401
|
Tang X, Zhuang Y, Qi G, Wang D, Liu H, Wang K, Chai G, Zhou G. Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation. Sci Rep 2015; 5:12240. [PMID: 26179205 PMCID: PMC4503951 DOI: 10.1038/srep12240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/23/2015] [Indexed: 12/27/2022] Open
Abstract
Wood is formed by the successive addition of secondary xylem, which consists of cells with a conspicuously thickened secondary wall composed mainly of cellulose, xylan and lignin. Currently, few transcription factors involved in the direct regulation of secondary wall biosynthesis have been characterized in tree species. Here, we show that PdMYB221, a poplar ortholog of the Arabidopsis R2R3-MYB transcription factor AtMYB4, directly regulates secondary wall biosynthesis during wood formation. PdMYB221 is predominantly expressed in cells of developing wood, and the protein it encodes localizes to the nucleus and acts as a transcriptional repressor. Ectopic expression of PdMYB221 resulted in reduced cell wall thicknesses of fibers and vessels in Arabidopsis inflorescence stems. The amounts of cellulose, xylose, and lignin were decreased and the expression of key genes synthesizing the three components was suppressed in PdMYB221 overexpression plants. Transcriptional activation assays showed that PdMYB221 repressed the promoters of poplar PdCESA7/8, PdGT47C, PdCOMT2 and PdCCR1. Electrophoretic mobility shift assays revealed that PdMYB221 bound directly to the PdCESA8, PdGT47C, and PdCOMT2 promoters. Together, our results suggest that PdMYB221 may be involved in the negative regulation of secondary wall formation through the direct and indirect suppression of the gene expression of secondary wall biosynthesis.
Collapse
Affiliation(s)
- Xianfeng Tang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yamei Zhuang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guang Qi
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dian Wang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Huanhuan Liu
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Kairong Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guohua Chai
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
402
|
Sun X, Gong SY, Nie XY, Li Y, Li W, Huang GQ, Li XB. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2015; 154:420-32. [PMID: 25534543 DOI: 10.1111/ppl.12317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/30/2014] [Accepted: 12/12/2014] [Indexed: 05/22/2023]
Abstract
Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers.
Collapse
Affiliation(s)
- Xiang Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Si-Ying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiao-Ying Nie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Geng-Qing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
403
|
Sun S, Chen D, Li X, Qiao S, Shi C, Li C, Shen H, Wang X. Brassinosteroid Signaling Regulates Leaf Erectness in Oryza sativa via the Control of a Specific U-Type Cyclin and Cell Proliferation. Dev Cell 2015; 34:220-8. [DOI: 10.1016/j.devcel.2015.05.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/06/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
|
404
|
Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. FRONTIERS IN PLANT SCIENCE 2015; 6:288. [PMID: 25999964 PMCID: PMC4419676 DOI: 10.3389/fpls.2015.00288] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/09/2015] [Indexed: 05/08/2023]
Abstract
Plant cells biosynthesize primary cell walls (PCW) in all cells and produce secondary cell walls (SCWs) in specific cell types that conduct water and/or provide mechanical support, such as xylem vessels and fibers. The characteristic mechanical stiffness, chemical recalcitrance, and hydrophobic nature of SCWs result from the organization of SCW-specific biopolymers, i.e., highly ordered cellulose, hemicellulose, and lignin. Synthesis of these SCW-specific biopolymers requires SCW-specific enzymes that are regulated by SCW-specific transcription factors. In this review, we summarize our current knowledge of the transcriptional regulation of SCW formation in plant cells. Advances in research on SCW biosynthesis during the past decade have expanded our understanding of the transcriptional regulation of SCW formation, particularly the functions of the NAC and MYB transcription factors. Focusing on the NAC-MYB-based transcriptional network, we discuss the regulatory systems that evolved in land plants to modify the cell wall to serve as a key component of structures that conduct water and provide mechanical support.
Collapse
Affiliation(s)
- Yoshimi Nakano
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Masatoshi Yamaguchi
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama UniversitySaitama, Japan
- PRESTO (Precursory Research for Embryonic Science and Technology), Japan Science and Technology AgencyKawaguchi, Japan
| | - Hitoshi Endo
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Nur Ardiyana Rejab
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
- Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| | - Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
405
|
Liu J, Osbourn A, Ma P. MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. MOLECULAR PLANT 2015; 8:689-708. [PMID: 25840349 DOI: 10.1016/j.molp.2015.03.012] [Citation(s) in RCA: 521] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/19/2015] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
Phenylpropanoid-derived compounds represent a diverse family of secondary metabolites that originate from phenylalanine. These compounds have roles in plant growth and development, and in defense against biotic and abiotic stress. Many of these compounds are also beneficial to human health and welfare. V-myb myeloblastosis viral oncogene homolog (MYB) proteins belong to a large family of transcription factors and are key regulators of the synthesis of phenylpropanoid-derived compounds. This review summarizes the current understanding of MYB proteins and their roles in the regulation of phenylpropanoid metabolism in plants.
Collapse
Affiliation(s)
- Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
406
|
Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y, Kumar S, Kumar N, Shankar R, Ahuja PS, Singh AK. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. PLANT MOLECULAR BIOLOGY 2015; 87:615-31. [PMID: 25754733 DOI: 10.1007/s11103-015-0301-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/18/2015] [Indexed: 05/08/2023]
Abstract
Abiotic stresses cause accumulation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) in plants. Sophisticated mechanisms are required to maintain optimum level of H2O2 that acts as signalling molecule regulating adaptive response to salt stress. CuZn-superoxide dismutase (CuZn-SOD) and ascorbate peroxidase (APX) constitute first line of defence against oxidative stress. In the present study, PaSOD and RaAPX genes from Potentilla atrosanguinea and Rheum australe, respectively were overexpressed individually as well as in combination in Arabidopsis thaliana. Interestingly, PaSOD and dual transgenic lines exhibit enhanced lignin deposition in their vascular bundles with altered S:G ratio under salt stress. RNA-seq analysis revealed that expression of PaSOD gene in single and dual transgenics positively regulates expression of lignin biosynthesis genes and transcription factors (NACs, MYBs, C3Hs and WRKY), leading to enhanced and ectopic deposition of lignin in vascular tissues with larger xylem fibres and alters S:G ratio, as well. In addition, transgenic plants exhibit growth promotion, higher biomass production and increased yield under salt stress as compared to wild type plants. Our results suggest that in dual transgenics, ROS generated during salt stress gets converted into H2O2 by SOD and its optimum level was maintained by APX. This basal level of H2O2 acts as messenger for transcriptional activation of lignin biosynthesis in vascular tissue, which provides mechanical strength to plants. These findings reveal an important role of PaSOD and RaAPX in enhancing salt tolerance of transgenic Arabidopsis via increased accumulation of compatible solutes and by regulating lignin biosynthesis.
Collapse
Affiliation(s)
- Amrina Shafi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
407
|
Ma L, Yang L, Zhao J, Wei J, Kong X, Wang C, Zhang X, Yang Y, Hu X. Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotata to altitude gradient in the Northern Tibetan Plateau. PLANTA 2015; 241:887-906. [PMID: 25526962 DOI: 10.1007/s00425-014-2209-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/15/2014] [Indexed: 05/20/2023]
Abstract
We found the novel role of hydrogen sulfide in the adaptation of the alpine plant to altitude gradient in the Northern Tibetan Plateau. Alpine plants have developed strategies to survive the extremely cold conditions prevailing at high altitudes; however, the mechanism underlying the evolution of these strategies remains unknown. Hydrogen sulfide (H2S) is an essential messenger that enhances plant tolerance to environmental stress; however, its role in alpine plant adaptation to environmental stress has not been reported until now. In this work, we conducted a comparative proteomics analysis to investigate the dynamic patterns of protein expression in Lamiophlomis rotata plants grown at three different altitudes. We identified and annotated 83 differentially expressed proteins. We found that the levels and enzyme activities of proteins involved in H2S biosynthesis markedly increased at higher altitudes, and that H2S accumulation increased. Exogenous H2S application increased antioxidant enzyme activity, which reduced ROS (reactive oxygen species) damage, and GSNOR (S-nitrosoglutathione reductase) activity, which reduced RNS (reactive nitrogen species) damage, and activated the downstream defense response, resulting in protein degradation and proline and sugar accumulation. However, such defense responses could be reversed by applying H2S biosynthesis inhibitors. Based on these findings, we conclude that L. rotata uses multiple strategies to adapt to the alpine stress environment and that H2S plays a central role during this process.
Collapse
Affiliation(s)
- Lan Ma
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, Yunnan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
408
|
Fernández-Pérez F, Vivar T, Pomar F, Pedreño MA, Novo-Uzal E. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2015; 175:86-94. [PMID: 25506770 DOI: 10.1016/j.jplph.2014.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 05/11/2023]
Abstract
Syringyl lignins result from the oxidative polymerization of sinapyl alcohol in a reaction mediated by syringyl (basic) peroxidases. Several peroxidases have been identified in the genome of Arabidopsis thaliana as close homologues to ZePrx, the best characterized basic peroxidase so far, but none of these has been directly involved in lignification. We have used a knock-out mutant of AtPrx4, the closest homologue to ZePrx, to study the involvement of this basic peroxidase in the physiology of the plant under both long- and short-day light conditions. Our results suggest that AtPrx4 is involved in cell wall lignification, especially in syringyl monomer formation. The disruption of AtPrx4 causes a decrease in syringyl units proportion, but only when light conditions are optimal. Moreover, the effect of AtPrx4 disruption is age-dependent, and it is only significant when the elongation process of the stem has ceased and lignification becomes active. In conclusion, AtPrx4 emerges as a basic peroxidase regulated by day length with an important role in lignification.
Collapse
Affiliation(s)
| | - Tamara Vivar
- Department of Plant Biology, University of Murcia, Murcia 30100, Spain
| | - Federico Pomar
- Deparment of Animal Biology, Plant Biology and Ecology, University of A Coruña, A Coruña 15071, Spain
| | - María A Pedreño
- Department of Plant Biology, University of Murcia, Murcia 30100, Spain
| | - Esther Novo-Uzal
- Department of Plant Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
409
|
Sakamoto S, Mitsuda N. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant. PLANT & CELL PHYSIOLOGY 2015; 56:299-310. [PMID: 25535195 PMCID: PMC4323883 DOI: 10.1093/pcp/pcu208] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals.
Collapse
Affiliation(s)
- Shingo Sakamoto
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
| |
Collapse
|
410
|
Voxeur A, Wang Y, Sibout R. Lignification: different mechanisms for a versatile polymer. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:83-90. [PMID: 25449731 DOI: 10.1016/j.pbi.2014.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 05/18/2023]
Abstract
Lignins are cell wall phenolic polymers resulting from monolignol radical coupling. They have characteristically high diversity in their structures which is a direct consequence of the versatile character of the lignification mechanisms discussed in this review. We will relate the latest discoveries regarding the main participants involved in lignin deposition in various tissues. Lignification is often described as a cell autonomous event occurring progressively in all cell wall layers during lignifying cell life and stopping with the cell death. However, recent data combined to old data from studies of tree lignification and zinnia cultures challenged these entrenched views and showed that the lignification process is cell-type dependent and can involve neighboring cells. Therefore, we consider recent data on cell-autonomous and non-cell autonomous lignification processes. We conclude that the role of lignins still need to be assessed during plant development and that control of polymerization/lignin deposition remains elusive and need to be investigated.
Collapse
Affiliation(s)
- Aline Voxeur
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Yin Wang
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France
| | - Richard Sibout
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France.
| |
Collapse
|
411
|
Zhang X, Liu CJ. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. MOLECULAR PLANT 2015; 8:17-27. [PMID: 25578269 DOI: 10.1016/j.molp.2014.11.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/25/2014] [Indexed: 05/03/2023]
Abstract
Phenylpropanoid biosynthesis in plants engenders a vast variety of aromatic metabolites critically important for their growth, development, and environmental adaptation. Some of these aromatic compounds have high economic value. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway; it diverts the central flux of carbon from the primary metabolism to the synthesis of myriad phenolics. Over the decades, many studies have shown that exquisite regulatory mechanisms at multiple levels control the transcription and the enzymatic activity of PALs. In this review, a current overview of our understanding of the complicated regulatory mechanisms governing the activity of PAL is presented; recent progress in unraveling its post-translational modifications, its metabolite feedback regulation, and its enzyme organization is highlighted.
Collapse
Affiliation(s)
- Xuebin Zhang
- Biological, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Chang-Jun Liu
- Biological, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
412
|
Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, Young NF, Trabucco GM, Veling MT, Lamothe R, Handakumbura PP, Xiong G, Wang C, Corwin J, Tsoukalas A, Zhang L, Ware D, Pauly M, Kliebenstein DJ, Dehesh K, Tagkopoulos I, Breton G, Pruneda-Paz JL, Ahnert SE, Kay SA, Hazen SP, Brady SM. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 2014; 517:571-5. [PMID: 25533953 PMCID: PMC4333722 DOI: 10.1038/nature14099] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/20/2014] [Indexed: 12/15/2022]
Abstract
The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.
Collapse
Affiliation(s)
- M Taylor-Teeples
- 1] Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - L Lin
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - M de Lucas
- 1] Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - G Turco
- 1] Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - T W Toal
- 1] Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - A Gaudinier
- 1] Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - N F Young
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - G M Trabucco
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - M T Veling
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - R Lamothe
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - P P Handakumbura
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - G Xiong
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - C Wang
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - J Corwin
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - A Tsoukalas
- 1] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Department of Computer Science, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - L Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - D Ware
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] US Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853, USA
| | - M Pauly
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - D J Kliebenstein
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - K Dehesh
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - I Tagkopoulos
- 1] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Department of Computer Science, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - G Breton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - J L Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - S E Ahnert
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - S A Kay
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - S P Hazen
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - S M Brady
- 1] Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
413
|
Zhong R, Ye ZH. Complexity of the transcriptional network controlling secondary wall biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:193-207. [PMID: 25443846 DOI: 10.1016/j.plantsci.2014.09.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 05/02/2023]
Abstract
Secondary walls in the form of wood and fibers are the most abundant biomass produced by vascular plants, and are important raw materials for many industrial uses. Understanding how secondary walls are constructed is of significance in basic plant biology and also has far-reaching implications in genetic engineering of plant biomass better suited for various end uses, such as biofuel production. Secondary walls are composed of three major biopolymers, i.e., cellulose, hemicelluloses and lignin, the biosynthesis of which requires the coordinated transcriptional regulation of all their biosynthesis genes. Genomic and molecular studies have identified a number of transcription factors, whose expression is associated with secondary wall biosynthesis. We comprehensively review how these secondary wall-associated transcription factors function together to turn on the secondary wall biosynthetic program, which leads to secondary wall deposition in vascular plants. The transcriptional network regulating secondary wall biosynthesis employs a multi-leveled feed-forward loop regulatory structure, in which the top-level secondary wall NAC (NAM, ATAF1/2 and CUC2) master switches activate the second-level MYB master switches and they together induce the expression of downstream transcription factors and secondary wall biosynthesis genes. Secondary wall NAC master switches and secondary wall MYB master switches bind to and activate the SNBE (secondary wall NAC binding element) and SMRE (secondary wall MYB-responsive element) sites, respectively, in their target gene promoters. Further investigation of what and how developmental signals trigger the transcriptional network to regulate secondary wall biosynthesis and how different secondary wall-associated transcription factors function cooperatively in activating secondary wall biosynthetic pathways will lead to a better understanding of the molecular mechanisms underlying the transcriptional control of secondary wall biosynthesis.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
414
|
Kalluri UC, Yin H, Yang X, Davison BH. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1207-16. [PMID: 25363806 PMCID: PMC4265275 DOI: 10.1111/pbi.12283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 05/19/2023]
Abstract
Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.
Collapse
Affiliation(s)
- Udaya C Kalluri
- BioEnergy Science Center and Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
- * Correspondence (Tel 1 865 576 9495, fax 1 865 576 9939; email )
| | - Hengfu Yin
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Brian H Davison
- BioEnergy Science Center and Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| |
Collapse
|
415
|
Wang L, Czedik-Eysenberg A, Mertz RA, Si Y, Tohge T, Nunes-Nesi A, Arrivault S, Dedow LK, Bryant DW, Zhou W, Xu J, Weissmann S, Studer A, Li P, Zhang C, LaRue T, Shao Y, Ding Z, Sun Q, Patel RV, Turgeon R, Zhu X, Provart NJ, Mockler TC, Fernie AR, Stitt M, Liu P, Brutnell TP. Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat Biotechnol 2014; 32:1158-65. [DOI: 10.1038/nbt.3019] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/14/2014] [Indexed: 01/29/2023]
|
416
|
Zhong R, Ye ZH. Secondary Cell Walls: Biosynthesis, Patterned Deposition and Transcriptional Regulation. ACTA ACUST UNITED AC 2014; 56:195-214. [DOI: 10.1093/pcp/pcu140] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
417
|
Ko JH, Jeon HW, Kim WC, Kim JY, Han KH. The MYB46/MYB83-mediated transcriptional regulatory programme is a gatekeeper of secondary wall biosynthesis. ANNALS OF BOTANY 2014; 114:1099-107. [PMID: 24984711 PMCID: PMC4195559 DOI: 10.1093/aob/mcu126] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/06/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND The secondary cell wall is a defining feature of xylem cells and allows them to resist both gravitational forces and the tension forces associated with the transpirational pull on their internal columns of water. Secondary walls also constitute the majority of plant biomass. Formation of secondary walls requires co-ordinated transcriptional regulation of the genes involved in the biosynthesis of cellulose, hemicellulose and lignin. This co-ordinated control appears to involve a multifaceted and multilayered transcriptional regulatory programme. SCOPE Transcription factor MYB46 (At5g12870) has been shown to function as a master regulator in secondary wall formation in Arabidopsis thaliana. Recent studies show that MYB46 not only regulates the transcription factors but also the biosynthesis genes for all of the three major components (i.e. cellulose, hemicellulose and lignin) of secondary walls. This review considers our current understanding of the MYB46-mediated transcriptional regulatory network, including upstream regulators, downstream targets and negative regulators of MYB46. CONCLUSIONS AND OUTLOOK MYB46 is a unique transcription factor in that it directly regulates the biosynthesis genes for all of the three major components of the secondary wall as well as the transcription factors in the biosynthesis pathway. As such, MYB46 may offer a useful means for pathway-specific manipulation of secondary wall biosynthesis. However, realization of this potential requires additional information on the 'MYB46-mediated transcriptional regulatory programme', such as downstream direct targets, upstream regulators and interacting partners of MYB46.
Collapse
Affiliation(s)
- J-H Ko
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin-si, Korea
| | - H-W Jeon
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin-si, Korea
| | - W-C Kim
- Department of Horticulture DOE-Great Lakes Bioenergy Research Center
| | | | - K-H Han
- Department of Horticulture DOE-Great Lakes Bioenergy Research Center Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
418
|
Wang CY, Zhang S, Yu Y, Luo YC, Liu Q, Ju C, Zhang YC, Qu LH, Lucas WJ, Wang X, Chen YQ. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1132-42. [PMID: 24975689 DOI: 10.1111/pbi.12222] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 05/02/2023]
Abstract
Plant laccase (LAC) enzymes belong to the blue copper oxidase family and polymerize monolignols into lignin. Recent studies have established the involvement of microRNAs in this process; however, physiological functions and regulation of plant laccases remain poorly understood. Here, we show that a laccase gene, LAC4, regulated by a microRNA, miR397b, controls both lignin biosynthesis and seed yield in Arabidopsis. In transgenic plants, overexpression of miR397b (OXmiR397b) reduced lignin deposition. The secondary wall thickness of vessels and the fibres was reduced in the OXmiR397b line, and both syringyl and guaiacyl subunits are decreased, leading to weakening of vascular tissues. In contrast, overexpression of miR397b-resistant laccase mRNA results in an opposite phenotype. Plants overexpressing miR397b develop more than two inflorescence shoots and have an increased silique number and silique length, resulting in higher seed numbers. In addition, enlarged seeds and more seeds are formed in these miR397b overexpression plants. The study suggests that miR397-mediated development via regulating laccase genes might be a common mechanism in flowering plants and that the modulation of laccase by miR397 may be potential for engineering plant biomass production with less lignin.
Collapse
Affiliation(s)
- Cong-Ying Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
419
|
Zamioudis C, Hanson J, Pieterse CMJ. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. THE NEW PHYTOLOGIST 2014; 204:368-79. [PMID: 25138267 DOI: 10.1111/nph.12980] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/04/2014] [Indexed: 05/03/2023]
Abstract
Selected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under conditions of iron deficiency. Here, we investigated the role of MYB72 in both processes. To identify MYB72 target genes, we analyzed the root transcriptomes of wild-type Col-0, mutant myb72 and complemented 35S:FLAG-MYB72/myb72 plants in response to ISR-inducing Pseudomonas fluorescens WCS417. Five WCS417-inducible genes were misregulated in myb72 and complemented in 35S:FLAG-MYB72/myb72. Amongst these, we uncovered β-glucosidase BGLU42 as a novel component of the ISR signaling pathway. Overexpression of BGLU42 resulted in constitutive disease resistance, whereas the bglu42 mutant was defective in ISR. Furthermore, we found 195 genes to be constitutively upregulated in MYB72-overexpressing roots in the absence of WCS417. Many of these encode enzymes involved in the production of iron-mobilizing phenolic metabolites under conditions of iron deficiency. We provide evidence that BGLU42 is required for their release into the rhizosphere. Together, this work highlights a thus far unidentified link between the ability of beneficial rhizobacteria to stimulate systemic immunity and mechanisms induced by iron deficiency in host plants.
Collapse
Affiliation(s)
- Christos Zamioudis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | | | | |
Collapse
|
420
|
Ma L, Sun X, Kong X, Galvan JV, Li X, Yang S, Yang Y, Yang Y, Hu X. Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. J Proteomics 2014; 112:63-82. [PMID: 25181701 DOI: 10.1016/j.jprot.2014.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 12/25/2022]
Abstract
UNLABELLED This study presents an analysis of leave and rood morphology, biochemical and proteomics approach as adaptation strategies of the alpine plant Potentilla saundersiana in an altitude gradient. Several plant physiological parameter, including root and leaf architecture, leaf photosynthesis capacity, specific leaf area (SLA) and leaf nitrogen concentration, histology and microscopy, anthocyanin and proline contents, antioxidant enzyme activity assay, in-gel enzyme activity staining, H2O2 and O2(-) content, immunoblotting, auxin and strigolactone content and proteomics analysis were evaluated at five different altitudes. P. saundersiana modulated the root architecture and leaf phenotype to enhance adaptation to alpine environmental stress through mechanisms that involved hormone synthesis and signal transduction, particularly the cross-talk between auxin and strigolactone. Furthermore, an increase of antioxidant proteins and primary metabolites as a response to the alpine environment in P. saundersiana was observed. Proteins associated with the epigenetic regulation of DNA stability and post-translational protein degradation was also involved in this process. Based on these findings, P. saundersiana uses multiple strategies to adapt to the high-altitude environment of the Alpine region. BIOLOGICAL SIGNIFICANCE The alpine environment, which is characterized by sharp temperature shifts, high levels of ultraviolet radiation exposure, and low oxygen content, limits plant growth and distribution. Alpine plants have evolved strategies to survive the extremely harsh conditions prevailing at high altitudes; however, the underlying mechanisms remain poorly understood. The alpine plant Potentilla saundersiana is widespread in the Northwestern Tibetan Plateau. Here we adopted a comparative proteomics approach to investigate the mechanisms by which P. saundersiana withstands the alpine environment by examining plants located at five different altitudes. We detected and functionally characterized 118 proteins spots with variable abundance. Proteins involved in antioxidant activity, primary metabolites, epigenetic regulation, and protein post-translational modification play important roles in conferring tolerance to alpine environments. Furthermore, our results indicate that P. saundersiana modulates the root architecture and leaf phenotype to enhance adaptation to alpine environmental stress. These results provide novel insight into the multiple strategies underlying P. saundersiana adaptation to the high-altitude environment of the Northwestern Tibetan Plateau.
Collapse
Affiliation(s)
- Lan Ma
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xudong Sun
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Key Laboratory of Alpine Ecology and Biodiversity, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiangxiang Kong
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jose Valero Galvan
- Department of Chemistry-Biology, Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico.
| | - Xiong Li
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shihai Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Alpine Ecology and Biodiversity, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yunqiang Yang
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongping Yang
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Key Laboratory of Alpine Ecology and Biodiversity, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiangyang Hu
- Key Laboratory of Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Key Laboratory of Alpine Ecology and Biodiversity, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
421
|
Zhou J, Zhong R, Ye ZH. Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. PLoS One 2014; 9:e105726. [PMID: 25148240 PMCID: PMC4141820 DOI: 10.1371/journal.pone.0105726] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/23/2014] [Indexed: 12/28/2022] Open
Abstract
One of the most prominent features of xylem conducting cells is the deposition of secondary walls. In Arabidopsis, secondary wall biosynthesis in the xylem conducting cells, vessels, has been shown to be regulated by two VASCULAR-RELATED NAC-DOMAIN (VND) genes, VND6 and VND7. In this report, we have investigated the roles of five additional Arabidopsis VND genes, VND1 to VND5, in regulating secondary wall biosynthesis in vessels. The VND1 to VND5 genes were shown to be specifically expressed in vessels but not in interfascicular fibers in stems. The expression of VND4 and VND5 was also seen specifically in vessels in the secondary xylem of the root-hypocotyl region. When overexpressed, VND1 to VND5 were able to activate the expression of secondary wall-associated transcription factors and genes involved in secondary wall biosynthesis and programmed cell death. As a result, many normally parenchymatous cells in leaves and stems acquired thickened secondary walls in the VND1 to VND5 overexpressors. In contrast, dominant repression of VND3 function resulted in reduced secondary wall thickening in vessels and a collapsed vessel phenotype. In addition, VND1 to VND5 were shown to be capable of rescuing the secondary wall defects in the fibers of the snd1 nst1 double mutant when expressed under the SND1 promoter. Furthermore, transactivation analysis revealed that VND1 to VND5 could activate expression of the GUS reporter gene driven by the secondary wall NAC binding element (SNBE). Together, these results demonstrate that VND1 to VND5 possess functions similar to that of the SND1 secondary wall NAC and are transcriptional regulators of secondary wall biosynthesis in vessels.
Collapse
Affiliation(s)
- Jianli Zhou
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
422
|
Penning BW, Sykes RW, Babcock NC, Dugard CK, Held MA, Klimek JF, Shreve JT, Fowler M, Ziebell A, Davis MF, Decker SR, Turner GB, Mosier NS, Springer NM, Thimmapuram J, Weil CF, McCann MC, Carpita NC. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population. PLANT PHYSIOLOGY 2014; 165:1475-1487. [PMID: 24972714 PMCID: PMC4119032 DOI: 10.1104/pp.114.242446] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass.
Collapse
Affiliation(s)
- Bryan W Penning
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Robert W Sykes
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Nicholas C Babcock
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Christopher K Dugard
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Michael A Held
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - John F Klimek
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Jacob T Shreve
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Matthew Fowler
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Angela Ziebell
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Mark F Davis
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Stephen R Decker
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Geoffrey B Turner
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Nathan S Mosier
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Nathan M Springer
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Jyothi Thimmapuram
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Clifford F Weil
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Maureen C McCann
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| | - Nicholas C Carpita
- Departments of Biological Sciences (B.W.P., M.C.M., N.C.C.), Botany and Plant Pathology (C.K.D., M.A.H., J.F.K., N.C.C.), and Agronomy (N.C.B., C.F.W.), Laboratory of Renewable Resources Engineering and Agricultural and Biological Engineering (N.S.M.), and Bioinformatics Core (J.T.S., J.T.), Purdue University, West Lafayette, Indiana 47907;National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401 (R.W.S., M.F., A.Z., M.F.D., S.R.D., G.B.T.); andDepartment of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (N.M.S.)
| |
Collapse
|
423
|
Xu Q, Yin XR, Zeng JK, Ge H, Song M, Xu CJ, Li X, Ferguson IB, Chen KS. Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4349-59. [PMID: 24860186 PMCID: PMC4112638 DOI: 10.1093/jxb/eru208] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lignin biosynthesis and its transcriptional regulatory networks have been studied in model plants and woody trees. However, lignification also occurs in some fleshy fruit and has rarely been considered in this way. Loquat ( Eriobotrya japonica ) is one such convenient tissue for exploring the transcription factors involved in regulating fruit flesh lignification. Firmness and lignin content of 'Luoyangqing' loquat were fund to increase during low-temperature storage as a typical symptom of chilling injury, while heat treatment (HT) and low-temperature conditioning (LTC) effectively alleviated them. Two novel EjMYB genes, EjMYB1 and EjMYB2, were isolated and were found to be localized in the nucleus. These genes responded differently to low temperature, with EjMYB1 induced and EjMYB2 inhibited at 0 °C. They also showed different temperature responses under HT and LTC conditions, and may be responsible for different regulation of flesh lignification at the transcriptional level. Transactivation assays indicated that EjMYB1 and EjMYB2 are a transcriptional activator and repressor, respectively. EjMYB1 activated promoters of both Arabidopsis and loquat lignin biosynthesis genes, while EjMYB2 countered the inductive effects of EjMYB1. This finding was also supported by transient overexpression in tobacco. Regulation of lignification by EjMYB1 and EjMYB2 is likely to be achieved via their competitive interaction with AC elements in the promoter region of lignin biosynthesis genes such as Ej4CL1.
Collapse
Affiliation(s)
- Qian Xu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xue-ren Yin
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Jiao-ke Zeng
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Hang Ge
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Min Song
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Chang-Jie Xu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Ian B Ferguson
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
| | - Kun-song Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| |
Collapse
|
424
|
Kim WC, Kim JY, Ko JH, Kang H, Han KH. Identification of direct targets of transcription factor MYB46 provides insights into the transcriptional regulation of secondary wall biosynthesis. PLANT MOLECULAR BIOLOGY 2014; 85:589-99. [PMID: 24879533 DOI: 10.1007/s11103-014-0205-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/19/2014] [Indexed: 05/17/2023]
Abstract
Secondary wall formation requires coordinated transcriptional regulation of the genes involved in the biosynthesis of the components of secondary wall. Transcription factor (TF) MYB46 (At5g12870) has been shown to function as a central regulator for secondary wall formation in Arabidopsis thaliana, activating biosynthetic genes as well as the TFs involved in the pathways. Recently, we reported that MYB46 directly regulates secondary wall-associated cellulose synthase (CESA4, CESA7, and CESA8) and a mannan synthase (CSLA9) genes. However, it is not known whether MYB46 directly activates the biosynthetic genes for hemicellulose and lignin, which are the other two major components of secondary wall. Based on the observations that the promoter regions of many of the secondary wall biosynthetic genes contain MYB46-binding cis-regulatory motif(s), we hypothesized that MYB46 directly regulates the genes involved in the biosynthesis of the secondary wall components. In this report, we describe several lines of experimental evidence in support of the hypothesis. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis showed that MYB46 directly binds to the promoters of 13 genes involved in lignin and xylan biosynthesis. We then used steroid receptor-based inducible activation system to confirm that MYB46 directly activates the transcription of the xylan and lignin biosynthetic genes. Furthermore, ectopic up-regulation of MYB46 resulted in a significant increase in xylose and a small increase in lignin content based on acetyl bromide soluble lignin measurements in Arabidopsis. Taken together, we conclude that MYB46 function as a central and direct regulator of the genes involved in the biosynthesis of all three major secondary wall components.
Collapse
Affiliation(s)
- Won-Chan Kim
- Department of Horticulture and Department of Forestry, Michigan State University, 126 Natural Resources, East Lansing, MI, 48824-1222, USA
| | | | | | | | | |
Collapse
|
425
|
Chai G, Wang Z, Tang X, Yu L, Qi G, Wang D, Yan X, Kong Y, Zhou G. R2R3-MYB gene pairs in Populus: evolution and contribution to secondary wall formation and flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4255-69. [PMID: 24821954 DOI: 10.1093/jxb/eru196] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In plants, the R2R3-MYB gene family contains many pairs of paralogous genes, which play the diverse roles in developmental processes and environmental responses. The paper reports the characterization of 81 pairs of Populus R2R3-MYB genes. Chromosome placement, phylogenetic, and motif structure analyses showed that these gene pairs resulted from multiple types of gene duplications and had five different gene fates. Tissue expression patterns revealed that most duplicated genes were specifically expressed in the tissues examined. qRT-PCR confirmed that nine pairs were highly expressed in xylem, of which three pairs (PdMYB10/128, PdMYB90/167, and PdMYB92/125) were further functionally characterized. The six PdMYBs were localized to the nucleus and had transcriptional activities in yeast. The heterologous expression of PdMYB10 and 128 in Arabidopsis increased stem fibre cell-wall thickness and delayed flowering. In contrast, overexpression of PdMYB90, 167, 92, and 125 in Arabidopsis decreased stem fibre and vessel cell-wall thickness and promoted flowering. Cellulose, xylose, and lignin contents were changed in overexpression plants. The expression levels of several genes involved in secondary wall formation and flowering were affected by the overexpression of the six PdMYBs in Arabidopsis. This study addresses the diversity of gene duplications in Populus R2R3-MYBs and the roles of these six genes in secondary wall formation and flowering control.
Collapse
Affiliation(s)
- Guohua Chai
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zengguang Wang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xianfeng Tang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Li Yu
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Guang Qi
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Dian Wang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiaofei Yan
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yingzhen Kong
- Key Laboratory of Tobacco Gene Resource, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
426
|
Guo K, Zou W, Feng Y, Zhang M, Zhang J, Tu F, Xie G, Wang L, Wang Y, Klie S, Persson S, Peng L. An integrated genomic and metabolomic framework for cell wall biology in rice. BMC Genomics 2014; 15:596. [PMID: 25023612 PMCID: PMC4112216 DOI: 10.1186/1471-2164-15-596] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/09/2014] [Indexed: 11/21/2022] Open
Abstract
Background Plant cell walls are complex structures that full-fill many diverse functions during plant growth and development. It is therefore not surprising that thousands of gene products are involved in cell wall synthesis and maintenance. However, functional association for the majority of these gene products remains obscure. One useful approach to infer biological associations is via transcriptional coordination, or co-expression of genes. This approach has proved useful for several biological processes. Nevertheless, combining co-expression with other large-scale measurements may improve the biological inferences. Results In this study, we used a combined approach of co-expression and cell wall metabolomics to obtain new insight into cell wall synthesis in rice. We initially created a weighted gene co-expression network from publicly available datasets, and then established a comprehensive cell wall dataset by determining cell wall compositions from 29 tissues that almost cover the whole life cycle of rice. We subsequently combined the datasets through the conversion of co-expressed gene modules into eigen-vectors, representing expression profiles for the genes in the modules, and performed comparative analyses against the cell wall contents. Here, we made three major discoveries. First, we confirmed our approach by finding primary and secondary wall cellulose biosynthesis modules, respectively. Second, we found co-expressed modules that strongly correlated with re-organization of the secondary cell walls and with modifications and degradation of hemicellulosic structures. Third, we inferred that at least one module is likely to play a regulatory role in the production of G-rich lignification. Conclusions Here, we integrated transcriptomic associations and cell wall metabolism and found that certain co-expressed gene modules are positively correlated with distinct cell wall characteristics. We propose that combining multiple data-types, such as coordinated transcription and cell wall analyses, may be a useful approach to glean new insight into biological processes. The combination of multiple datasets, as illustrated here, can further improve the functional inferences that typically are generated via a single type of datasets. In addition, our data extend the typical co-expression approach to allow deeper insight into cell wall biology in rice. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-596) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Liangcai Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, P, R, China.
| |
Collapse
|
427
|
Chai G, Qi G, Cao Y, Wang Z, Yu L, Tang X, Yu Y, Wang D, Kong Y, Zhou G. Poplar PdC3H17 and PdC3H18 are direct targets of PdMYB3 and PdMYB21, and positively regulate secondary wall formation in Arabidopsis and poplar. THE NEW PHYTOLOGIST 2014; 203:520-534. [PMID: 24786865 DOI: 10.1111/nph.12825] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/26/2014] [Indexed: 05/21/2023]
Abstract
Wood biomass is mainly made of secondary cell walls, whose formation is controlled by a multilevel network. The tandem CCCH zinc finger (TZF) proteins involved in plant secondary wall formation are poorly understood. Two TZF genes, PdC3H17 and PdC3H18, were isolated from Populus deltoides and functionally characterized in Escherichia coli, tobacco, Arabidopsis and poplar. PdC3H17 and PdC3H18 are predominantly expressed in cells of developing wood, and the proteins they encode are targeted to cytoplasmic foci. Transcriptional activation assays showed that PdMYB2/3/20/21 individually activated the PdC3H17 and PdC3H18 promoters, but PdMYB3/21 were most significant. Electrophoretic mobility shift assays revealed that PdMYB3/21 bound directly to the PdC3H17/18 promoters. Overexpression of PdC3H17/18 in poplar increased secondary xylem width and secondary wall thickening in stems, whereas dominant repressors of them had the opposite effects on these traits. Similar alteration in secondary wall thickening was observed in their transgenic Arabidopsis plants. qRT-PCR results showed that PdC3H17/18 regulated the expression of cellulose, xylan and lignin biosynthetic genes, and several wood-associated MYB genes. These results demonstrate that PdC3H17 and PdC3H18 are the targets of PdMYB3 and PdMYB21 and are an additional two components in the regulatory network of secondary xylem formation in poplar.
Collapse
Affiliation(s)
- Guohua Chai
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guang Qi
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yingping Cao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zengguang Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Li Yu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xianfeng Tang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yanchong Yu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dian Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yingzhen Kong
- Key Laboratory of Tobacco Gene Resource, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
428
|
Yang C, Li D, Liu X, Ji C, Hao L, Zhao X, Li X, Chen C, Cheng Z, Zhu L. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2014; 14:158. [PMID: 24906444 PMCID: PMC4062502 DOI: 10.1186/1471-2229-14-158] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/27/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND The shape of grass leaves possesses great value in both agronomy and developmental biology research. Leaf rolling is one of the important traits in rice (Oryza sativa L.) breeding. MYB transcription factors are one of the largest gene families and have important roles in plant development, metabolism and stress responses. However, little is known about their functions in rice. RESULTS In this study, we report the functional characterization of a rice gene, OsMYB103L, which encodes an R2R3-MYB transcription factor. OsMYB103L was localized in the nucleus with transactivation activity. Overexpression of OsMYB103L in rice resulted in a rolled leaf phenotype. Further analyses showed that expression levels of several cellulose synthase genes (CESAs) were significantly increased, as was the cellulose content in OsMYB103L overexpressing lines. Knockdown of OsMYB103L by RNA interference led to a decreased level of cellulose content and reduced mechanical strength in leaves. Meanwhile, the expression levels of several CESA genes were decreased in these knockdown lines. CONCLUSIONS These findings suggest that OsMYB103L may target CESA genes for regulation of cellulose synthesis and could potentially be engineered for desirable leaf shape and mechanical strength in rice.
Collapse
Affiliation(s)
- Chunhua Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengjun Ji
- Department of Ecology, Peking University, Beijing 100871, China
| | - Lili Hao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaobing Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
429
|
Hanano A, Almousally I, Shaban M. Phytotoxicity effects and biological responses of Arabidopsis thaliana to 2,3,7,8-tetrachlorinated dibenzo-p-dioxin exposure. CHEMOSPHERE 2014; 104:76-84. [PMID: 24275148 DOI: 10.1016/j.chemosphere.2013.10.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/02/2013] [Accepted: 10/16/2013] [Indexed: 05/20/2023]
Abstract
Dioxins are persistent organic pollutants. Their bioaccumulation in the food chain makes dioxins a considerable risk for human health. The use of plants for removing toxic organic compounds, including dioxins, is a safe and efficient strategy. Herein we studied the toxicity effects and the biological responses in Arabidopsis thaliana to 2',3',7',8'-tetrachlorinated dibenzo-p-dioxin (TCDD) exposure. First, TCDD-induced toxicity was demonstrated using several parameters including, a decrease in seed germination, a loss in fresh weight with a striking decrease in chlorophyll content, but not in carotenoids, and an augmentation in the biomass of the lateral roots system, but not in the elongation of the primary root. Uptake of TCDD by Arabidopsis was confirmed. Responses to TCDD-exposure were marked by an enhanced level of hydrogen peroxide H2O2 production and a massive stimulation of anti-oxidative enzyme activities. Moreover, a significant variation in the transcript level of transcription factor genes, bHLH, MYB and AP2-EREBP was detected in Arabidopsis shoot and an up-regulation of WRKY, MYB and IAA was observed in the root. Our results illustrate the TCDD-induced toxicity effects and the biological responses of Arabidopsis to TCDD. Better understanding of the plants ability to detoxifydioxins would help to improve their use as a safe bioremediators.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), B.P. Box 6091, Damascus, Syria.
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), B.P. Box 6091, Damascus, Syria
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), B.P. Box 6091, Damascus, Syria
| |
Collapse
|
430
|
Chu Y, Kwon T, Nam J. Enzymatic and metabolic engineering for efficient production of syringin, sinapyl alcohol 4-O-glucoside, in Arabidopsis thaliana. PHYTOCHEMISTRY 2014; 102:55-63. [PMID: 24667164 DOI: 10.1016/j.phytochem.2014.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 02/21/2014] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
To promote efficient production of syringin, a plant-derived bioactive monolignol glucoside, synergistic effects of enzymatic and metabolic engineering were combined. Recombinant UGT72E3/E2 chimeras, generated by exchanging parts of the C-terminal domain including the Putative Secondary Plant Glycosyltransferase (PSPG) motif of UGT72E3 and UGT72E2, were expressed in leaves of transgenic Arabidopsis plants; syringin production was measured in vivo and by enzymatic assays in vitro. In both tests, UGT72E3/2 displayed substrate specificity for sinapyl alcohol like the parental enzyme UGT72E3, and the syringin production was significantly increased compared to UGT72E3. In particular, in the in vitro assay, which was performed in the presence of a high concentration of sinapyl alcohol, the production of syringin by UGT72E3/2 was 4-fold higher than by UGT72E3. Furthermore, to enhance metabolic flow through the phenylpropanoid pathway and maintain a high basal concentration of sinapyl alcohol in the leaves, UGT72E3/2 was combined with the sinapyl alcohol synthesis pathway gene F5H encoding ferulate 5-hydroxylase and the lignin biosynthesis transcriptional activator MYB58. The resulting UGT72E3/2+F5H+MYB58 OE plants, which simultaneously overexpress these three genes, accumulated a 56-fold higher level of syringin in their leaves than wild-type plants.
Collapse
Affiliation(s)
- Yang Chu
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, South Korea
| | - Tackmin Kwon
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, South Korea
| | - Jaesung Nam
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, South Korea.
| |
Collapse
|
431
|
Liu J, Rice JH, Chen N, Baum TJ, Hewezi T. Synchronization of developmental processes and defense signaling by growth regulating transcription factors. PLoS One 2014; 9:e98477. [PMID: 24875638 PMCID: PMC4038601 DOI: 10.1371/journal.pone.0098477] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/02/2014] [Indexed: 02/07/2023] Open
Abstract
Growth regulating factors (GRFs) are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.
Collapse
Affiliation(s)
- Jinyi Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America
| | - J. Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Nana Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
432
|
Zhao K, Bartley LE. Comparative genomic analysis of the R2R3 MYB secondary cell wall regulators of Arabidopsis, poplar, rice, maize, and switchgrass. BMC PLANT BIOLOGY 2014; 14:135. [PMID: 24885077 PMCID: PMC4057907 DOI: 10.1186/1471-2229-14-135] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/09/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND R2R3 MYB proteins constitute one of the largest plant transcription factor clades and regulate diverse plant-specific processes. Several R2R3 MYB proteins act as regulators of secondary cell wall (SCW) biosynthesis in Arabidopsis thaliana (At), a dicotyledenous plant. Relatively few studies have examined SCW R2R3 MYB function in grasses, which may have diverged from dicots in terms of SCW regulatory mechanisms, as they have in cell wall composition and patterning. Understanding cell wall regulation is especially important for improving lignocellulosic bioenergy crops, such as switchgrass. RESULTS Here, we describe the results of applying phylogenic, OrthoMCL, and sequence identity analyses to classify the R2R3 MYB family proteins from the annotated proteomes of Arabidposis, poplar, rice, maize and the initial genome (v0.0) and translated transcriptome of switchgrass (Panicum virgatum). We find that the R2R3 MYB proteins of the five species fall into 48 subgroups, including three dicot-specific, six grass-specific, and two panicoid grass-expanded subgroups. We observe four classes of phylogenetic relationships within the subgroups of known SCW-regulating MYB proteins between Arabidopsis and rice, ranging from likely one-to-one orthology (for AtMYB26, AtMYB103, AtMYB69) to no homologs identifiable (for AtMYB75). Microarray data for putative switchgrass SCW MYBs indicate that many maintain similar expression patterns with the Arabidopsis SCW regulators. However, some of the switchgrass-expanded candidate SCW MYBs exhibit differences in gene expression patterns among paralogs, consistent with subfunctionalization. Furthermore, some switchgrass representatives of grass-expanded clades have gene expression patterns consistent with regulating SCW development. CONCLUSIONS Our analysis suggests that no single comparative genomics tool is able to provide a complete picture of the R2R3 MYB protein family without leaving ambiguities, and establishing likely false-negative and -positive relationships, but that used together a relatively clear view emerges. Generally, we find that most R2R3 MYBs that regulate SCW in Arabidopsis are likely conserved in the grasses. This comparative analysis of the R2R3 MYB family will facilitate transfer of understanding of regulatory mechanisms among species and enable control of SCW biosynthesis in switchgrass toward improving its biomass quality.
Collapse
Affiliation(s)
- Kangmei Zhao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Laura E Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
433
|
Kour A, Boone AM, Vodkin LO. RNA-Seq profiling of a defective seed coat mutation in Glycine max reveals differential expression of proline-rich and other cell wall protein transcripts. PLoS One 2014; 9:e96342. [PMID: 24828743 PMCID: PMC4020777 DOI: 10.1371/journal.pone.0096342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/04/2014] [Indexed: 01/19/2023] Open
Abstract
The plant cell wall performs a number of essential functions including providing shape to many different cell types and serving as a defense against potential pathogens. The net pattern mutation creates breaks in the seed coat of soybean (Glycine max) because of ruptured cell walls. Using RNA-Seq, we examined the seed coat transcriptome from three stages of immature seed development in two pairs of isolines with normal or defective seed coat phenotypes due to the net pattern. The genome-wide comparative study of the transcript profiles of these isolines revealed 364 differentially expressed genes in common between the two varieties that were further divided into different broad functional categories. Genes related to cell wall processes accounted for 19% of the differentially expressed genes in the middle developmental stage of 100-200 mg seed weight. Within this class, the cell wall proline-rich and glycine-rich protein genes were highly differentially expressed in both genetic backgrounds. Other genes that showed significant expression changes in each of the isoline pairs at the 100-200 mg seed weight stage were xylem serine proteinase, fasciclin-related genes, auxin and stress response related genes, TRANSPARENT TESTA 1 (TT1) and other transcription factors. The mutant appears to shift the timing of either the increase or decrease in the levels of some of the transcripts. The analysis of these data sets reveals the physiological changes that the seed coat undergoes during the formation of the breaks in the cell wall.
Collapse
Affiliation(s)
- Anupreet Kour
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Anne M. Boone
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Lila O. Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
434
|
Li C, Lu S. Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genomics 2014; 15:277. [PMID: 24725266 PMCID: PMC4023596 DOI: 10.1186/1471-2164-15-277] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 04/09/2014] [Indexed: 12/23/2022] Open
Abstract
Background MYB is the largest plant transcription factor gene family playing vital roles in plant growth and development. However, it has not been systematically studied in Salvia miltiorrhiza, an economically important medicinal plant. Results Here we report the genome-wide identification and characterization of 110 R2R3-MYBs, the largest subfamily of MYBs in S. miltiorrhiza. The MYB domain and other motifs of SmMYBs are largely conserved with Arabidopsis AtMYBs, whereas the divergence of SmMYBs and AtMYBs also exists, suggesting the conservation and diversity of plant MYBs. SmMYBs and AtMYBs may be classified into 37 subgroups, of which 31 include proteins from S. miltiorrhiza and Arabidopsis, whereas 6 are specific to a species, indicating that the majority of MYBs play conserved roles, while others may exhibit species-specialized functions. SmMYBs are differentially expressed in various tissues of S. miltiorrhiza. The expression profiles are largely consistent with known functions of their Arabidopsis counterparts. The expression of a subset of SmMYBs is regulated by microRNAs, such as miR159, miR319, miR828 and miR858. Based on functional conservation of MYBs in a subgroup, SmMYBs potentially involved in the biosynthesis of bioactive compounds were identified. Conclusions A total of 110 R2R3-MYBs were identified and analyzed. The results suggest the complexity of MYB-mediated regulatory networks in S. miltiorrhiza and provide a foundation for understanding the regulatory mechanism of SmMYBs.
Collapse
Affiliation(s)
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No,151, Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
435
|
Ali MB, McNear DH. Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products. BMC PLANT BIOLOGY 2014; 14:84. [PMID: 24690446 PMCID: PMC4021374 DOI: 10.1186/1471-2229-14-84] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 03/27/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND The production and use of biologically derived soil additives is one of the fastest growing sectors of the fertilizer industry. These products have been shown to improve crop yields while at the same time reducing fertilizer inputs to and nutrient loss from cropland. The mechanisms driving the changes in primary productivity and soil processes are poorly understood and little is known about changes in secondary productivity associated with the use of microbial products. Here we investigate secondary metabolic responses to a biologically derived soil additive by monitoring changes in the phenlypropanoid (PP) pathway in Arabidopsis thaliana. RESULTS This study was designed to test the influence of one of these products (Soil Builder™-AF, SB) on secondary metabolism after being applied at different times. One time (TI) application of SB to Arabidopsis increased the accumulation of flavonoids compared to multiple (TII) applications of the same products. Fourteen phenolic compounds including flavonols and anothocyanins were identified by mass spectrometry. Kaempferol-3,7-O-bis-α-L-rhamnoside and quercetin 3,7-dirhamnoside, the major compounds, increased 3-fold and 4-fold, respectively compared to control in the TI treatment. The most abundant anthocyanin was cyanidin 3-rhamnoglucoside, which increased 3-fold and 2-fold in TI compared to the control and TII, respectively. Simultaneously, the expression of genes coding for key enzymes in the PP pathway (phenylalanine ammonia lyase, cinnamate 4-hydroxylase, chalcone synthase, flavonoid-3'-O-hydroxylase, flavonol synthase1 and dihydroflavonol-4-reductase) and regulatory genes (production of anthocyanin pigment2, MYB12, MYB113, MYB114, EGL3, and TT8) were up-regulated in both treatments (TI and TII). Furthermore, application of TI and TII induced expression of the lignin pathway genes (hydroxyl cinamyl transferase, caffeyl-CoA O-methyl transferase, cinnamyl alcohol dehydrogenase, cinnamyl-CoA reductase, secondary wall-associated NAC domain protein1, MYB58 and MYB63 resulting in higher accumulation of lignin content compared to the control. CONCLUSIONS These results indicate that the additions of microbially based soil additives have a perceptible influence on phenylpropanoid pathway gene regulation and its production of secondary metabolites. These findings open an avenue of research to investigate the mode of action of microbially-based soil additives which may assist in the sustainable production of food, feed, fuel and fiber.
Collapse
Affiliation(s)
- Mohammad Babar Ali
- Department of Plant and Soil Sciences, Rhizosphere Science Laboratory, University of Kentucky, Lexington, KY 40546, USA
| | - David H McNear
- Department of Plant and Soil Sciences, Rhizosphere Science Laboratory, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
436
|
RNA-seq analysis of transcriptome and glucosinolate metabolism in seeds and sprouts of broccoli (Brassica oleracea var. italic). PLoS One 2014; 9:e88804. [PMID: 24586398 PMCID: PMC3937326 DOI: 10.1371/journal.pone.0088804] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/15/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Broccoli (Brassica oleracea var. italica), a member of Cruciferae, is an important vegetable containing high concentration of various nutritive and functional molecules especially the anticarcinogenic glucosinolates. The sprouts of broccoli contain 10-100 times higher level of glucoraphanin, the main contributor of the anticarcinogenesis, than the edible florets. Despite the broccoli sprouts' functional importance, currently available genetic and genomic tools for their studies are very limited, which greatly restricts the development of this functionally important vegetable. RESULTS A total of ∼85 million 251 bp reads were obtained. After de novo assembly and searching the assembled transcripts against the Arabidopsis thaliana and NCBI nr databases, 19,441 top-hit transcripts were clustered as unigenes with an average length of 2,133 bp. These unigenes were classified according to their putative functional categories. Cluster analysis of total unigenes with similar expression patterns and differentially expressed unigenes among different tissues, as well as transcription factor analysis were performed. We identified 25 putative glucosinolate metabolism genes sharing 62.04-89.72% nucleotide sequence identity with the Arabidopsis orthologs. This established a broccoli glucosinolate metabolic pathway with high colinearity to Arabidopsis. Many of the biosynthetic and degradation genes showed higher expression after germination than in seeds; especially the expression of the myrosinase TGG2 was 20-130 times higher. These results along with the previous reports about these genes' studies in Arabidopsis and the glucosinolate concentration in broccoli sprouts indicate the breakdown products of glucosinolates may play important roles in the stage of broccoli seed germination and sprout development. CONCLUSION Our study provides the largest genetic resource of broccoli to date. These data will pave the way for further studies and genetic engineering of broccoli sprouts and will also provide new insight into the genomic research of this species and its relatives.
Collapse
|
437
|
Hao Z, Mohnen D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsisirregular xylemmutants with pleiotropic phenotypes. Crit Rev Biochem Mol Biol 2014; 49:212-41. [DOI: 10.3109/10409238.2014.889651] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
438
|
Bomal C, Duval I, Giguère I, Fortin É, Caron S, Stewart D, Boyle B, Séguin A, MacKay JJ. Opposite action of R2R3-MYBs from different subgroups on key genes of the shikimate and monolignol pathways in spruce. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:495-508. [PMID: 24336492 PMCID: PMC3904711 DOI: 10.1093/jxb/ert398] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Redundancy and competition between R2R3-MYB activators and repressors on common target genes has been proposed as a fine-tuning mechanism for the regulation of plant secondary metabolism. This hypothesis was tested in white spruce [Picea glauca (Moench) Voss] by investigating the effects of R2R3-MYBs from different subgroups on common targets from distinct metabolic pathways. Comparative analysis of transcript profiling data in spruces overexpressing R2R3-MYBs from loblolly pine (Pinus taeda L.), PtMYB1, PtMYB8, and PtMYB14, defined a set of common genes that display opposite regulation effects. The relationship between the closest MYB homologues and 33 putative target genes was explored by quantitative PCR expression profiling in wild-type P. glauca plants during the diurnal cycle. Significant Spearman's correlation estimates were consistent with the proposed opposite effect of different R2R3-MYBs on several putative target genes in a time-related and tissue-preferential manner. Expression of sequences coding for 4CL, DHS2, COMT1, SHM4, and a lipase thio/esterase positively correlated with that of PgMYB1 and PgMYB8, but negatively with that of PgMYB14 and PgMYB15. Complementary electrophoretic mobility shift assay (EMSA) and transactivation assay provided experimental evidence that these different R2R3-MYBs are able to bind similar AC cis-elements in the promoter region of Pg4CL and PgDHS2 genes but have opposite effects on their expression. Competitive binding EMSA experiments showed that PgMYB8 competes more strongly than PgMYB15 for the AC-I MYB binding site in the Pg4CL promoter. Together, the results bring a new perspective to the action of R2R3-MYB proteins in the regulation of distinct but interconnecting metabolism pathways.
Collapse
Affiliation(s)
- Claude Bomal
- Center for Forest Research, Université Laval, Québec, QC G1V A06, Canada
- Institute of Integrative and Systems Biology, Université Laval, Québec, QC G1V A06, Canada
| | - Isabelle Duval
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC G1V 4C7, Canada
| | - Isabelle Giguère
- Center for Forest Research, Université Laval, Québec, QC G1V A06, Canada
- Institute of Integrative and Systems Biology, Université Laval, Québec, QC G1V A06, Canada
| | - Élise Fortin
- Center for Forest Research, Université Laval, Québec, QC G1V A06, Canada
- Institute of Integrative and Systems Biology, Université Laval, Québec, QC G1V A06, Canada
| | - Sébastien Caron
- Center for Forest Research, Université Laval, Québec, QC G1V A06, Canada
- Institute of Integrative and Systems Biology, Université Laval, Québec, QC G1V A06, Canada
| | - Don Stewart
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC G1V 4C7, Canada
| | - Brian Boyle
- Institute of Integrative and Systems Biology, Université Laval, Québec, QC G1V A06, Canada
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC G1V 4C7, Canada
| | - John J. MacKay
- Center for Forest Research, Université Laval, Québec, QC G1V A06, Canada
- Institute of Integrative and Systems Biology, Université Laval, Québec, QC G1V A06, Canada
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
439
|
Zhao Y, Sun J, Xu P, Zhang R, Li L. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species. PLANT PHYSIOLOGY 2014; 164:765-76. [PMID: 24394777 PMCID: PMC3912104 DOI: 10.1104/pp.113.231134] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/03/2014] [Indexed: 05/18/2023]
Abstract
Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.
Collapse
|
440
|
Li H, Chen S, Song A, Wang H, Fang W, Guan Z, Jiang J, Chen F. RNA-Seq derived identification of differential transcription in the chrysanthemum leaf following inoculation with Alternaria tenuissima. BMC Genomics 2014; 15:9. [PMID: 24387266 PMCID: PMC3890596 DOI: 10.1186/1471-2164-15-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 12/21/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A major production constraint on the important ornamental species chrysanthemum is black spot which is caused by the necrotrophic fungus Alternaria tenuissima. The molecular basis of host resistance to A. tenuissima has not been studied as yet in any detail. Here, high throughput sequencing was taken to characterize the transcriptomic response of the chrysanthemum leaf to A. tenuissima inoculation. RESULTS The transcriptomic data was acquired using RNA-Seq technology, based on the Illumina HiSeq™ 2000 platform. Four different libraries derived from two sets of leaves harvested from either inoculated or mock-inoculated plants were characterized. Over seven million clean reads were generated from each library, each corresponding to a coverage of >350,000 nt. About 70% of the reads could be mapped to a set of chrysanthemum unigenes. Read frequency was used as a measure of transcript abundance and therefore as an identifier of differential transcription in the four libraries. The differentially transcribed genes identified were involved in photosynthesis, pathogen recognition, reactive oxygen species generation, cell wall modification and phytohormone signalling; in addition, a number of varied transcription factors were identified. A selection of 23 of the genes was transcription-profiled using quantitative RT-PCR to validate the RNA-Seq output. CONCLUSIONS A substantial body of chrysanthemum transcriptomic sequence was generated, which led to a number of insights into the molecular basis of the host response to A. tenuissima infection. Although most of the differentially transcribed genes were up-regulated by the presence of the pathogen, those involved in photosynthesis were down-regulated.
Collapse
Affiliation(s)
- Huiyun Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing 210095, China
| |
Collapse
|
441
|
Li X, Chen W, Zhao Y, Xiang Y, Jiang H, Zhu S, Cheng B. Downregulation of caffeoyl-CoA O-methyltransferase (CCoAOMT) by RNA interference leads to reduced lignin production in maize straw. Genet Mol Biol 2013; 36:540-6. [PMID: 24385858 PMCID: PMC3873186 DOI: 10.1590/s1415-47572013005000039] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/31/2013] [Indexed: 01/07/2023] Open
Abstract
Lignin is a major cell wall component of vascular plants that provides mechanical strength and hydrophobicity to vascular vessels. However, the presence of lignin limits the effective use of crop straw in many agroindustrial processes. Here, we generated transgenic maize plants in which the expression of a lignin biosynthetic gene encoding CCoAOMT, a key enzyme involved in the lignin biosynthesis pathway was downregulated by RNA interference (RNAi). RNAi of CCoAOMT led to significantly downregulated expression of this gene in transgenic maize compared with WT plants. These transgenic plants exhibited a 22.4% decrease in Klason lignin content and a 23.3% increase in cellulose content compared with WT plants, which may reflect compensatory regulation of lignin and cellulose deposition. We also measured the lignin monomer composition of the RNAi plants by GC-MS and determined that transgenic plants had a 57.08% higher S/G ratio than WT plants. In addition, histological staining of lignin with Wiesner reagent produced slightly more coloration in the xylem and sclerenchyma than WT plants. These results provide a foundation for breeding maize with low-lignin content and reveal novel insights about lignin regulation via genetic manipulation of CCoAOMT expression.
Collapse
Affiliation(s)
- Xiaoyu Li
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei,
China
| | - Wenjuan Chen
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei,
China
| | - Yang Zhao
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei,
China
| | - Yan Xiang
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei,
China
| | - Haiyang Jiang
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei,
China
| | - Suwen Zhu
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei,
China
| | - Beijiu Cheng
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei,
China
| |
Collapse
|
442
|
Xu Y, Chen CF, Thomas TP, Azadi P, Diehl B, Tsai CJ, Brown N, Carlson JE, Tien M, Liang H. Wood chemistry analysis and expression profiling of a poplar clone expressing a tyrosine-rich peptide. PLANT CELL REPORTS 2013; 32:1827-1841. [PMID: 24013761 DOI: 10.1007/s00299-013-1496-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 06/02/2023]
Abstract
Our study has identified pathways and gene candidates that may be associated with the greater flexibility and digestibility of the poplar cell walls. With the goal of facilitating lignin removal during the utilization of woody biomass as a biofuel feedstock, we previously transformed a hybrid poplar clone with a partial cDNA sequence encoding a tyrosine- and hydroxyproline-rich glycoprotein from parsley. A number of the transgenic lines released more polysaccharides following protease digestion and were more flexible than wild-type plants, but otherwise normal in phenotype. Here, we report that overexpression of the tyrosine-rich peptide encoding sequence in these transgenic poplar plants did not significantly alter total lignin quantity or quality (S/G lignin ratio), five- and six-carbon sugar contents, growth rate, or susceptibility to a major poplar fungal pathogen, Septoria musiva. Whole-genome microarray analysis revealed a total of 411 differentially expressed transcripts in transgenic lines, all with decreased transcript abundance relative to wild-type plants. Their corresponding genes were overrepresented in functional categories such as secondary metabolism, amino acid metabolism, and energy metabolism. Transcript abundance was decreased primarily for five types of genes encoding proteins involved in cell-wall organization and in lignin biosynthesis. The expression of a subset of 19 of the differentially regulated genes by qRT-PCR validated the microarray results. Our study has identified pathways and gene candidates that may be the underlying cause for the enhanced flexibility and digestibility of the stems of poplar plants expressing the TYR transgene.
Collapse
Affiliation(s)
- Yi Xu
- Department of Genetics and Biochemistry, Clemson University, 100 Jordan Hall, Clemson, SC, 29634, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Toda Y, Yoshida M, Hattori T, Takeda S. RICE SALT SENSITIVE3 binding to bHLH and JAZ factors mediates control of cell wall plasticity in the root apex. PLANT SIGNALING & BEHAVIOR 2013; 8:e26256. [PMID: 23989667 PMCID: PMC4091359 DOI: 10.4161/psb.26256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plasticity of root growth in response to environmental cues and stresses is a fundamental characteristic of plants, in accordance with their sessile lifestyle. This is linked to the balance between plasticity and rigidity of cells in the root apex, and thus is coordinated with the control of cell wall properties. However, mechanisms underlying such harmonization are not well understood, in particular under stressful conditions. We have recently demonstrated that RICE SALT SENSITIVE3 (RSS3), a nuclear factor that mediates restrictive expression of jasmonate-induced genes, plays an important role in root elongation under saline conditions. In this study, we report that loss-of-function of RSS3 results in changes in cell wall properties such as lignin deposition and sensitivity to a cellulose synthase inhibitor, concomitant with altered expression of genes involved in cell wall metabolism. Based on these and previous phenotypic observations of the rss3 mutant, we propose that RSS3 plays a role in the coordinated control of root elongation and cell wall plasticity in the root apex.
Collapse
Affiliation(s)
- Yosuke Toda
- Bioscience and Biotechnology Center; Nagoya University; Chikusa, Nagoya, Japan
| | - Masato Yoshida
- Graduate School of Bioagricultural Sciences; Nagoya University; Chikusa, Nagoya, Japan
| | - Tsukaho Hattori
- Bioscience and Biotechnology Center; Nagoya University; Chikusa, Nagoya, Japan
| | - Shin Takeda
- Bioscience and Biotechnology Center; Nagoya University; Chikusa, Nagoya, Japan
- Correspondence to: Shin Takeda,
| |
Collapse
|
444
|
Sun F, Liang C, Whelan J, Yang J, Zhang P, Lim BL. Global transcriptome analysis of AtPAP2--overexpressing Arabidopsis thaliana with elevated ATP. BMC Genomics 2013; 14:752. [PMID: 24180234 PMCID: PMC3829102 DOI: 10.1186/1471-2164-14-752] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AtPAP2 is a purple acid phosphatase that is targeted to both chloroplasts and mitochondria. Over-expression (OE) lines of AtPAP2 grew faster, produced more seeds, and contained higher leaf sucrose and glucose contents. The present study aimed to determine how high energy status affects leaf and root transcriptomes. RESULTS ATP and ADP levels in the OE lines are 30-50% and 20-50% higher than in the wild-type (WT) plants. Global transcriptome analyses indicated that transcriptional regulation does play a role in sucrose and starch metabolism, nitrogen, potassium and iron uptake, amino acids and secondary metabolites metabolism when there is an ample supply of energy. While the transcript abundance of genes encoding protein components of photosystem I (PS I), photosystem II (PS II) and light harvesting complex I (LHCI) were unaltered, changes in transcript abundance for genes encoding proteins of LHCII are significant. The gene expressions of most enzymes of the Calvin cycle, glycolysis and the tricarboxylic acid (TCA) cycle were unaltered, as these enzymes are known to be regulated by light/redox status or allosteric modulation by the products (e.g. citrate, ATP/ADP ratio), but not at the level of transcription. CONCLUSIONS AtPAP2 overexpression resulted in a widespread reprogramming of the transcriptome in the transgenic plants, which is characterized by changes in the carbon, nitrogen, potassium, and iron metabolism. The fast-growing AtPAP2 OE lines provide an interesting tool for studying the regulation of energy system in plant.
Collapse
Affiliation(s)
- Feng Sun
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chao Liang
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009, Australia
- Botany Department, School of Life Science, La Trobe University, Bundoora 3086 Victoria, Australia
| | - Jun Yang
- National Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Peng Zhang
- National Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Boon Leong Lim
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
- Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
445
|
Tian Q, Wang X, Li C, Lu W, Yang L, Jiang Y, Luo K. Functional characterization of the poplar R2R3-MYB transcription factor PtoMYB216 involved in the regulation of lignin biosynthesis during wood formation. PLoS One 2013; 8:e76369. [PMID: 24204619 PMCID: PMC3810269 DOI: 10.1371/journal.pone.0076369] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/28/2013] [Indexed: 01/17/2023] Open
Abstract
Because of the importance of wood in many industrial applications, tremendous studies have been performed on wood formation, especially in lignin biosynthesis. MYB transcription factors (TFs), which consist of a large family of plant TFs, have been reported to directly regulate lignin biosynthetic genes in a number of plants. In this study, we describe the cloning and functional characterization of PtoMYB216, a cDNA isolated from Chinese white poplar (Populus tomentosa Carr.). PtoMYB216 encodes a protein belonging to the R2R3-MYB family and displays significant similarity with other MYB factors shown to regulate lignin synthesis in Arabidopsis. Gene expression profiling studies showed that PtoMYB216 mRNA is specifically expressed during secondary wall formation in wood. The 1.8-kb promoter sequence of PtoMYB216 was fused to the GUS coding sequence and introduced into wild-type A. thaliana. GUS expression was shown to be restricted to tissues undergoing secondary cell wall formation. Overexpression of PtoMYB216 specifically activated the expression of the upstream genes in the lignin biosynthetic pathway and resulted in ectopic deposition of lignin in cells that are normally unligninified. These results suggest that PtoMYB216 is specific transcriptional activators of lignin biosynthesis and involved in the regulation of wood formation in poplar.
Collapse
Affiliation(s)
- Qiaoyan Tian
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
| | - Xianqiang Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
| | - Chaofeng Li
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
| | - Wanxiang Lu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Li Yang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuanzhong Jiang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
446
|
Hirano K, Kondo M, Aya K, Miyao A, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M. Identification of Transcription Factors Involved in Rice Secondary Cell Wall Formation. ACTA ACUST UNITED AC 2013; 54:1791-802. [DOI: 10.1093/pcp/pct122] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
447
|
Hirano K, Aya K, Morinaka Y, Nagamatsu S, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M. Survey of Genes Involved in Rice Secondary Cell Wall Formation Through a Co-Expression Network. ACTA ACUST UNITED AC 2013; 54:1803-21. [DOI: 10.1093/pcp/pct121] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
448
|
Incorporating motif analysis into gene co-expression networks reveals novel modular expression pattern and new signaling pathways. PLoS Genet 2013; 9:e1003840. [PMID: 24098147 PMCID: PMC3789834 DOI: 10.1371/journal.pgen.1003840] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022] Open
Abstract
Understanding of gene regulatory networks requires discovery of expression modules within gene co-expression networks and identification of promoter motifs and corresponding transcription factors that regulate their expression. A commonly used method for this purpose is a top-down approach based on clustering the network into a range of densely connected segments, treating these segments as expression modules, and extracting promoter motifs from these modules. Here, we describe a novel bottom-up approach to identify gene expression modules driven by known cis-regulatory motifs in the gene promoters. For a specific motif, genes in the co-expression network are ranked according to their probability of belonging to an expression module regulated by that motif. The ranking is conducted via motif enrichment or motif position bias analysis. Our results indicate that motif position bias analysis is an effective tool for genome-wide motif analysis. Sub-networks containing the top ranked genes are extracted and analyzed for inherent gene expression modules. This approach identified novel expression modules for the G-box, W-box, site II, and MYB motifs from an Arabidopsis thaliana gene co-expression network based on the graphical Gaussian model. The novel expression modules include those involved in house-keeping functions, primary and secondary metabolism, and abiotic and biotic stress responses. In addition to confirmation of previously described modules, we identified modules that include new signaling pathways. To associate transcription factors that regulate genes in these co-expression modules, we developed a novel reporter system. Using this approach, we evaluated MYB transcription factor-promoter interactions within MYB motif modules. Gene co-expression networks unite genes with similar expression patterns. From these networks, gene co-expression modules can be identified. A specific family of transcription factor(s) may regulate the genes within a co-expression module. Thus, module identification is important to decipher the gene regulatory network. Previously, module identification relied on clustering the gene network into gene clusters that were then treated as modules. This represents a top-down approach. Here, we introduce a reverse approach aiming at identifying gene co-expression modules regulated by known promoter motifs. For a given promoter motif, we calculated the probability of each gene within the network to belong to a module regulated by that motif via motif enrichment analysis or motif position bias analysis. A sub-network containing the genes with a high probability of belonging to a motif driven module was then extracted from the gene co-expression network. From this sub-network, the modular structure can be identified via visual inspection. Our bottom-up approach recovered many known and novel modules for the G-box, MYB, W-box and site II elements motif, whose expression may be regulated by the transcription factors that bind to these motifs. Additionally, we developed a rapid transcription factor-promoter interaction screening system to validate predicted interactions.
Collapse
|
449
|
Yoshida K, Sakamoto S, Kawai T, Kobayashi Y, Sato K, Ichinose Y, Yaoi K, Akiyoshi-Endo M, Sato H, Takamizo T, Ohme-Takagi M, Mitsuda N. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation. FRONTIERS IN PLANT SCIENCE 2013; 4:383. [PMID: 24098302 PMCID: PMC3787547 DOI: 10.3389/fpls.2013.00383] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 09/10/2013] [Indexed: 05/04/2023]
Abstract
Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.
Collapse
Affiliation(s)
- Kouki Yoshida
- Technology Center, Taisei CorporationYokohama, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and TechnologyTsukuba, Japan
| | - Tetsushi Kawai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and TechnologyTsukuba, Japan
| | | | | | | | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and TechnologyTsukuba, Japan
| | | | - Hiroko Sato
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research OrganizationNasushiobara, Japan
| | - Tadashi Takamizo
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research OrganizationNasushiobara, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and TechnologyTsukuba, Japan
- Institute for Environmental Science and Technology, Saitama UniversitySaitama, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and TechnologyTsukuba, Japan
| |
Collapse
|
450
|
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang ZY, Dixon RA. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. THE PLANT CELL 2013; 25:3976-87. [PMID: 24143805 PMCID: PMC3877815 DOI: 10.1105/tpc.113.117770] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/22/2013] [Accepted: 09/30/2013] [Indexed: 05/18/2023]
Abstract
The evolution of lignin biosynthesis was critical in the transition of plants from an aquatic to an upright terrestrial lifestyle. Lignin is assembled by oxidative polymerization of two major monomers, coniferyl alcohol and sinapyl alcohol. Although two recently discovered laccases, LAC4 and LAC17, have been shown to play a role in lignin polymerization in Arabidopsis thaliana, disruption of both genes only leads to a relatively small change in lignin content and only under continuous illumination. Simultaneous disruption of LAC11 along with LAC4 and LAC17 causes severe plant growth arrest, narrower root diameter, indehiscent anthers, and vascular development arrest with lack of lignification. Genome-wide transcript analysis revealed that all the putative lignin peroxidase genes are expressed at normal levels or even higher in the laccase triple mutant, suggesting that lignin laccase activity is necessary and nonredundant with peroxidase activity for monolignol polymerization during plant vascular development. Interestingly, even though lignin deposition in roots is almost completely abolished in the lac11 lac4 lac17 triple mutant, the Casparian strip, which is lignified through the activity of peroxidase, is still functional. Phylogenetic analysis revealed that lignin laccase genes have no orthologs in lower plant species, suggesting that the monolignol laccase genes diverged after the evolution of seed plants.
Collapse
Affiliation(s)
- Qiao Zhao
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Jin Nakashima
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Fang Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115
| | - Chunxiang Fu
- Forage Improvement Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Jianfei Yun
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Hui Shao
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Xiaoqiang Wang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Zeng-Yu Wang
- Forage Improvement Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Richard A. Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- Address correspondence to
| |
Collapse
|