH, Clarke MF. A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J Biol Chem 1999; 274:32699-703. [PMID: 10551826 DOI: 10.1074/jbc.274.46.32699] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormal p53 cellular localization has been considered to be one of the mechanisms that could inactivate p53 function. To understand the regulation of p53 cellular trafficking, we have previously identified two p53 domains involved in its localization. A basic domain, Lys(305)-Arg(306), is required for p53 nuclear import, and a carboxyl-terminal domain, namely the cytoplasmic sequestration domain (CSD) from residues 326-355, could block the nuclear import of Lys(305) or Arg(306) mutated p53. To characterize further the function of these two domains, we demonstrate in this report that the previously described major nuclear localization signal works together with Lys(305)-Arg(306) to form a bipartite and functional nuclear localization sequence (NLS) for p53 nuclear import. The CSD could block the binding of p53 to the NLS receptor, importin alpha, and reduce the efficiency of p53 nuclear import in MCF-7, H1299, and Saos-2 cells. The blocking effect of the CSD is not due to the enhancement of nuclear export or oligomerization of the p53. These results indicate that the CSD can regulate p53 nuclear import by controlling access of the NLS to importin alpha binding.
Collapse
Affiliation(s)
- S H Liang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0936, USA
| | | |
Collapse
|
417
|
Booth JW, Belanger KD, Sannella MI, Davis LI. The yeast nucleoporin Nup2p is involved in nuclear export of importin alpha/Srp1p. J Biol Chem 1999; 274:32360-7. [PMID: 10542277 DOI: 10.1074/jbc.274.45.32360] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importin alpha.beta heterodimer mediates nuclear import of proteins containing classical nuclear localization signals. After carrying its cargo into the nucleus, the importin dimer dissociates, and Srp1p (the yeast importin alpha subunit) is recycled to the cytoplasm in a complex with Cse1p and RanGTP. Nup2p is a yeast FXFG nucleoporin that contains a Ran-binding domain. We find that export of Srp1p from the nucleus is impaired in Deltanup2 mutants. Also, Srp1p fusion proteins accumulate at the nuclear rim in wild-type cells but accumulate in the nuclear interior in Deltanup2 cells. A deletion of NUP2 shows genetic interactions with mutants in SRP1 and PRP20, which encodes the Ran nucleotide exchange factor. Srp1p binds directly to an N-terminal domain of Nup2p. This region of Nup2p is sufficient to allow accumulation of an Srp1p fusion protein at the nuclear rim, but the C-terminal Ran-binding domain of Nup2p is required for efficient Srp1p export. Formation of the Srp1p.Cse1p. RanGTP export complex releases Srp1p from its binding site in Nup2p. We propose that Nup2p may act as a scaffold that facilitates formation of the Srp1p export complex.
Collapse
Affiliation(s)
- J W Booth
- W.M. Keck Institute for Cellular Visualization, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
418
|
Liu J, Xiao N, DeFranco DB. Use of digitonin-permeabilized cells in studies of steroid receptor subnuclear trafficking. Methods 1999; 19:403-9. [PMID: 10579935 DOI: 10.1006/meth.1999.0876] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The application of a cell permeabilization technique to the analysis of nuclear import has led to many major breakthroughs in our understanding of this trafficking pathway. Digitonin permeabilization maintains the nucleus in a state competent for faithful, signal-dependent translocation through the nuclear pore complex. This system has also been used to probe the mechanism of hormone-regulated nuclear import through the use of glucocorticoid receptors (GR) as a model substrate. In this report we provide detailed descriptions of the digitonin-permeabilized cell system for use in studies of GR nuclear import. In addition, we present several novel applications that expand the utility of this system to probe for mechanisms of nuclear protein export and subnuclear trafficking.
Collapse
Affiliation(s)
- J Liu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
419
|
Bayliss R, Ribbeck K, Akin D, Kent HM, Feldherr CM, Görlich D, Stewart M. Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J Mol Biol 1999; 293:579-93. [PMID: 10543952 DOI: 10.1006/jmbi.1999.3166] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear transport factor 2 (NTF2) is a small, homodimeric protein that binds to both RanGDP and xFxFG repeat-containing nucleoporins, such as yeast Nsp1p and vertebrate p62. NTF2 is required for efficient nuclear protein import and has been shown to mediate the nuclear import of RanGDP. We have used the crystal structures of rat NTF2 and its complex with RanGDP to design a mutant, W7A-NTF2, in which the affinity for xFxFG-repeat nucleoporins is reduced while wild-type binding to RanGDP is retained. The 2.5 A resolution crystal structure of W7A-NTF2 is virtually superimposable upon the wild-type protein structure, indicating that the mutation had not introduced a more general conformational change. Therefore, our data suggest that the exposed side-chain of residue 7 is crucial to the interaction between NTF2 and xFxFG repeat-containing nucleoporins. Consistent with its reduced affinity for xFxFG nucleoporins, fluorescently labelled W7A-NTF2 binds less strongly to the nuclear envelope of permeabilized cultured cells than wild-type NTF2 and, when microinjected into Xenopus oocytes, colloidal gold coated with W7A-NTF2 binds less strongly to the central channel of nuclear pore complexes than wild-type NTF2-coated gold. Significantly, W7A-NTF2 only weakly stimulated the nuclear import of fluorescein-labelled RanGDP, providing direct evidence that an interaction between NTF2 and xFxFG repeat-containing nucleoporins is required to mediate the nuclear import of RanGDP.
Collapse
Affiliation(s)
- R Bayliss
- MRC Laboratory of Molecular Biology, Hills Rd, Cambridge, CB2 2QH, England
| | | | | | | | | | | | | |
Collapse
|
420
|
Titov AA, Blobel G. The karyopherin Kap122p/Pdr6p imports both subunits of the transcription factor IIA into the nucleus. J Cell Biol 1999; 147:235-46. [PMID: 10525531 PMCID: PMC2174230 DOI: 10.1083/jcb.147.2.235] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We discovered a nuclear import pathway mediated by the product of the previously identified Saccharomyces cerevisiae gene PDR6 (pleiotropic drug resistance). This gene product functions as a karyopherin (Kap) for nuclear import. Consistent with previously proposed nomenclature, we have renamed this gene KAP122. Kap122p was localized both to the cytoplasm and the nucleus. As a prominent import substrate of Kap122p, we identified the complex of the large and small subunit (Toa1p and Toa2p, respectively) of the general transcription factor IIA (TFIIA). Recombinant GST-Kap122p formed a complex with recombinant His(6)-Toa1p/Toa2p. In wild-type cells, Toa1p and Toa2p were localized to the nucleus. Consistent with Kap122p being the principal Kap for import of the Toa1p-Toa2p complex, we found that deletion of KAP122 results in increased cytoplasmic localization of both Toa1p and Toa2p. Deletion of KAP122 is not lethal, although deletion of TOA1 and TOA2 is. Together these data suggest that Kap122p is the major Kap for the import of Toa1p-Toa2p into the nucleus. Like other substrate-Kap complexes, the Toa1p/Toa2p/Kap122p complex isolated from yeast cytosol or reconstituted from recombinant proteins, was dissociated by RanGTP but not RanGDP. Kap122p bound to nucleoporins, specifically, to the peptide repeat-containing fragments of Nup1p and Nup2p.
Collapse
Affiliation(s)
- Anton A. Titov
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Günter Blobel
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| |
Collapse
|
421
|
Ossareh-Nazari B, Dargemont C. Domains of Crm1 involved in the formation of the Crm1, RanGTP, and leucine-rich nuclear export sequences trimeric complex. Exp Cell Res 1999; 252:236-41. [PMID: 10502415 DOI: 10.1006/excr.1999.4599] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nuclear export of proteins containing a leucine-rich nuclear export sequence (NES) is mediated by a specific NES receptor known as Crm1. This protein, which is related to the karyopherin beta family, interacts directly with NES in a RanGTP-dependent manner. To characterize the domains of Crm1 involved in formation of the trimeric Crm1-NES-RanGTP complex, N- and C-terminal deletion mutants of Crm1 were generated and their ability to bind NES and RanGTP in vitro was analyzed. Our results indicate that two regions of Crm1 are required for the formation of the trimeric Crm1-NES-RanGTP complex, the N-terminal domain of Crm1 and the central domain of the receptor, starting after residue 160 with an essential region between 566 and 720. The N-terminal domain is homologous to the RanGTP-binding domain of karyopherin beta and therefore is likely involved in the interaction with RanGTP. Consequently, the central domain likely corresponds to the NES-binding site of Crm1.
Collapse
Affiliation(s)
- B Ossareh-Nazari
- Laboratoire de Transport Nucleocytoplasmique, Institut Curie-CNRS UMR144, 26 rue d'Ulm, Paris Cedex 05, 75248, France
| | | |
Collapse
|
422
|
Lee DC, Aitchison JD. Kap104p-mediated nuclear import. Nuclear localization signals in mRNA-binding proteins and the role of Ran and Rna. J Biol Chem 1999; 274:29031-7. [PMID: 10506153 DOI: 10.1074/jbc.274.41.29031] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kap104p is a Saccharomyces cerevisiae nuclear import receptor for two essential mRNA-binding proteins, Nab2p and Nab4p/Hrp1p. We demonstrate direct binding of Kap104p to each of these substrates. We have defined the nuclear localization signals in both Nab2p and Nab4p/Hrp1p by Kap104p binding in vitro and KAP104-dependent nuclear import in vivo. The nuclear localization signals map to similar arginine/glycine-rich RNA-binding domains in both proteins and are thus termed rg-nuclear localization signals to distinguish them from classical nuclear localization signals. We also demonstrate that Kap104p, like other known beta-karyopherins (or importins), interacts directly with the small GTPase Ran/Gsp1. However, unlike other known import factors, Ran binding is not sufficient to mediate release of substrates from Kap104p; efficient Ran-GTP-mediated substrate release requires RNA. Also, addition of Kap104p to Nab2p and Nab4p/Hrp1p prebound to single-stranded DNA-cellulose stimulated release of both proteins from the resin. We suggest a simple cycle in which Nab2p and Nab4p/Hrp1p, upon import, are released in the nucleus at sites of transcription by the concerted action of Ran-GTP and binding to newly synthesized mRNA. The resulting ribonucleoprotein complexes are exported to the cytoplasm, where Kap104p rebinds to Nab2p and Nab4p/Hrp1p, contributing to their release from mRNA.
Collapse
Affiliation(s)
- D C Lee
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
423
|
Abstract
We have molecularly characterized a proteolytic cleavage in conserved nuclear pore complex proteins. This cleavage, previously demonstrated to be essential for the biogenesis of two nuclear pore complex proteins in mammals (Nup98 and Nup96) and yeast (Nup145-N and Nup145-C), occurs between Phe and Ser residues within a highly conserved domain in a polyprotein precursor. Here, we show that a protease is not involved in the cleavage event. By using a combination of domain mapping and site-directed mutagenesis, we demonstrate that the human nuclear pore complex protein Nup98 specifically cleaves itself between F863 and S864. A region of Nup98, amino acids 715-920, is able to cleave, whereas a smaller region, amino acids 772-920, does not cleave. In addition, we have generated a Nup98 mutant that cleaves under defined conditions in vitro. Further, the two cleaved fragments of Nup98 form a complex, providing a possible mechanism whereby specific, yet low-affinity, binding between Nup98 and Nup96 is responsible for the nuclear targeting of Nup96. Although apparently unrelated evolutionarily, Nup98 has converged on an autoproteolytic biogenesis mechanism similar to that of hedgehog proteins, the inteins, and the N-terminal nucleophile proteins.
Collapse
Affiliation(s)
- J S Rosenblum
- Laboratory of Cell Biology, Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
424
|
Percipalle P, Butler PJ, Finch JT, Jans DA, Rhodes D. Nuclear localization signal recognition causes release of importin-alpha from aggregates in the cytosol. J Mol Biol 1999; 292:263-73. [PMID: 10493874 DOI: 10.1006/jmbi.1999.3077] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Importin-alpha is a cytosolic receptor that recognizes classical Nuclear Localization Signals (NLSs) and mediates import into the nucleus. We have used a number of methods to investigate the aggregation state of Xenopus importin-alpha both as a recombinant, purified protein and in cytosolic extracts. We have found that recombinant importin-alpha aggregates at a protein concentration similar to that estimated to be present in the Xenopus cytoplasm, and that the importin-alpha aggregation is relieved by NLS peptide binding, with the importin-alpha then binding the NLS as a monomer. We have also found that in HeLa cytosolic extracts, importin-alpha is present in an aggregated form. Similarly to the purified importin-alpha aggregation, NLS peptides relieve the aggregation of importin-alpha in the cytosol. These observations indicate that aggregation of importin-alpha in the cytosol may be an intrinsic property of the import receptor and may be functionally related to NLS binding.Our results suggest a novel mechanism for NLS recognition, whereby NLSs mediate disassembly of importin-alpha aggregates in the cytosol.
Collapse
Affiliation(s)
- P Percipalle
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | |
Collapse
|
425
|
|
426
|
Yaseen NR, Blobel G. GTP hydrolysis links initiation and termination of nuclear import on the nucleoporin nup358. J Biol Chem 1999; 274:26493-502. [PMID: 10473610 DOI: 10.1074/jbc.274.37.26493] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of GTP-bound Ran (RanGTP) to karyopherin beta1 (Kapbeta1) releases import cargo into the nucleus. Using an ultrastructural, biochemical, and functional approach, we have studied the mechanism by which Kapbeta1.RanGTP is recycled at the nuclear pore complex for repeated rounds of import. In vitro, Kapbeta1 bound to the RanBP1-homologous (RBH) domains of Nup358 in the presence of either RanGTP or RanGDP, forming trimeric complexes. The Kapbeta1.RanGTP. RBH complex resisted dissociation by RanBP1 and GTP hydrolysis by Ran GTPase activating protein 1. Ran-dependent binding of gold-conjugated Kapbeta1 to the cytoplasmic fibers of the nuclear pore complex in digitonin-permeabilized cells and RanBP1 competition confirmed the in vitro binding data. Interaction of karyopherin alpha and a classical nuclear localization sequence peptide with the Kapbeta1.RanGTP.RBH complex stimulated GTP hydrolysis by Ran GTPase activating protein 1 both in vitro and in permeabilized cells. This GTP hydrolysis was required for reinitiation of import of a nuclear localization sequence-bearing substrate in permeabilized cells. These data suggest that GTP hydrolysis on the RBH domains of Nup358 couples the termination of one cycle of nuclear import with the initiation of the next.
Collapse
Affiliation(s)
- N R Yaseen
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
427
|
Nachury MV, Weis K. The direction of transport through the nuclear pore can be inverted. Proc Natl Acad Sci U S A 1999; 96:9622-7. [PMID: 10449743 PMCID: PMC22259 DOI: 10.1073/pnas.96.17.9622] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/1999] [Accepted: 06/25/1999] [Indexed: 11/18/2022] Open
Abstract
Transport of macromolecules across the nuclear envelope is an active process that depends on soluble factors including the GTPase Ran. Ran-GTP is predominantly located in the nucleus and has been shown to regulate cargo binding and release of import and export receptors in their respective target compartments. Recently, it was shown that transport of receptor-cargo complexes across the nuclear pore complex (NPC) does not depend on GTP-hydrolysis by Ran; however, the mechanism of translocation is still poorly understood. Here, we show that the direction of transport through the NPC can be inverted in the presence of high concentrations of cytoplasmic Ran-GTP. Under these conditions, two different classes of export cargoes are transported into the nucleus in the absence of GTP hydrolysis. The inverted transport is very rapid and can be blocked by known inhibitors of nuclear protein export. These results suggest that the NPC functions as a facilitated transport channel, allowing the selective translocation of receptor-cargo complexes. We conclude that the directionality of nucleocytoplasmic transport is determined mainly by the compartmentalized distribution of Ran-GTP.
Collapse
Affiliation(s)
- M V Nachury
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94729-3200, USA
| | | |
Collapse
|
428
|
Hübner S, Smith HM, Hu W, Chan CK, Rihs HP, Paschal BM, Raikhel NV, Jans DA. Plant importin alpha binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin beta. J Biol Chem 1999; 274:22610-7. [PMID: 10428841 DOI: 10.1074/jbc.274.32.22610] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear import of conventional nuclear localization sequence (NLS)-containing proteins initially involves recognition by the importin (IMP) alpha/beta heterodimer, where IMPalpha binds the NLS and IMPbeta targets the IMPalpha/NLS-containing protein complex to the nuclear pore. Here we examine IMPalpha from the plant Arabidopsis thaliana (At-IMPalpha), which exhibits nuclear envelope localization typical of IMPbeta rather than IMPalpha in other eukaryotic cell systems. We show that At-IMPalpha recognizes conventional NLSs of two different types with high affinity (K(d) of 5-10 nM), in contrast to mouse IMPalpha (m-IMPalpha), which exhibits much lower affinity (K(d) of 50-70 nM) and only achieves high affinity in the presence of m-IMPbeta. Unlike m-IMPalpha, At-IMPalpha is thus a high affinity NLS receptor in the absence of IMPbeta. Interestingly, At-IMPalpha was also able to bind with high affinity to NLSs recognized specifically by m-IMPbeta and not m-IMPalpha, including that of the maize transcription factor Opaque-2. Reconstitution of nuclear import in vitro indicated that in the absence of exogenous IMPbeta subunit but dependent on RanGDP and NTF2, At-IMPalpha was able to mediate nuclear accumulation to levels comparable with those mediated by m-IMPalpha/beta. Neither m-IMPalpha nor -beta was able to mediate nuclear import in the absence of the other subunit. At-IMPalpha's novel NLS recognition and nuclear transport properties imply that plants may possess an IMPalpha-mediated nuclear import pathway independent of IMPbeta in addition to that mediated by IMPalpha/beta.
Collapse
Affiliation(s)
- S Hübner
- Nuclear Signalling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra ACT 2601, Australia
| | | | | | | | | | | | | | | |
Collapse
|
429
|
Kosova B, Panté N, Rollenhagen C, Hurt E. Nup192p is a conserved nucleoporin with a preferential location at the inner site of the nuclear membrane. J Biol Chem 1999; 274:22646-51. [PMID: 10428845 DOI: 10.1074/jbc.274.32.22646] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human Nup93, the homologue of yeast Nic96p, is associated with a 205-kDa protein whose intracellular location and function is unknown. We show here that the yeast open reading frame YJL039c, which is homologous to this human p205, encodes the so far largest yeast nucleoporin. Accordingly, green fluorescent protein (GFP)-tagged YJL039c was localized to the nuclear pores and therefore named Nup192p. Affinity purification of ProtA-Nic96p from glutaraldehyde-fixed spheroplasts reveals association with Nup192p. NUP192 is essential for cell growth. A temperature-sensitive mutant nup192-15 is neither impaired in nuclear import of a SV40 nuclear localization sequence-containing reporter protein nor in mRNA export, but association of Nup49-GFP with nuclear pores is inhibited at the non-permissive temperature. By immunoelectron microscopy, Nup192p-ProtA is seen at the inner site of the nuclear pores, at a distance of 60 +/- 15 nm from the central plane of the pore. This suggests that Nup192p is an evolutionarily conserved structural component of the nuclear pore complex with a preferential location at the inner site of the nuclear membrane.
Collapse
Affiliation(s)
- B Kosova
- Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
430
|
Balasundaram D, Benedik MJ, Morphew M, Dang VD, Levin HL. Nup124p is a nuclear pore factor of Schizosaccharomyces pombe that is important for nuclear import and activity of retrotransposon Tf1. Mol Cell Biol 1999; 19:5768-84. [PMID: 10409764 PMCID: PMC84427 DOI: 10.1128/mcb.19.8.5768] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag.
Collapse
Affiliation(s)
- D Balasundaram
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
431
|
Boyle SM, Ruvolo V, Gupta AK, Swaminathan S. Association with the cellular export receptor CRM 1 mediates function and intracellular localization of Epstein-Barr virus SM protein, a regulator of gene expression. J Virol 1999; 73:6872-81. [PMID: 10400785 PMCID: PMC112772 DOI: 10.1128/jvi.73.8.6872-6881.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/1999] [Accepted: 05/10/1999] [Indexed: 11/20/2022] Open
Abstract
Splicing and posttranscriptional processing of eukaryotic gene transcripts are linked to their nuclear export and cytoplasmic expression. Unspliced pre-mRNAs and intronless transcripts are thus inherently poorly expressed. Nevertheless, human and animal viruses encode essential genes as single open reading frames or in the intervening sequences of other genes. Many retroviruses have evolved mechanisms to facilitate nuclear export of their unspliced mRNAs. For example, the human immunodeficiency virus RNA-binding protein Rev associates with the soluble cellular export receptor CRM 1 (exportin 1), which mediates nucleocytoplasmic translocation of Rev-HIV RNA complexes through the nuclear pore. The transforming human herpesvirus Epstein-Barr virus (EBV) expresses a nuclear protein, SM, early in its lytic cycle; SM binds RNA and posttranscriptionally activates expression of certain intronless lytic EBV genes. Here we show that both the trans-activation function and cytoplasmic translocation of SM are dependent on association with CRM 1 in vivo. SM is also shown to be associated in vivo with other components of the CRM 1 export pathway, including the small GTPase Ran and the nucleoporin CAN/Nup214. SM is shown to be present in the cytoplasm, nucleoplasm, and nuclear envelope of transfected cells. Mutation of a leucine-rich region (LRR) of SM inhibited CRM 1-mediated cytoplasmic translocation and SM activity, as did leptomycin B, an inhibitor of CRM 1 complex formation. Surprisingly, however, leptomycin B treatment and mutation of the LRR both led to SM becoming more tightly attached to intranuclear structures. These findings suggest a model in which SM is not merely a soluble carrier protein for RNA but rather is bound directly to intranuclear proteins, possibly including the nuclear pore complex.
Collapse
Affiliation(s)
- S M Boyle
- Sealy Center for Oncology and Hematology and Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-1048, USA
| | | | | | | |
Collapse
|
432
|
NUP98 Is Fused to PMX1 Homeobox Gene in Human Acute Myelogenous Leukemia With Chromosome Translocation t(1;11)(q23;p15). Blood 1999. [DOI: 10.1182/blood.v94.2.741] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe nucleoporin gene NUP98 was found fused to theHOXA9, HOXD13, or DDX10 genes in human acute myelogenous leukemia (AML) with chromosome translocations t(7;11)(p15;p15), t(2;11)(q35;p15), or inv(11)(p15;q22), respectively. We report here the fusion between the NUP98 gene and another homeobox gene PMX1 in a case of human AML with a t(1;11)(q23;p15) translocation. The chimeric NUP98-PMX1transcript was detected; however, there was no reciprocalPMX1-NUP98 fusion transcript. Like the NUP98-HOXA9fusion, NUP98 and PMX1 were fused in frame and the N-terminal GLFG-rich docking region of the NUP98 and the PMX1 homeodomain were conserved in the NUP98-PMX1 fusion, suggesting that PMX1 homeodomain expression is upregulated and that the fusion protein may act as an oncogenic transcription factor. The fusion to NUP98 results in the addition of the strong transcriptional activation domain located in the N-terminal region of NUP98 to PMX1. These findings suggest that constitutive expression and alteration of the transcriptional activity of the PMX1 homeodomain protein may be critical for myeloid leukemogenesis.
Collapse
|
433
|
NUP98 Is Fused to PMX1 Homeobox Gene in Human Acute Myelogenous Leukemia With Chromosome Translocation t(1;11)(q23;p15). Blood 1999. [DOI: 10.1182/blood.v94.2.741.414k04_741_747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleoporin gene NUP98 was found fused to theHOXA9, HOXD13, or DDX10 genes in human acute myelogenous leukemia (AML) with chromosome translocations t(7;11)(p15;p15), t(2;11)(q35;p15), or inv(11)(p15;q22), respectively. We report here the fusion between the NUP98 gene and another homeobox gene PMX1 in a case of human AML with a t(1;11)(q23;p15) translocation. The chimeric NUP98-PMX1transcript was detected; however, there was no reciprocalPMX1-NUP98 fusion transcript. Like the NUP98-HOXA9fusion, NUP98 and PMX1 were fused in frame and the N-terminal GLFG-rich docking region of the NUP98 and the PMX1 homeodomain were conserved in the NUP98-PMX1 fusion, suggesting that PMX1 homeodomain expression is upregulated and that the fusion protein may act as an oncogenic transcription factor. The fusion to NUP98 results in the addition of the strong transcriptional activation domain located in the N-terminal region of NUP98 to PMX1. These findings suggest that constitutive expression and alteration of the transcriptional activity of the PMX1 homeodomain protein may be critical for myeloid leukemogenesis.
Collapse
|
434
|
|
435
|
Nagoshi E, Imamoto N, Sato R, Yoneda Y. Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin beta with HLH-Zip. Mol Biol Cell 1999; 10:2221-33. [PMID: 10397761 PMCID: PMC25438 DOI: 10.1091/mbc.10.7.2221] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The sterol regulatory element-binding protein-2 (SREBP-2) is produced as a large precursor molecule attached to the endoplasmic reticulum membrane. In response to the sterol depletion, the N-terminal segment of the precursor, which contains a basic helix-loop-helix-leucine zipper domain, is released by two sequential cleavages and is translocated to the nucleus, where it activates the transcription of target genes. The data herein show that released SREBP-2 uses a distinct nuclear transport pathway, which is mediated by importin beta. The mature form of SREBP-2 is actively transported into the nucleus when injected into the cell cytoplasm. SREBP-2 binds directly to importin beta in the absence of importin alpha. Ran-GTP but not Ran-GDP causes the dissociation of the SREBP-2-importin beta complex. G19VRan-GTP inhibits the nuclear import of SREBP-2 in living cells. In the permeabilized cell in vitro transport system, nuclear import of SREBP-2 is reconstituted only by importin beta in conjunction with Ran and its interacting protein p10/NTF2. We further demonstrate that the helix-loop-helix-leucine zipper motif of SREBP-2 contains a novel type of nuclear localization signal, which binds directly to importin beta.
Collapse
Affiliation(s)
- E Nagoshi
- Department of Anatomy and Cell Biology, Osaka University Medical School, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
436
|
Novoa I, Rush MG, D'Eustachio P. Isolated mammalian and Schizosaccharomyces pombe ran-binding domains rescue S. pombe sbp1 (RanBP1) genomic mutants. Mol Biol Cell 1999; 10:2175-90. [PMID: 10397757 PMCID: PMC25432 DOI: 10.1091/mbc.10.7.2175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mammalian Ran-binding protein-1 (RanBP1) and its fission yeast homologue, sbp1p, are cytosolic proteins that interact with the GTP-charged form of Ran GTPase through a conserved Ran-binding domain (RBD). In vitro, this interaction can accelerate the Ran GTPase-activating protein-mediated hydrolysis of GTP on Ran and the turnover of nuclear import and export complexes. To analyze RanBP1 function in vivo, we expressed exogenous RanBP1, sbp1p, and the RBD of each in mammalian cells, in wild-type fission yeast, and in yeast whose endogenous sbp1 gene was disrupted. Mammalian cells and wild-type yeast expressing moderate levels of each protein were viable and displayed normal nuclear protein import. sbp1(-) yeast were inviable but could be rescued by all four exogenous proteins. Two RBDs of the mammalian nucleoporin RanBP2 also rescued sbp1(-) yeast. In mammalian cells, wild-type yeast, and rescued mutant yeast, exogenous full-length RanBP1 and sbp1p localized predominantly to the cytosol, whereas exogenous RBDs localized predominantly to the cell nucleus. These results suggest that only the RBD of sbp1p is required for its function in fission yeast, and that this function may not require confinement of the RBD to the cytosol. The results also indicate that the polar amino-terminal portion of sbp1p mediates cytosolic localization of the protein in both yeast and mammalian cells.
Collapse
Affiliation(s)
- I Novoa
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
437
|
Pemberton LF, Rosenblum JS, Blobel G. Nuclear import of the TATA-binding protein: mediation by the karyopherin Kap114p and a possible mechanism for intranuclear targeting. J Cell Biol 1999; 145:1407-17. [PMID: 10385521 PMCID: PMC2133169 DOI: 10.1083/jcb.145.7.1407] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding of the TATA-binding protein (TBP) to the promoter is the first and rate limiting step in the formation of transcriptional complexes. We show here that nuclear import of TBP is mediated by a new karyopherin (Kap) (importin) family member, Kap114p. Kap114p is localized to the cytoplasm and nucleus. A complex of Kap114p and TBP was detected in the cytosol and could be reconstituted using recombinant proteins, suggesting that the interaction was direct. Deletion of the KAP114 gene led to specific mislocalization of TBP to the cytoplasm. We also describe two other potential minor import pathways for TBP. Consistent with other Kaps, the dissociation of TBP from Kap114p is dependent on RanGTP. However, we could show that double stranded, TATA-containing DNA stimulates this RanGTP-mediated dissociation of TBP, and is necessary at lower RanGTP concentrations. This suggests a mechanism where, once in the nucleus, TBP is preferentially released from Kap114p at the promoter of genes to be transcribed. In this fashion Kap114p may play a role in the intranuclear targeting of TBP.
Collapse
Affiliation(s)
- L F Pemberton
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York 10021, USA.
| | | | | |
Collapse
|
438
|
Abstract
The SR proteins, a group of abundant arginine/serine (RS)-rich proteins, are essential pre-mRNA splicing factors that are localized in the nucleus. The RS domain of these proteins serves as a nuclear localization signal. We found that RS domain-bearing proteins do not utilize any of the known nuclear import receptors and identified a novel nuclear import receptor specific for SR proteins. The SR protein import receptor, termed transportin-SR (TRN-SR), binds specifically and directly to the RS domains of ASF/SF2 and SC35 as well as several other SR proteins. The nuclear transport regulator RanGTP abolishes this interaction. Recombinant TRN-SR mediates nuclear import of RS domain- bearing proteins in vitro. TRN-SR has amino acid sequence similarity to several members of the importin beta/transportin family. These findings strongly suggest that TRN-SR is a nuclear import receptor for the SR protein family.
Collapse
Affiliation(s)
- N Kataoka
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | |
Collapse
|
439
|
Farjot G, Sergeant A, Mikaélian I. A new nucleoporin-like protein interacts with both HIV-1 Rev nuclear export signal and CRM-1. J Biol Chem 1999; 274:17309-17. [PMID: 10358091 DOI: 10.1074/jbc.274.24.17309] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 Rev is a shuttling protein required for the nuclear export of unspliced and partially spliced viral mRNA. In this study, we have identified a new Rev-interacting protein, that specifically interacts with the Rev nuclear export signal both in yeast and mammalian cells. This protein has features found in nucleoporins including many phenylalanine-glycine repeats, a very high serine content, a putative zinc finger, and a coiled-coil domain; we thus called it NLP-1 (nucleoporin-like protein 1). In addition, gene expression analysis and wheat germ agglutinin chromatography experiments suggested that NLP-1 is an ubiquitous O-glycosylated nuclear protein. Recently, a cellular factor called CRM-1 has been shown to be an essential nuclear export factor interacting directly with nuclear export signals including the Rev nuclear export signal in a RanGTP-dependent manner. We show here that NLP-1, like the previously described Rev-interacting protein hRIP/Rab and several nucleoporins, also interacts with CRM-1 both in yeast and mammalian cells.
Collapse
Affiliation(s)
- G Farjot
- Laboratoire de Virologie, ENS-LYON, Unité INSERM U 412, 46, Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
440
|
Floer M, Blobel G. Putative reaction intermediates in Crm1-mediated nuclear protein export. J Biol Chem 1999; 274:16279-86. [PMID: 10347184 DOI: 10.1074/jbc.274.23.16279] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We discovered several novel interactions between proteins involved in Crm1-mediated nuclear export of the nuclear export signal containing human immunodeficiency virus type 1 protein Rev. First, a Rev/Crm1/RanGTP complex (where Ran is Ras-related nuclear protein) reacts with some nucleoporins (Nup42 and Nup159) but not others (NSP1, Nup116, and Nup1), forming a Nup/Crm1/RanGTP complex and concomitantly releasing Rev. Second, RanBP1 (or homologous proteins) can displace Nup and form a ternary RanBP1/RanGTP/Crm1 complex that can be disassembled by RanGAP via GTP hydrolysis. Third, and most surprisingly, RanBP1/RanGTP/Crm1 can be disassembled without GTP hydrolysis by the nucleotide exchange factor RanGEF. Recycling of a Ran/RanGEF complex by GTP and Mg2+ is stimulated by both Crm1 and Rev, allowing reformation of a Rev/Crm1/RanGTP complex. Based on these reactions we propose a model for Crm1-mediated export.
Collapse
Affiliation(s)
- M Floer
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
441
|
Blink EJ, Trapani JA, Jans DA. Perforin-dependent nuclear targeting of granzymes: A central role in the nuclear events of granule-exocytosis-mediated apoptosis? Immunol Cell Biol 1999; 77:206-15. [PMID: 10361252 DOI: 10.1046/j.1440-1711.1999.00817.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Programmed cell death, apoptosis, involves very distinctive changes within the target cell nucleus, including margination of the chromatin, DNA fragmentation and breakdown of the nuclear envelope. Cytolytic granule-mediated target cell apoptosis is effected, in part, through synergistic action of the membrane-acting protein perforin and serine proteases, such as granzymes A or B. Recent work using confocal laser scanning microscopy as well as other techniques supports the idea that perforin-dependent translocation of granzymes to the nucleus of target cells plays a central role in effecting the nuclear changes associated with apoptosis. In vitro experiments indicate that granzyme nuclear import follows a novel pathway, being independent of ATP, not inhibitable by non-hydrolysable GTP analogues and involving binding within the nucleus, unlike conventional signal- dependent nuclear protein import. In intact cells, perforin-dependent nuclear entry of granzymes precedes the nuclear events of apoptosis such as DNA fragmentation and nuclear envelope breakdown; prevention of granzyme nuclear translocation through bcl2 overexpression or treatment of target cells with inhibitors of caspase activation blocks these events. Nuclear localization of granzymes thus appears to be central to induction of the nuclear changes associated with cytolytic granule-mediated apoptosis.
Collapse
Affiliation(s)
- E J Blink
- Nuclear Signalling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra City, Australian Capital Territory, Australia
| | | | | |
Collapse
|
442
|
Hu W, Jans DA. Efficiency of importin alpha/beta-mediated nuclear localization sequence recognition and nuclear import. Differential role of NTF2. J Biol Chem 1999; 274:15820-7. [PMID: 10336485 DOI: 10.1074/jbc.274.22.15820] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Little quantitative, kinetic information is available with respect to the process of nuclear import of conventional nuclear localization sequence (NLS)-containing proteins, which initially involves recognition and docking at the nuclear pore by importin alpha/beta. This study compares the binding and nuclear import properties of mouse (m) and yeast (y) importin (IMP) subunits with respect to the NLSs from the SV40 large tumor antigen (T-ag), and the Xenopus laevis phosphoprotein N1N2. m- and y-IMPalpha recognized both NLSs, with y-IMPalpha exhibiting higher affinity. m-IMPbeta greatly enhanced the binding of m-IMPalpha to the T-ag and N1N2 NLSs, but y-IMPbeta did not significantly affect the affinity of y-IMPalpha for the T-ag NLS. In contrast, y-IMPbeta enhanced y-IMPalpha binding to the NLS of N1N2, but to a lesser extent than the enhancement of m-IMPalpha binding by m-IMPbeta. NLS-dependent nuclear import was reconstituted in vitro using the different importin subunits together with the transport factors Ran and NTF2. Whereas T-ag NLS-mediated nuclear import did not exhibit an absolute requirement for NTF2, N1N2 NLS-mediated transport strictly required NTF2. High levels of NTF2 inhibited nuclear accumulation conferred by both NLSs. We conclude that different NLSs possess distinct nuclear import properties due to differences in recognition by importin and requirements for NTF2.
Collapse
Affiliation(s)
- W Hu
- Nuclear Signalling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra, ACT 2601, Australia
| | | |
Collapse
|
443
|
Vetter IR, Arndt A, Kutay U, Görlich D, Wittinghofer A. Structural view of the Ran-Importin beta interaction at 2.3 A resolution. Cell 1999; 97:635-46. [PMID: 10367892 DOI: 10.1016/s0092-8674(00)80774-6] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transport receptors of the Importin beta family shuttle between the nucleus and cytoplasm and mediate transport of macromolecules through nuclear pore complexes. They interact specifically with the GTP-binding protein Ran, which in turn regulates their interaction with cargo. Here, we report the three-dimensional structure of a complex between Ran bound to the nonhydrolyzable GTP analog GppNHp and a 462-residue fragment from Importin beta. The structure of Importin beta shows 10 tandem repeats resembling HEAT and Armadillo motifs. They form an irregular crescent, the concave site of which forms the interface with Ran-triphosphate. The importin-binding site of Ran does not overlap with that of the Ran-binding domain of RanBP2.
Collapse
Affiliation(s)
- I R Vetter
- Max-Planck-Institut für molekulare Physiologie, Dortmund, Germany
| | | | | | | | | |
Collapse
|
444
|
Chook YM, Blobel G. Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. Nature 1999; 399:230-7. [PMID: 10353245 DOI: 10.1038/20375] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transport factors in the karyopherin-beta (also called importin-beta) family mediate the movement of macromolecules in nuclear-cytoplasmic transport pathways. Karyopherin-beta2 (transportin) binds a cognate import substrate and targets it to the nuclear pore complex. In the nucleus, Ran x GTP binds karyopherin-beta2 and dissociates the substrate. Here we present the 3.0 A structure of the karyopherin-beta2-Ran x GppNHp complex where GppNHp is a non-hydrolysable GTP analogue. Karyopherin-beta2 contains eighteen HEAT repeats arranged into two continuous orthogonal arches. Ran is clamped in the amino-terminal arch and substrate-binding activity is mapped to the carboxy-terminal arch. A large loop in HEAT repeat 7 spans both arches. Interactions of the loop with Ran and the C-terminal arch implicate it in GTPase-mediated dissociation of the import-substrate. Ran x GppNHp in the complex shows extensive structural rearrangement, compared to Ran GDP, in regions contacting karyopherin-beta2. This provides a structural basis for the specificity of the karyopherin-beta family for the GTP-bound state of Ran, as well as a rationale for interactions of the karyopherin-Ran complex with the regulatory proteins ranGAP, ranGEF and ranBP1.
Collapse
Affiliation(s)
- Y M Chook
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
445
|
Kehlenbach RH, Dickmanns A, Kehlenbach A, Guan T, Gerace L. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J Cell Biol 1999; 145:645-57. [PMID: 10330396 PMCID: PMC2133185 DOI: 10.1083/jcb.145.4.645] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1998] [Revised: 03/11/1999] [Indexed: 11/22/2022] Open
Abstract
We recently developed an assay in which nuclear export of the shuttling transcription factor NFAT (nuclear factor of activated T cells) can be reconstituted in permeabilized cells with the GTPase Ran and the nuclear export receptor CRM1. We have now used this assay to identify another export factor. After preincubation of permeabilized cells with a Ran mutant that cannot hydrolyze GTP (RanQ69L), cytosol supports NFAT export, but CRM1 and Ran alone do not. The RanQ69L preincubation leads to accumulation of CRM1 at the cytoplasmic periphery of the nuclear pore complex (NPC) in association with the p62 complex and Can/Nup214. RanGTP-dependent association of CRM1 with these nucleoporins was reconstituted in vitro. By biochemical fractionation and reconstitution, we showed that RanBP1 restores nuclear export after the RanQ69L preincubation. It also stimulates nuclear export in cells that have not been preincubated with RanQ69L. RanBP1 as well as Ran-binding domains of the cytoplasmic nucleoporin RanBP2 promote the release of CRM1 from the NPC. Taken together, our results indicate that RanGTP is important for the targeting of export complexes to the cytoplasmic side of the NPC and that RanBP1 and probably RanBP2 are involved in the dissociation of nuclear export complexes from the NPC in a terminal step of transport.
Collapse
Affiliation(s)
- R H Kehlenbach
- Departments of Cell Biology and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
446
|
Yaseen NR, Blobel G. Two distinct classes of Ran-binding sites on the nucleoporin Nup-358. Proc Natl Acad Sci U S A 1999; 96:5516-21. [PMID: 10318915 PMCID: PMC21891 DOI: 10.1073/pnas.96.10.5516] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nup-358 is a giant nucleoporin located at the tips of the cytoplasmic fibrils of the nuclear pore complex (NPC). Its contains four RBH (RanBP1-homologous) domains and a zinc finger domain with eight zinc finger motifs. Using three recombinant fragments of Nup-358 that comprise two of the RBH domains and the zinc finger domain, we show that both RanGDP and RanGTP bind to Nup-358 in vitro. The RBH domains bound either RanGDP or RanGTP. Interestingly, the zinc finger domain was found to bind RanGDP exclusively. Zinc chelation by EDTA treatment abolished the binding of RanGDP to the zinc finger domain without affecting the binding of Ran to the RBH domain. Ultrastructural studies with RanGDP-conjugated colloidal gold in digitonin-permeabilized cells showed a large number of Ran-binding sites on the cytoplasmic fibrils of the NPC. Of those, only a portion that is closer to the central axis of the NPC was sensitive to RanBP1 competition, suggesting that most of the RBH domains of Nup-358 are situated closer to the central axis of the NPC than the zinc finger domain. Thus, the RBH and the zinc finger domains of Nup-358 were identified as two different classes of Ran-binding sites with distinct, ultrastructural locations at the NPC.
Collapse
Affiliation(s)
- N R Yaseen
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
447
|
Jäkel S, Albig W, Kutay U, Bischoff FR, Schwamborn K, Doenecke D, Görlich D. The importin beta/importin 7 heterodimer is a functional nuclear import receptor for histone H1. EMBO J 1999; 18:2411-23. [PMID: 10228156 PMCID: PMC1171324 DOI: 10.1093/emboj/18.9.2411] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Import of proteins into the nucleus proceeds through nuclear pore complexes and is largely mediated by nuclear transport receptors of the importin beta family that use direct RanGTP-binding to regulate the interaction with their cargoes. We investigated nuclear import of the linker histone H1 and found that two receptors, importin beta (Impbeta) and importin 7 (Imp7, RanBP7), play a critical role in this process. Individually, the two import receptors bind H1 weakly, but binding is strong for the Impbeta/Imp7 heterodimer. Consistent with this, import of H1 into nuclei of permeabilized mammalian cells requires exogenous Impbeta together with Imp7. Import by the Imp7/Impbeta heterodimer is strictly Ran dependent, the Ran-requiring step most likely being the disassembly of the cargo-receptor complex following translocation into the nucleus. Disassembly is brought about by direct binding of RanGTP to Impbeta and Imp7, whereby the two Ran-binding sites act synergistically. However, whereas an Impbeta/RanGTP interaction appears essential for H1 import, Ran-binding to Imp7 is dispensable. Thus, Imp7 can function in two modes. Its Ran-binding site is essential when operating as an autonomous import receptor, i.e. independently of Impbeta. Within the Impbeta/Imp7 heterodimer, however, Imp7 plays a more passive role than Impbeta and resembles an import adapter.
Collapse
Affiliation(s)
- S Jäkel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
448
|
Katahira J, Strässer K, Podtelejnikov A, Mann M, Jung JU, Hurt E. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J 1999; 18:2593-609. [PMID: 10228171 PMCID: PMC1171339 DOI: 10.1093/emboj/18.9.2593] [Citation(s) in RCA: 339] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human TAP is an orthologue of the yeast mRNA export factor Mex67p. In mammalian cells, TAP has a preferential intranuclear localization, but can also be detected at the nuclear pores and shuttles between the nucleus and the cytoplasm. TAP directly associates with mRNA in vivo, as it can be UV-crosslinked to poly(A)+ RNA in HeLa cells. Both the FG-repeat domain of nucleoporin CAN/Nup214 and a novel human 15 kDa protein (p15) with homology to NTF2 (a nuclear transport factor which associates with RanGDP), directly bind to TAP. When green fluorescent protein (GFP)-tagged TAP and p15 are expressed in yeast, they localize to the nuclear pores. Strikingly, co-expression of human TAP and p15 restores growth of the otherwise lethal mex67::HIS3/mtr2::HIS3 double knockout strain. Thus, the human TAP-p15 complex can functionally replace the Mex67p-Mtr2p complex in yeast and thus performs a conserved role in nuclear mRNA export.
Collapse
Affiliation(s)
- J Katahira
- BZH, Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
449
|
Forwood JK, Brooks A, Briggs LJ, Xiao CY, Jans DA, Vasudevan SG. The 37-amino-acid interdomain of dengue virus NS5 protein contains a functional NLS and inhibitory CK2 site. Biochem Biophys Res Commun 1999; 257:731-7. [PMID: 10208852 DOI: 10.1006/bbrc.1999.0370] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dengue virus NS5 RNA-dependent RNA polymerase has been detected in the nucleus of virus-infected mammalian cells. We demonstrate here for the first time using in vitro and in vivo assay systems that the 37-amino-acid linker interdomain of NS5 (residues 369 to 405) contains a nuclear localization sequence (NLS) which is capable of targeting b-galactosidase to the nucleus. Further, we show that the linker is recognized by subunits of the NLS-binding importin complex with an affinity similar to that of the bipartite NLS of the retinoblastoma protein and, in analogous fashion to proteins such as the SV40 large tumor antigen, contains a functional protein kinase CK2 phosphorylation site (threonine 395). Interestingly, this site appears to inhibit NS5 nuclear targeting, probably through a cytoplasmic retention mechanism. The linker may have an important role in targeting NS5 to the nucleus in a regulated manner during the dengue virus infectious cycle.
Collapse
Affiliation(s)
- J K Forwood
- Department of Biochemistry and Molecular Biology, James Cook University of North Queensland, Townsville, Australia
| | | | | | | | | | | |
Collapse
|
450
|
Paraskeva E, Izaurralde E, Bischoff FR, Huber J, Kutay U, Hartmann E, Lührmann R, Görlich D. CRM1-mediated recycling of snurportin 1 to the cytoplasm. J Cell Biol 1999; 145:255-64. [PMID: 10209022 PMCID: PMC2133107 DOI: 10.1083/jcb.145.2.255] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/1998] [Revised: 03/05/1999] [Indexed: 11/22/2022] Open
Abstract
Importin beta is a major mediator of import into the cell nucleus. Importin beta binds cargo molecules either directly or via two types of adapter molecules, importin alpha, for import of proteins with a classical nuclear localization signal (NLS), or snurportin 1, for import of m3G-capped U snRNPs. Both adapters have an NH2-terminal importin beta-binding domain for binding to, and import by, importin beta, and both need to be returned to the cytoplasm after having delivered their cargoes to the nucleus. We have shown previously that CAS mediates export of importin alpha. Here we show that snurportin 1 is exported by CRM1, the receptor for leucine-rich nuclear export signals (NESs). However, the interaction of CRM1 with snurportin 1 differs from that with previously characterized NESs. First, CRM1 binds snurportin 1 50-fold stronger than the Rev protein and 5,000-fold stronger than the minimum Rev activation domain. Second, snurportin 1 interacts with CRM1 not through a short peptide but rather via a large domain that allows regulation of affinity. Strikingly, snurportin 1 has a low affinity for CRM1 when bound to its m3G-capped import substrate, and a high affinity when substrate-free. This mechanism appears crucial for productive import cycles as it can ensure that CRM1 only exports snurportin 1 that has already released its import substrate in the nucleus.
Collapse
Affiliation(s)
- E Paraskeva
- Zentrum für Molekulare Biologie der Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|