401
|
Devalaraja-Narashimha K, Singaravelu K, Padanilam BJ. Poly(ADP-ribose) polymerase-mediated cell injury in acute renal failure. Pharmacol Res 2005; 52:44-59. [PMID: 15911333 DOI: 10.1016/j.phrs.2005.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Accepted: 02/01/2005] [Indexed: 01/12/2023]
Abstract
Acute Renal Failure (ARF) is the most costly kidney disease in hospitalized patients and remains as a serious problem in clinical medicine. The mortality rate among ARF patients remains around 50% and no pharmaceutical agents are currently available to improve its clinical outcome. Although several successful therapeutic approaches have been developed in animal models of the disease, translation of the results to clinical ARF remains elusive. Understanding the cellular and molecular mechanisms of vascular and tubular dysfunction in ARF is important for developing acceptable therapeutic interventions. Following an ischemic episode, cells of the affected nephron undergo necrotic and/or apoptotic cell death. Necrotic cell death is widely considered to be a futile process that cannot be modulated by pharmacological means as opposed to apoptosis. However, recent reports from various laboratories including ours indicate that inhibition or absence of poly(ADP)-ribose polymerase (PARP), one of the molecules involved in cell death, provides remarkable protection in disease models such as stroke, myocardial infarction and renal ischemia which are characterized predominantly by necrotic type of cell death. Overactivation of PARP in conditions such as ischemic renal injury leads to cellular depletion of its substrate NAD+ and consequently ATP. The severely compromised cellular energetic state induces acute cell injury and diminishes renal functions. PARP activation also enhances the expression of proinflammatory agents and adhesion molecules in ischemic kidneys. Pharmacological inhibition and gene ablation of PARP-1 decreased energy depletion, inflammatory response and improved renal functions in the setting renal ischemia/reperfusion injury. The biochemical pathways and the cellular and molecular mechanisms mediated by PARP-1 activation in eliciting the energy depletion and inflammatory responses in ischemic kidney are not fully elucidated. Dissecting the molecular mechanisms by which PARP activation contributes to oxidant-induced cell death will provide new strategies to interfere in those pathways to modulate cell death in renal ischemia. The current review evaluates the experimental evidences in animal and cell culture models implicating PARP as a pathophysiological modulator of acute renal failure with particular emphasis on ischemic renal injury.
Collapse
|
402
|
Abstract
Poly(ADP-ribose) polymerase (PARP) activation plays a role in the pathogenesis of various cardiovascular and inflammatory diseases. At the same time, PARP activation is also relevant for the ability of cells to repair injured DNA. Thus, depending on the circumstances, pharmacological inhibitors of PARP may be able to attenuate ischemic and inflammatory cell and organ injury or may be able to enhance the cytotoxicity of antitumor agents. Both aspects of the "double-edged sword" role of PARP can be exploited for the experimental therapy of disease. As several classes of PARP inhibitors move towards clinical development, or have already entered the stage of clinical trials, we expect that in the upcoming few years, clinical proof of PARP inhibitors' therapeutic effect will be obtained in human disease. In the current short overview, we summarize the pros and cons and challenges with respect to the clinical use of PARP inhibitors, the expected clinical outcomes and potential risks. It appears that on the cytoprotective aspect of PARP, acute, life-threatening diseases (myocardial infarction, cardiopulmonary bypass in high-risk patients, and other, severe forms of ischemia-reperfusion to other organs including stroke and thoracoabdominal aneurysm repair) may represent some of the prime development indications. In the context of inhibition of DNA repair, combination of PARP inhibitors with certain antitumor agents (for example temozolomide) in patients with tumors with extremely poor prognosis are expected to provide the initial clinical results. Development of PARP inhibitors for additional indications (e.g. chronic use for the therapy of neurodegeneration and neuroinflammation, or diabetic complications) may be more challenging because of the unknown potential long-term side effects of PARP inhibitors.
Collapse
Affiliation(s)
- Grazia Graziani
- Department of Neuroscience, University of Rome Tor Vergata,Via Montpellier, 1, 00133 Rome, Italy.
| | | |
Collapse
|
403
|
Tapodi A, Debreceni B, Hanto K, Bognar Z, Wittmann I, Gallyas F, Varbiro G, Sumegi B. Pivotal role of Akt activation in mitochondrial protection and cell survival by poly(ADP-ribose)polymerase-1 inhibition in oxidative stress. J Biol Chem 2005; 280:35767-75. [PMID: 16115861 DOI: 10.1074/jbc.m507075200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
According to the classical view, the cytoprotective effect of inhibitors of poly(ADP-ribose)polymerase (PARP) in oxidative stress was based on the prevention of NAD+ and ATP depletion, thus the attenuation of necrosis. Our previous data on PARP inhibitors in an inflammatory model suggested that PARP-catalyzed ADP-ribosylations may affect signaling pathways, which can play a significant role in cell survival. To clarify the molecular mechanism of cytoprotection, PARP activity was inhibited pharmacologically by suppressing PARP-1 expression by a small interfering RNA (siRNA) technique or by transdominantly expressing the N-terminal DNA-binding domain of PARP-1 (PARP-DBD) in cultured cells. Cell survival, activation of the phosphatidylinositol 3-kinase (PI3-kinase)/Akt system, and the preservation of mitochondrial membrane potential were studied in hydrogen peroxide-treated WRL-68 cells. Our data showed that suppression of the single-stranded DNA break-induced PARP-1 activation by pharmacological inhibitor, siRNA, or by the transdominant expression of PARP-DBD protected cells from oxidative stress and induced the phosphorylation and activation of Akt. Furthermore, prevention of Akt activation by inhibiting PI3-kinase counteracted the cytoprotective effect of PARP inhibition. Microscopy data showed that PARP inhibition-induced Akt activation was responsible for protection of mitochondria in oxidative stress because PI3-kinase inhibitors diminished the protective effect of PARP inhibition. Similarly, Src kinase inhibitors, which decrease Akt phosphorylation, also counteracted the protection of mitochondrial membrane potential supporting the pivotal role of Akt in cytoprotection. These data together with the finding that PARP inhibition in the absence of oxidative stress induced the phosphorylation and activation of Akt indicate that PARP inhibition-induced Akt activation is dominantly responsible for the cytoprotection in oxidative stress.
Collapse
Affiliation(s)
- Antal Tapodi
- Department of Biochemistry and Medical Chemistry, Faculty of Medicine, University of Pecs, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
404
|
Szabó C. Poly(ADP-ribose) polymerase activation by reactive nitrogen species--relevance for the pathogenesis of inflammation. Nitric Oxide 2005; 14:169-79. [PMID: 16111903 DOI: 10.1016/j.niox.2005.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 06/23/2005] [Accepted: 06/27/2005] [Indexed: 01/29/2023]
Abstract
Oxidative and nitrosative stress triggers DNA strand breakage, which then activates the nuclear enzyme poly(ADP-ribose) polymerase (PARP). Nitrogen-derived reactive oxidant species capable of involving DNA single strand breakage and PARP activation include peroxynitrite (the reaction product of nitric oxide and superoxide), but not nitric oxide per se. Activation of PARP may dramatically lower the intracellular concentration of its substrate, nicotinamide adenine dinucleotide, thus slowing the rate of glycolysis, electron transport, and subsequently ATP formation. This process can result in cell dysfunction and cell death. Here we review the role of reactive nitrogen species in the process of PARP activation, followed by the effect of pharmacological inhibition or genetic inactivation of PARP on the course of various forms of inflammation.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Human Physiology and Clinical Experimental Research, Semmelweis University Medical School, Budapest, Hungary.
| |
Collapse
|
405
|
Crocker IP, Kenny LC, Thornton WA, Szabo C, Baker PN. Excessive stimulation of poly(ADP-ribosyl)ation contributes to endothelial dysfunction in pre-eclampsia. Br J Pharmacol 2005; 144:772-80. [PMID: 15778700 PMCID: PMC1576060 DOI: 10.1038/sj.bjp.0706055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Pre-eclampsia is a serious pregnancy disorder associated with widespread activation of the maternal vascular endothelium. Recent evidence implicates a role for oxidative stress in the aetiology of this condition. 2. Reactive oxygen species, particularly superoxide anions, invokes endothelial cell activation through many pathways. Oxidant-induced cell injury triggers the activation of nuclear enzyme poly(ADP-ribose) polymerase (PARP) leading to endothelial dysfunction in various pathophysiological conditions (reperfusion, shock, diabetes). 3. We have studied whether the loss of endothelial function in pre-eclampsia is dependent on PARP activity. Endothelium-dependent responses of myometrial arteries were tested following exposure to either plasma from women with pre-eclampsia or normal pregnant women in the presence and absence of a novel potent inhibitor of PARP, PJ34. Additional effects of plasma and PJ34 inhibition were identified in microvascular endothelial cell cultures. 4. In myometrial arteries, PARP inhibition blocked the attenuation of endothelium-dependent responses following exposure to plasma from women with pre-eclampsia. In endothelial cell cultures, plasma from pre-eclamptics induced measurable oxidative stress and a concomitant increase in PARP activity and reduction in cellular ATP. Again, these biochemical changes were reversed by PJ34. 5. These results suggest that PARP activity plays a pathogenic role in the development of endothelial dysfunction in pre-eclampsia and promotes PARP inhibition as a potential therapy in this condition.
Collapse
Affiliation(s)
- Ian P Crocker
- Maternal and Fetal Health Research Centre, University of Manchester, St Mary's Hospital, Whitworth Park, Manchester M13 0JH.
| | | | | | | | | |
Collapse
|
406
|
Zhang L, Dawson VL, Dawson TM. Role of nitric oxide in Parkinson's disease. Pharmacol Ther 2005; 109:33-41. [PMID: 16005074 DOI: 10.1016/j.pharmthera.2005.05.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 05/26/2005] [Indexed: 12/21/2022]
Abstract
As a signal molecule, nitric oxide (NO) plays an important role in a variety of signal transduction pathways that are crucial for maintaining the physiologic functions of vascular, respiratory, immune, muscular, and nervous systems. NO and its derivatives are also involved in the pathogenic processes in various types of diseases including, but not limited to, neurodegenerative disorders. Although the molecular mechanisms of how NO contributes to diseases are not completely understood, studies have shown that NO may cause neuronal injury and death by mediation of excitotoxicity, damage of DNA, and/or modification of proteins. Understanding the pathogenic mechanisms of NO and its role in Parkinson's disease (PD) and other neurodegenerative diseases may help to develop novel neuroprotective therapies for these diseases.
Collapse
Affiliation(s)
- Li Zhang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
407
|
Zhang Y, Wang H, Li J, Jimenez DA, Levitan ES, Aizenman E, Rosenberg PA. Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci 2005; 24:10616-27. [PMID: 15564577 PMCID: PMC2945223 DOI: 10.1523/jneurosci.2469-04.2004] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peroxynitrite toxicity is a major cause of neuronal injury in stroke and neurodegenerative disorders. The mechanisms underlying the neurotoxicity induced by peroxynitrite are still unclear. In this study, we observed that TPEN [N,N,N',N'-tetrakis (2-pyridylmethyl)ethylenediamine], a zinc chelator, protected against neurotoxicity induced by exogenous as well as endogenous (coadministration of NMDA and a nitric oxide donor, diethylenetriamine NONOate) peroxynitrite. Two different approaches to detecting intracellular zinc release demonstrated the liberation of zinc from intracellular stores by peroxynitrite. In addition, we found that peroxynitrite toxicity was blocked by inhibitors of 12-lipoxygenase (12-LOX), p38 mitogen-activated protein kinase (MAPK), and caspase-3 and was associated with mitochondrial membrane depolarization. Inhibition of 12-LOX blocked the activation of p38 MAPK and caspase-3. Zinc itself induced the activation of 12-LOX, generation of reactive oxygen species (ROS), and activation of p38 MAPK and caspase-3. These data suggest a cell death pathway triggered by peroxynitrite in which intracellular zinc release leads to activation of 12-LOX, ROS accumulation, p38 activation, and caspase-3 activation. Therefore, therapies aimed at maintaining intracellular zinc homeostasis or blocking activation of 12-LOX may provide a novel avenue for the treatment of inflammation, stroke, and neurodegenerative diseases in which the formation of peroxynitrite is thought to be one of the important causes of cell death.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Neurology and Program in Neuroscience, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
408
|
Zhang Y, Zhang X, Park TS, Gidday JM. Cerebral endothelial cell apoptosis after ischemia-reperfusion: role of PARP activation and AIF translocation. J Cereb Blood Flow Metab 2005; 25:868-77. [PMID: 15729291 DOI: 10.1038/sj.jcbfm.9600081] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral ischemia-reperfusion leads to vascular dysfunction characterized by endothelial cell injury or death. In the present study, we used an in vitro model to elucidate mechanisms of human brain microvascular endothelial cell (HBMEC) injury after episodic ischemia-reperfusion. Near-confluent HBMEC cultures were exposed to intermittent hypoxia-reoxygenation (HX/RO) and, at different recovery time points, cell viability was assessed by the MTT assay, apoptotic death by fluorescence microscopy of terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL)-positive cells, and nuclear translocation of apoptosis-inducing factor (AIF) and cleavage of poly(ADP-ribose) polymerase-1 (PARP-1) by immunoblotting of subcellular fractions. Reductions in HBMEC viability were proportional to the number of HX/RO cycles, and not the total duration of hypoxia. Using four cycles of 1-h HX with 1 h of intervening normoxic RO, cell viability was reduced 30% to 40% between 12 and 48 h. Treatment with the PARP-1 inhibitors 3-aminobenzamide or 4-amino-1,8-naphthalimide during the insult improved HBMEC viability at 24 h after insult, and resulted in dose-dependent reductions in TUNEL-positivity at 16 h after insult, but not if these treatments were delayed by 4 h. HX/RO-induced increases in nuclear AIF translocation, as well as PARP-1 cleavage, were also reduced dose-dependently at 4 h after insult by the inhibitors. The caspase inhibitor z-VAD-fmk blocked PARP-1 cleavage, but did not affect AIF translocation and was only modestly cytoprotective. These findings indicate that PARP-1 activation and a PARP-1-dependent, caspase-independent, nuclear translocation of AIF contribute to apoptotic cerebral endothelial cell death after ischemia-reperfusion, underscoring the potential for ischemic microvascular protection by inhibiting PARP activation or preventing AIF translocation.
Collapse
Affiliation(s)
- Yunhong Zhang
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
409
|
Besson VC, Zsengellér Z, Plotkine M, Szabó C, Marchand-Verrecchia C. Beneficial effects of PJ34 and INO-1001, two novel water-soluble poly(ADP-ribose) polymerase inhibitors, on the consequences of traumatic brain injury in rat. Brain Res 2005; 1041:149-56. [PMID: 15829224 DOI: 10.1016/j.brainres.2005.01.096] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 01/28/2005] [Accepted: 01/31/2005] [Indexed: 12/01/2022]
Abstract
Traumatic brain injury produces peroxynitrite, a powerful oxidant which triggers DNA strand breaks, leading to the activation of poly(ADP-ribose)polymerase-1 (PARP-1). We previously demonstrated that 3-aminobenzamide, a PARP inhibitor, is neuroprotective in a model of traumatic brain injury induced by fluid percussion in rat, suggesting that PARP-1 could be a therapeutic target. In order to confirm this hypothesis, we investigated the effects of PJ34 and INO-1001, two PARP inhibitors from structural classes other than benzamide, on the post-traumatic consequences. Pre- and post-treatments with PJ34 (30 mg/kg/day) and INO-1001 (10 mg/kg/day) decrease the neurological deficit at 3 days post-injury and this deficit is still reduced at 7 days. These neurological recovery-promoting effects are associated with the inhibition of PARP-1 activation caused by trauma, as demonstrated by abolishment of immunostaining of poly(ADP-ribose). Thus, the present work strengthens strongly the concept that PARP-1 inhibition may be a suitable approach for the treatment of brain trauma.
Collapse
Affiliation(s)
- Valérie C Besson
- Laboratoire de Pharmacologie de la Circulation Cérébrale, UPRES EA 2510, Université René Descartes, 4, avenue de l'Observatoire, F-75006 Paris, France
| | | | | | | | | |
Collapse
|
410
|
Abstract
Astrocytes are essential for neuronal survival and function, neurogenesis, and neural repair. Although astrocytes are more resistant than neurons to most stress conditions in vitro, certain astrocyte subtypes, such as the glial fibrillary acidic protein (GFAP)-negative protoplasmic astrocytes that predominate in gray matter structures, may be equally or more sensitive than neurons to ischemia in vivo. Programmed cell death differs from passive, necrotic death in that cell constituents actively participate in cell demise. Like neurons, astrocytes undergo programmed cell death during normal development. Cell culture studies have shown that astrocytes can be induced to undergo apoptosis and other forms of programmed cell death by many factors relevant to ischemia, including acidosis, oxidative stress, substrate deprivation, and cytokines. Animal models of cerebral ischemia have confirmed nuclear condensation and upregulation of Bax and caspases in a subset of astrocytes exposed to ischemia, especially in immature brain. A causal role for these events in astrocyte death is supported by improved astrocyte survival after inhibition of caspase-dependent cell death pathways. Astrocyte survival is also improved by blocking the poly(ADP-ribose)-1 cell death pathway. Markers of programmed cell death are generally less evident and less widespread in astrocytes than in neighboring neurons. However, most studies to date have relied only on markers of classical apoptosis. In addition, these studies have relied almost exclusively on GFAP to identify astrocytes. Since most protoplasmic astrocytes are poorly immunoreactive for GFAP, the extent of ischemia-induced programmed cell death in this cell type remains uncertain.
Collapse
Affiliation(s)
- Rona G Giffard
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California
| | - Raymond A Swanson
- Department of Neurology, University of California and Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
411
|
Kiss L, Szabó C. The pathogenesis of diabetic complications: the role of DNA injury and poly(ADP-ribose) polymerase activation in peroxynitrite-mediated cytotoxicity. Mem Inst Oswaldo Cruz 2005; 100 Suppl 1:29-37. [PMID: 15962096 DOI: 10.1590/s0074-02762005000900007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Collapse
Affiliation(s)
- Levente Kiss
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
412
|
Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah JH, Tankou SK, Hester LD, Ferris CD, Hayward SD, Snyder SH, Sawa A. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 2005; 7:665-74. [PMID: 15951807 DOI: 10.1038/ncb1268] [Citation(s) in RCA: 824] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 05/05/2005] [Indexed: 01/06/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) influences cytotoxicity, translocating to the nucleus during apoptosis. Here we report a signalling pathway in which nitric oxide (NO) generation that follows apoptotic stimulation elicits S-nitrosylation of GAPDH, which triggers binding to Siah1 (an E3 ubiquitin ligase), nuclear translocation and apoptosis. S-nitrosylation of GAPDH augments its binding to Siah1, whose nuclear localization signal mediates translocation of GAPDH. GAPDH stabilizes Siah1, facilitating its degradation of nuclear proteins. Activation of macrophages by endotoxin and of neurons by glutamate elicits GAPDH-Siah1 binding, nuclear translocation and apoptosis, which are prevented by NO deletion. The NO-S-nitrosylation-GAPDH-Siah1 cascade may represent an important molecular mechanism of cytotoxicity.
Collapse
Affiliation(s)
- Makoto R Hara
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
413
|
Jagtap P, Szabó C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 2005; 4:421-40. [PMID: 15864271 DOI: 10.1038/nrd1718] [Citation(s) in RCA: 705] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are involved in the regulation of many cellular functions. Three consequences of the activation of PARP1, which is the main isoform of the PARP family, are particularly important for drug development: first, its role in DNA repair; second, its capacity to deplete cellular energetic pools, which culminates in cell dysfunction and necrosis; and third, its capacity to promote the transcription of pro-inflammatory genes. Consequently, pharmacological inhibitors of PARP have the potential to enhance the cytotoxicity of certain DNA-damaging anticancer drugs, reduce parenchymal cell necrosis (for example, in stroke or myocardial infarction) and downregulate multiple simultaneous pathways of inflammation and tissue injury (for example, in circulatory shock, colitis or diabetic complications). The first ultrapotent novel PARP inhibitors have now entered human clinical trials. This article presents an overview of the principal pathophysiological pathways and mechanisms that are governed by PARP, followed by the main structures and therapeutic actions of various classes of novel PARP inhibitors.
Collapse
Affiliation(s)
- Prakash Jagtap
- Inotek Pharmaceuticals Corp., Suite 419E, 100 Cummings Center, Beverly, Massachusetts 01915, USA
| | | |
Collapse
|
414
|
The role of nitric oxide and PARP in neuronal cell death. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
415
|
Tasatargil A, Dalaklioglu S, Sadan G. Inhibition of poly(ADP-ribose) polymerase prevents vascular hyporesponsiveness induced by lipopolysaccharide in isolated rat aorta. Pharmacol Res 2005; 51:581-6. [PMID: 15829440 DOI: 10.1016/j.phrs.2005.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2005] [Indexed: 12/22/2022]
Abstract
Recent studies clearly show that there is a relationship between endotoxemia and impaired vascular responsiveness. The aim of this study was to investigate whether treatment with the new potent PARP inhibitor PJ34 could prevent the vascular hyporesponsiveness induced by lipopolysaccharide (LPS). Endotoxemia was induced in rats by LPS injection (20 mgkg-1, i.p.). Administration of LPS caused a decrease in mean blood pressure and an increase in heart rate. In endothelium-denuded rings of thoracic aorta from untreated rats, contractile responses to KCl and phenylephrine decreased after LPS injection. Furthermore, there was a significant loss of endothelium-dependent vasodilatation in response to acetylcholine in LPS-treated rats. The animals pretreated with PJ34 (10 mgkg-1, i.p., 30 min before LPS injection), the effect of LPS on vascular responsiveness was lower than the untreated ones. Pretreating the animals with PJ34 before the LPS challenge prevented the decline in mean blood pressure. However, this did not result in significant changes to the heart rate. The inhibitory effect of LPS treatment on both KCl- and phenylephrine-induced contraction responses was significantly antagonized by PJ34. Additionally, pretreatment of the rats with PJ34 attenuated the LPS-induced endothelial dysfunction in endothelium-intact aorta rings. This study demonstrates that PARP activation in the vascular system is an important contributory factor to the impaired vascular responsiveness associated with endotoxic shock. Hence, the pharmacological inhibition of PARP pathway might be an effective intervention to prevent endotoxin-induced vascular hyporesponsiveness.
Collapse
Affiliation(s)
- Arda Tasatargil
- Akdeniz University Faculty of Medicine, Department of Pharmacology, 07070 Antalya, Turkey.
| | | | | |
Collapse
|
416
|
Miller BA. Inhibition of TRPM2 function by PARP inhibitors protects cells from oxidative stress-induced death. Br J Pharmacol 2005; 143:515-6. [PMID: 15514246 PMCID: PMC1575424 DOI: 10.1038/sj.bjp.0705923] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
TRPM2 is a member of the transient receptor potential (TRP) protein superfamily of calcium-permeable, voltage-independent ion channels expressed in nonexcitable cells. Activation of TRPM2 by oxidative stress results in calcium influx and susceptibility to cell death, whereas inhibition of TRPM2 function enhances cell survival. In the present edition of this journal, Fonfria et al. demonstrate a role for poly(ADP ribose) polymerase (PARP) as a mediator between oxidative stress and TRPM2 activation. They present evidence that inhibition of either PARP or TRPM2 protects cells from plasma membrane damage and cell death. The therapeutic implications of this important observation are discussed.
Collapse
Affiliation(s)
- Barbara A Miller
- Henry Hood Research Program, Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA.
| |
Collapse
|
417
|
Zeng J, Hirai K, Yang GY, Ying W, Swanson RA, Kelly M, Mayer M, James TL, Litt L. Using 31P NMR spectroscopy at 14.1 Tesla to investigate PARP-1 associated energy failure and metabolic rescue in cerebrocortical slices. J Bioenerg Biomembr 2005; 36:415-9. [PMID: 15377881 DOI: 10.1023/b:jobb.0000041777.07640.64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PARP-1 activation by H(2)O(2) in an acute preparation of superfused, respiring, neonatal cerebrocortical slices was assessed from PAR-polymer formation detected with immunohistochemistry and Western blotting. (31)P NMR spectroscopy at 14.1 Tesla of perchloric acid slice extracts was used to assess energy failure in a 1-h H(2)O(2) exposure as well as in a subsequent 4-h recovery period where the superfusate had no H(2)O(2) and specifically chosen metabolic substrates. Although more data are needed to fully characterize different bioenergetic responses, a high NMR spectral resolution (PCr full-width at half-max approximately.01 ppm) and narrow widths for most metabolites (<.2 ppm) permitted accurate quantifications of spectrally resolved resonances for ADP, ATP, NAD(+)/NADH, and other high energy phosphates. It appears possible to use brain slices to quantitatively study PARP-related, NAD-associated energy failure, and rescue with TCA metabolites.
Collapse
Affiliation(s)
- Jianying Zeng
- Department of Anesthesia, University of California at San Francisco, San Francisco, California 94143-0648, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
418
|
Abstract
Neuronal damage following stroke or neurodegenerative diseases is thought to stem in part from overexcitation of N -methyl-D-aspartate (NMDA) receptors by glutamate. NMDA receptors triggered neurotoxicity is mediated in large part by activation of neuronal nitric oxide synthase (nNOS) and production of nitric oxide (NO). Simultaneous production of superoxide anion in mitochondria provides a permissive environment for the formation of peroxynitrite (ONOO-). Peroxynitrite damages DNA leading to strand breaks and activation of poly(ADP-ribose) polymerase-1 (PARP-1). This signal cascade plays a key role in NMDA excitotoxicity, and experimental models of stroke and Parkinson's disease. The mechanisms of PARP-1-mediated neuronal death are just being revealed. While decrements in ATP and NAD are readily observed following PARP activation, it is not yet clear whether loss of ATP and NAD contribute to the neuronal death cascade or are simply a biochemical marker for PARP-1 activation. Apoptosis-inducing factor (AIF) is normally localized to mitochondria but following PARP-1 activation, AIF translocates to the nucleus triggering chromatin condensation, DNA fragmentation and nuclear shrinkage. Additionally, phosphatidylserine is exposed and at a later time point cytochrome c is released and caspase-3 is activated. In the setting of excitotoxic neuronal death, AIF toxicity is caspase independent. These observations are consistent with reports of biochemical features of apoptosis in neuronal injury models but modest to no protection by caspase inhibitors. It is likely that AIF is the effector of the morphologic and biochemical events and is the commitment point to neuronal cell death, events that occur prior to caspase activation, thus accounting for the limited effects of caspase inhibitors. There exists significant cross talk between the nucleus and mitochondria, ultimately resulting in neuronal cell death. In exploiting this pathway for the development of new therapeutics, it will be important to block AIF translocation from the mitochondria to the nucleus without impairing important physiological functions of AIF in the mitochondria.
Collapse
Affiliation(s)
- Valina L Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|
419
|
Abstract
The pattern of cell death in the immature brain differs from that seen in the adult CNS. During normal development, more than half of the neurons are removed through apoptosis, and mediators like caspase-3 are highly upregulated. The contribution of apoptotic mechanisms in cell death appears also to be substantial in the developing brain, with a marked activation of downstream caspases and signs of DNA fragmentation. Mitochondria are important regulators of cell death through their role in energy metabolism and calcium homeostasis, and their ability to release apoptogenic proteins and to produce reactive oxygen species. We find that secondary brain injury is preceded by impairment of mitochondrial respiration, signs of membrane permeability transition, intramitochondrial accumulation of calcium, changes in the Bcl-2 family proteins, release of proapoptotic proteins (cytochrome C, apoptosis inducing factor) and downstream activation of caspase-9 and caspase-3 after hypoxia-ischemia. These data support the involvement of mitochondria-related mechanisms in perinatal brain injury.
Collapse
Affiliation(s)
- Henrik Hagberg
- Perinatal Center, Department for the Health of Women and Children, Sahlgrenska Academy, East Hospital, 416 85.
| |
Collapse
|
420
|
McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I, Hurn PD. Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab 2005; 25:502-12. [PMID: 15689952 DOI: 10.1038/sj.jcbfm.9600059] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well established that tissue damage and functional outcome after experimental or clinical stroke are shaped by biologic sex. We investigated the novel hypothesis that ischemic cell death from neuronally derived nitric oxide (NO) or poly-ADP ribose polymerase (PARP-1) activation is sexually dimorphic and that interruption of these molecular death pathways benefits only the male brain. Female neuronal nitric oxide synthase (nNOS) knockout (nNOS-/-) mice exhibited exacerbated histological injury after middle cerebral artery occlusion (MCAO) relative to wild-type (WT) females, unlike the protection observed in male nNOS-/- littermates. Similarly, treatment with the nNOS inhibitor (7-nitroindozole, 25 mg/kg) increased infarction in female C57Bl6 WT mice, but protected male mice. The mechanism for this sexually specific response is not mediated through changes in protein expression of endothelial NOS or inducible NOS, or differences in intraischemic cerebral blood flow. Unlike male PARP-1 knockouts (PARP1-/-), female PARP1-/- littermates sustained grossly increased ischemic damage relative to sex-matched WT mice. Treatment with a PARP inhibitor (PJ-34, 10 mg/kg) resulted in identical results. Loss of PARP-1 resulted in reversal of the neuroprotective activity by the female sex steroid, 17beta estradiol. These data suggest that the previously described cell death pathways involving NO and PARP ischemic neurotoxicity may be operant solely in male brain and that the integrity of nNO/PARP-1 signaling is paradoxically protective in the female.
Collapse
Affiliation(s)
- Louise D McCullough
- Department of Neurology, University of Connecticut Health Center, Farmington, Connecticut 06030-1840, USA.
| | | | | | | | | |
Collapse
|
421
|
Oku H, Goto W, Okuno T, Kobayashi T, Sugiyama T, Ota T, Yoneda S, Hara H, Ikeda T. Effects of poly(ADP-ribose) polymerase inhibitor on NMDA-induced retinal injury. Curr Eye Res 2005; 29:403-11. [PMID: 15764084 DOI: 10.1080/02713680490517917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Excessive activation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme that is activated by DNA damage, leads to neuronal cell death through depletion of ATP. The purpose of this study was to determine whether inhibition of PARP has some neuroprotective effects on the N-methyl-D-aspartate (NMDA)-induced functional and morphological injury to the rabbit retina. METHODS Visually evoked potentials (VEPs) were recorded at different times after an intravitreal injection of NMDA (200, 660, and 2000 nmol) alone, or NMDA with 3-aminobenzamide (ABA, 200 nmol), a PARP inhibitor, or with MK-801 (200 nmol), an NMDA antagonist. The physiological changes were followed for 2 weeks, after which the eyes were enuculeated and prepared for histological examinations. RESULTS Intravitreal injections of NMDA reduced the amplitudes of rabbit VEPs and the number of cells in the retinal ganglion cell layer in a dose-dependent manner. No significant changes could be detected in the bright-flash electroretinograms (ERGs). Simultaneous injection of MK-801 (200 nmol) significantly diminished the changes induced by intravitreal NMDA. 3-Aminobenzamide (ABA) (200 nmol) also suppressed these changes, but its effects were less than those of MK-801. CONCLUSIONS NMDA-induced retinal damage can be detected by VEPs, and PARP inhibition has some neuroprotective effects on the NMDA-induced retinal damage.
Collapse
Affiliation(s)
- Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
422
|
McCullough LD, Zeng Z, Li H, Landree LE, McFadden J, Ronnett GV. Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J Biol Chem 2005; 280:20493-502. [PMID: 15772080 DOI: 10.1074/jbc.m409985200] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The restoration of energy balance during ischemia is critical to cellular survival; however, relatively little is known concerning the regulation of neuronal metabolic pathways in response to central nervous system ischemia. AMP-activated protein kinase (AMPK), a master sensor of energy balance in peripheral tissues, is phosphorylated and activated when energy balance is low. We investigated whether AMPK might also modulate neuronal energy homeostasis during ischemia. We utilized two model systems of ischemia, middle cerebral artery occlusion in vivo and oxygen-glucose deprivation in vitro, to delineate changes in AMPK activity incurred from a metabolic stress. AMPK is highly expressed in cortical and hippocampal neurons under both normal and ischemic conditions. AMPK activity, as assessed by phosphorylation status, is increased following both middle cerebral artery occlusion and oxygen-glucose deprivation. Pharmacological inhibition of AMPK by either C75, a known modulator of neuronal ATP levels, or compound C reduced stroke damage. In contrast, activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside exacerbated damage. Mice deficient in neuronal nitric-oxide synthase demonstrated a decrease in both stroke damage and AMPK activation compared with wild type, suggesting a possible interaction between NO and AMPK activation in stroke. These data demonstrate a role for AMPK in the response of neurons during metabolic stress and suggest that in ischemia the activation of AMPK is deleterious. The ability to manipulate pharmacologically neuronal energy balance during ischemia represents an innovative approach to neuroprotection.
Collapse
Affiliation(s)
- Louise D McCullough
- Department of Neurology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | | | | | | | |
Collapse
|
423
|
Cipriani G, Rapizzi E, Vannacci A, Rizzuto R, Moroni F, Chiarugi A. Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J Biol Chem 2005; 280:17227-34. [PMID: 15750180 DOI: 10.1074/jbc.m414526200] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To obtain further information on time course and mechanisms of cell death after poly(ADP-ribose) polymerase-1 (PARP-1) hyperactivation, we used HeLa cells exposed for 1 h to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. This treatment activated PARP-1 and caused a rapid drop of cellular NAD(H) and ATP contents, culminating 8-12 h later in cell death. PARP-1 antagonists fully prevented nucleotide depletion and death. Interestingly, in the early 60 min after challenge with N-methyl-N'-nitro-N-nitrosoguanidine, mitochondrial membrane potential and superoxide production significantly increased, whereas cellular ADP contents decreased. Again, these events were prevented by PARP-1 inhibitors, suggesting that PARP-1 hyperactivity leads to mitochondrial state 4 respiration. Mitochondrial membrane potential collapsed at later time points (3 h), when mitochondria released apoptosis-inducing factor and cytochrome c. Using immunocytochemistry and targeted luciferase transfection, we found that, despite an exclusive localization of PARP-1 and poly(ADP-ribose) in the nucleus, ATP levels first decreased in mitochondria and then in the cytoplasm of cells undergoing PARP-1 activation. PARP-1 inhibitors rescued ATP (but not NAD(H) levels) in cells undergoing hyper-poly(ADP-ribosyl)ation. Glycolysis played a central role in the energy recovery, whereas mitochondria consumed ATP in the early recovery phase and produced ATP in the late phase after PARP-1 inhibition, further indicating that nuclear poly(ADP-ribosyl)ation rapidly modulates mitochondrial functioning. Together, our data provide evidence for rapid nucleus-mitochondria cross-talk during hyper-poly(ADP-ribosyl)ation-dependent cell death.
Collapse
Affiliation(s)
- Giulia Cipriani
- Department of Pharmacology, University of Florence, 50139 Florence, Italy
| | | | | | | | | | | |
Collapse
|
424
|
Casey PJ, Black JH, Szabo C, Frosch M, Albadawi H, Chen M, Cambria RP, Watkins MT. Poly(adenosine diphosphate ribose) polymerase inhibition modulates spinal cord dysfunction after thoracoabdominal aortic ischemia-reperfusion. J Vasc Surg 2005; 41:99-107. [PMID: 15696051 DOI: 10.1016/j.jvs.2004.10.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Spinal cord injury (SCI) remains a source of morbidity after thoracoabdominal aortic reconstruction. These studies were designed to determine whether PJ34, a novel ultrapotent inhibitor of the nuclear enzyme poly(adenosine diphosphate ribose) polymerase (PARP) could modulate neurologic injury after thoracic aortic ischemia reperfusion (TAR) in a murine model of SCI. METHODS Forty-one anesthetized male mice were subject to thoracic aortic occlusion (11 minutes) through a cervical mediastinotomy followed by 48 hours of reperfusion (TAR) under normothermic conditions. PJ34-treated mice (PJ, n = 12) were given 10 mg/kg PJ34 intraperitoneally 1 hour before ischemia and 1 hour after unclamping. The control group (UN, n = 21) received normal saline intraperitoneally 1 hour before ischemia and 1 hour after unclamping. Sham animals (n = 10) were subject to thoracic aortic exposure with no aortic clamping and similar intraperitoneal normal saline injections. PARP-1-/- (KO, n = 8) mice were subjected to the same conditions as the UN mice. Blinded observers rated murine neurologic status after TAR by using an established rodent paralysis scoring system. Murine spinal cords were subjected to cytokine (GRO-1) protein analysis as a marker of inflammation and immunohistochemical analysis (hematoxylin-eosin and PAR staining). Paralysis scores (PS) and GRO-1 levels were compared with analysis of variance, and survival data were compared with chi 2 . RESULTS Immediately after TAR, UN and PJ mice had severe neurologic dysfunction (PS = 5.8 +/- 0.1 and 4.6 +/- 0.6, respectively; P > .05), which was significantly worse than the KO mice (PS = 1.0 +/- 0.7, P < .001). After 6, 24, and 48 hours KO mice had no discernable neurologic injury (PS = 0). Six hours after TAR, PJ mice significantly improved (PS = 1.1 +/- 0.73, P < .001) and remained improved at 24 (PS = 0.7 +/- 0.6) and 48 hours (PS = 0.6 +/- 0.6). UN mice did not improve their PS, and Sham mice showed no neurologic abnormality at any time during these experiments. The mortality at 48 hours was 0% for PJ and KO mice, 43% for UN (P = .012), and 0% for Sham. GRO-1 levels were significantly decreased in PJ and KO versus UN mice (UN, 583 +/- 119 vs PJ, 5.8 +/- 0 vs KO, 5.3 +/- 1.4 mg/pg; P < .0001). Immunohistochemistry showed evidence of decreased PAR staining and ventral motor neuron injury in PJ mice. CONCLUSIONS Genetic deletion of PARP or inhibition of its activity (PJ34) rescued neurologic function in mice subjected to TAR. PARP inhibition might represent a novel therapeutic approach for prevention of SCI after TAR.
Collapse
Affiliation(s)
- Patrick J Casey
- Division of Vascular-Endovascular Surgery, Massachusetts General Hospital, 15 Parkman Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
425
|
Baker SK, Tarnopolsky MA. Targeting cellular energy production in neurological disorders. Expert Opin Investig Drugs 2005; 12:1655-79. [PMID: 14519086 DOI: 10.1517/13543784.12.10.1655] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The concepts of energy dysregulation and oxidative stress and their complicated interdependence have rapidly evolved to assume primary importance in understanding the pathophysiology of numerous neurological disorders. Therefore, neuroprotective strategies addressing specific bioenergetic defects hold particular promise in the treatment of these conditions (i.e., amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, Friedreich's ataxia, mitochondrial cytopathies and other neuromuscular diseases), all of which, to some extent, share 'the final common pathway' leading to cell death through either necrosis or apoptosis. Compounds such as creatine monohydrate and coenzyme Q(10) offer substantial neuroprotection against ischaemia, trauma, oxidative damage and neurotoxins. Miscellaneous agents, including alpha-lipoic acid, beta-OH-beta-methylbutyrate, riboflavin and nicotinamide, have also been shown to improve various metabolic parameters in brain and/or muscle. This review will highlight the biological function of each of the above mentioned compounds followed by a discussion of their utility in animal models and human neurological disease. The balance of this work will be comprised of discussions on the therapeutic applications of creatine and coenzyme Q(10).
Collapse
Affiliation(s)
- Steven K Baker
- Neurology and Rehabilitation, Room 4U4, Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | |
Collapse
|
426
|
Yu J, Shannon WD, Watson MA, McLeod HL. Gene expression profiling of the irinotecan pathway in colorectal cancer. Clin Cancer Res 2005; 11:2053-2062. [PMID: 15756032 DOI: 10.1158/1078-0432.ccr-04-1254] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The exact mechanism responsible for large variation of response to chemotherapy remains unclear. This study profiled the gene expression for the entire irinotecan pathway to provide insights into individualized cancer therapy. The RNA expressions of 24 irinotecan pathway genes were measured in paired tumor and normal tissues from 52 patients with Dukes' C colorectal cancer using a real-time quantitative reverse transcription-PCR assay. The relative expression levels across the 24 pathway genes varied considerably, with a 441-fold range from highest to lowest expression levels for the tumor tissues and a 934-fold range for the normal tissues. Interpatient variability was also quite large, with a 33.6 median fold change in the tumor tissue genes and a 30.1 median fold change in the normal tissue genes. Six of the 24 irinotecan pathway genes had dramatically lower expression levels in the tumor samples than did the genes in the normal tissues (median range, 1.28-4.39 folds; P = 0.001-0.029). Eight genes had significantly higher levels (median range, 1.35-2.42 folds; P = 0.001-0.011). Using hierarchical clustering, three gene clusters and three patient groups were observed with high similarity indices by the RNA expressions in colorectal tumors. The three patient groups had no unique clinical pathologic features but could be differentiated by the statistically significant differences in RNA expression level of seven genes. Our study indicates that gene expression profiling could be valuable for predicting tumor response to chemotherapy and for tailoring therapy to individual cancer patients.
Collapse
Affiliation(s)
- Jinsheng Yu
- Department of Medicine, Division of Biostatistics, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | | | | | | |
Collapse
|
427
|
|
428
|
Cosi C. New inhibitors of poly(ADP-ribose) polymerase and their potential therapeutic targets. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.7.1047] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
429
|
Zhang J. PARP inhibition: a novel approach to treat ischaemia/reperfusion and inflammation-related injuries. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728214.4.1.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
430
|
Cheung ECC, Melanson-Drapeau L, Cregan SP, Vanderluit JL, Ferguson KL, McIntosh WC, Park DS, Bennett SAL, Slack RS. Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci 2005; 25:1324-34. [PMID: 15703386 PMCID: PMC6726004 DOI: 10.1523/jneurosci.4261-04.2005] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 12/17/2004] [Accepted: 12/17/2004] [Indexed: 01/20/2023] Open
Abstract
Mitochondria release proteins that propagate both caspase-dependent and caspase-independent cell death pathways. AIF (apoptosis-inducing factor) is an important caspase-independent death regulator in multiple neuronal injury pathways. Presently, there is considerable controversy as to whether AIF is neuroprotective or proapoptotic in neuronal injury, such as oxidative stress or excitotoxicity. To evaluate the role of AIF in BAX-dependent (DNA damage induced) and BAX-independent (excitotoxic) neuronal death, we used Harlequin (Hq) mice, which are hypomorphic for AIF. Neurons carrying double mutations for Hq/Apaf1-/- (apoptosis proteases-activating factor) are impaired in both caspase-dependent and AIF-mediated mitochondrial cell death pathways. These mutant cells exhibit extended neuroprotection against DNA damage, as well as glutamate-induced excitotoxicity. Specifically, AIF is involved in NMDA- and kainic acid- but not AMPA-induced excitotoxicity. In vivo excitotoxic studies using kainic acid-induced seizure showed that Hq mice had significantly less hippocampal damage than wild-type littermates. Our results demonstrate an important role for AIF in both BAX-dependent and BAX-independent mechanisms of neuronal injury.
Collapse
Affiliation(s)
- Eric C C Cheung
- Ottawa Health Research Institute, Neuroscience Center and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | | | |
Collapse
|
431
|
Kang YH, Yi MJ, Kim MJ, Park MT, Bae S, Kang CM, Cho CK, Park IC, Park MJ, Rhee CH, Hong SI, Chung HY, Lee YS, Lee SJ. Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res 2005; 64:8960-7. [PMID: 15604259 DOI: 10.1158/0008-5472.can-04-1830] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although mechanisms of arsenic trioxide (As(2)O(3))-induced cell death have been studied extensively in hematologic cancers, those in solid cancers have yet to be clearly defined. In this study, we showed that the translocation of apoptosis-inducing factor (AIF) from mitochondria to the nucleus is required for As(2)O(3)-induced cell death in human cervical cancer cells. We also showed that reactive oxygen species (ROS)-mediated poly(ADP-ribose) polymerase-1 (PARP-1) activation is necessary for AIF release from mitochondria. The treatment of human cervical cancer cells with As(2)O(3) induces dissipation of mitochondrial membrane potential (Deltapsi(m)), translocation of AIF from mitochondria to the nucleus, and subsequent cell death. Small interfering RNA targeting of AIF effectively protects cervical cancer cells against As(2)O(3)-induced cell death. As(2)O(3) also induces an increase of intracellular ROS level and a marked activation of PARP-1. N-acetyl-l-cystein, a thiol-containing antioxidant, completely blocks As(2)O(3)-induced PARP-1 activation, Deltapsi(m) loss, nuclear translocation of AIF from mitochondria, and the consequent cell death. Furthermore, pretreatment of 1,5-dihydroxyisoquinoline or 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone, PARP-1 inhibitors, effectively attenuates the loss of Deltapsi(m), AIF release, and cell death. These data support a notion that ROS-mediated PARP-1 activation signals AIF release from mitochondria, resulting in activation of a caspase-independent pathway of cell death in solid tumor cells by As(2)O(3) treatment.
Collapse
Affiliation(s)
- Young-Hee Kang
- Laboratory of Radiation Effect and Laboratory of Cell Biology, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
432
|
Nakajima H, Kakui N, Ohkuma K, Ishikawa M, Hasegawa T. A newly synthesized poly(ADP-ribose) polymerase inhibitor, DR2313 [2-methyl-3,5,7,8-tetrahydrothiopyrano[4,3-d]-pyrimidine-4-one]: pharmacological profiles, neuroprotective effects, and therapeutic time window in cerebral ischemia in rats. J Pharmacol Exp Ther 2005; 312:472-81. [PMID: 15466246 DOI: 10.1124/jpet.104.075465] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the pharmacological profiles of DR2313 [2-methyl-3,5,7,8-tetrahydrothiopyrano[4,3-d]pyrimidine-4-one], a newly synthesized poly(ADP-ribose) polymerase (PARP) inhibitor, and its neuroprotective effects on ischemic injuries in vitro and in vivo. DR2313 competitively inhibited poly(ADP-ribosyl)ation in nuclear extracts of rat brain in vitro (K(i) = 0.23 microM). Among several NAD(+)-utilizing enzymes, DR2313 was specific for PARP but not selective between PARP-1 and PARP-2. DR2313 also showed excellent profiles in water solubility and rat brain penetrability. In in vitro models of cerebral ischemia, exposure to hydrogen peroxide or glutamate induced cell death with overactivation of PARP, and treatment with DR2313 reduced excessive formation of poly(ADP-ribose) and cell death. In both permanent and transient focal ischemia models in rats, pretreatment with DR2313 (10 mg/kg i.v. bolus and 10 mg/kg/h i.v. infusion for 6 h) significantly reduced the cortical infarct volume. To determine the therapeutic time window of neuroprotection by DR2313, the effect of post-treatment was examined in transient focal ischemia model and compared with that of a free radical scavenger, MCI-186 (3-methyl-1-phenyl-2-pyrazolone-5-one). Pretreatment with MCI-186 (3 mg/kg i.v. bolus and 3 mg/kg/h i.v. infusion for 6 h) significantly reduced the infarct volume, whereas the post-treatment failed to show any effects. In contrast, post-treatment with DR2313 (same regimen) delaying for 2 h after ischemia still prevented the progression of infarction. These results indicate that DR2313 exerts neuroprotective effects via its potent PARP inhibition, even when the treatment is initiated after ischemia. Thus, a PARP inhibitor like DR2313 may be more useful in treating acute stroke than a free radical scavenger.
Collapse
Affiliation(s)
- Hidemitsu Nakajima
- Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Moro-oka-cho, Kohoku-ku, Yokohama 222-8567, Japan.
| | | | | | | | | |
Collapse
|
433
|
Bellocchi D, Macchiarulo A, Costantino G, Pellicciari R. Docking studies on PARP-1 inhibitors: insights into the role of a binding pocket water molecule. Bioorg Med Chem 2005; 13:1151-7. [PMID: 15670923 DOI: 10.1016/j.bmc.2004.11.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 11/06/2004] [Accepted: 11/12/2004] [Indexed: 10/26/2022]
Abstract
The binding mode of a series of competitive PARP-1 inhibitors was investigated employing a molecular docking approach by using Autodock 3.0. A particular attention was given to the role played by a water molecule present in some but not all the so far available crystal structures of the catalytic domain of PARP-1. Good correlation between calculated binding energies and experimental inhibitory activities was obtained either by including (r2=0.87) or not (r2=0.84) the structural water molecule. Closer inspection of our results suggested that this water molecule should be considered part of the hydration shell of polar inhibitors and not as a structural water.
Collapse
Affiliation(s)
- Daniele Bellocchi
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | | | | | | |
Collapse
|
434
|
Patel NSA, Cortes U, Di Poala R, Mazzon E, Mota-Filipe H, Cuzzocrea S, Wang ZQ, Thiemermann C. Mice Lacking the 110-kD Isoform of Poly(ADP-Ribose) Glycohydrolase Are Protected against Renal Ischemia/Reperfusion Injury. J Am Soc Nephrol 2005; 16:712-9. [PMID: 15677308 DOI: 10.1681/asn.2004080677] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The role of poly(ADP-ribose) (PAR) glycohydrolase (PARG) in the pathophysiology of renal ischemia/reperfusion (I/R) injury is not known. Poly(ADP-ribosyl)ation is rapidly stimulated in cells after DNA damage caused by the generation of reactive oxygen and nitrogen species during I/R. Continuous or excessive activation of poly(ADP-ribose) polymerase-1 produces extended chains of ADP-ribose on nuclear proteins and results in a substantial depletion of intracellular NAD(+) and subsequently, ATP, leading to cellular dysfunction and, ultimately, cell death. The key enzyme involved in polymer turnover is PARG, which possesses mainly exoglycosidase activity but can remove olig(ADP-ribose) fragments via endoglycosidic cleavage. Thus, the aim of this study was to investigate whether the absence of PARG(110) reduced the renal dysfunction, injury, and inflammation caused by I/R of the mouse kidney. Here, the renal dysfunction and injury caused by I/R (bilateral renal artery occlusion [30 min] followed by reperfusion [24 h]) in mice lacking PARG(110), the major nuclear isoform of PARG, was investigated. The following markers of renal dysfunction and injury were measured: Plasma urea, creatinine, aspartate aminotransferase, and histology. The following markers of inflammation were also measured: Myeloperoxidase activity, malondialdehyde levels, and plasma nitrite/nitrate. The degree of renal injury and dysfunction caused by I/R was significantly reduced in PARG(110)-deficient mice when compared with their wild-type littermates, and there were no differences in any of the biochemical parameters measured between sham-operated PARG(110)(-/-) mice and sham-operated wild-type littermates. Thus, it is proposed that endogenous PARG(110) plays a pivotal role in the pathophysiology of I/R injury of the kidney.
Collapse
Affiliation(s)
- Nimesh S A Patel
- Centre for Experimental Medicine, Nephrology & Critical Care, William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
435
|
Affiliation(s)
- Patricia D Hurn
- Anesthesiology and Perioperative Medicine, Oregon Health Sciences University, 3181 SW Sam Jackson Pk Rd, UHS-2, Portland, OR 97239-3098, USA.
| | | | | |
Collapse
|
436
|
Zhang Y, Rosenberg PA. Caspase-1 and poly (ADP-ribose) polymerase inhibitors may protect against peroxynitrite-induced neurotoxicity independent of their enzyme inhibitor activity. Eur J Neurosci 2004; 20:1727-36. [PMID: 15379993 DOI: 10.1111/j.1460-9568.2004.03651.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We investigated the mechanism of 3-morpholinosyndnomine (SIN-1) neurotoxicity in nearly pure neuronal cultures. In a simple saline solution, SIN-1 neurotoxicity was found to be mediated by peroxynitrite and independent of glutamate receptor activation [Y. Zhang & P.A. Rosenberg (2002) Eur. J. Neurosci, 16, 1015-1024]. To further study the mechanism of peroxynitrite toxicity to neurons we investigated the role of caspases and poly (ADP-ribose) polymerase (PARP) in this model system. Ac-Tyr-Val-Ala-Asp-chloromethyl ketone (Ac-YVAD-cmk), a specific caspase-1 inhibitor, completely blocked neurotoxicity as well as ATP depletion induced by SIN-1. However, a caspase-3 inhibitor and a pan-caspase inhibitor were both without effect. These results suggested that the protection of Ac-YVAD-cmk might not be due to its inhibition of caspase-1. Indeed, Western blot analysis and assay of caspase activity indicated that caspase activation was not involved in SIN-1 toxicity. Ac-YVAD-cmk also completely blocked in vitro protein nitration induced by SIN-1 or peroxynitrite, suggesting that Ac-YVAD-cmk may interact with peroxynitrite directly. Similarly, although activation of PARP is thought to be a major cause of peroxynitrite-induced ATP depletion, and two PARP inhibitors, 1,5-dihydroxyisoquinoline (DHQ) and 3-aminobenzamide (3-AB), completely prevented ATP depletion and neurotoxicity induced by SIN-1, SIN-1 did not increase poly (ADP-ribosyl)ation and PARP activity. Furthermore, DHQ and 3-AB completely prevented in vitro protein nitration induced by peroxynitrite, indicating that DHQ and 3-AB directly interact with peroxynitrite. Taken together, these results suggest that in the model system used here peroxynitrite neurotoxicity is independent of caspase and PARP activation, and therefore implicate a novel mechanism.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Neurology, Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
437
|
Warner DS, Sheng H, Batinić-Haberle I. Oxidants, antioxidants and the ischemic brain. ACTA ACUST UNITED AC 2004; 207:3221-31. [PMID: 15299043 DOI: 10.1242/jeb.01022] [Citation(s) in RCA: 415] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite numerous defenses, the brain is vulnerable to oxidative stress resulting from ischemia/reperfusion. Excitotoxic stimulation of superoxide and nitric oxide production leads to formation of highly reactive products, including peroxynitrite and hydroxyl radical, which are capable of damaging lipids, proteins and DNA. Use of transgenic mutants and selective pharmacological antioxidants has greatly increased understanding of the complex interplay between substrate deprivation and ischemic outcome. Recent evidence that reactive oxygen/nitrogen species play a critical role in initiation of apoptosis, mitochondrial permeability transition and poly(ADP-ribose) polymerase activation provides additional mechanisms for oxidative damage and new targets for post-ischemic therapeutic intervention. Because oxidative stress involves multiple post-ischemic cascades leading to cell death, effective prevention/treatment of ischemic brain injury is likely to require intervention at multiple effect sites.
Collapse
Affiliation(s)
- David S Warner
- Department of Anesthesiology, The Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
438
|
Koh SH, Park Y, Song CW, Kim JG, Kim K, Kim J, Kim MH, Lee SR, Kim DW, Yu HJ, Chang DI, Hwang SJ, Kim SH. The effect of PARP inhibitor on ischaemic cell death, its related inflammation and survival signals. Eur J Neurosci 2004; 20:1461-72. [PMID: 15355313 DOI: 10.1111/j.1460-9568.2004.03632.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) plays an important role in ischaemic cell death, and 3-aminobenzamide (3-AB), one of the PARP inhibitors, has a protective effect on ischaemic stroke. We investigated the neuroprotective mechanisms of 3-AB in ischaemic stroke. The occlusion of middle cerebral artery (MCA) was made in 170 Sprague-Dawley rats, and reperfusion was performed 2 h after the occlusion. Another 10 Sprague-Dawley rats were used for sham operation. 3-AB was administered to 85 rats 10 min before the occlusion [3-AB group (n = 85) vs. control group without 3-AB (n = 85)]. Infarct volume and water content were measured, brain magnetic resonance imaging, terminal deoxynucleotidyltransferase (TdT)-mediated dUTP-biotin nick end-labelling (TUNEL) and Cresyl violet staining were performed, and immunoreactivities (IRs) of poly(ADP-ribose) polymer (PAR), cleaved caspase-3, CD11b, intercellular adhesion molecule-1 (ICAM-1), cyclooxygenase-2 (COX-2), phospho-Akt (pAkt) and phospho-glycogen synthase kinase-3 (pGSK-3) were compared in the peri-infarcted region of the 3-AB group and its corresponding ischaemic region of the control group at 2, 8, 24 and 72 h after the occlusion. In the 3-AB group, the infarct volume and the water content were decreased (about 45% and 3.6%, respectively, at 24 h), the number of TUNEL-positive cells was decreased (about 36% at 24 h), and the IRs of PAR, cleaved caspase-3, CD11b, ICAM-1 and COX-2 were significantly reduced, while the IRs of pAkt and pGSK-3 were increased. These results suggest that 3-AB treatment could reduce the infarct volume by reducing ischaemic cell death, its related inflammation and increasing survival signals. The inhibition of PARP could be another potential neuroprotective strategy in ischaemic stroke.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
439
|
Cole K, Perez-Polo JR. Neuronal trauma model: in search of Thanatos. Int J Dev Neurosci 2004; 22:485-96. [PMID: 15465278 DOI: 10.1016/j.ijdevneu.2004.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 07/12/2004] [Indexed: 01/15/2023] Open
Abstract
Trauma to the nervous system triggers responses that include oxidative stress due to the generation of reactive oxygen species (ROS). DNA is a major macromolecular target of ROS, and ROS-induced DNA strand breaks activate poly(ADP-ribose)polymerase-1 (PARP-1). Upon activation PARP-1 uses NAD(+) as a substrate to catalyze the transfer of ADP-ribose subunits to a host of nuclear proteins. In the face of extensive DNA strand breaks, PARP-1 activation can lead to depletion of intracellular NAD(P)(H) pools, large decreases in ATP, that threaten cell survival. Accordingly, inhibition of PARP-1 activity after acute oxidative injury has been shown to increase cell survival. When NGF-differentiated PC12 cells, an in vitro neuronal model, are exposed to H(2)O(2) there is increased synthesis of poly ADP-ribose and decreases in intracellular NAD(P)(H) and ATP. Addition of the chemical PARP inhibitor 3-aminobenzamide (AB) prior to H(2)O(2) exposure blocks the synthesis of poly ADP-ribose and maintains intracellular NAD(P)(H) and ATP levels. H(2)O(2) injury is characterized by an immediate, necrotic cell death 2h after injury and a delayed apoptotic-like death 12-24h after injury. This apoptotic-like death is characterized by apoptotic membrane changes and apoptotic DNA fragmentation but is not associated with measurable caspase-3 activity. AB delays cell death beyond 24h and increases cell survival by approximately 25%. This protective effect is accompanied by significantly decreased necrosis and the apoptotic-like death associated with H(2)O(2) exposure. AB also restores caspase-3 which can be attributed to the activation of the upstream activator of caspase-3, caspase-9. Thus, the maintenance of intracellular ATP levels associated with PARP-1 inhibition shifts cell death from necrosis to apoptosis and from apoptosis to cell survival. Furthermore, the shift from necrosis to apoptosis may be explained, in part, by an energy-dependent activation of caspase-9.
Collapse
Affiliation(s)
- Kasie Cole
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | |
Collapse
|
440
|
Sugawara R, Hikichi T, Kitaya N, Mori F, Nagaoka T, Yoshida A, Szabo C. Peroxynitrite decomposition catalyst, FP15, and poly(ADP-ribose) polymerase inhibitor, PJ34, inhibit leukocyte entrapment in the retinal microcirculation of diabetic rats. Curr Eye Res 2004; 29:11-6. [PMID: 15370362 DOI: 10.1080/02713680490513146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Oxidative and nitrosative stress and activation of poly(ADP ribose) polymerase (PARP) play a role in the pathogenesis of diabetic complications. We evaluated the effectiveness of the peroxynitrite decomposition catalyst, FP15, and the PARP inhibitor, PJ34, in the treatment of leukocyte entrapment in the retinal microcirculation of diabetic rats. METHODS Diabetes was induced in rats by intraperitoneal injection of 60 mg/kg of streptozotocin. Rats were divided into four groups: controls; untreated diabetes; diabetes treated with FP15 (10 mg/kg oral gavage twice daily) and diabetes treated with PJ34 (10 mg/kg oral gavage twice daily). All experiments were performed 4 weeks after initiation of treatment. Leukocyte entrapment in the retinal microcirculation was quantitatively evaluated in vivo with acridine orange digital fluorography. RESULTS The density of leukocytes trapped in the retinal microcirculation 30 minutes after dye injection was significantly greater in untreated diabetes (32.1 +/- 4.7 cells/mm2) than in controls (11.3 +/- 4.5 cells/mm2) (p < 0.05). Compared with untreated diabetes, the density of trapped leukocytes significantly decreased in diabetes treated with FP15 (14.5 +/- 5.1 cells/mm2) (p < 0.0001) and diabetes treated with PJ34 (24.1 +/- 4.2 cells/mm2) (p < 0.05). CONCLUSIONS Treatment with FP15 and PJ34 decreased enhanced leukocyte entrapment in the retinal microcirculation during the early diabetic period. The current study suggests a role for peroxynitrite production and for PARP activation in the pathogenesis of retinal microvascular leukostasis in early diabetes.
Collapse
Affiliation(s)
- R Sugawara
- Department of Ophthalmology, Asahikawa Medical College, Midorogaoka Higashi 2-1. Asahikawa 078-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
441
|
Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S, Nehls MC, Stöger T, Poirier GG, Dawson VL, Dawson TM. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci U S A 2004; 101:17699-704. [PMID: 15591342 PMCID: PMC539714 DOI: 10.1073/pnas.0406182101] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The metabolism of poly(ADP-ribose) (PAR) is critical for genomic stability in multicellular eukaryotes. Here, we show that the failure to degrade PAR by means of disruption of the murine poly(ADP-ribose) glycohydrolase (PARG) gene unexpectedly causes early embryonic lethality and enhanced sensitivity to genotoxic stress. This lethality results from the failure to hydrolyze PAR, because PARG null embryonic day (E) 3.5 blastocysts accumulate PAR and concurrently undergo apoptosis. Moreover, embryonic trophoblast stem cell lines established from early PARG null embryos are viable only when cultured in medium containing the poly(ADP-ribose) polymerase inhibitor benzamide. Cells lacking PARG also show reduced growth, accumulation of PAR, and increased sensitivity to cytotoxicity induced by N-methyl-N'-nitro-N-nitrosoguanidine and menadione after benzamide withdrawal. These results provide compelling evidence that the failure to degrade PAR has deleterious consequences. Further, they define a role for PARG in embryonic development and a protective role in the response to genotoxic stress.
Collapse
Affiliation(s)
- David W Koh
- Institute for Cell Engineering and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
442
|
Abstract
Poly(ADP-ribose) polymerases (PARPs) catalyze the poly(ADP-ribosyl)ation of proteins. This posttranslational modification, as generated by the DNA damage-activated enzymes PARP-1 and -2, has long been known to be involved in DNA repair. Correlative data have suggested an association between DNA damage-induced poly(ADP-ribosyl)ation and mammalian longevity, and this link has recently been strengthened by the discovery of interactions between PARP-1 and the Werner syndrome protein. Emerging additional members of the PARP family display different cellular localizations and are involved in diverse processes such as the regulation of telomere or centrosome function, thereby providing further, independent links between poly(ADP-ribosyl)ation and the aging process.
Collapse
Affiliation(s)
- Sascha Beneke
- Molecular Toxicology Group, Department of Biology, Box X911, University of Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|
443
|
Abstract
The current pathophysiological understanding of stroke is substantially based on experimental studies. Brain injury after cerebral ischemia develops from a complex signaling cascade that evolves in an at least partially unraveled spatiotemporal pattern. Early excitotoxicity can lead to fast necrotic cell death, which produces the core of the infarction. The ischemic penumbra that surrounds the infarct core suffers milder insults. In this area, both mild excitotoxic and inflammatory mechanisms lead to delayed cell death, which shows biochemical characteristics of apoptosis. While brain cells are challenged by these deleterious mechanisms, they activate innate protective programs of the brain, which can be studied by means of experimentally inducing ischemic tolerance (i.e., ischemic preconditioning). Importantly, cerebral ischemia not only affects the brain parenchyma, but also impacts extracranial systems. For example, stroke induces a dramatic immunosuppression via an overactivation of the sympathetic nervous system. As a result, severe bacterial infections such as pneumonia occur. Complex signaling cascades not only decide about cell survival, but also about the neurological deficit and the mortality after stroke. These mechanisms of damage and endogenous protection present distinct molecular targets that are the rational basis for the development of neuroprotective drugs.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Department of Experimental Neurology Charité, Humboldt University, Berlin, Germany.
| | | | | |
Collapse
|
444
|
Wang H, Yu SW, Koh DW, Lew J, Coombs C, Bowers W, Federoff HJ, Poirier GG, Dawson TM, Dawson VL. Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 2004; 24:10963-73. [PMID: 15574746 PMCID: PMC6730219 DOI: 10.1523/jneurosci.3461-04.2004] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Revised: 10/19/2004] [Accepted: 10/24/2004] [Indexed: 11/21/2022] Open
Abstract
The profound neuroprotection observed in poly(ADP-ribose) polymerase-1 (PARP-1) null mice to ischemic and excitotoxic injury positions PARP-1 as a major mediator of neuronal cell death. We report here that apoptosis-inducing factor (AIF) mediates PARP-1-dependent glutamate excitotoxicity in a caspase-independent manner after translocation from the mitochondria to the nucleus. In primary murine cortical cultures, neurotoxic NMDA exposure triggers AIF translocation, mitochondrial membrane depolarization, and phosphatidyl serine exposure on the cell surface, which precedes cytochrome c release and caspase activation. NMDA neurotoxicity is not affected by broad-spectrum caspase inhibitors, but it is prevented by Bcl-2 overexpression and a neutralizing antibody to AIF. These results link PARP-1 activation with AIF translocation in NMDA-triggered excitotoxic neuronal death and provide a paradigm in which AIF can substitute for caspase executioners.
Collapse
Affiliation(s)
- Hongmin Wang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
445
|
Cuzzocrea S, Mazzon E, Di Paola R, Genovese T, Patel NSA, Muià C, Threadgill MD, De Sarro A, Thiemermann C. 5-Aminoisoquinolinone reduces colon injury by experimental colitis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2004; 370:464-73. [PMID: 15599708 DOI: 10.1007/s00210-004-1002-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 10/22/2004] [Indexed: 10/26/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA, plays an important role in the colon injury associated with experimental colitis. The aim of the present study was to examine the effects of 5-aminoisoquinolinone (5-AIQ), a novel and potent inhibitor of PARP activity, in the development of experimental colitis. To address this question, we used an experimental model of colitis, induced by dinitrobenzene sulfonic acid (DNBS). Compared with DNBS-treated mice, mice treated with 5-AIQ (3 mg/kg i.p.) or 3-aminobenzamide (3-AB; 10 mg/kg i.p. twice a day) and subjected to DNBS-induced colitis experienced a significantly lower rate in the extent and severity of the histological signs of colon injury. DNBS-treated mice experienced diarrhea and weight loss. Four days after administration of DNBS, the mucosa of the colon exhibited large areas of necrosis. Neutrophil infiltration (determined by histology as well as an increase in myeloperoxidase [MPO] activity in the mucosa) was associated with an up-regulation of intercellular adhesion molecule-1 (ICAM-1). Immunohistochemistry for PAR showed an intense staining in the inflamed colon. On the contrary, the treatment of DNBS-treated mice with 5-AIQ or with 3-AB significantly reduced the degree of hemorrhagic diarrhea and weight loss caused by administration of DNBS. 5-AIQ also caused a substantial reduction in the degree of colon injury, in the rise in MPO activity (mucosa), in the increase in staining (immunohistochemistry) for PAR, as well as in the up-regulation of ICAM-1 caused by DNBS in the colon. Thus, 5-AIQ treatment reduces the degree of colitis caused by DNBS. We propose that 5-AIQ treatment may be useful in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Via C. Valeria, Torre Biologica, Policlinico Universitario, 98123 Messina, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
446
|
Scott GS, Szabó C, Hooper DC. Poly(ADP-ribose) polymerase activity contributes to peroxynitrite-induced spinal cord neuronal cell death in vitro. J Neurotrauma 2004; 21:1255-63. [PMID: 15453994 DOI: 10.1089/neu.2004.21.1255] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Peroxynitrite, which has been implicated in secondary neuronal damage resulting from spinal cord injury, is capable of mediating several toxic interactions including inducing DNA strand breaks and activating the nuclear enzyme, poly (ADP-ribose) polymerase (PARP). In the present study we have tested the hypothesis that peroxynitrite-induced cell death in spinal cord injury is due to activation of PARP. Initially we examined whether peroxynitrite exerts toxic effects on primary cultures of spinal cord neurons and then determined whether the spinal cord neuronal cell death triggered by peroxynitrite was associated with PARP activation. Peroxynitrite dose-dependently reduced the viability of spinal cord neurons in vitro. Furthermore, peroxynitrite exposure markedly increased the number of DNA strand breaks in primary spinal cord neurons, resulting in activation of PARP. To identify whether PARP activation plays a direct role in peroxynitrite-induced neurotoxicity we assessed the effects of the PARP inhibitors, nicotinamide, 3-aminobenzamide and 5-iodo-6-amino-1,2 benzopyrone on cell viability in spinal cord neurons exposed to peroxynitrite. The presence of the PARP inhibitors in the cultures not only inhibited peroxynitrite-induced PARP activity in spinal cord neurons but also protected the cells from the deleterious actions of peroxynitrite. Therefore, our results demonstrate that peroxynitrite exerts toxic effects on spinal cord neurons in vitro at least in part through a PARP-dependent pathway.
Collapse
Affiliation(s)
- Gwen S Scott
- Department of Biochemical Pharmacology, The William Harvey Research Institute, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | | | | |
Collapse
|
447
|
Chung YH, Joo KM, Nam RH, Lee WB, Lee KH, Cha CI. Region-specific alterations in insulin-like growth factor-I receptor in the central nervous system of nNOS knockout mice. Brain Res 2004; 1021:132-9. [PMID: 15328041 DOI: 10.1016/j.brainres.2004.06.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2004] [Indexed: 11/30/2022]
Abstract
In the present study, we investigated layer-specific changes in insulin-like growth factor-I (IGF-I) receptor localization in the cerebral cortex, hippocampus and cerebellum of neuronal nitric oxide synthase knockout (nNOS-/-) mice using immunohistochemistry. In the cerebral cortex of control mice, moderately stained cells were seen through the layers II-VI in several cortical regions. In nNOS-/- mice, there was a significant decrease in IGF-I receptor immunoreactivity in the same cortical regions. In the hippocampus of control mice, a distinct immunoreactivity pattern was observed in the CA1-3 areas and dentate gyrus. The immunoreactivity for IGF-I receptor was differentially decreased in each layer in nNOS-/- mice. In nNOS-/- cerebellum, IGF-I receptor immunoreactivity was also significantly decreased in each layer of cerebellar cortex and cerebellar nuclei. To clarify whether decreased expression of IGF-I receptor in nNOS-/- mice was specific, the expression of other receptors for IGF-I was also evaluated. Receptor tyrosine kinase type A (TrkA receptor) and TrkB receptor were differentially decreased in each layer of the hippocampus or cerebellum of nNOS-/- mice. Although further studies of functional features of IGF-I systems in the nNOS-/- mice are required, our first morphological data may provide insights into NO-induced changes in trophic support as well as basic knowledge required for the study of NO-associated neurological diseases.
Collapse
Affiliation(s)
- Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756, South Korea
| | | | | | | | | | | |
Collapse
|
448
|
Kamanaka Y, Kondo K, Ikeda Y, Kamoshima W, Kitajima T, Suzuki Y, Nakamura Y, Umemura K. Neuroprotective effects of ONO-1924H, an inhibitor of poly ADP-ribose polymerase (PARP), on cytotoxicity of PC12 cells and ischemic cerebral damage. Life Sci 2004; 76:151-62. [PMID: 15519361 DOI: 10.1016/j.lfs.2004.04.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 04/09/2004] [Indexed: 10/26/2022]
Abstract
N-[3-(4-Oxo-3,4-dihydro-phthalazin-1-yl)phenyl]-4-(morpholin-4-yl) butanamide methanesulfonate monohydrate (ONO-1924H) is a novel inhibitor of poly ADP-ribose polymerase (PARP). In this study, we examined the effects of ONO-1924H on cytotoxicity induced by hydrogen peroxide in PC12 cells in vitro and cerebral damage and neurological deficits induced by middle cerebral artery (MCA) thrombus occlusion in vivo in rat. In the in vitro cytotoxicity assay, exposure to 0.5 mmol/L hydrogen peroxide induced cell death in differentiated PC12 cells. ONO-1924H, a PARP inhibitor (Ki=0.21 micromol/L), reduced cell death in a concentration-dependent manner that was correlated with inhibition of PARP activation. A 50% reduction in cell death (EC50) was achieved with 2.4 micromol/L ONO-1924H. In the MCA occlusion model, ONO-1924H was injected intravenously at doses of 3, 10 and 30 mg/kg/h for 3 h, and cerebral damage and neurological deficits were estimated 24 h after MCA occlusion. ONO-1924H treatment led to a significant decrease in cerebral damage in the 10 mg/kg/h-treated group (P < 0.05) and the 30 mg/kg/h-treated group (P < 0.01). Further, ONO-1924H at doses of 30 mg/kg/h significantly (P < 0.05) improved neurological deficits. These findings suggest that the novel PARP inhibitor, ONO-1924H, affords effective neuroprotection and is a useful therapeutic candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yoshihisa Kamanaka
- Minase Research Institute, ONO Pharmaceutical Co. Ltd., 3-1-1, Sakurai,Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
449
|
Park EM, Cho S, Frys K, Racchumi G, Zhou P, Anrather J, Iadecola C. Interaction between inducible nitric oxide synthase and poly(ADP-ribose) polymerase in focal ischemic brain injury. Stroke 2004; 35:2896-901. [PMID: 15514191 DOI: 10.1161/01.str.0000147042.53659.6c] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND PURPOSE Overactivation of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) contributes to ischemic brain injury. Because PARP upregulates proinflammatory genes, we investigated whether inducible nitric oxide synthase (iNOS), a gene involved in the deleterious effects of postischemic inflammation, participates in the mechanisms by which PARP activation contributes to cerebral ischemic injury. METHODS The middle cerebral artery (MCA) was occluded in mice for 20 minutes using an intravascular filament, and injury volume was measured 72 hours later in Nissl-stained brain sections. mRNA expression was assessed in the postischemic brain by the quantitative "real-time" polymerase chain reaction. RESULTS The PARP inhibitor PJ34 reduced infarct volume and attenuated postischemic iNOS mRNA upregulation by 72%. To determine whether iNOS contributes to the toxicity of PARP, the iNOS inhibitor aminoguanidine was co-administered with PARP inhibitors. Unexpectedly, co-administration of PARP and iNOS inhibitors, or treatment of iNOS-null mice with PARP inhibitors, abrogated the protective effect afforded by iNOS or PARP inhibition alone. The loss of neuroprotection was associated with upregulation of the inflammatory genes iNOS, intercellular adhesion molecule-1, and gp91(phox). CONCLUSIONS The results suggest that iNOS expression contributes to the deleterious effects exerted by PARP activation in cerebral ischemia. However, iNOS activity is required for the protective effect of PARP inhibition and, conversely, PARP activity must be present for iNOS inhibition to be effective. The findings unveil a previously unrecognized deleterious interaction between iNOS and PARP that is relevant to the development of combination therapies for ischemic stroke.
Collapse
Affiliation(s)
- Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Women's University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
450
|
Zheng J, Devalaraja-Narashimha K, Singaravelu K, Padanilam BJ. Poly(ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury. Am J Physiol Renal Physiol 2004; 288:F387-98. [PMID: 15494543 DOI: 10.1152/ajprenal.00436.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased generation of reactive oxygen species (ROS) and the subsequent DNA damage and excessive activation of poly(ADP-ribose) polymerase-1 (PARP-1) have been implicated in the pathogenesis of ischemic injury. We previously demonstrated that pharmacological inhibition of PARP protects against ischemic renal injury (IRI) in rats (Martin DR, Lewington AJ, Hammerman MR, and Padanilam BJ. Am J Physiol Regul Integr Comp Physiol 279: R1834-R1840, 2000). To further define the role of PARP-1 in IRI, we tested whether genetic ablation of PARP-1 attenuates tissue injury after renal ischemia. Twenty-four hours after reperfusion following 37 min of bilateral renal pedicle occlusion, the effects of the injury on renal functions in PARP-/- and PARP+/+ mice were assessed by determining glomerular filtration rate (GFR) and the plasma levels of creatinine. The levels of plasma creatinine were decreased and GFR was augmented in PARP-/- mice. Morphological evaluation of the kidney tissues showed that the extent of damage due to the injury in PARP-/- mice was less compared with their wild-type counterparts. The levels of ROS and DNA damage were comparable in the injured kidneys of PARP+/+ and PARP-/- mice. PARP activity was induced in ischemic kidneys of PARP+/+ mice at 6-24 h postinjury. At 6, 12, and 24 h after injury, ATP levels in the PARP+/+ mice kidney declined to 28, 26, and 43%, respectively, whereas it was preserved close to normal levels in PARP-/- mice. The inflammatory cascade was attenuated in PARP-/- mice as evidenced by decreased neutrophil infiltration and attenuated expression of inflammatory molecules such as TNF-alpha, IL-1beta, and intercellular adhesion molecule-1. At 12 h postinjury, no apoptotic cell death was observed in PARP-/- mice kidneys. However, by 24 h postinjury, a comparable number of cells underwent apoptosis in both PARP-/- and PARP+/+ mice kidneys. Thus activation of PARP post-IRI contributes to cell death most likely by ATP depletion and augmentation of the inflammatory cascade in the mouse model. PARP ablation preserved ATP levels, renal functions, and attenuated inflammatory response in the setting of IRI in the mouse model. PARP inhibition may have clinical efficacy in preventing the progression of acute renal failure complications.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|