401
|
Wiesenthal A, Hoffmeister M, Siddique M, Kovacevic I, Oess S, Müller-Esterl W, Siehoff-Icking A. NOSTRINβ- A Shortened NOSTRIN Variant with A Role in Transcriptional Regulation. Traffic 2008; 10:26-34. [DOI: 10.1111/j.1600-0854.2008.00850.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
402
|
Perugi F, Muriaux D, Ramirez BC, Chabani S, Decroly E, Darlix JL, Blot V, Pique C. Human Discs Large is a new negative regulator of human immunodeficiency virus-1 infectivity. Mol Biol Cell 2008; 20:498-508. [PMID: 18946087 DOI: 10.1091/mbc.e08-02-0189] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 replication is positively or negatively regulated through multiple interactions with host cell proteins. We report here that human Discs Large (Dlg1), a scaffold protein recruited beneath the plasma membrane and involved in the assembly of multiprotein complexes, restricts HIV-1 infectivity. The endogenous Dlg1 and HIV-1 Gag polyprotein spontaneously interact in HIV-1-chronically infected T cells. Depleting endogenous Dlg1 in either adherent cells or T cells does not affect Gag maturation, production, or release, but it enhances the infectivity of progeny viruses five- to sixfold. Conversely, overexpression of Dlg1 reduces virus infectivity by approximately 80%. Higher virus infectivity upon Dlg1 depletion correlates with increased Env content in cells and virions, whereas the amount of virus-associated Gag or genomic RNA remains identical. Dlg1 knockdown is also associated with the redistribution and colocalization of Gag and Env toward CD63 and CD82 positive vesicle-like structures, including structures that seem to still be connected to the plasma membrane. This study identifies both a new negative regulator that targets the very late steps of the HIV-1 life cycle, and an assembly pathway that optimizes HIV-1 infectivity.
Collapse
Affiliation(s)
- Fabien Perugi
- Department of Cell Biology, Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique Unité Mixte de Recherche, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
403
|
Takano K, Takano K, Toyooka K, Suetsugu S. EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J 2008; 27:2817-28. [PMID: 18923421 DOI: 10.1038/emboj.2008.216] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/22/2008] [Indexed: 11/10/2022] Open
Abstract
Extended Fer-CIP4 homology (EFC)/FCH-BAR (F-BAR) domains generate and bind to tubular membrane structures of defined diameters that are involved in the formation and fission of endocytotic vesicles. Formin-binding protein 17 (FBP17) and Toca-1 contain EFC/F-BAR domains and bind to neural Wiskott-Aldrich syndrome protein (N-WASP), which links phosphatidylinositol (4,5)-bisphosphate (PIP(2)) and the Rho family GTPase Cdc42 to the Arp2/3 complex. The N-WASP-WASP-interacting protein (WIP) complex, a predominant form of N-WASP in cells, is known to be activated by Toca-1 and Cdc42. Here, we show that N-WASP-WIP complex-mediated actin polymerization is activated by phosphatidylserine-containing membranes depending on membrane curvature in the presence of Toca-1 or FBP17 and in the absence of Cdc42 and PIP(2). Cdc42 further promoted the activation of actin polymerization by N-WASP-WIP. Toca-1 or FBP17 recruited N-WASP-WIP to the membrane. Conserved acidic residues near the SH3 domain of Toca-1 and FBP17 positioned the N-WASP-WIP to be spatially close to the membrane for activation of actin polymerization. Therefore, curvature-dependent actin polymerization is stimulated by spatially appropriate interactions of EFC/F-BAR proteins and the N-WASP-WIP complex with the membrane.
Collapse
Affiliation(s)
- Kazunori Takano
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
404
|
Krauss M, Jia JY, Roux A, Beck R, Wieland FT, De Camilli P, Haucke V. Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J Biol Chem 2008; 283:27717-27723. [PMID: 18693248 PMCID: PMC3762545 DOI: 10.1074/jbc.m804528200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/05/2008] [Indexed: 11/06/2022] Open
Abstract
ADP-ribosylation factor (Arf) and related small GTPases play crucial roles in membrane traffic within the exo- and endocytic pathways. Arf proteins in their GTP-bound state are associated with curved membrane buds and tubules, frequently together with effector coat proteins to which they bind. Here we report that Arf1 is found on membrane tubules originating from the Golgi complex where it colocalizes with COPI and GGA1 vesicle coat proteins. Arf1 also induces tubulation of liposomes in vitro. Mutations within the amino-terminal amphipathic helix (NTH) of Arf1 affect the number of Arf1-positive tubules in vivo and its property to tubulate liposomes. Moreover, hydrophilic substitutions within the hydrophobic part of its NTH impair Arf1-catalyzed budding of COPI vesicles in vitro. Our data indicate that GTP-controlled local induction of high curvature membranes is an important property of Arf1 that might be shared by a subgroup of Arf/Arl family GTPases.
Collapse
Affiliation(s)
- Michael Krauss
- Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jun-Yong Jia
- Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Aurélien Roux
- Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Rainer Beck
- Biochemie-Zentrum (BZH), University of Heidelberg, 69120 Heidelberg, Germany
| | - Felix T Wieland
- Biochemie-Zentrum (BZH), University of Heidelberg, 69120 Heidelberg, Germany
| | - Pietro De Camilli
- Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Volker Haucke
- Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
405
|
Prouzet-Mauléon V, Lefebvre F, Thoraval D, Crouzet M, Doignon F. Phosphoinositides affect both the cellular distribution and activity of the F-BAR-containing RhoGAP Rgd1p in yeast. J Biol Chem 2008; 283:33249-57. [PMID: 18845541 DOI: 10.1074/jbc.m805161200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell polarity is a key element of development in most eukaryotes. The Rho GTPase-activating protein Rgd1p positively regulates the GTPase activity of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively, in the budding yeast Saccharomyces cerevisiae. Rgd1p contains an F-BAR domain at its N-terminal end in addition to its RhoGAP domain at its C-terminal end. We demonstrate here that phospholipids discriminate between the GTPase activities of Rho3p and Rho4p through Rgd1p and specifically stimulate the RhoGAP activity on Rho4p. The central region of the protein contiguous to the F-BAR domain is required for this stimulation. The F-BAR region binds to phosphoinositides in vitro and also plays a key role in the localization of Rgd1p to the bud tip and neck during the cell cycle. Studies of heat-sensitive mutants lacking phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-biphosphate suggested that Rgd1p initially binds to Golgi membranes via phosphatidylinositol 4-phosphate and is then transported to the plasma membrane, where it binds phosphatidylinositol 4,5-biphosphate. We demonstrate here the dual effects of phosphoinositides on a RhoGTPase-activating protein. Phosphoinositides both regulate the recruitment and trafficking of Rgd1p to membranes via the F-BAR domain and specifically stimulate GTPase-activating protein activity, consistent with functional interplay between lipids, RhoGAP, and its related GTPases in yeast growth.
Collapse
Affiliation(s)
- Valérie Prouzet-Mauléon
- Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, Bordeaux, F-33076 France
| | | | | | | | | |
Collapse
|
406
|
Abstract
Neural function requires effective communication between neurons and their targets at synapses. Thus, proper formation, growth and plasticity of synapses are critical to behavior. A retrograde (muscle to neuron) BMP signal is required to promote synaptic growth, homeostasis and stability at Drosophila neuromuscular junctions (NMJs).(1-4) We recently demonstrated that this signal constitutes an instructive signal that sculpts synaptic growth in a graded manner and uncovered a presynaptic endocytic mechanism that modulates BMP signaling levels. In the absence of this regulation, excessive BMP signaling results in overgrown NMJs with a proliferation of ectopic boutons.(5).
Collapse
Affiliation(s)
- Kate M O'Connor-Giles
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
407
|
Abstract
The Notch signaling pathway regulates a diverse array of cell types and cellular processes and is tightly regulated by ligand binding. Both canonical and noncanonical Notch ligands have been identified that may account for some of the pleiotropic nature associated with Notch signaling. This review focuses on the molecular mechanisms by which Notch ligands function as signaling agonists and antagonists, and discusses different modes of activating ligands as well as findings that support intrinsic ligand signaling activity independent of Notch. Post-translational modification, proteolytic processing, endocytosis and membrane trafficking, as well as interactions with the actin cytoskeleton may contribute to the recently appreciated multifunctionality of Notch ligands. The regulation of Notch ligand expression by other signaling pathways provides a mechanism to coordinate Notch signaling with multiple cellular and developmental cues. The association of Notch ligands with inherited human disorders and cancer highlights the importance of understanding the molecular nature and activities intrinsic to Notch ligands. Oncogene (2008) 27, 5148-5167; doi:10.1038/onc.2008.229.
Collapse
Affiliation(s)
- Brendan D'souza
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Alison Miyamoto
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Gerry Weinmaster
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Molecular Biology Institute, UCLA
- Jonsson Comprehensive Cancer Center, UCLA
| |
Collapse
|
408
|
Rodal AA, Motola-Barnes RN, Littleton JT. Nervous wreck and Cdc42 cooperate to regulate endocytic actin assembly during synaptic growth. J Neurosci 2008; 28:8316-25. [PMID: 18701694 PMCID: PMC2546611 DOI: 10.1523/jneurosci.2304-08.2008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/01/2008] [Accepted: 07/11/2008] [Indexed: 01/12/2023] Open
Abstract
Regulation of synaptic morphology depends on endocytosis of activated growth signal receptors, but the mechanisms regulating this membrane-trafficking event are unclear. Actin polymerization mediated by Wiskott-Aldrich syndrome protein (WASp) and the actin-related protein 2/3 complex generates forces at multiple stages of endocytosis. FCH-BIN amphiphysin RVS (F-BAR)/SH3 domain proteins play key roles in this process by coordinating membrane deformation with WASp-dependent actin polymerization. However, it is not known how other WASp ligands, such as the small GTPase Cdc42, coordinate with F-BAR/SH3 proteins to regulate actin polymerization at membranes. Nervous Wreck (Nwk) is a conserved neuronal F-BAR/SH3 protein that localizes to periactive zones at the Drosophila larval neuromuscular junction (NMJ) and is required for regulation of synaptic growth via bone morphogenic protein signaling. Here, we show that Nwk interacts with the endocytic proteins dynamin and Dap160 and functions together with Cdc42 to promote WASp-mediated actin polymerization in vitro and to regulate synaptic growth in vivo. Cdc42 function is associated with Rab11-dependent recycling endosomes, and we show that Rab11 colocalizes with Nwk at the NMJ. Together, our results suggest that synaptic growth activated by growth factor signaling is controlled at an endosomal compartment via coordinated Nwk and Cdc42-dependent actin assembly.
Collapse
Affiliation(s)
- Avital A Rodal
- The Picower Institute for Learning and Memory, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
409
|
Shin N, Ahn N, Chang-Ileto B, Park J, Takei K, Ahn SG, Kim SA, Di Paolo G, Chang S. SNX9 regulates tubular invagination of the plasma membrane through interaction with actin cytoskeleton and dynamin 2. J Cell Sci 2008; 121:1252-63. [PMID: 18388313 DOI: 10.1242/jcs.016709] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic membrane remodeling during intracellular trafficking is controlled by the intricate interplay between lipids and proteins. BAR domains are modules that participate in endocytic processes by binding and deforming the lipid bilayer. Sorting nexin 9 (SNX9), which functions in clathrin-mediated endocytosis, contains a BAR domain, however, the properties of this domain are not well understood. Here we show that SNX9 shares many properties with other BAR domain-containing proteins, such as amphiphysin and endophilin. SNX9 is able to deform the plasma membrane, as well as liposomes, into narrow tubules and recruit N-WASP and dynamin 2 to these tubules via its SH3 domain. SNX9-induced tubulation is antagonized by N-WASP and dynamin 2 while it is enhanced by perturbation of actin dynamics. However, SNX9 also has several unique properties. The tubulating activity requires the BAR and PX domains, as well as the low-complexity (LC) domain, which binds the Arp2/3 complex. SNX9 also binds to PtdIns(4)P-5-kinases via its PX domain and its tubulating activity is regulated by phosphoinositides. In addition, the kinase activity of PtdIns(4)P-5-kinases is stimulated by interaction with SNX9, suggesting a positive feedback interaction between SNX9 and PtdIns(4)P-5-kinases. These results suggest that SNX9 functions in the coordination of membrane remodeling and fission via interactions with actin-regulating proteins, endocytic proteins and PtdIns(4,5)P2-metabolizing enzymes.
Collapse
Affiliation(s)
- Narae Shin
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Campellone KG, Webb NJ, Znameroski EA, Welch MD. WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 2008; 134:148-61. [PMID: 18614018 PMCID: PMC2556884 DOI: 10.1016/j.cell.2008.05.032] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 03/11/2008] [Accepted: 05/12/2008] [Indexed: 11/29/2022]
Abstract
The Arp2/3 complex is an actin nucleator that plays a critical role in many cellular processes. Its activities are regulated by nucleation-promoting factors (NPFs) that function primarily during plasma membrane dynamics. Here we identify a mammalian NPF called WHAMM (WASP homolog associated with actin, membranes, and microtubules) that localizes to the cis-Golgi apparatus and tubulo-vesicular membrane transport intermediates. The modular organization of WHAMM includes an N-terminal domain that mediates Golgi membrane association, a coiled-coil region that binds microtubules, and a WCA segment that stimulates Arp2/3-mediated actin polymerization. Overexpression and depletion studies indicate that WHAMM is important for maintaining Golgi structure and facilitating anterograde membrane transport. The ability of WHAMM to interact with microtubules plays a role in membrane tubulation, while its capacity to induce actin assembly promotes tubule elongation. Thus, WHAMM is an important regulator of membrane dynamics functioning at the interface of the microtubule and actin cytoskeletons.
Collapse
Affiliation(s)
- Kenneth G. Campellone
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Neil J. Webb
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | | | - Matthew D. Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
411
|
Hara S, Kiyokawa E, Iemura SI, Natsume T, Wassmer T, Cullen PJ, Hiai H, Matsuda M. The DHR1 domain of DOCK180 binds to SNX5 and regulates cation-independent mannose 6-phosphate receptor transport. Mol Biol Cell 2008; 19:3823-35. [PMID: 18596235 DOI: 10.1091/mbc.e08-03-0314] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
DOCK180 is the archetype of the DOCK180-family guanine nucleotide exchange factor for small GTPases Rac1 and Cdc42. DOCK180-family proteins share two conserved domains, called DOCK homology region (DHR)-1 and -2. Although the function of DHR2 is to activate Rac1, DHR1 is required for binding to phosphoinositides. To better understand the function of DHR1, we searched for its binding partners by direct nanoflow liquid chromatography/tandem mass spectrometry, and we identified sorting nexins (SNX) 1, 2, 5, and 6, which make up a multimeric protein complex mediating endosome-to-trans-Golgi-network (TGN) retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Among these SNX proteins, SNX5 was coimmunoprecipitated with DOCK180 most efficiently. In agreement with this observation, DOCK180 colocalized with SNX5 at endosomes. The RNA interference-mediated knockdowns of SNX5 and DOCK180, but not Rac1, resulted in the redistribution of CI-MPR from TGN to endosomes. Furthermore, expression of the DOCK180 DHR1 domain was sufficient to restore the perturbed CI-MPR distribution in DOCK180 knockdown cells. These data suggest that DOCK180 regulates CI-MPR trafficking via SNX5 and that this function is independent of its guanine nucleotide exchange factor activity toward Rac1.
Collapse
Affiliation(s)
- Shigeo Hara
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
412
|
Sens P, Johannes L, Bassereau P. Biophysical approaches to protein-induced membrane deformations in trafficking. Curr Opin Cell Biol 2008; 20:476-82. [PMID: 18539448 DOI: 10.1016/j.ceb.2008.04.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 04/15/2008] [Accepted: 04/19/2008] [Indexed: 01/23/2023]
Abstract
Membrane traffic requires membrane deformation to generate vesicles and tubules. Strong evidence suggests that assembly of curvature-active proteins can drive such membrane shape changes. Well-documented pathways often involve protein scaffolds, in particular coats (clathrin or COP). However, membrane curvature should, in principle, be influenced by any protein binding asymmetrically on a membrane; large membrane morphological changes could result from their aggregation. In the case of Shiga toxin or viral matrix proteins, tubules and buds appear to result from the cargo-driven formation of protein-lipid nanodomains, showing that collective protein behaviour is crucial in the process. We argue here that a combination of in vitro experiments on giant unilamellar vesicles and theoretical modelling based on statistical physics is ideally suited to tackle these collective effects.
Collapse
Affiliation(s)
- Pierre Sens
- Laboratoire Gulliver, ESPCI, CNRS-UMR 7083, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
413
|
Abstract
BAR domains are proteins that sense and sculpt curved membranes in cells, furnishing a relatively well-studied example of mechanisms employed in cellular morphogenesis. We report a computational study of membrane bending by BAR domains at four levels of resolution, described by 1), all-atom molecular dynamics; 2), residue-based coarse-graining (resolving single amino acids and lipid molecules); 3), shape-based coarse-graining (resolving overall protein and membrane shapes); and 4), a continuum elastic membrane model. Membrane sculpting performed by BAR domains collectively is observed in agreement with experiments. Different arrangements of BAR domains on the membrane surface are found to lead to distinct membrane curvatures and bending dynamics.
Collapse
|
414
|
O'Connor-Giles KM, Ho LL, Ganetzky B. Nervous wreck interacts with thickveins and the endocytic machinery to attenuate retrograde BMP signaling during synaptic growth. Neuron 2008; 58:507-18. [PMID: 18498733 PMCID: PMC2448395 DOI: 10.1016/j.neuron.2008.03.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 01/28/2008] [Accepted: 03/10/2008] [Indexed: 11/17/2022]
Abstract
Regulation of synaptic growth is fundamental to the formation and plasticity of neural circuits. Here, we demonstrate that Nervous wreck (Nwk), a negative regulator of synaptic growth at Drosophila NMJs, interacts functionally and physically with components of the endocytic machinery, including dynamin and Dap160/intersectin, and negatively regulates retrograde BMP growth signaling through a direct interaction with the BMP receptor, thickveins. Synaptic overgrowth in nwk is sensitive to BMP signaling levels, and loss of Nwk facilitates BMP-induced overgrowth. Conversely, Nwk overexpression suppresses BMP-induced synaptic overgrowth. We observe analogous genetic interactions between dap160 and the BMP pathway, confirming that endocytosis regulates BMP signaling at NMJs. Finally, we demonstrate a correlation between synaptic growth and pMAD levels and show that Nwk regulates these levels. We propose that Nwk functions at the interface of endocytosis and BMP signaling to ensure proper synaptic growth by negatively regulating Tkv to set limits on this positive growth signal.
Collapse
|
415
|
Cooper KM, Bennin DA, Huttenlocher A. The PCH family member proline-serine-threonine phosphatase-interacting protein 1 targets to the leukocyte uropod and regulates directed cell migration. Mol Biol Cell 2008; 19:3180-91. [PMID: 18480402 DOI: 10.1091/mbc.e08-02-0225] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pombe Cdc15 homology (PCH) family members have emerged as important regulators of membrane-cytoskeletal interactions. Here we show that PSTPIP1, a PCH family member expressed in hematopoietic cells, regulates the motility of neutrophil-like cells and is a novel component of the leukocyte uropod where it colocalizes with other uropod components, such as type I PIPKIgamma. Furthermore, we show that PSTPIP1 association with the regulator of endocytosis, dynamin 2, and PSTPIP1 expression impairs transferrin uptake and endocytosis. We also show that PSTPIP1 localizes at the rear of neutrophils with a subpopulation of F-actin that is specifically detected by the binding of an F-actin probe that detects a more stable population of actin. Finally, we show that actin polymerization, but not the microtubule network, is necessary for the polarized distribution of PSTPIP1 toward the rear of the cell. Together, our findings demonstrate that PSTPIP1 is a novel component of the leukocyte uropod that regulates endocytosis and cell migration.
Collapse
Affiliation(s)
- Kate M Cooper
- Cellular and Molecular Biology Program, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
416
|
Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations. Biophys J 2008; 95:1866-76. [PMID: 18469070 DOI: 10.1529/biophysj.107.121160] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
N-BAR domains are protein modules that bind to and induce curvature in membranes via a charged concave surface and N-terminal amphipathic helices. Recently, molecular dynamics simulations have demonstrated that the N-BAR domain can induce a strong local curvature that matches the curvature of the BAR domain surface facing the bilayer. Here we present further molecular dynamics simulations that examine in greater detail the roles of the concave surface and amphipathic helices in driving local membrane curvature. We find that the strong curvature induction observed in our previous simulations requires the stable presentation of the charged concave surface to the membrane and is not driven by the membrane-embedded amphipathic helices. Nevertheless, without these amphipathic helices embedded in the membrane, the N-BAR domain does not maintain a close association with the bilayer, and fails to drive membrane curvature. Increasing the membrane negative charge through the addition of PIP(2) facilitates closer association with the membrane in the absence of embedded helices. At sufficiently high concentrations, amphipathic helices embedded in the membrane drive membrane curvature independently of the BAR domain.
Collapse
|
417
|
Perturbation of syndapin/PACSIN impairs synaptic vesicle recycling evoked by intense stimulation. J Neurosci 2008; 28:3925-33. [PMID: 18400891 DOI: 10.1523/jneurosci.1754-07.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicle recycling has been proposed to depend on proteins which coordinate membrane and cytoskeletal dynamics. Here, we examine the role of the dynamin- and N-WASP (neural Wiskott-Aldrich syndrome protein)-binding protein syndapin/PACSIN at the lamprey reticulospinal synapse. We find that presynaptic microinjection of syndapin antibodies inhibits vesicle recycling evoked by intense (5 Hz or more), but not by light (0.2 Hz) stimulation. This contrasts with the inhibition at light stimulation induced by perturbation of amphiphysin (Shupliakov et al., 1997). Inhibition by syndapin antibodies was associated with massive accumulation of membranous cisternae and invaginations around release sites, but not of coated pits at the plasma membrane. Cisternae contained vesicle membrane, as shown by vesicle-associated membrane protein 2 (VAMP2)/synaptobrevin 2 immunolabeling. Similar effects were observed when syndapin was perturbed before onset of massive endocytosis induced by preceding intense stimulation. Selective perturbation of the Src homology 3 domain interactions of syndapin was sufficient to induce vesicle depletion and accumulation of cisternae. Our data show an involvement of syndapin in synaptic vesicle recycling evoked by intense stimulation. We propose that syndapin is required to stabilize the plasma membrane and/or facilitate bulk endocytosis at high release rates.
Collapse
|
418
|
Sokac AM, Wieschaus E. Local actin-dependent endocytosis is zygotically controlled to initiate Drosophila cellularization. Dev Cell 2008; 14:775-86. [PMID: 18477459 PMCID: PMC2517610 DOI: 10.1016/j.devcel.2008.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 12/20/2007] [Accepted: 02/23/2008] [Indexed: 11/19/2022]
Abstract
In early Drosophila embryos, several mitotic cycles proceed with aborted cytokinesis before a modified cytokinesis, called cellularization, finally divides the syncytium into individual cells. Here, we find that scission of endocytic vesicles from the plasma membrane (PM) provides a control point to regulate the furrowing events that accompany this development. At early mitotic cycles, local furrow-associated endocytosis is controlled by cell cycle progression, whereas at cellularization, which occurs in a prolonged interphase, it is controlled by expression of the zygotic gene nullo. nullo mutations impair cortical F-actin accumulation and scission of endocytic vesicles, such that membrane tubules remain tethered to the PM and deplete structural components from the furrows, precipitating furrow regression. Thus, Nullo regulates scission to restrain endocytosis of proteins essential for furrow stabilization at the onset of cellularization. We propose that developmentally regulated endocytosis can coordinate actin/PM remodeling to directly drive furrow dynamics during morphogenesis.
Collapse
Affiliation(s)
| | - Eric Wieschaus
- Department of Molecular Biology, Princeton University
- Howard Hughes Medical Institute, Princeton University
| |
Collapse
|
419
|
Liu H, Bachand GD, Kim H, Hayden CC, Abate EA, Sasaki DY. Lipid nanotube formation from streptavidin-membrane binding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:3686-3689. [PMID: 18336048 DOI: 10.1021/la704018s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A novel transformation of giant lipid vesicles to produce nanotubular structures was observed upon the binding of streptavidin to biotinylated membranes. Unlike membrane budding and tubulation processes caused by proteins involved with endocytosis and vesicle fusion, streptavidin is known to crystallize at near the isoelectric point (pI 5 to 6) into planar sheets against biotinylated films. We have found, however, that at neutral pH membranes of low bending rigidity (<10kT), such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), spontaneously produce tubular structures with widths ranging from micrometers to below the diffraction limit (<250 nm) and lengths spanning up to hundreds of micrometers. The nanotubes were typically held taut between surface-bound vesicles suggesting high membrane tension, yet the lipid nanotubes exhibited a fluidic nature that enabled the transport of entrained vesicles. Confocal microscopy confirmed the uniform coating of streptavidin over the vesicles and nanotubes. Giant vesicles composed of lipid membranes of higher bending energy exhibited only aggregation in the presence of streptavidin. Routes toward the development of these highly curved membrane structures are discussed in terms of general protein-membrane interactions.
Collapse
Affiliation(s)
- Haiqing Liu
- Sandia National Laboratories, Biomolecular Interfaces and Systems Department, Albuquerque, NM 87185, USA
| | | | | | | | | | | |
Collapse
|
420
|
Saarikangas J, Hakanen J, Mattila PK, Grumet M, Salminen M, Lappalainen P. ABBA regulates plasma-membrane and actin dynamics to promote radial glia extension. J Cell Sci 2008; 121:1444-54. [PMID: 18413296 DOI: 10.1242/jcs.027466] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Radial glia play key roles in neuronal migration, axon guidance, and neurogenesis during development of the central nervous system. However, the molecular mechanisms regulating growth and morphology of these extended cells are unknown. We show that ABBA, a novel member of the IRSp53-MIM protein family, is enriched in different types of radial glia. ABBA binds ATP-actin monomers with high affinity and deforms PtdIns(4,5)P(2)-rich membranes in vitro through its WH2 and IM domains, respectively. In radial-glia-like C6-R cells, ABBA localises to the interface between the actin cytoskeleton and plasma membrane, and its depletion by RNAi led to defects in lamellipodial dynamics and process extension. Together, this study identifies ABBA as a novel regulator of actin and plasma membrane dynamics in radial glial cells, and provides evidence that membrane binding and deformation activity is critical for the cellular functions of IRSp53-MIM-ABBA family proteins.
Collapse
Affiliation(s)
- Juha Saarikangas
- Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
421
|
Heath RJW, Insall RH. Dictyostelium MEGAPs: F-BAR domain proteins that regulate motility and membrane tubulation in contractile vacuoles. J Cell Sci 2008; 121:1054-64. [PMID: 18334553 DOI: 10.1242/jcs.021113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025] Open
Abstract
PCH family proteins are fundamentally important proteins, linking membrane curvature events with cytoskeletal reorganisation. One group, the MEGAPs (also called srGAPs and WRPs) contain RhoGAP domains in addition to the F-BAR domain. We disrupted MEGAP1 and MEGAP2 in Dictyostelium both singly and in combination. We found a strong cytoskeletal phenotype in MEGAP1(-) cells and a subtle phototaxis defect in MEGAP2(-) slugs. MEGAP1(-)/2(-) cells have an overabundance of filopodia and slug motility and function are affected. The most dramatic changes, however, are on contractile vacuoles. MEGAP1(-)/2(-) cells empty their contractile vacuoles less efficiently than normal and consequently have three times the usual number. GFP-tagged MEGAP1 localises to tubules of the contractile vacuole network and when vacuoles start to empty they recruit cytosolic GFP-MEGAP1. Mutants in the Saccharomyces homologues RGD1 and RGD2 also show abnormal vacuoles, implying that this role is conserved. Thus, MEGAP is an important regulator of the contractile vacuole network, and we propose that tubulation of the contractile vacuole by MEGAP1 represents a novel mechanism for driving vacuole emptying.
Collapse
Affiliation(s)
- Robert J W Heath
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | |
Collapse
|
422
|
Clifford DM, Wolfe BA, Roberts-Galbraith RH, McDonald WH, Yates JR, Gould KL. The Clp1/Cdc14 phosphatase contributes to the robustness of cytokinesis by association with anillin-related Mid1. ACTA ACUST UNITED AC 2008; 181:79-88. [PMID: 18378776 PMCID: PMC2287289 DOI: 10.1083/jcb.200709060] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Cdc14 phosphatases antagonize cyclin-dependent kinase–directed phosphorylation events and are involved in several facets of cell cycle control. We investigate the role of the fission yeast Cdc14 homologue Clp1/Flp1 in cytokinesis. We find that Clp1/Flp1 is tethered at the contractile ring (CR) through its association with anillin-related Mid1. Fluorescent recovery after photobleaching analyses indicate that Mid1, unlike other tested CR components, is anchored at the cell midzone, and this physical property is likely to account for its scaffolding role. By generating a mutation in mid1 that selectively disrupts Clp1/Flp1 tethering, we reveal the specific functional consequences of Clp1/Flp1 activity at the CR, including dephosphorylation of the essential CR component Cdc15, reductions in CR protein mobility, and CR resistance to mild perturbation. Our evidence indicates that Clp1/Flp1 must interact with the Mid1 scaffold to ensure the fidelity of Schizosaccharomyces pombe cytokinesis.
Collapse
Affiliation(s)
- Dawn M Clifford
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
423
|
Grimm-Günter EMS, Milbrandt M, Merkl B, Paulsson M, Plomann M. PACSIN proteins bind tubulin and promote microtubule assembly. Exp Cell Res 2008; 314:1991-2003. [PMID: 18456257 DOI: 10.1016/j.yexcr.2008.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 03/08/2008] [Accepted: 03/12/2008] [Indexed: 11/28/2022]
Abstract
PACSINs are intracellular adapter proteins involved in vesicle transport, membrane dynamics and actin reorganisation. In this study, we report a novel role for PACSIN proteins as components of the centrosome involved in microtubule dynamics. Glutathione S-transferase (GST)-tagged PACSIN proteins interacted with protein complexes containing alpha- and gamma-tubulin in brain homogenate. Analysis of cell lysates showed that all three endogenous PACSINs co-immunoprecipitated dynamin, alpha-tubulin and gamma-tubulin. Furthermore, PACSINs bound only to unpolymerised tubulin, not to microtubules purified from brain. In agreement, the cellular localisation of endogenous PACSIN 2 was not affected by the microtubule depolymerising reagent nocodazole. By light microscopy, endogenous PACSIN 2 localised next to gamma-tubulin at purified centrosomes from NIH 3T3 cells. Finally, reduction of PACSIN 2 protein levels with small-interfering RNA (siRNA) resulted in impaired microtubule nucleation from centrosomes, whereas microtubule centrosome splitting was not affected, suggesting a role for PACSIN 2 in the regulation of tubulin polymerisation. These findings suggest a novel function for PACSIN proteins in dynamic microtubuli nucleation.
Collapse
Affiliation(s)
- Eva-Maria S Grimm-Günter
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
424
|
Abstract
Many different globular domains bind to the surfaces of cellular membranes, or to specific phospholipid components in these membranes, and this binding is often tightly regulated. Examples include pleckstrin homology and C2 domains, which are among the largest domain families in the human proteome. Crystal structures, binding studies and analyses of subcellular localization have provided much insight into how members of this diverse group of domains bind to membranes, what features they recognize and how binding is controlled. A full appreciation of these processes is crucial for understanding how protein localization and membrane topography and trafficking are regulated in cells.
Collapse
Affiliation(s)
- Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104-6059, USA.
| |
Collapse
|
425
|
Frost A, Perera R, Roux A, Spasov K, Destaing O, Egelman EH, De Camilli P, Unger VM. Structural basis of membrane invagination by F-BAR domains. Cell 2008; 132:807-17. [PMID: 18329367 PMCID: PMC2384079 DOI: 10.1016/j.cell.2007.12.041] [Citation(s) in RCA: 452] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/20/2007] [Accepted: 12/24/2007] [Indexed: 12/11/2022]
Abstract
BAR superfamily domains shape membranes through poorly understood mechanisms. We solved structures of F-BAR modules bound to flat and curved bilayers using electron (cryo)microscopy. We show that membrane tubules form when F-BARs polymerize into helical coats that are held together by lateral and tip-to-tip interactions. On gel-state membranes or after mutation of residues along the lateral interaction surface, F-BARs adsorb onto bilayers via surfaces other than their concave face. We conclude that membrane binding is separable from membrane bending, and that imposition of the module's concave surface forces fluid-phase bilayers to bend locally. Furthermore, exposure of the domain's lateral interaction surface through a change in orientation serves as the crucial trigger for assembly of the helical coat and propagation of bilayer bending. The geometric constraints and sequential assembly of the helical lattice explain how F-BAR and classical BAR domains segregate into distinct microdomains, and provide insight into the spatial regulation of membrane invagination.
Collapse
Affiliation(s)
- Adam Frost
- Departments of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rushika Perera
- Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Aurélien Roux
- Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Krasimir Spasov
- Departments of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Olivier Destaing
- Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Edward H. Egelman
- Department of Biochemistry & Molecular Genetics, Box 800733, University of Virginia, Charlottesville, VA 22908, USA
| | - Pietro De Camilli
- Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Vinzenz M. Unger
- Departments of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
426
|
Qian P, Bullough PA, Hunter CN. Three-dimensional reconstruction of a membrane-bending complex: the RC-LH1-PufX core dimer of Rhodobacter sphaeroides. J Biol Chem 2008; 283:14002-11. [PMID: 18326046 DOI: 10.1074/jbc.m800625200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A three-dimensional model of the dimeric reaction center-light harvesting I-PufX (RC-LH1-PufX) complex from Rhodobacter sphaeroides, calculated from electron microscope single particle analysis of negatively stained complexes, shows that the two halves of the dimer molecule incline toward each other on the periplasmic side, creating a remarkable V-shaped structure. The distribution of negative stain is consistent with loose packing of the LH1 ring near the 14th LH1 alpha/beta pair, which could facilitate the migration of quinone and quinol molecules across the LH1 boundary. The three-dimensional model encloses a space near the reaction center Q(B) site and the 14th LH1 alpha/beta pair, which is approximately 20 angstroms in diameter, sufficient to sequester a quinone pool. Helical arrays of dimers were used to construct a three-dimensional membrane model, which matches the packing lattice deduced from electron microscope analysis of the tubular dimer-only membranes found in mutants of Rba. sphaeroides lacking the LH2 complex. The intrinsic curvature of the dimer explains the shape and approximately 70-nm diameter of these membrane tubules, and at least partially accounts for the spherical membrane invaginations found in wild-type Rba. sphaeroides. A model of dimer aggregation and membrane curvature in these spherical membrane invaginations is presented.
Collapse
Affiliation(s)
- Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | |
Collapse
|
427
|
Rocca DL, Martin S, Jenkins EL, Hanley JG. Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nat Cell Biol 2008; 10:259-71. [PMID: 18297063 PMCID: PMC2664613 DOI: 10.1038/ncb1688] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 01/25/2008] [Indexed: 02/07/2023]
Abstract
The dynamic regulation of actin polymerization plays crucial roles in cell morphology and endocytosis. The mechanistic details of these processes and the proteins involved are not fully understood, especially in neurons. PICK1 is a PDZ-BAR-domain protein involved in regulated AMPA receptor (AMPAR) endocytosis in neurons. Here, we demonstrate that PICK1 binds filamentous (F)-actin and the actin-nucleating Arp2/3 complex, and potently inhibits Arp2/3-mediated actin polymerization. RNA interference (RNAi) knockdown of PICK1 in neurons induces a reorganization of the actin cytoskeleton resulting in aberrant cell morphology. Wild-type PICK1 rescues this phenotype, but a mutant PICK1, PICK1(W413A), that does not bind or inhibit Arp2/3 has no effect. Furthermore, this mutant also blocks NMDA-induced AMPAR internalization. This study identifies PICK1 as a negative regulator of Arp2/3-mediated actin polymerization that is critical for a specific form of vesicle trafficking, and also for the development of neuronal architecture.
Collapse
Affiliation(s)
- Daniel L. Rocca
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Stéphane Martin
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Emma L. Jenkins
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jonathan G. Hanley
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
428
|
Hanley JG. PICK1: a multi-talented modulator of AMPA receptor trafficking. Pharmacol Ther 2008; 118:152-60. [PMID: 18353440 DOI: 10.1016/j.pharmthera.2008.02.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 11/18/2022]
Abstract
AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor trafficking is a fundamental mechanism for regulating synaptic strength, and hence may underlie cellular processes involved in learning and memory. PICK1 (protein interacting with C-kinase) is a PDZ and BAR domain-containing protein that has recently emerged as a key regulator of AMPA receptor traffic. Via the PDZ domain, PICK1 interacts directly with AMPA receptor subunits and is involved in the regulated removal of AMPA receptors from the synaptic plasma membrane. PICK1 has the ability to functionally interact with a number of cellular processes, including calcium signaling, actin polymerisation and phospholipid membrane architecture. In this review, I summarize recent findings that describe the importance of PICK1 in neurons and its specific molecular characteristics that enable it to regulate AMPA receptor trafficking.
Collapse
Affiliation(s)
- Jonathan G Hanley
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
429
|
Aspenström P. Roles of F-BAR/PCH proteins in the regulation of membrane dynamics and actin reorganization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:1-31. [PMID: 19121815 DOI: 10.1016/s1937-6448(08)01601-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Pombe Cdc15 Homology (PCH) proteins have emerged in many species as important coordinators of signaling pathways that regulate actomyosin assembly and membrane dynamics. The hallmark of the PCH proteins is the presence of a Fes/CIP4 homology-Bin/Amphiphysin/Rvsp (F-BAR) domain; therefore they are commonly referred to as F-BAR proteins. The prototype F-BAR protein, Cdc15p of Schizosaccharomyces pombe, has a role in the formation of the contractile actomyosin ring during cytokinesis. Vertebrate F-BAR proteins have an established role in binding phospholipids and they participate in membrane deformations, for instance, during the internalization of transmembrane receptors. This way the F-BAR proteins will function as linkers between the actin polymerization apparatus and the machinery regulating membrane dynamics. Interestingly, some members of the F-BAR proteins are implicated in inflammatory or neurodegenerative disorders and the observations can be expected to have clinical implications for the treatment of the diseases.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
430
|
Abstract
Elements of the cytoskeleton interact intimately and communicate bidirectionally with cellular membranes. Such interactions are critical for a host of cellular processes. Here we focus on the many types of interactions that exist between the cytoskeleton and the plasma membrane to illustrate why these cellular components can never truly be studied in isolation in vivo. We discuss how membrane-cytoskeleton interactions are mediated and modulated, and how many proteins involved in these interactions are disrupted in human disease. We then highlight key molecular and physical variables that must be considered in order to mechanistically dissect events associated with changes in plasma membrane morphology. These considerations are integrated into the context of cell migration, filopodia formation, and clathrin-mediated endocytosis to show how a holistic view of the plasma membrane-cytoskeleton interface can allow for the appropriate interpretation of experimental findings and provide novel mechanistic insight into these important cellular events.
Collapse
Affiliation(s)
- Gary J Doherty
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
| | | |
Collapse
|
431
|
Banerjee PP, Pandey R, Zheng R, Suhoski MM, Monaco-Shawver L, Orange JS. Cdc42-interacting protein-4 functionally links actin and microtubule networks at the cytolytic NK cell immunological synapse. J Exp Med 2007; 204:2305-20. [PMID: 17785506 PMCID: PMC2118451 DOI: 10.1084/jem.20061893] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 08/02/2007] [Indexed: 11/04/2022] Open
Abstract
An essential function of the immunological synapse (IS) is directed secretion. NK cells are especially adept at this activity, as they direct lytic granules to the synapse for secretion, which enables cytotoxicity and facilitates host defense. This initially requires rearrangement of the actin cytoskeleton and, subsequently, microtubule-dependent trafficking of the lytic granules. As these two steps are sequential, specific linkages between them are likely to serve as critical regulators of cytotoxicity. We studied Cdc42-interacting protein-4 (CIP4), which constitutively interacts with tubulin and microtubules but focuses to the microtubule organizing center (MTOC) after NK cell activation, when it is able to associate with Wiskott-Aldrich syndrome protein (WASp) and the actin filament-rich IS. WASp deficiency, overexpression of CIP4, or parts of CIP4 interfere with this union and block normal CIP4 localization, MTOC polarization to the IS, and cytotoxicity. Reduction of endogenous CIP4 expression using small interfering RNA similarly inhibits MTOC polarization and cytotoxic activity but does not impair actin filament accumulation at the IS, or Cdc42 activation. Thus, CIP4 is an important cytoskeletal adaptor that functions after filamentous actin accumulation and Cdc42 activation to enable MTOC polarization and NK cell cytotoxicity.
Collapse
Affiliation(s)
- Pinaki P Banerjee
- Children's Hospital of Philadelphia, Division of Immunology, Abramson Research Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
432
|
Uezu A, Horiuchi A, Kanda K, Kikuchi N, Umeda K, Tsujita K, Suetsugu S, Araki N, Yamamoto H, Takenawa T, Nakanishi H. SGIP1α Is an Endocytic Protein That Directly Interacts with Phospholipids and Eps15. J Biol Chem 2007; 282:26481-9. [PMID: 17626015 DOI: 10.1074/jbc.m703815200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
SGIP1 has been shown to be an endophilin-interacting protein that regulates energy balance, but its function is not fully understood. Here, we identified its splicing variant of SGIP1 and named it SGIP1alpha. SGIP1alpha bound to phosphatidylserine and phosphoinositides and deformed the plasma membrane and liposomes into narrow tubules, suggesting the involvement in vesicle formation during endocytosis. SGIP1alpha furthermore bound to Eps15, an important adaptor protein of clathrin-mediated endocytic machinery. SGIP1alpha was colocalized with Eps15 and the AP-2 complex. Upon epidermal growth factor (EGF) stimulation, SGIP1alpha was colocalized with EGF at the plasma membrane, indicating the localization of SGIP1alpha at clathrin-coated pits/vesicles. SGIP1alpha overexpression reduced transferrin and EGF endocytosis. SGIP1alpha knockdown reduced transferrin endocytosis but not EGF endocytosis; this difference may be due to the presence of redundant pathways in EGF endocytosis. These results suggest that SGIP1alpha plays an essential role in clathrin-mediated endocytosis by interacting with phospholipids and Eps15.
Collapse
Affiliation(s)
- Akiyoshi Uezu
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
433
|
Yarar D, Waterman-Storer CM, Schmid SL. SNX9 couples actin assembly to phosphoinositide signals and is required for membrane remodeling during endocytosis. Dev Cell 2007; 13:43-56. [PMID: 17609109 DOI: 10.1016/j.devcel.2007.04.014] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 03/16/2007] [Accepted: 04/19/2007] [Indexed: 01/30/2023]
Abstract
Multiple modes of endocytosis require actin-dependent remodeling of the plasma membrane; however, neither the factors linking these processes nor their mechanisms of action are understood. The sorting nexin, SNX9, localizes to clathrin-coated pits where it interacts with dynamin and functions in clathrin-mediated endocytosis. Here, we demonstrate that SNX9 also localizes to actin-rich structures implicated in fluid-phase uptake, including tubular membranes containing GPI-anchored proteins and dorsal membrane ruffles. Moreover, we show that SNX9 is critical for dorsal ruffle formation and for clathrin-independent, actin-dependent fluid-phase endocytosis. In vitro, SNX9 directly associates with N-WASP, an Arp2/3 complex activator, and stimulates N-WASP/Arp2/3-mediated actin assembly. SNX9-stimulated actin polymerization is greatly enhanced by PI(4,5)P(2)-containing liposomes, due in part to PI(4,5)P(2)-induced SNX9 oligomerization. These results suggest a mechanism for the spatial and temporal regulation of N-WASP-dependent actin assembly and implicate SNX9 in directly coupling actin dynamics to membrane remodeling during multiple modes of endocytosis.
Collapse
Affiliation(s)
- Defne Yarar
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
434
|
Lettau M, Beyer A, Janssen O. Novel monoclonal antibodies for the investigation of PCH family proteins. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
435
|
Hou JC, Pessin JE. Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking. Curr Opin Cell Biol 2007; 19:466-73. [PMID: 17644329 PMCID: PMC2041936 DOI: 10.1016/j.ceb.2007.04.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 04/17/2007] [Indexed: 12/21/2022]
Abstract
Glucose transporter 4 (GLUT4) is the major insulin-regulated glucose transporter expressed mainly in muscle and adipose tissue. GLUT4 is stored in a poorly characterized intracellular vesicular compartment and translocates to the cell surface in response to insulin stimulation resulting in an increased glucose uptake. This process is essential for the maintenance of normal glucose homeostasis and involves a complex interplay of trafficking events and intracellular signaling cascades. Recent studies have identified sortilin as an essential element for the formation of GLUT4 storage vesicles during adipogenesis and Golgi-localized gamma-ear-containing Arf-binding protein (GGA) as a key coat adaptor for the entry of newly synthesized GLUT4 into the specialized compartment. Insulin-stimulated GLUT4 translocation from this compartment to the plasma membrane appears to require the Akt/protein kinase B substrate termed AS160 (Akt substrate of 160kDa). In addition, the VPS9 domain-containing protein Gapex-5 in complex with CIP4 appears to function as a Rab31 guanylnucleotide exchange factor that is necessary for insulin-stimulated GLUT4 translocation. Here, we attempt to summarize recent advances in GLUT4 vesicle biogenesis, intracellular trafficking and membrane fusion.
Collapse
Affiliation(s)
- June Chunqiu Hou
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
436
|
Shimada A, Niwa H, Tsujita K, Suetsugu S, Nitta K, Hanawa-Suetsugu K, Akasaka R, Nishino Y, Toyama M, Chen L, Liu ZJ, Wang BC, Yamamoto M, Terada T, Miyazawa A, Tanaka A, Sugano S, Shirouzu M, Nagayama K, Takenawa T, Yokoyama S. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 2007; 129:761-72. [PMID: 17512409 DOI: 10.1016/j.cell.2007.03.040] [Citation(s) in RCA: 327] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 01/18/2007] [Accepted: 03/02/2007] [Indexed: 11/17/2022]
Abstract
Pombe Cdc15 homology (PCH) proteins play an important role in a variety of actin-based processes, including clathrin-mediated endocytosis (CME). The defining feature of the PCH proteins is an evolutionarily conserved EFC/F-BAR domain for membrane association and tubulation. In the present study, we solved the crystal structures of the EFC domains of human FBP17 and CIP4. The structures revealed a gently curved helical-bundle dimer of approximately 220 A in length, which forms filaments through end-to-end interactions in the crystals. The curved EFC dimer fits a tubular membrane with an approximately 600 A diameter. We subsequently proposed a model in which the curved EFC filament drives tubulation. In fact, striation of tubular membranes was observed by phase-contrast cryo-transmission electron microscopy, and mutations that impaired filament formation also impaired membrane tubulation and cell membrane invagination. Furthermore, FBP17 is recruited to clathrin-coated pits in the late stage of CME, indicating its physiological role.
Collapse
Affiliation(s)
- Atsushi Shimada
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
437
|
Ungewickell EJ, Hinrichsen L. Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 2007; 19:417-25. [PMID: 17631994 DOI: 10.1016/j.ceb.2007.05.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 05/14/2007] [Accepted: 05/16/2007] [Indexed: 01/18/2023]
Abstract
Clathrin-dependent endocytosis is the major pathway for the uptake of nutrients and signaling molecules in higher eukaryotic cells. The long-held tenet that clathrin-coated vesicles are created from flat coated plasma membrane patches by a sequential process of invagination, bud formation and fission recently received strong support from the results of advanced live cell fluorescence microscopy. The data on the critical components that deform the plasma membrane locally into a coated bud suggest that membrane bending is a team effort requiring membrane-curving protein domains, actin dynamics and, last but not least, clathrin. The scission step requires the mechano-enzymatic function of dynamin, actin dynamics and possibly myosin motor proteins. Finally, a burst of auxilin/GAK initiates the uncoating of the vesicle.
Collapse
Affiliation(s)
- Ernst J Ungewickell
- Department of Cell Biology, Center of Anatomy, Hannover Medical School, Carl-Neuberg Street 1, D-30625 Hannover, Germany.
| | | |
Collapse
|
438
|
Koh TW, Korolchuk VI, Wairkar YP, Jiao W, Evergren E, Pan H, Zhou Y, Venken KJT, Shupliakov O, Robinson IM, O'Kane CJ, Bellen HJ. Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. ACTA ACUST UNITED AC 2007; 178:309-22. [PMID: 17620409 PMCID: PMC2064449 DOI: 10.1083/jcb.200701030] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidermal growth factor receptor pathway substrate clone 15 (Eps15) is a protein implicated in endocytosis, endosomal protein sorting, and cytoskeletal organization. Its role is, however, still unclear, because of reasons including limitations of dominant-negative experiments and apparent redundancy with other endocytic proteins. We generated Drosophila eps15-null mutants and show that Eps15 is required for proper synaptic bouton development and normal levels of synaptic vesicle (SV) endocytosis. Consistent with a role in SV endocytosis, Eps15 moves from the center of synaptic boutons to the periphery in response to synaptic activity. The endocytic protein, Dap160/intersectin, is a major binding partner of Eps15, and eps15 mutants phenotypically resemble dap160 mutants. Analyses of eps15 dap160 double mutants suggest that Eps15 functions in concert with Dap160 during SV endocytosis. Based on these data, we hypothesize that Eps15 and Dap160 promote the efficiency of endocytosis from the plasma membrane by maintaining high concentrations of multiple endocytic proteins, including dynamin, at synapses.
Collapse
Affiliation(s)
- Tong-Wey Koh
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
439
|
Sakaushi S, Inoue K, Zushi H, Senda-Murata K, Fukada T, Oka S, Sugimoto K. Dynamic behavior of FCHO1 revealed by live-cell imaging microscopy: its possible involvement in clathrin-coated vesicle formation. Biosci Biotechnol Biochem 2007; 71:1764-8. [PMID: 17617719 DOI: 10.1271/bbb.60720] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular behavior of human FCHO1 protein was investigated by live-cell imaging microscopy. The fluorescence intensity of green fluorescent protein (GFP)-FCHO1 fluctuated periodically in a perinuclear region approximately every 100 s, reminding us of the periodic fluctuations of clathrin reported in our recent work. The periodicity of FCHO1 was temporally correlated with that of clathrin, suggesting that FCHO1 is involved in clathrin-coated vesicle formation.
Collapse
Affiliation(s)
- Shinji Sakaushi
- Laboratory of Molecular Biology and Cell Informatics, Division of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
440
|
Abstract
Actin cytoskeleton remodeling provides the forces required for a variety of cellular processes based on membrane dynamics, such as endocytosis, exocytosis, and vesicular trafficking at the Golgi. All these events are coordinated by networks of associated proteins, and some of them are functionally connected with cell migration. The site and the duration of actin polymerization, in connection with vesicle budding and fusion, are tightly controlled by both small GTPases and the large GTPase dynamin. Recent advances in the understanding of the mechanisms coupling actin dynamics with membrane trafficking at the cell surface have been brought by the combined studies of actin polymerizing factors and of the endocytic/exocytic machinery.
Collapse
Affiliation(s)
- Letizia Lanzetti
- Dipartimento di Scienze Oncologiche, Università degli Studi di Torino, Istituto per la Ricerca e la Cura del Cancro, Str. Provinciale 142, 10060 Candiolo, Torino, Italy.
| |
Collapse
|
441
|
Abstract
Expanding the range of curvature generating and curvature stabilizing protein modules, the first F-BAR domain structures support their assignment to the BAR domain superfamily and emphasize how modifications to a basic structural frame can generate a broad spectrum of properties.
Collapse
|
442
|
Henne WM, Kent HM, Ford MGJ, Hegde BG, Daumke O, Butler PJG, Mittal R, Langen R, Evans PR, McMahon HT. Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 2007; 15:839-52. [PMID: 17540576 DOI: 10.1016/j.str.2007.05.002] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
A spectrum of membrane curvatures exists within cells, and proteins have evolved different modules to detect, create, and maintain these curvatures. Here we present the crystal structure of one such module found within human FCHo2. This F-BAR (extended FCH) module consists of two F-BAR domains, forming an intrinsically curved all-helical antiparallel dimer with a Kd of 2.5 microM. The module binds liposomes via a concave face, deforming them into tubules with variable diameters of up to 130 nm. Pulse EPR studies showed the membrane-bound dimer is the same as the crystal dimer, although the N-terminal helix changed conformation on membrane binding. Mutation of a phenylalanine on this helix partially attenuated narrow tubule formation, and resulted in a gain of curvature sensitivity. This structure shows a distant relationship to curvature-sensing BAR modules, and suggests how similar coiled-coil architectures in the BAR superfamily have evolved to expand the repertoire of membrane-sculpting possibilities.
Collapse
Affiliation(s)
- William Mike Henne
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB1 0QH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Clayton EL, Evans GJO, Cousin MA. Activity-dependent control of bulk endocytosis by protein dephosphorylation in central nerve terminals. J Physiol 2007; 585:687-91. [PMID: 17584836 PMCID: PMC2375512 DOI: 10.1113/jphysiol.2007.137539] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Bulk endocytosis is the process by which nerve terminals retrieve large amounts of synaptic vesicle membrane during periods of strong stimulation intensity. The process is rapidly activated and is most probably calcium dependent in a similar manner to synaptic vesicle exocytosis. This article briefly summarizes the current knowledge of bulk endocytosis with respect to its activation, kinetics and molecular mechanism. It also presents recent data from our laboratory showing that the dephosphorylation of a group of endocytosis proteins called the dephosphins by the Ca(2+)-dependent protein phosphatase calcineurin is key to the activity-dependent stimulation of the process. Possible downstream effectors of calcineurin are discussed such as the large GTPase dynamin I and its phosphorylation-dependent interaction partner syndapin I.
Collapse
Affiliation(s)
- Emma L Clayton
- Centre for Integrative Physiology, George Square, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
444
|
Halbach A, Mörgelin M, Baumgarten M, Milbrandt M, Paulsson M, Plomann M. PACSIN 1 forms tetramers via its N-terminal F-BAR domain. FEBS J 2007; 274:773-82. [PMID: 17288557 DOI: 10.1111/j.1742-4658.2006.05622.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of protein kinase C and casein kinase 2 substrate in neurons (PACSIN)/syndapin proteins to self-polymerize is crucial for the simultaneous interactions with more than one Src homology 3 domain-binding partner or with lipid membranes. The assembly of this network has profound effects on the neural Wiskott-Aldrich syndrome protein-mediated attachment of the actin polymerization machinery to vesicle membranes as well as on the movement of the corresponding vesicles. Also, the sensing of vesicle membranes and/or the induction of membrane curvature are more easily facilitated in the presence of larger PACSIN complexes. The N-terminal Fes-CIP homology and Bin-Amphiphysin-Rvs (F-BAR) domains of several PACSIN-related proteins have been shown to mediate self-interactions, whereas studies using deletion mutants derived from closely related proteins led to the view that oligomerization depends on the formation of a trimeric complex via a coiled-coil region present in these molecules. To address whether the model of trimeric complex formation is applicable to PACSIN 1, the protein was recombinantly expressed and tested in four different assays for homologous interactions. The results showed that PACSIN 1 forms tetramers of about 240 kDa, with the self-interaction having a K(D) of 6.4 x 10(-8) M. Ultrastructural analysis of these oligomers after negative staining showed that laterally arranged PACSIN molecules bind to each other via a large globular domain and form a barrel-like structure. Together, these results demonstrate that the N-terminal F-BAR domain of PACSIN 1 forms the contact site for a tetrameric structure, which is able to simultaneously interact with multiple Src homology 3 binding partners.
Collapse
Affiliation(s)
- Arndt Halbach
- Center for Biochemistry and Center for Molecular Medicine, Medical Faculty, University of Cologne, Germany
| | | | | | | | | | | |
Collapse
|
445
|
Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 2007; 447:461-4. [PMID: 17522680 DOI: 10.1038/nature05840] [Citation(s) in RCA: 560] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 04/11/2007] [Indexed: 01/18/2023]
Abstract
Membrane remodelling plays an important role in cellular tasks such as endocytosis, vesiculation and protein sorting, and in the biogenesis of organelles such as the endoplasmic reticulum or the Golgi apparatus. It is well established that the remodelling process is aided by specialized proteins that can sense as well as create membrane curvature, and trigger tubulation when added to synthetic liposomes. Because the energy needed for such large-scale changes in membrane geometry significantly exceeds the binding energy between individual proteins and between protein and membrane, cooperative action is essential. It has recently been suggested that curvature-mediated attractive interactions could aid cooperation and complement the effects of specific binding events on membrane remodelling. But it is difficult to experimentally isolate curvature-mediated interactions from direct attractions between proteins. Moreover, approximate theories predict repulsion between isotropically curving proteins. Here we use coarse-grained membrane simulations to show that curvature-inducing model proteins adsorbed on lipid bilayer membranes can experience attractive interactions that arise purely as a result of membrane curvature. We find that once a minimal local bending is realized, the effect robustly drives protein cluster formation and subsequent transformation into vesicles with radii that correlate with the local curvature imprint. Owing to its universal nature, curvature-mediated attraction can operate even between proteins lacking any specific interactions, such as newly synthesized and still immature membrane proteins in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Benedict J Reynwar
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
446
|
Abstract
The Notch pathway is a highly conserved and ubiquitous signaling system that functions in determining a diverse array of cell fates and regulates many cellular processes during embryonic development and throughout adulthood. Links to cancer, stroke and Alzheimer's disease underscore the need to define the molecular basis of Notch activation. Notch signaling is induced through direct cell-cell interactions that promote receptor activation following engagement with a membrane-bound Delta, Serrate, Lag-2 (DSL) ligand on adjacent cells. Cells take on distinct fates because Notch signaling is consistently activated in only one of the two interacting cells, highlighting the importance of establishing and maintaining signaling polarity. Studies in flies and worms have identified positive and negative transcriptional feedback mechanisms that amplify small differences in Notch and DSL ligand expression to bias which cells send or receive signals. However, endocytosis by signal-sending and signal-receiving cells also appears critical for directing and regulating Notch activation. In particular, endocytosis and membrane trafficking of DSL ligands, Notch and modulators can determine the competence of cells to send or receive signals that ensure reproducibility in generating cell types regulated by Notch signaling.
Collapse
Affiliation(s)
- James T Nichols
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 650 Charles Young Drive South, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
447
|
Mookerjee RP, Wiesenthal A, Icking A, Hodges SJ, Davies NA, Schilling K, Sen S, Williams R, Novelli M, Müller-Esterl W, Jalan R. Increased gene and protein expression of the novel eNOS regulatory protein NOSTRIN and a variant in alcoholic hepatitis. Gastroenterology 2007; 132:2533-41. [PMID: 17570224 DOI: 10.1053/j.gastro.2006.12.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 10/12/2006] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Increased intrahepatic resistance in cirrhosis is associated with reduced endothelial NO synthase (eNOS) activity and exacerbated by superimposed inflammation. NOSTRIN induces intracellular translocation of eNOS and reduces NO generation. Our aims were to quantify and compare hepatic expression of eNOS, NOSTRIN, NOSIP, and caveolin-1 in alcoholic cirrhosis with or without superimposed alcoholic hepatitis and in normal livers. METHODS Biopsy specimens from 20 decompensated alcoholic cirrhotic patients with portal hypertension (10 with alcoholic hepatitis) and 6 normal livers were analyzed: real-time polymerase chain reaction for quantification of messenger RNA; Western blotting; and enzyme assays of eNOS in normal and diseased liver were performed. Localization and interaction of eNOS and NOSTRIN in liver was assessed by immunohistochemistry and co-immunoprecipitation. RESULTS eNOS mRNA was significantly increased and eNOS activity decreased in alcoholic hepatitis patients, despite no differences in eNOS protein expression among the patients. Patients with alcoholic hepatitis had significantly higher hepatic levels of NOSTRIN and caveolin-1 mRNA compared with cirrhosis alone or normal biopsy specimens. A NOSTRIN splice variant, not present in normal tissue, was detected on mRNA and protein levels in all alcoholic patients. Coimmunoprecipitation demonstrated association among NOSTRIN, eNOS, and caveolin-1. CONCLUSIONS An increase in mRNA and protein of NOSTRIN and its shortened variant in alcoholic hepatitis may partly account for the paradox of increased mRNA levels and normal protein expression but decreased enzymatic activity of eNOS in diseased liver. Such intracellular regulators of NO production may be important in the development of increased intrahepatic resistance in alcoholic hepatitis patients.
Collapse
Affiliation(s)
- Rajeshwar P Mookerjee
- Liver Failure Group, Institute of Hepatology, Division of Medicine, University College London, London, England
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Barker SL, Lee L, Pierce BD, Maldonado-Báez L, Drubin DG, Wendland B. Interaction of the endocytic scaffold protein Pan1 with the type I myosins contributes to the late stages of endocytosis. Mol Biol Cell 2007; 18:2893-903. [PMID: 17522383 PMCID: PMC1949359 DOI: 10.1091/mbc.e07-05-0436] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast endocytic scaffold Pan1 contains an uncharacterized proline-rich domain (PRD) at its carboxy (C)-terminus. We report that the pan1-20 temperature-sensitive allele has a disrupted PRD due to a frame-shift mutation in the open reading frame of the domain. To reveal redundantly masked functions of the PRD, synthetic genetic array screens with a pan1DeltaPRD strain found genetic interactions with alleles of ACT1, LAS17 and a deletion of SLA1. Through a yeast two-hybrid screen, the Src homology 3 domains of the type I myosins, Myo3 and Myo5, were identified as binding partners for the C-terminus of Pan1. In vitro and in vivo assays validated this interaction. The relative timing of recruitment of Pan1-green fluorescent protein (GFP) and Myo3/5-red fluorescent protein (RFP) at nascent endocytic sites was revealed by two-color real-time fluorescence microscopy; the type I myosins join Pan1 at cortical patches at a late stage of internalization, preceding the inward movement of Pan1 and its disassembly. In cells lacking the Pan1 PRD, we observed an increased lifetime of Myo5-GFP at the cortex. Finally, Pan1 PRD enhanced the actin polymerization activity of Myo5-Vrp1 complexes in vitro. We propose that Pan1 and the type I myosins interactions promote an actin activity important at a late stage in endocytic internalization.
Collapse
Affiliation(s)
- Sarah L. Barker
- *Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and
| | - Linda Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - B. Daniel Pierce
- *Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and
| | | | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Beverly Wendland
- *Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and
| |
Collapse
|
449
|
Abstract
Clathrin-mediated endocytosis is a key mechanism by which cells take up extracellular cargo. In this issue, Shimada et al. (2007) reveal the mode of action of the F-BAR domain, which deepens the initial membrane pit that forms during clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Klaus Fütterer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | |
Collapse
|
450
|
Traub LM, Lukacs GL. Decoding ubiquitin sorting signals for clathrin-dependent endocytosis by CLASPs. J Cell Sci 2007; 120:543-53. [PMID: 17287393 DOI: 10.1242/jcs.03385] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cargo selectivity is a hallmark of clathrin-mediated endocytosis. A wide range of structurally unrelated internalization signals specify the preferential clustering of transmembrane cargo into clathrin coats forming on the plasma membrane. Intriguingly, the classical endocytic adaptor AP-2 appears to recognize only a subset of these endocytic sorting signals. New data now reveal the molecular basis for recognition of other internalization signals, including post-translationally appended ubiquitin, by clathrin-coat-associated sorting proteins (CLASPs). Curiously, structurally related ubiquitin-recognition modules are shared by select CLASPs and the 26S proteasome, and recent work indicates that both display similar requirements for ubiquitin binding. During endocytosis, these modules engage oligoubiquitylated cargo in the form of polyubiquitin chains and/or multiple single ubiquitin molecules appended to different acceptor lysines. Functional separation between clathrin-mediated endocytosis and proteasome-dependent proteolysis is probably ensured by temporally regulated, local assembly of ubiquitin-tagged membrane cargo at sorting stations on the cell surface, shielding ubiquitin sorting signals from the proteasome. Thus, an expanded repertoire of CLASPs couples the process of clathrin-coat assembly with high-fidelity incorporation of assorted, cargo-specific sorting signals.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, PA 15261, USA, and Program in Cell and Lung Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.
| | | |
Collapse
|