401
|
Liu X, Chen Y, Zhang S, Dong L. Gut microbiota-mediated immunomodulation in tumor. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:221. [PMID: 34217349 PMCID: PMC8254267 DOI: 10.1186/s13046-021-01983-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
Tumor immunity consists of various types of cells, which serve an important role in antitumor therapy. The gastrointestinal tract is colonized by trillions of microorganisms, which form the gut microbiota. In addition to pathogen defense and maintaining the intestinal ecosystem, gut microbiota also plays a pivotal role in various physiological processes. Recently, the association between these symbionts and cancer, ranging from oncogenesis and cancer progression to resistance or sensitivity to antitumor therapies, has attracted much attention. Metagenome analysis revealed a significant difference between the gut microbial composition of cancer patients and healthy individuals. Moreover, modulation of microbiome could improve therapeutic response to immune checkpoint inhibitors (ICIs). These findings suggest that microbiome is involved in cancer pathogenesis and progression through regulation of tumor immunosurveillance, although the exact mechanisms remain largely unknown. This review focuses on the interaction between the microbiome and tumor immunity, with in-depth discussion regarding the therapeutic potential of modulating gut microbiota in ICIs. Further investigations are warranted before gut microbiota can be introduced into clinical practice.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200030, People's Republic of China.,Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai, 200030, People's Republic of China
| | - Yanjie Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200030, People's Republic of China
| | - Si Zhang
- Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai, 200030, People's Republic of China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200030, People's Republic of China. .,Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
402
|
Alberti G, Mazzola M, Gagliardo C, Pitruzzella A, Fucarini A, Giammanco M, Tomasello G, Carini F. Extracellular vesicles derived from gut microbiota in inflammatory bowel disease and colorectal cancer: new players? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:233-240. [PMID: 34282804 DOI: 10.5507/bp.2021.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
The human gut microbiome encompasses inter alia, the myriad bacterial species that create the optimal host-microorganism balance essential for normal metabolic and immune function. Various lines of evidence suggest that dysregulation of the microbiota-host interaction is linked to pathologies such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Extracellular vesicles (EVs), found in virtually all body fluids and produced by both eukaryotic cells and bacteria are involved in cell-cell communication and crosstalk mechanisms, such as the immune response, barrier function and intestinal flora. This review highlights advancements in knowledge of the functional role that EVs may have in IBD and CRC, and discusses the possible use of EVs derived from intestinal microbiota in therapeutic strategies for treating these conditions.
Collapse
Affiliation(s)
- Giusi Alberti
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Margherita Mazzola
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Carola Gagliardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Palermo, Italy
| | - Alessandro Pitruzzella
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Alberto Fucarini
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Marco Giammanco
- Department of Surgery, Oncologicical and Stomatological Sciences (Di.Chir.On.S), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Giovanni Tomasello
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Francesco Carini
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| |
Collapse
|
403
|
Yamamoto S, Kinugasa H, Hirai M, Terasawa H, Yasutomi E, Oka S, Ohmori M, Yamasaki Y, Inokuchi T, Harada K, Hiraoka S, Nouso K, Tanaka T, Teraishi F, Fujiwara T, Okada H. Heterogeneous distribution of Fusobacterium nucleatum in the progression of colorectal cancer. J Gastroenterol Hepatol 2021; 36:1869-1876. [PMID: 33242360 DOI: 10.1111/jgh.15361] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/24/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Fusobacterium nucleatum (Fn) is involved in colorectal cancer (CRC) growth and is a biomarker for patient prognosis and management. However, the ecology of Fn in CRC and the distribution of intratumoral Fn are unknown. METHODS We evaluated Fn and the status of KRAS and BRAF in 200 colorectal neoplasms (118 adenomas and 82 cancers) and 149 matched adjacent normal mucosas. The differentiation status between "surface" and "deep" areas of cancer tissue and matched normal mucosa were analyzed in 46 surgical samples; the Ki-67 index was also evaluated in these samples. RESULTS Fusobacterium nucleatum presence in the tumor increased according to pathological stage (5.9% [adenoma] to 81.8% [stage III/IV]), while Fn presence in normal mucosa also increased (7.6% [adenoma] to 40.9% [stage III/IV]). The detection rates of Fn on the tumor surface and in deep areas were 45.7% and 32.6%, while that of normal mucosa were 26.1% and 23.9%, respectively. Stage III/IV tumors showed high Fn surface area expression (66.7%). Fn intratumoral heterogeneity (34.8%) was higher than that of KRAS (4.3%; P < 0.001) and BRAF (2.2%; P < 0.001). The Ki-67 index in Fn-positive cases was higher than that in negative cases (93.9% vs 89.0%; P = 0.01). CONCLUSIONS Fusobacterium nucleatum was strongly present in CRC superficial areas at stage III/IV. The presence of Fn in the deep areas of adjacent normal mucosa also increased. The intratumoral heterogeneity of Fn is important in the use of Fn as a biomarker, as Fn is associated with CRC proliferative capacity.
Collapse
Affiliation(s)
- Shumpei Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mami Hirai
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Terasawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eriko Yasutomi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shohei Oka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masayasu Ohmori
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasushi Yamasaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshihiro Inokuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Harada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
404
|
Nociti FH. Systems Integration: A Key Step Toward Strengthening Oral Health. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.704624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
405
|
Meng Q, Gao Q, Mehrazarin S, Tangwanichgapong K, Wang Y, Huang Y, Pan Y, Robinson S, Liu Z, Zangiabadi A, Lux R, Papapanou PN, Guo XE, Wang H, Berchowitz LE, Han YW. Fusobacterium nucleatum secretes amyloid-like FadA to enhance pathogenicity. EMBO Rep 2021; 22:e52891. [PMID: 34184813 DOI: 10.15252/embr.202152891] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
Fusobacterium nucleatum (Fn) is a Gram-negative oral commensal, prevalent in various human diseases. It is unknown how this common commensal converts to a rampant pathogen. We report that Fn secretes an adhesin (FadA) with amyloid properties via a Fap2-like autotransporter to enhance its virulence. The extracellular FadA binds Congo Red, Thioflavin-T, and antibodies raised against human amyloid β42. Fn produces amyloid-like FadA under stress and disease conditions, but not in healthy sites or tissues. It functions as a scaffold for biofilm formation, confers acid tolerance, and mediates Fn binding to host cells. Furthermore, amyloid-like FadA induces periodontal bone loss and promotes CRC progression in mice, with virulence attenuated by amyloid-binding compounds. The uncleaved signal peptide of FadA is required for the formation and stability of mature amyloid FadA fibrils. We propose a model in which hydrophobic signal peptides serve as "hooks" to crosslink neighboring FadA filaments to form a stable amyloid-like structure. Our study provides a potential mechanistic link between periodontal disease and CRC and suggests anti-amyloid therapies as possible interventions for Fn-mediated disease processes.
Collapse
Affiliation(s)
- Qing Meng
- Section of Oral, Diagnostic and Rehabilitation Sciences, Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Qiuqiang Gao
- Section of Oral, Diagnostic and Rehabilitation Sciences, Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Shebli Mehrazarin
- Section of Oral, Diagnostic and Rehabilitation Sciences, Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Kamonchanok Tangwanichgapong
- Section of Oral, Diagnostic and Rehabilitation Sciences, Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Yu Wang
- Section of Oral, Diagnostic and Rehabilitation Sciences, Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Yiming Huang
- Department of Systems Biology, Vagelos College of physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Yutong Pan
- Section of Oral, Diagnostic and Rehabilitation Sciences, Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Samuel Robinson
- Department of Biomedical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, USA
| | - Ziwen Liu
- Section of Oral, Diagnostic and Rehabilitation Sciences, Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Amirali Zangiabadi
- Electron Microscopy Labs, Columbia Nano Initiative, Columbia University, New York, NY, USA
| | - Renate Lux
- Department of Oral Biology, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Panos N Papapanou
- Section of Oral, Diagnostic and Rehabilitation Sciences, Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - X Edward Guo
- Department of Biomedical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, USA
| | - Harris Wang
- Department of Systems Biology, Vagelos College of physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Luke E Berchowitz
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.,Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY, USA
| | - Yiping W Han
- Section of Oral, Diagnostic and Rehabilitation Sciences, Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
406
|
Cuellar-Gómez H, Ocharán-Hernández ME, Calzada-Mendoza CC, Comoto-Santacruz DA. Association of Fusobacterium nucleatum infection and colorectal cancer: A Mexican study. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2021; 87:S0375-0906(21)00035-5. [PMID: 34210555 DOI: 10.1016/j.rgmx.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION AND AIMS Colorectal cancer (CRC) is the third most prevalent cancer worldwide. Many risk factors are involved, and current evidence links the gut microbiota and colorectal carcinogenesis. Fusobacterium nucleatum is proposed as one of the risk factors at the onset and during the progression of CRC, due to immune system and inflammatory modulation. MATERIALS AND METHODS Ninety samples from three different regions of the colon were collected through colonoscopy in patients with CRC, and qPCR TagMan® was conducted to detect F. nucleatum and cytokines (IL-17, IL-23, and IL-10) in tumor, peritumor, and normal samples. The differences between them were analyzed and correlated. RESULTS The abundance of F. nucleatum determined through the 2-ΔΔCt method in CRC (7.750 [5.790-10.469]) was significantly higher than in the normal control (0.409 [0.251-0.817]) (p<0.05). There was no significant association between F. nucleatum and the cytokines (p>0.05). CONCLUSIONS CRC is a heterogeneous disease that presents and progresses in a complex microenvironment, partially due to gut microbiome imbalance. F. nucleatum was enriched in CRC tissue, but whether that is a cause of the pathology or a consequence, has not yet been clearly defined.
Collapse
Affiliation(s)
- H Cuellar-Gómez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina Instituto Politécnico Nacional, Ciudad de México, CDMX, México
| | - M E Ocharán-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina Instituto Politécnico Nacional, Ciudad de México, CDMX, México.
| | - C C Calzada-Mendoza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina Instituto Politécnico Nacional, Ciudad de México, CDMX, México
| | | |
Collapse
|
407
|
Shahnazari M, Samadi P, Pourjafar M, Jalali A. Cell-based immunotherapy approaches for colorectal cancer: main achievements and challenges. Future Oncol 2021; 17:3253-3270. [PMID: 34156258 DOI: 10.2217/fon-2020-1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is becoming as a major treatment modality for multiple types of solid tumors, including subsets of colorectal cancers (CRCs). The successes with immunotherapy alone has largely been achieved in patients with advanced-stage mismatch-repair-deficient and microsatellite instability-high (dMMR-MSI-H) CRCs. However, the benefits of immunotherapy have not been demonstrated to be effective in patients with proficient mismatch repair (pMMR) CRC, who are microsatellite-stable (MSS) or have low levels of microsatellite instability (MSI-L). Here, we provide a comprehensive review on the immune microenvironment of CRC tumors and describe the rapid pace of scientific changes. We discuss the tremendous promise of cell-based immunotherapy strategies that are under preclinical studies/clinical trials or being used in therapeutic paradigms.
Collapse
Affiliation(s)
- Mina Shahnazari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Shahid fahmideh boulevard, 6517838687, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Shahid fahmideh boulevard, 6517838687, Hamadan, Iran
| | - Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Shahid fahmideh boulevard, 6517838687, Hamadan, Iran.,Department of Biological & Chemical Engineering Immunological Biotechnology, Aarhus University, Inge Lehmanns Gade 10, 8000 Aarhus C, Aarhus, Denmark
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Shahid fahmideh boulevard, 6517838687, Hamadan, Iran
| |
Collapse
|
408
|
Mouradian W, Lee J, Wilentz J, Somerman M. A Perspective: Integrating Dental and Medical Research Improves Overall Health. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.699575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The past decade has seen marked increases in research findings identifying oral-systemic links. Yet, much of dental research remains poorly integrated with mainstream biomedical research. The historic separation of dentistry from medicine has led to siloed approaches in education, research and practice, ultimately depriving patients, providers, and policy makers of findings that could benefit overall health and well-being. These omissions amount to lost opportunities for risk assessment, diagnosis, early intervention and prevention of disease, increasing cost and contributing to a fragmented and inefficient healthcare delivery system. This perspective provides examples where fostering interprofessional research collaborations has advanced scientific understanding and yielded clinical benefits. In contrast are examples where failure to include dental research findings has limited progress and led to adverse health outcomes. The impetus to overcome the dental-medical research divide gains further urgency today in light of the coronavirus pandemic where contributions that dental research can make to understanding the pathophysiology of the SARS-CoV-2 virus and in diagnosing and preventing infection are described. Eliminating the research divide will require collaborative and trans-disciplinary research to ensure incorporation of dental research findings in broad areas of biomedical research. Enhanced communication, including interoperable dental/medical electronic health records and educational efforts will be needed so that the public, health care providers, researchers, professional schools, organizations, and policymakers can fully utilize oral health scientific information to meet the overall health needs of the public.
Collapse
|
409
|
Nakayama Y, Iijima T, Inokuchi T, Kojika E, Takao M, Takao A, Koizumi K, Horiguchi SI, Hishima T, Yamaguchi T. Clinicopathological features of sporadic MSI colorectal cancer and Lynch syndrome: a single-center retrospective cohort study. Int J Clin Oncol 2021; 26:1881-1889. [PMID: 34148153 DOI: 10.1007/s10147-021-01968-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The clinical and pathological features of sporadic microsatellite instability-high (MSI) colorectal cancer (CRC) are still unclear. The present study aimed to clarify the clinicopathological features of sporadic MSI CRC in comparison with those of Lynch syndrome (LS) exploratorily. METHODS The present study was a single-center, retrospective cohort study. Sporadic MSI CRC was defined as MSI CRC with aberrant promoter hypermethylation of the MLH1 gene, while hereditary MSI CRC was defined colorectal cancer in patients with LS. RESULTS In total, 2653 patients were enrolled; of these, 120 (4.5%) had MSI CRC, 98 had sporadic MSI CRC, and 22 had LS. Patients with sporadic MSI CRC were significantly older (p < 0.001) than those with LS and had a right-sided colonic tumor (p < 0.001) which was pathologically poorly differentiated or mucinous (p = 0.025). The overall survival rate was significantly lower in patients with stage I, II or III MSI CRC than in those with LS (p = 0.024). However, the recurrence-free survival rate did not differ significantly (p = 0.85). CONCLUSIONS We concluded that patients with sporadic MSI are significantly older, tumors more likely to locate in the right-sided colon, pathologically poorly differentiated or mucinous, and worse overall survival than in those with LS.
Collapse
Affiliation(s)
- Yujiro Nakayama
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1247, Japan
- Department of Surgery, Southern Tohoku General Hospital, Fukushima, 963-8052, Japan
| | - Takeru Iijima
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Takuhiko Inokuchi
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Ekumi Kojika
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Misato Takao
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Akinari Takao
- Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Koichi Koizumi
- Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Shin-Ichiro Horiguchi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Tatsuro Yamaguchi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan.
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan.
| |
Collapse
|
410
|
The Anti-Tumor Effect of Lactococcus lactis Bacteria-Secreting Human Soluble TRAIL Can Be Enhanced by Metformin Both In Vitro and In Vivo in a Mouse Model of Human Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13123004. [PMID: 34203951 PMCID: PMC8232584 DOI: 10.3390/cancers13123004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is a major cause of morbidity and mortality in Europe, and accounts for over 10% of all cancer-related deaths worldwide. These indicate an urgent need for novel therapeutic options in CRC. Here, we analysed if genetically modified non-pathogenic Lactococcus lactis bacteria can be used for local delivery of human recombinant Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) and induction of tumor cells death in vitro and in vivo in CRC mouse model. We showed that modified L. lactis bacteria were able to secrete biologically active human soluble TRAIL (L. lactis(hsTRAIL+)), which selectively eliminated human CRC cells in vitro, and was further strengthened by metformin (MetF). Our results from in vitro studies were confirmed in vivo using subcutaneous NOD-SCID mouse model of human CRC. The data showed a significant reduction of the tumor growth by intratumor injection of L. lactis(hsTRAIL+) bacteria producing hsTRAIL. This effect could be further enhanced by oral administration of MetF. Abstract Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) induces apoptosis of many cancer cells, including CRC cells, being non-harmful for normal ones. However, recombinant form of human TRAIL failed in clinical trial when administered intravenously. To assess the importance of TRAIL in CRC patients, new form of TRAIL delivery would be required. Here we used genetically modified, non-pathogenic Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. Operating under the Nisin Controlled Gene Expression System (NICE), the modified bacteria (L. lactis(hsTRAIL+)) were able to induce cell death of HCT116 and SW480 human cancer cells and reduce the growth of HCT116-tumor spheres in vitro. This effect was cancer cell specific as the cells of normal colon epithelium (FHC cells) were not affected by hsTRAIL-producing bacteria. Metformin (MetF), 5-fluorouracil (5-FU) and irinotecan (CPT-11) enhanced the anti-tumor actions of hsTRAIL in vitro. In the NOD-SCID mouse model, treatment of subcutaneous HCT116-tumors with L. lactis(hsTRAIL+) bacteria given intratumorally, significantly reduced the tumor growth. This anti-tumor activity of hsTRAIL in vivo was further enhanced by oral administration of MetF. These findings indicate that L. lactis bacteria could be suitable for local delivery of biologically active human proteins. At the same time, we documented that anti-tumor activity of hsTRAIL in experimental therapy of CRC can be further enhanced by MetF given orally, opening a venue for alternative CRC-treatment strategies.
Collapse
|
411
|
Imai J, Kitamoto S, Kamada N. The pathogenic oral-gut-liver axis: new understandings and clinical implications. Expert Rev Clin Immunol 2021; 17:727-736. [PMID: 34057877 DOI: 10.1080/1744666x.2021.1935877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Oral health is closely related to extra-oral disease status, as may be represented by the manifestations of gastrointestinal and liver diseases. AREAS COVERED This review focuses on the roles that the oral-gut or the oral-gut-liver axis play in the pathogenesis of inflammatory bowel disease, colorectal cancer, metabolic fatty liver disease, and nonalcoholic steatohepatitis. The discussion will begin with clinical data, including data from preclinical animal models, to elucidate mechanisms. We will also discuss ways to target oral dysbiosis and oral inflammation to treat gastrointestinal and liver diseases. EXPERT OPINION Several studies have demonstrated that oral pathobionts can translocate to the gastrointestinal tract where they contribute to inflammation and tumorigenesis. Furthermore, oral bacteria that migrate to the gastrointestinal tract can disseminate to the liver and cause hepatic disease. Thus, oral bacteria that ectopically colonize the intestine may serve as biomarkers for gastrointestinal and liver diseases. Also, understanding the characteristics of the oral-gut and oral-gut-liver microbial and immune axes will provide new insights into the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Jin Imai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Sho Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
412
|
Okuda S, Shimada Y, Tajima Y, Yuza K, Hirose Y, Ichikawa H, Nagahashi M, Sakata J, Ling Y, Miura N, Sugai M, Watanabe Y, Takeuchi S, Wakai T. Profiling of host genetic alterations and intra-tumor microbiomes in colorectal cancer. Comput Struct Biotechnol J 2021; 19:3330-3338. [PMID: 34188781 PMCID: PMC8202188 DOI: 10.1016/j.csbj.2021.05.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
Some bacteria are symbiotic in tumor tissues, and metabolites of several bacterial species have been found to cause DNA damage. However, to date, the association between bacteria and host genetic alterations in colorectal cancer (CRC) has not been fully investigated. We evaluated the association between the intra-tumor microbiome and host genetic alterations in 29 Japanese CRC patients. The tumor and non-tumor tissues were extracted from the patients, and 16S rRNA genes were sequenced for each sample. We identified enriched bacteria in tumor and non-tumor tissues. Some bacteria, such as Fusobacterium, which is already known to be enriched in CRC, were found to be enriched in tumor tissues. Interestingly, Bacteroides, which is also known to be enriched in CRC, was enriched in non-tumor tissues. Furthermore, it was shown that certain bacteria that often coexist within tumor tissue were enriched in the presence of a mutated gene or signal pathway with mutated genes in the host cells. Fusobacterium was associated with many mutated genes, as well as cell cycle-related pathways including mutated genes. In addition, the patients with a high abundance of Campylobacter were suggested to be associated with mutational signature 3 indicating failure of double-strand DNA break repairs. These results suggest that CRC development may be partly caused by DNA damage caused by substances released by bacterial infection. Taken together, the identification of distinct gut microbiome patterns and their host specific genetic alterations might facilitate targeted interventions, such as modulation of the microbiome in addition to anticancer agents or immunotherapy.
Collapse
Affiliation(s)
- Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Yosuke Tajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Kizuki Yuza
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Division of Cancer Genome Informatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Mika Sugai
- Division of Medical Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata 951-8518, Japan
| | - Yu Watanabe
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Division of Cancer Genome Informatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Shiho Takeuchi
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Division of Cancer Genome Informatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| |
Collapse
|
413
|
Olvera-Rosales LB, Cruz-Guerrero AE, Ramírez-Moreno E, Quintero-Lira A, Contreras-López E, Jaimez-Ordaz J, Castañeda-Ovando A, Añorve-Morga J, Calderón-Ramos ZG, Arias-Rico J, González-Olivares LG. Impact of the Gut Microbiota Balance on the Health-Disease Relationship: The Importance of Consuming Probiotics and Prebiotics. Foods 2021; 10:1261. [PMID: 34199351 PMCID: PMC8230287 DOI: 10.3390/foods10061261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota is a group of microorganisms that are deposited throughout the entire gastrointestinal tract. Currently, thanks to genomic tools, studies of gut microbiota have pointed towards the understanding of the metabolism of important bacteria that are not cultivable and their relationship with human homeostasis. Alterations in the composition of gut microbiota could explain, at least in part, some epidemics, such as diabetes and obesity. Likewise, dysbiosis has been associated with gastrointestinal disorders, neurodegenerative diseases, and even cancer. That is why several studies have recently been focused on the direct relationship that these types of conditions have with the specific composition of gut microbiota, as in the case of the microbiota-intestine-brain axis. In the same way, the control of microbiota is related to the diet. Therefore, this review highlights the importance of gut microbiota, from its composition to its relationship with the human health-disease condition, as well as emphasizes the effect of probiotic and prebiotic consumption on the balance of its composition.
Collapse
Affiliation(s)
- Laura-Berenice Olvera-Rosales
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Alma-Elizabeth Cruz-Guerrero
- Departamento de Biotecnología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico
| | - Esther Ramírez-Moreno
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico; (E.R.-M.); (Z.-G.C.-R.)
| | - Aurora Quintero-Lira
- Área Académica de Ingeniería Agroindustrial e Ingeniería en alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km. 1, Ex-Hacienda de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico;
| | - Elizabeth Contreras-López
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Judith Jaimez-Ordaz
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Javier Añorve-Morga
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Zuli-Guadalupe Calderón-Ramos
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico; (E.R.-M.); (Z.-G.C.-R.)
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico;
| | - Luis-Guillermo González-Olivares
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| |
Collapse
|
414
|
LaCourse KD, Johnston CD, Bullman S. The relationship between gastrointestinal cancers and the microbiota. Lancet Gastroenterol Hepatol 2021; 6:498-509. [PMID: 33743198 PMCID: PMC10773981 DOI: 10.1016/s2468-1253(20)30362-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
The contribution of the microbiota to disease progression and treatment efficacy is often neglected when determining who is at the highest risk of developing gastrointestinal cancers or designing treatment strategies for patients. We reviewed the current literature on the effect of the human microbiota on cancer risk, prognosis, and treatment efficacy. We highlight emerging research that seeks to identify microbial signatures as biomarkers for various gastrointestinal cancers, and discuss how we could harness knowledge of the microbiome to detect, prevent, and treat these cancers. Finally, we outline further research needed in the field of gastrointestinal cancers and the microbiota, and describe the efforts required to increase the accuracy and reproducibility of data linking the microbiome to cancer.
Collapse
Affiliation(s)
- Kaitlyn D LaCourse
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christopher D Johnston
- Vaccine and Infection Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
415
|
Dadashi M, Hajikhani B, Faghihloo E, Owlia P, Yaslianifard S, Goudarzi M, Nasiri MJ, Fallah F. Proliferative Effect of FadA Recombinant Protein from Fusobacterium nucleatum on SW480 Colorectal Cancer Cell Line. Infect Disord Drug Targets 2021; 21:623-628. [PMID: 32691717 DOI: 10.2174/1871526520666200720113004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Colorectal Cancer (CRC) is one of the most frequent cancers diagnosed in both men and women worldwide. Fusobacterium nucleatum adhesin A (FadA) has an important potential factor in the development or progression of CRC. The aim of the present study was to evaluate the proliferative effect of recombinant FadA on SW480 colorectal cancer cell line. MATERIALS AND METHODS The recombinant pET21(b)-fadA plasmid was synthesized and transformed into competent E.coli DH5α. In the next step, induction and expression of recombinant FadA were carried out in E. coli BL21 (DE3) competent cells. Expression and purification of protein were successfully done and it was analyzed and confirmed by SDS-PAGE and western blotting. The proliferative effect of purified FadA on SW480 CRC cell line was evaluated using MTT assay and cell counting methods. RESULTS Visualization of the specific band isolated from the linear plasmid on the agarose gel confirmed the presence of the desired gene. After electrophoresis and Coomassie blue staining, the protein of interest with an approximate molecular weight of 13KDa was detected. The MTT assay, similar to cell counting methods, revealed that FadA dose and time-dependently promoted SW480 cell growth and proliferation in 24, 48 and 72 hours. CONCLUSION The results showed that FadA stimulates proliferation of SW480 colorectal cancer cell line with a dose and time-dependent manner.
Collapse
Affiliation(s)
- Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
416
|
Yao Q, Tang M, Zeng L, Chu Z, Sheng H, Zhang Y, Zhou Y, Zhang H, Jiang H, Ye M. Potential of fecal microbiota for detection and postoperative surveillance of colorectal cancer. BMC Microbiol 2021; 21:156. [PMID: 34044781 PMCID: PMC8157663 DOI: 10.1186/s12866-021-02182-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers. In recent studies, the gut microbiota has been reported to be potentially involved in aggravating or favoring CRC development. However, little is known about the microbiota composition in CRC patients after treatment. In this study, we explored the fecal microbiota composition to obtain a periscopic view of gut microbial communities. We analyzed microbial 16S rRNA genes from 107 fecal samples of Chinese individuals from three groups, including 33 normal controls (NC), 38 CRC patients (Fa), and 36 CRC post-surgery patients (Fb). Results Species richness and diversity were decreased in the Fa and Fb groups compared with that of the NC group. Partial least squares discrimination analysis showed clustering of samples according to disease with an obvious separation between the Fa and NC, and Fb and NC groups, as well as a partial separation between the Fa and Fb groups. Based on linear discriminant analysis effect size analysis and a receiver operating characteristic model, Fusobacterium was suggested as a potential biomarker for CRC screening. Additionally, we found that surgery greatly reduced the bacterial diversity of microbiota in CRC patients. Some commensal beneficial bacteria of the intestinal canal, such as Faecalibacterium and Prevotella, were decreased, whereas the drug-resistant Enterococcus was visibly increased in CRC post-surgery group. Meanwhile, we observed a declining tendency of Fusobacterium in the majority of follow-up CRC patients who were still alive approximately 3 y after surgery. We also observed that beneficial bacteria dramatically decreased in CRC patients that recidivated or died after surgery. This revealed that important bacteria might be associated with prognosis. Conclusions The fecal bacterial diversity was diminished in CRC patients compared with that in NC. Enrichment and depletion of several bacterial strains associated with carcinomas and inflammation were detected in CRC samples. Fusobacterium might be a potential biomarker for early screening of CRC in Chinese or Asian populations. In summary, this study indicated that fecal microbiome-based approaches could be a feasible method for detecting CRC and monitoring prognosis post-surgery. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02182-6.
Collapse
Affiliation(s)
- Qiulin Yao
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China
| | - Meifang Tang
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Liuhong Zeng
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhonghua Chu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Hui Sheng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuyu Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yuan Zhou
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongyun Zhang
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huayan Jiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Mingzhi Ye
- Clinical laboratory of BGI Health, BGI-Shenzhen, Shenzhen, 518083, China. .,BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China. .,BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Zone B Room 401, Qinglan Street, Panyu District, Guangzhou, 510006, China.
| |
Collapse
|
417
|
Hu L, Liu Y, Kong X, Wu R, Peng Q, Zhang Y, Zhou L, Duan L. Fusobacterium nucleatum Facilitates M2 Macrophage Polarization and Colorectal Carcinoma Progression by Activating TLR4/NF- κB/S100A9 Cascade. Front Immunol 2021; 12:658681. [PMID: 34093546 PMCID: PMC8176789 DOI: 10.3389/fimmu.2021.658681] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/07/2021] [Indexed: 12/28/2022] Open
Abstract
Fusobacterium nucleatum (Fn) has been considered as a significant contributor in promoting colorectal carcinoma (CRC) development by suppressing host anti-tumor immunity. Recent studies demonstrated that the aggregation of M2 macrophage (Mφ) was involved in CRC progress driven by Fn infection. However, the underlying molecular mechanisms are poorly characterized. Here, we investigated the role of Fn in Mφ polarization as well as its effect on CRC malignancy. Fn infection facilitated differentiation of Mφ into the M2-like Mφ phenotype by in vitro study. Histological observation from Fn-positive CRC tissues confirmed the abundance of tumor-infiltrating M2-like Mφ. Fn-induced M2-like Mφ polarization was weakened once inhibiting a highly expressed damage-associated molecular pattern (DAMP) molecule S100A9 mainly derived from Fn-challenged Mφ and CRC cells. In addition, Fn-challenged M2-like Mφ conferred CRC cells a more malignant phenotype, showing stronger proliferation and migration characteristics in vitro and significantly enhanced tumor growth in vivo, all of which were partially inhibited when S100A9 was lost. Mechanistic studies further demonstrated that activation of TLR4/NF-κB signaling pathway mediated Fn-induced S100A9 expression and subsequent M2-like Mφ activation. Collectively, these findings indicate that elevated S100A9 in Fn-infected CRC microenvironment participates in M2-like Mφ polarization, thereby facilitating CRC malignancy. Furthermore, targeting TLR4/NF-κB/S100A9 cascade may serve as promising immunotherapeutic strategy for Fn-associated CRC.
Collapse
Affiliation(s)
- Lijun Hu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuehua Kong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Rui Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lan Zhou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
418
|
Kim SH, Lim YJ. The role of microbiome in colorectal carcinogenesis and its clinical potential as a target for cancer treatment. Intest Res 2021; 20:31-42. [PMID: 34015206 PMCID: PMC8831768 DOI: 10.5217/ir.2021.00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
The role of gut microbiome-intestinal immune complex in the development of colorectal cancer and its progression is well recognized. Accordingly, certain microbial strains tend to colonize or vanish in patients with colorectal cancer. Probiotics, prebiotics, and synbiotics are expected to exhibit both anti-tumor effects and chemopreventive effects during cancer treatment through mechanisms such as xenometabolism, immune interactions, and altered eco-community. Microbial modulation can also be safely used to prevent complications during peri-operational periods of colorectal surgery. A deeper understanding of the role of intestinal microbiota as a target for colorectal cancer treatment will lead the way to a better prognosis for colorectal cancer patients.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
419
|
Borowsky J, Haruki K, Lau MC, Dias Costa A, Väyrynen JP, Ugai T, Arima K, da Silva A, Felt KD, Zhao M, Gurjao C, Twombly TS, Fujiyoshi K, Väyrynen SA, Hamada T, Mima K, Bullman S, Harrison TA, Phipps AI, Peters U, Ng K, Meyerhardt JA, Song M, Giovannucci EL, Wu K, Zhang X, Freeman GJ, Huttenhower C, Garrett WS, Chan AT, Leggett BA, Whitehall VLJ, Walker N, Brown I, Bettington M, Nishihara R, Fuchs CS, Lennerz JK, Giannakis M, Nowak JA, Ogino S. Association of Fusobacterium nucleatum with Specific T-cell Subsets in the Colorectal Carcinoma Microenvironment. Clin Cancer Res 2021; 27:2816-2826. [PMID: 33632927 PMCID: PMC8127352 DOI: 10.1158/1078-0432.ccr-20-4009] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/09/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE While evidence indicates that Fusobacterium nucleatum (F. nucleatum) may promote colorectal carcinogenesis through its suppressive effect on T-cell-mediated antitumor immunity, the specific T-cell subsets involved remain uncertain. EXPERIMENTAL DESIGN We measured F. nucleatum DNA within tumor tissue by quantitative PCR on 933 cases (including 128 F. nucleatum-positive cases) among 4,465 incident colorectal carcinoma cases in two prospective cohorts. Multiplex immunofluorescence combined with digital image analysis and machine learning algorithms for CD3, CD4, CD8, CD45RO (PTPRC isoform), and FOXP3 measured various T-cell subsets. We leveraged data on Bifidobacterium, microsatellite instability (MSI), tumor whole-exome sequencing, and M1/M2-type tumor-associated macrophages [TAM; by CD68, CD86, IRF5, MAF, and MRC1 (CD206) multimarker assay]. Using the 4,465 cancer cases and inverse probability weighting method to control for selection bias due to tissue availability, multivariable-adjusted logistic regression analysis assessed the association between F. nucleatum and T-cell subsets. RESULTS The amount of F. nucleatum was inversely associated with tumor stromal CD3+ lymphocytes [multivariable OR, 0.47; 95% confidence interval (CI), 0.28-0.79, for F. nucleatum-high vs. -negative category; P trend = 0.0004] and specifically stromal CD3+CD4+CD45RO+ cells (corresponding multivariable OR, 0.52; 95% CI, 0.32-0.85; P trend = 0.003). These relationships did not substantially differ by MSI status, neoantigen load, or exome-wide tumor mutational burden. F. nucleatum was not significantly associated with tumor intraepithelial T cells or with M1 or M2 TAMs. CONCLUSIONS The amount of tissue F. nucleatum is associated with lower density of stromal memory helper T cells. Our findings provide evidence for the interactive pathogenic roles of microbiota and specific immune cells.
Collapse
Affiliation(s)
- Jennifer Borowsky
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Koichiro Haruki
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mai Chan Lau
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Juha P Väyrynen
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Tomotaka Ugai
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kota Arima
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Annacarolina da Silva
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kristen D Felt
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Carino Gurjao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Tyler S Twombly
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kenji Fujiyoshi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sara A Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kosuke Mima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Susan Bullman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Tabitha A Harrison
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Amanda I Phipps
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kana Wu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Wendy S Garrett
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Barbara A Leggett
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- The Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Vicki L J Whitehall
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Conjoint Internal Medicine Laboratory, Pathology Queensland, Queensland Health, Brisbane, Queensland, Australia
| | - Neal Walker
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Ian Brown
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Mark Bettington
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Envoi Specialist Pathologists, Brisbane, Queensland, Australia
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Smilow Cancer Hospital, New Haven, Connecticut
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts
| |
Collapse
|
420
|
Gaiani F, Marchesi F, Negri F, Greco L, Malesci A, de’Angelis GL, Laghi L. Heterogeneity of Colorectal Cancer Progression: Molecular Gas and Brakes. Int J Mol Sci 2021; 22:5246. [PMID: 34063506 PMCID: PMC8156342 DOI: 10.3390/ijms22105246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The review begins with molecular genetics, which hit the field unveiling the involvement of oncogenes and tumor suppressor genes in the pathogenesis of colorectal cancer (CRC) and uncovering genetic predispositions. Then the notion of molecular phenotypes with different clinical behaviors was introduced and translated in the clinical arena, paving the way to next-generation sequencing that captured previously unrecognized heterogeneity. Among other molecular regulators of CRC progression, the extent of host immune response within the tumor micro-environment has a critical position. Translational sciences deeply investigated the field, accelerating the pace toward clinical transition, due to its strong association with outcomes. While the perturbation of gut homeostasis occurring in inflammatory bowel diseases can fuel carcinogenesis, micronutrients like vitamin D and calcium can act as brakes, and we discuss underlying molecular mechanisms. Among the components of gut microbiota, Fusobacterium nucleatum is over-represented in CRC, and may worsen patient outcome. However, any translational knowledge tracing the multifaceted evolution of CRC should be interpreted according to the prognostic and predictive frame of the TNM-staging system in a perspective of clinical actionability. Eventually, we examine challenges and promises of pharmacological interventions aimed to restrain disease progression at different disease stages.
Collapse
Affiliation(s)
- Federica Gaiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy; (F.M.); (A.M.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20132 Milan, Italy
| | - Francesca Negri
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy;
| | - Alberto Malesci
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy; (F.M.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Gian Luigi de’Angelis
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Luigi Laghi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy;
| |
Collapse
|
421
|
Dong Z, Zhang C, Zhao Q, Huangfu H, Xue X, Wen S, Wu Y, Gao W, Wang B. Alterations of bacterial communities of vocal cord mucous membrane increases the risk for glottic laryngeal squamous cell carcinoma. J Cancer 2021; 12:4049-4063. [PMID: 34093809 PMCID: PMC8176248 DOI: 10.7150/jca.54221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/21/2021] [Indexed: 01/02/2023] Open
Abstract
Bacteria are among the important factors that play a role in the balance of human health, and their relationship with some tumors has been well established. However, the association between bacteria colonizing the vocal cords and glottic laryngeal squamous cell carcinoma (GLSCC) remains unclear. Here, we investigated whether bacterial communities of the vocal cord mucous membrane play a role in the development of GLSCC. We collected tumor tissue and normal adjacent tissue (NAT) samples from 19 GLSCC patients, and the bacterial communities were compared with control samples (control) from 21 vocal cord polyps using 16S rRNA high-throughput pyrosequencing. We detected 41 phyla, 93 classes, 188 orders, 373 families, and 829 genera in the vocal cord mucous membrane. A comparison of the bacterial communities in the NAT samples showed higher α‐diversity than in the tumor samples. In the tumor samples, seven groups of bacteria, i.e., the phylum Fusobacteria, the class Fusobacteriia, the order Fusobacteriales, the family Fusobacteriaceae, and the genera Fusobacterium, Alloprevotella, and Prevotella, were significantly enriched, as revealed by linear discriminant analysis coupled with effect size measurements (LEfSe). However, bacteria from the phylum Firmicutes were most significantly enriched in the vocal cord polyp tissues. These findings suggest alterations in the bacterial community structure of the vocal cord mucous membrane of GLSCC patients and that seven groups of bacteria are related to GLSCC, indicating that imbalances in bacterial communities increase the risk for the development of GLSCC.
Collapse
Affiliation(s)
- Zhen Dong
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qinli Zhao
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hui Huangfu
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shuxin Wen
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, Taiyuan 030032, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.,Department of Cell biology and Genetics, Basic Medical School, Shanxi Medical University, Taiyuan 030001, China
| | - Binquan Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
422
|
Shen X, Li J, Li J, Zhang Y, Li X, Cui Y, Gao Q, Chen X, Chen Y, Fang JY. Fecal Enterotoxigenic Bacteroides fragilis- Peptostreptococcus stomatis- Parvimonas micra Biomarker for Noninvasive Diagnosis and Prognosis of Colorectal Laterally Spreading Tumor. Front Oncol 2021; 11:661048. [PMID: 34046355 PMCID: PMC8144651 DOI: 10.3389/fonc.2021.661048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Up to now, non-invasive diagnosis of laterally spreading tumor (LST) and prediction of adenoma recurrence after endoscopic resection of LSTs is inevitable. This study aimed to identify a microbial signature with clinical significance of diagnosing LSTs and predicting adenoma recurrence after LSTs colectomy. Methods We performed 16S rRNA sequencing in 24 mucosal samples, including 5 healthy controls (HC), 8 colorectal adenoma (CRA) patients, and 11 LST patients. The differentiating microbiota in fecal samples was quantified by qPCR in 475 cases with 113 HC, 208 CRA patients, 109 LST patients, and 45 colorectal cancer (CRC) patients. We identified differentially abundant taxa among cases and controls using linear discriminant analysis effect size analysis. ROC curve was used to evaluate diagnostic values of the bacterial candidates. Pairwise comparison of AUCs was performed by using the Delong's test. The Mantel-Haenszel hazard models were performed to determine the effects of microbial compositions on recurrence free survival. Results The microbial dysbiosis of LST was characterized by relative high abundance of the genus Lactobacillus-Streptococcus and the species enterotoxigenic Bacteroides fragilis (ETBF)-Peptostreptococcus stomatis (P. stomatis)-Parvimonas micra (P. micra). The abundance of ETBF, P. stomatis, and P. micra were steadily increasing in LST and CRC groups. P. stomatis behaved stronger value on diagnosing LST than the other two bacteria (AUC 0.887, 95% CI 0.842-0.931). The combination of P. stomatis, P. micra, and ETBF (AUC 0.922, 95% CI 0.887-0.958) revealed strongest diagnostic power with 88.7% sensitivity and 81.4% specificity. ETBF, P. stomatis, and P. micra were associated with malignant LST (PP.stomatis = 0.0015, PP.micra = 0.0255, PETBF = 0.0169) and the abundance of IL-6. The high abundance of P. stomatis was related to the adenoma recurrence after LST resection (HR = 3.88, P = 0.008). Conclusions Fecal microbiome signature (ETBF-P. stomatis-P. micra) can diagnose LSTs with high accuracy. ETBF, P. stomatis, and P. micra were related to malignant LST and P. stomatis exhibited high predictive value on the adenoma recurrence after resection of LSTs. The fecal microbiome signature of LST may provide a noninvasive alternative to early detect LST and predict the adenoma recurrence risk after resections of LSTs.
Collapse
Affiliation(s)
- Xiaonan Shen
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jialu Li
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiaqi Li
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yao Zhang
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaobo Li
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yun Cui
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qinyan Gao
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoyu Chen
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yingxuan Chen
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jing-Yuan Fang
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
423
|
Role of Gut Microbiota and Probiotics in Colorectal Cancer: Onset and Progression. Microorganisms 2021; 9:microorganisms9051021. [PMID: 34068653 PMCID: PMC8151957 DOI: 10.3390/microorganisms9051021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota plays an important role in maintaining homeostasis in the human body, and the disruption of these communities can lead to compromised host health and the onset of disease. Current research on probiotics is quite promising and, in particular, these microorganisms have demonstrated their potential for use as adjuvants for the treatment of colorectal cancer. This review addresses the possible applications of probiotics, postbiotics, synbiotics, and next-generation probiotics in colorectal cancer research.
Collapse
|
424
|
Veziant J, Villéger R, Barnich N, Bonnet M. Gut Microbiota as Potential Biomarker and/or Therapeutic Target to Improve the Management of Cancer: Focus on Colibactin-Producing Escherichia coli in Colorectal Cancer. Cancers (Basel) 2021; 13:2215. [PMID: 34063108 PMCID: PMC8124679 DOI: 10.3390/cancers13092215] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is crucial for physiological development and immunological homeostasis. Alterations of this microbial community called dysbiosis, have been associated with cancers such colorectal cancers (CRC). The pro-carcinogenic potential of this dysbiotic microbiota has been demonstrated in the colon. Recently the role of the microbiota in the efficacy of anti-tumor therapeutic strategies has been described in digestive cancers and in other cancers (e.g., melanoma and sarcoma). Different bacterial species seem to be implicated in these mechanisms: F. nucleatum, B. fragilis, and colibactin-associated E. coli (CoPEC). CoPEC bacteria are prevalent in the colonic mucosa of patients with CRC and they promote colorectal carcinogenesis in susceptible mouse models of CRC. In this review, we report preclinical and clinical data that suggest that CoPEC could be a new factor predictive of poor outcomes that could be used to improve cancer management. Moreover, we describe the possibility of using these bacteria as new therapeutic targets.
Collapse
Affiliation(s)
- Julie Veziant
- Microbes Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRAE 2018, CRNH Auvergne, 63000 Clermont-Ferrand, France; (J.V.); (R.V.); (N.B.)
- Department of Digestive, Hepatobiliary and Endocrine Surgery Paris Descartes University Cochin Hospital, 75000 Paris, France
| | - Romain Villéger
- Microbes Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRAE 2018, CRNH Auvergne, 63000 Clermont-Ferrand, France; (J.V.); (R.V.); (N.B.)
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267 Université de Poitiers, 86000 Poitiers, France
| | - Nicolas Barnich
- Microbes Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRAE 2018, CRNH Auvergne, 63000 Clermont-Ferrand, France; (J.V.); (R.V.); (N.B.)
| | - Mathilde Bonnet
- Microbes Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRAE 2018, CRNH Auvergne, 63000 Clermont-Ferrand, France; (J.V.); (R.V.); (N.B.)
| |
Collapse
|
425
|
Rho JH, Kim HJ, Joo JY, Lee JY, Lee JH, Park HR. Periodontal Pathogens Promote Foam Cell Formation by Blocking Lipid Efflux. J Dent Res 2021; 100:1367-1377. [PMID: 33899578 DOI: 10.1177/00220345211008811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Foam cells are one of the major cellular components of atherosclerotic plaques, within which the trace of periodontal pathogens has also been identified in recent studies. In line with these findings, the correlation between periodontitis and atherosclerotic cardiovascular incidences has been repetitively supported by evidence from a number of experimental studies. However, the direct role of periodontal pathogens in altered cellular signaling underlying such cardiovascular events has not been clearly defined. To determine the role of periodontal pathogens in the pathogenesis of atherosclerosis, especially in the evolution of macrophages into foam cells, we monitored the pattern of lipid accumulation within macrophages in the presence of periodontal pathogens, followed by characterization of these lipids and investigation of major molecules involved in lipid homeostasis. The cells were stained with the lipophilic fluorescent dye BODIPY 493/503 and Oil Red O to characterize the lipid profile. The amounts of Oil Red O-positive droplets, representing neutral lipids, as well as fluorescent lipid aggregates were prominently increased in periodontal pathogen-infected macrophages. Subsequent analysis allowed us to locate the accumulated lipids in the endoplasmic reticulum. In addition, the levels of cholesteryl ester in periodontal pathogen-infected macrophages were increased, implying disrupted lipid homeostasis. Further investigations to delineate the key messengers and regulatory factors involved in the altered lipid homeostasis have revealed alterations in cholesterol efflux-related enzymes, such as ABCG1 and CYP46A1, as contributors to foam cell formation, and increased Ca2+ signaling and reactive oxygen species (ROS) production as key events underlying disrupted lipid homeostasis. Consistently, a treatment of periodontal pathogen-infected macrophages with ROS inhibitors and nifedipine attenuated the accumulation of lipid droplets, further confirming periodontal pathogen-induced alterations in Ca2+ and ROS signaling and the subsequent dysregulation of lipid homeostasis as key regulatory events underlying the evolution of macrophages into foam cells.
Collapse
Affiliation(s)
- J H Rho
- Department of Oral Pathology and BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Department of Periodontology, School of Dentistry, Pusan National University, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - H J Kim
- Department of Oral Pathology and BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Department of Periodontology, School of Dentistry, Pusan National University, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - J Y Joo
- Department of Periodontology, School of Dentistry, Pusan National University, Pusan National University Dental Hospital, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, Dental & Life Science Institute, Pusan National University, Yangsan, Republic of Korea
| | - J Y Lee
- Department of Periodontology, School of Dentistry, Pusan National University, Pusan National University Dental Hospital, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, Dental & Life Science Institute, Pusan National University, Yangsan, Republic of Korea
| | - J H Lee
- Department of Oral Pathology and BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, Dental & Life Science Institute, Pusan National University, Yangsan, Republic of Korea
| | - H R Park
- Department of Oral Pathology and BK21 FOUR Project, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, Dental & Life Science Institute, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
426
|
A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers (Basel) 2021; 13:cancers13092025. [PMID: 33922197 PMCID: PMC8122718 DOI: 10.3390/cancers13092025] [Citation(s) in RCA: 420] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
This review article contains a concise consideration of genetic and environmental risk factors for colorectal cancer. Known risk factors associated with colorectal cancer include familial and hereditary factors and lifestyle-related and ecological factors. Lifestyle factors are significant because of the potential for improving our understanding of the disease. Physical inactivity, obesity, smoking and alcohol consumption can also be addressed through therapeutic interventions. We also made efforts to systematize available literature and data on epidemiology, diagnosis, type and nature of symptoms and disease stages. Further study of colorectal cancer and progress made globally is crucial to inform future strategies in controlling the disease's burden through population-based preventative initiatives.
Collapse
|
427
|
Abstract
A previous longitudinal study about using microbiome as a caries indicator has successfully predicted early childhood caries (ECC) in healthy individuals, but there is no evidence to verify the composition of core microbiota and its pathogenicity in vitro and in vivo. Biofilm acidogenicity, S. mutans count, and biofilm composition were estimated by pH evaluation, colony-forming unit, and quantitative PCR, respectively. Extracellular polysaccharide production and enamel demineralization were observed by confocal laser scanning microscopy (CLSM) and transverse microradiography (TMR), respectively. A rat caries model was established for dental caries formation in vivo, and caries lesions were quantified by Keyes Scoring. We put forward that microbiota including Veillonella parvula, Fusobacterium nucleatum, Prevotella denticola, and Leptotrichia wadei served as the predictors for ECC may be the core microbiota in ECC. This study found that the core microbiota of ECC produced limited acid, but promoted growth and acidogenic ability of S. mutans. Besides, core microbiota could help to promote the development of biofilms. Moreover, the core microbiota enhanced the enamel demineralization in vitro and increased cariogenic potential in vivo. These results proved that core microbiota could promote the development of dental caries and plays an important role in the development of ECC.
Collapse
|
428
|
Malik SA, Zhu C, Li J, LaComb JF, Denoya PI, Kravets I, Miller JD, Yang J, Kramer M, McCombie WR, Robertson CE, Frank DN, Li E. Impact of preoperative antibiotics and other variables on integrated microbiome-host transcriptomic data generated from colorectal cancer resections. World J Gastroenterol 2021; 27:1465-1482. [PMID: 33911468 PMCID: PMC8047535 DOI: 10.3748/wjg.v27.i14.1465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Integrative multi-omic approaches have been increasingly applied to discovery and functional studies of complex human diseases. Short-term preoperative antibiotics have been adopted to reduce site infections in colorectal cancer (CRC) resections. We hypothesize that the antibiotics will impact analysis of multi-omic datasets generated from resection samples to investigate biological CRC risk factors. AIM To assess the impact of preoperative antibiotics and other variables on integrated microbiome and human transcriptomic data generated from archived CRC resection samples. METHODS Genomic DNA (gDNA) and RNA were extracted from prospectively collected 51 pairs of frozen sporadic CRC tumor and adjacent non-tumor mucosal samples from 50 CRC patients archived at a single medical center from 2010-2020. The 16S rRNA gene sequencing (V3V4 region, paired end, 300 bp) and confirmatory quantitative polymerase chain reaction (qPCR) assays were conducted on gDNA. RNA sequencing (IPE, 125 bp) was performed on parallel tumor and non-tumor RNA samples with RNA Integrity Numbers scores ≥ 6. RESULTS PERMANOVA detected significant effects of tumor vs nontumor histology (P = 0.002) and antibiotics (P = 0.001) on microbial β-diversity, but CRC tumor location (left vs right), diabetes mellitus vs not diabetic and Black/African Ancestry (AA) vs not Black/AA, did not reach significance. Linear mixed models detected significant tumor vs nontumor histology*antibiotics interaction terms for 14 genus level taxa. QPCR confirmed increased Fusobacterium abundance in tumor vs nontumor groups, and detected significantly reduced bacterial load in the (+)antibiotics group. Principal coordinate analysis of the transcriptomic data showed a clear separation between tumor and nontumor samples. Differentially expressed genes obtained from separate analyses of tumor and nontumor samples, are presented for the antibiotics, CRC location, diabetes and Black/AA race groups. CONCLUSION Recent adoption of additional preoperative antibiotics as standard of care, has a measurable impact on -omics analysis of resected specimens. This study still confirmed increased Fusobacterium nucleatum in tumor.
Collapse
Affiliation(s)
- Sarah A Malik
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Chencan Zhu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
| | - Jinyu Li
- Stony Brook Cancer Center Biostatistics and Bioinformatics Shared Resource, Stony Brook University, Stony Brook, NY 11794, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Paula I Denoya
- Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Igor Kravets
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Joshua D Miller
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Jie Yang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Stony Brook Cancer Center Biostatistics and Bioinformatics Shared Resource, Stony Brook University, Stony Brook, NY 11794, United States
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Melissa Kramer
- Cold Spring Harbor Laboratory Cancer Center Sequencing Technologies and Analysis Shared Resource, Cold Spring Harbor, NY 11724, United States
| | - W Richard McCombie
- Cold Spring Harbor Laboratory Cancer Center Sequencing Technologies and Analysis Shared Resource, Cold Spring Harbor, NY 11724, United States
| | - Charles E Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Daniel N Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Ellen Li
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
429
|
Integrated approaches for precision oncology in colorectal cancer: The more you know, the better. Semin Cancer Biol 2021; 84:199-213. [PMID: 33848627 DOI: 10.1016/j.semcancer.2021.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies accounting for approximately 10 % of worldwide cancer incidence and mortality. While early-stage CRC is mainly a preventable and curable disease, metastatic colorectal cancer (mCRC) remains an unmet clinical need. Moreover, about 25 % of CRC cases are diagnosed only at the metastatic stage. Despite the extensive molecular and functional knowledge on this disease, systemic therapy for mCRC still relies on traditional 5-fluorouracil (5-FU)-based chemotherapy regimens. On the other hand, targeted therapies and immunotherapy have shown effectiveness only in a limited subset of patients. For these reasons, there is a growing need to define the molecular and biological landscape of individual patients to implement novel, rationally driven, tailored therapies. In this review, we explore current and emerging approaches for CRC management such as genomic, transcriptomic and metabolomic analysis, the use of liquid biopsies and the implementation of patients' preclinical avatars. In particular, we discuss the contribution of each of these tools in elucidating patient specific features, with the aim of improving our ability in advancing the diagnosis and treatment of colorectal tumors.
Collapse
|
430
|
Brennan CA, Nakatsu G, Gallini Comeau CA, Drew DA, Glickman JN, Schoen RE, Chan AT, Garrett WS. Aspirin Modulation of the Colorectal Cancer-Associated Microbe Fusobacterium nucleatum. mBio 2021; 12:e00547-21. [PMID: 33824205 PMCID: PMC8092249 DOI: 10.1128/mbio.00547-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Aspirin is a chemopreventive agent for colorectal adenoma and cancer (CRC) that, like many drugs inclusive of chemotherapeutics, has been investigated for its effects on bacterial growth and virulence gene expression. Given the evolving recognition of the roles for bacteria in CRC, in this work, we investigate the effects of aspirin with a focus on one oncomicrobe-Fusobacterium nucleatum We show that aspirin and its primary metabolite salicylic acid alter F. nucleatum strain Fn7-1 growth in culture and that aspirin can effectively kill both actively growing and stationary Fn7-1. We also demonstrate that, at levels that do not inhibit growth, aspirin influences Fn7-1 gene expression. To assess whether aspirin modulation of F. nucleatum may be relevant in vivo, we use the ApcMin/+ mouse intestinal tumor model in which Fn7-1 is orally inoculated daily to reveal that aspirin-supplemented chow is sufficient to inhibit F. nucleatum-potentiated colonic tumorigenesis. We expand our characterization of aspirin sensitivity across other F. nucleatum strains, including those isolated from human CRC tissues, as well as other CRC-associated microbes, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli Finally, we determine that individuals who use aspirin daily have lower fusobacterial abundance in colon adenoma tissues, as determined by quantitative PCR performed on adenoma DNA. Together, our data support that aspirin has direct antibiotic activity against F. nucleatum strains and suggest that consideration of the potential effects of aspirin on the microbiome holds promise in optimizing risk-benefit assessments for use of aspirin in CRC prevention and management.IMPORTANCE There is an increasing understanding of the clinical correlations and potential mechanistic roles of specific members of the gut and tumoral microbiota in colorectal cancer (CRC) initiation, progression, and survival. However, we have yet to parlay this knowledge into better CRC outcomes through microbially informed diagnostic, preventive, or therapeutic approaches. Here, we demonstrate that aspirin, an established CRC chemopreventive, exhibits specific effects on the CRC-associated Fusobacterium nucleatum in culture, an animal model of intestinal tumorigenesis, and in human colonic adenoma tissues. Our work proposes a potential role for aspirin in influencing CRC-associated bacteria to prevent colorectal adenomas and cancer, beyond aspirin's canonical anti-inflammatory role targeting host tissues. Future research, such as studies investigating the effects of aspirin on fusobacterial load in patients, will help further elucidate the prospect of using aspirin to modulate F. nucleatumin vivo for improving CRC outcomes.
Collapse
Affiliation(s)
- Caitlin A Brennan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
| | - Geicho Nakatsu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
| | - Carey Ann Gallini Comeau
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan N Glickman
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert E Schoen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew T Chan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department and Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
431
|
The dysbiosis signature of Fusobacterium nucleatum in colorectal cancer-cause or consequences? A systematic review. Cancer Cell Int 2021; 21:194. [PMID: 33823861 PMCID: PMC8025348 DOI: 10.1186/s12935-021-01886-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer globally and the fourth attributable cause of mortality and morbidity due to cancer. An emerging factor contributing to CRC is the gut microbiota and the cellular changes associated with it. Further insights on this may help in the prevention, diagnosis and new therapeutic approaches to colorectal cancer. In most cases of CRC, genetic factors appear to contribute less to its aetiology than environmental and epigenetic factors; therefore, it may be important to investigate these environmental factors, their effects, and the mechanisms that may contribute to this cancer. The gut microbiota has recently been highlighted as a potential risk factor that may affect the structural components of the tumor microenvironment, as well as free radical and enzymatic metabolites directly, or indirectly. Many studies have reported changes in the gut microbiota of patients with colorectal cancer. What is controversial is whether the cancer is the cause or consequence of the change in the microbiota. There is strong evidence supporting both possibilities. The presence of Fusobacterium nucleatum in human colorectal specimens has been demonstrated by RNA-sequencing. F. nucleatum has been shown to express high levels of virulence factors such as FadA, Fap2 and MORN2 proteins. Our review of the published data suggest that F. nucleatum may be a prognostic biomarker of CRC risk, and hence raises the potential of antibiotic treatment of F. nucleatum for the prevention of CRC.
Collapse
|
432
|
Nishimura H, Fukui H, Wang X, Ebisutani N, Nakanishi T, Tomita T, Oshima T, Hirota S, Miwa H. Role of the β-Catenin/REG Iα Axis in the Proliferation of Sessile Serrated Adenoma/Polyps Associated with Fusobacterium nucleatum. Pathogens 2021; 10:pathogens10040434. [PMID: 33917384 PMCID: PMC8067346 DOI: 10.3390/pathogens10040434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022] Open
Abstract
Although sessile serrated adenoma/polyps (SSA/Ps) may arise through a pathway different from the traditional adenoma–carcinoma sequence, details of SSA/P tumorigenesis still remain unclear. Fusobacterium nucleatum (Fn) is frequently detected in colorectal cancer (CRC) tissues and may play a pivotal role in colorectal carcinogenesis. Here, we investigated the relationship between Fn and the β-catenin/REG Iα axis in SSA/Ps and their involvement in the proliferation of these lesions. Fn was detected in SSA/Ps by fluorescence in situ hybridization using a Fn-targeted probe, and expression of β-catenin, REG Iα and Ki67 was examined using immunohistochemistry. Sixteen of 30 SSA/P lesions (53.3%) were positive for Fn. Eighteen SSA/P lesions (60%) showed β-catenin immunoreactivity in the tumor cell nuclei. A significant majority of Fn-positive lesions showed nuclear expression of β-catenin (87.5%) and higher REG Iα scores and Ki67 labeling indices relative to Fn-negative lesions. The SSA/P lesions expressing β-catenin in nuclei had significantly higher REG Iα scores and Ki67 labeling indices than those expressing β-catenin on cytomembranes. The REG Iα score was positively correlated with the Ki67 labeling index in SSA/P lesions. The treatment with Wnt agonist SKL2001 promoted nuclear β-catenin translocation and enhanced REG Ia expression in Caco2 cells. Fn may play a role in the proliferation of SSA/P lesions through promotion of β-catenin nuclear translocation and REG Iα expression.
Collapse
Affiliation(s)
- Heihachiro Nishimura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
- Correspondence: ; Tel.: +81-798-456-662
| | - Xuan Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Nobuhiko Ebisutani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Takashi Nakanishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Toshihiko Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Tadayuki Oshima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan;
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| |
Collapse
|
433
|
Akimoto N, Ugai T, Zhong R, Hamada T, Fujiyoshi K, Giannakis M, Wu K, Cao Y, Ng K, Ogino S. Rising incidence of early-onset colorectal cancer - a call to action. Nat Rev Clin Oncol 2021; 18:230-243. [PMID: 33219329 PMCID: PMC7994182 DOI: 10.1038/s41571-020-00445-1] [Citation(s) in RCA: 362] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
The incidence of early-onset colorectal cancer (CRC), which occurs in individuals <50 years of age, has been increasing worldwide and particularly in high-income countries. The reasons for this increase remain unknown but plausible hypotheses include greater exposure to potential risk factors, such as a Western-style diet, obesity, physical inactivity and antibiotic use, especially during the early prenatal to adolescent periods of life. These exposures can not only cause genetic and epigenetic alterations in colorectal epithelial cells but also affect the gut microbiota and host immunity. Early-onset CRCs have differential clinical, pathological and molecular features compared with later-onset CRCs. Certain existing resources can be utilized to elucidate the aetiology of early-onset CRC and inform the development of effective prevention, early detection and therapeutic strategies; however, additional life-course cohort studies spanning childhood and young adulthood, integrated with prospective biospecimen collections, omics biomarker analyses and a molecular pathological epidemiology approach, are needed to better understand and manage this disease entity. In this Perspective, we summarize our current understanding of early-onset CRC and discuss how we should strategize future research to improve its prevention and clinical management.
Collapse
Affiliation(s)
- Naohiko Akimoto
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Gastroenterology, Nippon Medical School, Graduate School of Medicine, Tokyo, Japan
| | - Tomotaka Ugai
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rong Zhong
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Fujiyoshi
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Kurume University, Kurume, Japan
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuji Ogino
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
434
|
Zhang W, Chen X, Wong KC. Noninvasive early diagnosis of intestinal diseases based on artificial intelligence in genomics and microbiome. J Gastroenterol Hepatol 2021; 36:823-831. [PMID: 33880763 DOI: 10.1111/jgh.15500] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
The maturing development in artificial intelligence (AI) and genomics has propelled the advances in intestinal diseases including intestinal cancer, inflammatory bowel disease (IBD), and irritable bowel syndrome (IBS). On the other hand, colorectal cancer is the second most deadly and the third most common type of cancer in the world according to GLOBOCAN 2020 data. The mechanisms behind IBD and IBS are still speculative. The conventional methods to identify colorectal cancer, IBD, and IBS are based on endoscopy or colonoscopy to identify lesions. However, it is invasive, demanding, and time-consuming for early-stage intestinal diseases. To address those problems, new strategies based on blood and/or human microbiome in gut, colon, or even feces were developed; those methods took advantage of high-throughput sequencing and machine learning approaches. In this review, we summarize the recent research and methods to diagnose intestinal diseases with machine learning technologies based on cell-free DNA and microbiome data generated by amplicon sequencing or whole-genome sequencing. Those methods play an important role in not only intestinal disease diagnosis but also therapy development in the near future.
Collapse
Affiliation(s)
- Weitong Zhang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Xingjian Chen
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR.,Hong Kong Institute for Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| |
Collapse
|
435
|
Wang F, Song M, Lu X, Zhu X, Deng J. Gut microbes in gastrointestinal cancers. Semin Cancer Biol 2021; 86:967-975. [PMID: 33812983 DOI: 10.1016/j.semcancer.2021.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Gut microbes (GMs), dominated by bacteria, play important roles in many physiological processes. The structures and functions of GMs are closely related to human health, the occurrence and development of diseases and the rapid recovery of the body. Gastrointestinal cancers are the major diseases affecting human health worldwide. With the development of metagenomic technology and the wide application of new generation sequencing technology, a large number of studies suggest that complex GMs are related to the occurrence and development of gastrointestinal cancers. Fecal microbiota transplantation (FMT) and probiotics can treat and prevent the occurrence of gastrointestinal cancers. This article reviews the latest research progress of microbes in gastrointestinal cancers from the perspectives of the correlation, the influence mechanism and the application, so as to provide new directions for the prevention, early diagnosis and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Fei Wang
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Meiyi Song
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiya Lu
- Department of Gastroenterology and Hepatology, Institution of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuefeng Zhu
- University of Shanghai for Science and Technology, Shanghai, China.
| | - Jiali Deng
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
436
|
Hanus M, Parada-Venegas D, Landskron G, Wielandt AM, Hurtado C, Alvarez K, Hermoso MA, López-Köstner F, De la Fuente M. Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment. Front Immunol 2021; 12:612826. [PMID: 33841394 PMCID: PMC8033001 DOI: 10.3389/fimmu.2021.612826] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. As with other cancers, CRC is a multifactorial disease due to the combined effect of genetic and environmental factors. Most cases are sporadic, but a small proportion is hereditary, estimated at around 5-10%. In both, the tumor interacts with heterogeneous cell populations, such as endothelial, stromal, and immune cells, secreting different signals (cytokines, chemokines or growth factors) to generate a favorable tumor microenvironment for cancer cell invasion and metastasis. There is ample evidence that inflammatory processes have a role in carcinogenesis and tumor progression in CCR. Different profiles of cell activation of the tumor microenvironment can promote pro or anti-tumor pathways; hence they are studied as a key target for the control of cancer progression. Additionally, the intestinal mucosa is in close contact with a microorganism community, including bacteria, bacteriophages, viruses, archaea, and fungi composing the gut microbiota. Aberrant composition of this microbiota, together with alteration in the diet-derived microbial metabolites content (such as butyrate and polyamines) and environmental compounds has been related to CRC. Some bacteria, such as pks+ Escherichia coli or Fusobacterium nucleatum, are involved in colorectal carcinogenesis through different pathomechanisms including the induction of genetic mutations in epithelial cells and modulation of tumor microenvironment. Epithelial and immune cells from intestinal mucosa have Pattern-recognition receptors and G-protein coupled receptors (receptor of butyrate), suggesting that their activation can be regulated by intestinal microbiota and metabolites. In this review, we discuss how dynamics in the gut microbiota, their metabolites, and tumor microenvironment interplays in sporadic and hereditary CRC, modulating tumor progression.
Collapse
Affiliation(s)
- Michelle Hanus
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Daniela Parada-Venegas
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Glauben Landskron
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | | | - Claudia Hurtado
- Research Core, Academic Department, Clínica Las Condes, Santiago, Chile
| | - Karin Alvarez
- Cancer Center, Clínica Universidad de los Andes, Santiago, Chile
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
437
|
Vinchhi P, Patel MM. Triumph against cancer: invading colorectal cancer with nanotechnology. Expert Opin Drug Deliv 2021; 18:1169-1192. [PMID: 33567909 DOI: 10.1080/17425247.2021.1889512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Recent statistics have reported colorectal cancer (CRC) as the second leading cause of cancer-associated deaths in the world. Early diagnosis of CRC may help to reduce the mortality and associated complications. However, the conventional diagnostic techniques often lead to misdiagnosis, fail to differentiate benign from malignant tissue or diagnose only at an advanced stage. For the treatment of CRC, surgery, chemotherapy, immunotherapy, and radiotherapy have been employed. However, the quality of living of the CRC patients is highly compromised after employing current therapeutic approaches owing to the toxicity issues and relapse. AREA COVERED This review accentuates the molecular mechanisms involved in the pathogenesis, stages of CRC, conventional approaches for diagnosis and therapy of CRC and the issues confronted thereby. It provides an outlook on the advantages of employing nanotechnology-based approaches for prevention, early diagnosis, and treatment of CRC. EXPERT OPINION Employing nanotechnology-based approaches has demonstrated promising outcomes in the prevention, diagnosis, and treatment of CRC. Nanotechnology-based approaches can surmount the major drawbacks of traditional diagnostic and therapeutic approaches. Nanotechnology bestows the advantage of early detection of CRC which helps to undertake instant steps for offering efficient therapy and reducing the mortality rates. For the treatment of CRC, nanocarriers offer the benefit of achieving controlled drug release, improved drug bioavailability, enhanced tumor targetability and reduced adverse effects.
Collapse
Affiliation(s)
- Preksha Vinchhi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
438
|
Shoji M, Sasaki Y, Abe Y, Nishise S, Yaoita T, Yagi M, Mizumoto N, Kon T, Onozato Y, Sakai T, Umehara M, Ito M, Koseki A, Murakami R, Miyano Y, Sato H, Ueno Y. Characteristics of the gut microbiome profile in obese patients with colorectal cancer. JGH OPEN 2021; 5:498-507. [PMID: 33860101 PMCID: PMC8035457 DOI: 10.1002/jgh3.12529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022]
Abstract
Background and Aim Obesity affects the gut microbiome, which in turn increases the risk for colorectal cancer. Several studies have shown the mechanisms by which some bacteria may influence the development of colorectal cancer; however, gut microbiome characteristics in obese patients with colorectal cancer remain unclear. Therefore, this study evaluated their gut microbiome profile and its relationship with metabolic markers. Methods The study assessed fecal samples from 36 consecutive patients with colorectal cancer and 38 controls without colorectal cancer. To identify microbiotic variations between patients with colorectal cancer and controls, as well as between nonobese and obese individuals, 16S rRNA gene amplicon sequencing was performed. Results Principal coordinate analysis showed significant differences in the overall structure of the microbiome among the study groups. The α‐diversity, assessed by the Chao1 index or Shannon index, was higher in patients with colorectal cancer versus controls. The relative abundance of the genera Enterococcus, Capnocytophaga, and Polaribacter was significantly altered in obese patients with colorectal cancer, whose serum low‐density lipoprotein concentrations were positively correlated with the abundance of the genus Enterococcus; among the most abundant species was Enterococcus faecalis, observed at lower levels in obese versus nonobese patients. Conclusions This study demonstrated several compositional alterations of the gut microbiome in patients with colorectal cancer and showed that a reduced presence of E. faecalis may be associated with obesity‐related colorectal cancer development. The gut microbiome may provide novel insights into the potential mechanisms in obesity‐related colorectal carcinogenesis.
Collapse
Affiliation(s)
- Masakuni Shoji
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Yu Sasaki
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Yasuhiko Abe
- Division of Endoscopy Yamagata University Hospital Yamagata Japan
| | | | - Takao Yaoita
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Makoto Yagi
- Division of Endoscopy Yamagata University Hospital Yamagata Japan
| | - Naoko Mizumoto
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Takashi Kon
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Yusuke Onozato
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Takayuki Sakai
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Matsuki Umehara
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Minami Ito
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Ayumi Koseki
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| | - Ryoko Murakami
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine Yamagata University Yamagata Japan
| | - Yuki Miyano
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine Yamagata University Yamagata Japan
| | - Hidenori Sato
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine Yamagata University Yamagata Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine Yamagata University Yamagata Japan
| |
Collapse
|
439
|
Fan Q, Shang F, Chen C, Zhou H, Fan J, Yang M, Nie X, Liu L, Cai K, Liu H. Microbial Characteristics of Locally Advanced Rectal Cancer Patients After Neoadjuvant Chemoradiation Therapy According to Pathologic Response. Cancer Manag Res 2021; 13:2655-2667. [PMID: 33776484 PMCID: PMC7989702 DOI: 10.2147/cmar.s294936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/20/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Intestinal microbiota play a critical role in the development of colorectal cancer. However, little is known about the structure and characteristics of gut microbial in colorectal cancer, especially in locally advanced rectal cancer after neoadjuvant chemoradiation therapy. METHODS Here, we performed this study to evaluate microbial characteristics between pathologic complete response (pCR) (n=12) and non-pathological complete response (Non-pCR) (n=45) tumor tissues from patients with locally advanced rectal cancer after neoadjuvant chemoradiation therapy. In this study, 16S rRNA gene sequencing was used to detect the microbial diversity including Alpha diversity and Beta diversity. Moreover, we used PICRUSt from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to predict the microbial metabolism functions. RESULTS There was significant statistical difference in PFS between pCR and Non-pCR group (p < 0.05). However, there was no significant difference in OS between pCR and Non-pCR group. The microbial compositions in the both groups were Proteobacteria, Actinobacteria, Firmicutes and Thermi and Bacteroidetes at the phylum level. The five most predominant genera in both pCR and Non-pCR tissue groups were Sphingobium, Acinetobacter, Cupriavidus, Thermi and Sphingomonas at the genus level. The key taxa identified in the pCR and Non-pCR tissues were Thermi and Sphingomonadaceae respectively. In addition, a series of human disease-related genes were also significantly different between pCR and Non-pCR group. CONCLUSION In summary, we demonstrated the characteristic differences in microbial communities between pCR tissues and Non-pCR tumor tissues from locally advanced rectal cancer patients after neoadjuvant chemoradiation therapy. Our results present new alterations in the microbiome in locally advanced rectal cancer after neoadjuvant chemoradiation therapy, suggesting that it will provide a new perspective for the precise treatment of neoadjuvant rectal cancer by targeting specific microbial species in the future.
Collapse
Affiliation(s)
- Qilin Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Fumei Shang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Chen Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Hongxia Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Li Liu
- Department of Epidemiology and Biostatistics, The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
440
|
Chok KC, Ng KY, Koh RY, Chye SM. Role of the gut microbiome in Alzheimer's disease. Rev Neurosci 2021; 32:767-789. [PMID: 33725748 DOI: 10.1515/revneuro-2020-0122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting millions of individuals each year and this number is expected to significantly increase. The complicated microorganisms residing in human gut are closely associated with our health. Emerging evidence has suggested possible involvement of human gut microbiome in AD. Symbiotic gut microbiomes are known to maintain brain health by modulating host's barriers integrity, metabolic system, immune system, nervous system and endocrine system. However, in the event of gut dysbiosis and barriers disruption, gut pathobionts disrupt homeostasis of the metabolic system, immune system, nervous system, and endocrine system, resulting in deterioration of neurological functions and subsequently promoting development of AD. Multiple therapeutic approaches, such as fecal microbiome transplant, antibiotics, prebiotics, probiotics, symbiotic, and diet are discussed as potential treatment options for AD by manipulating the gut microbiome to reverse pathological alteration in the systems above.
Collapse
Affiliation(s)
- Kian Chung Chok
- School of Health Science, International Medical University, 57000Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000Kuala Lumpur, Malaysia
| |
Collapse
|
441
|
Abstract
The substantial burden of colorectal cancer and its increasing trend in young adults highlight the importance of dietary and lifestyle modifications for improved cancer prevention and survivorship. In this chapter, we review the cutting-edge evidence for the interplay between diet/lifestyle and the gut microbiota in the incidence and prognosis of colorectal cancer. We focus on factors for which there are data supporting their importance for the gut microbiota and colorectal cancer, including excess body weight, fiber, red and processed meat, and coffee. We discuss the potential precision nutrition approaches for modifying and exploiting the gut microbiota for improved cancer prevention and survivorship.
Collapse
Affiliation(s)
- Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
442
|
Pignatelli P, Iezzi L, Pennese M, Raimondi P, Cichella A, Bondi D, Grande R, Cotellese R, Di Bartolomeo N, Innocenti P, Piattelli A, Curia MC. The Potential of Colonic Tumor Tissue Fusobacterium nucleatum to Predict Staging and Its Interplay with Oral Abundance in Colon Cancer Patients. Cancers (Basel) 2021; 13:1032. [PMID: 33804585 PMCID: PMC7957509 DOI: 10.3390/cancers13051032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Intestinal microbiota dysbiosis may enhance the carcinogenicity of colon cancer (CC) by the proliferation and differentiation of epithelial cells. Oral Fusobacterium nucleatum (Fn) and Porphyromonas gingivalis (Pg) have the ability to invade the gut epithelium, promoting tumor progression. The aim of the study was to assess whether the abundance of these odontopathogenic bacteria was associated with colon cancer. We also investigated how lifestyle factors could influence the oral Fn and Pg abundance and CC. METHODS Thirty-six CC patients were included in the study to assess the Pg and Fn oral and colon tissue abundance by qPCR. Oral health data, food habits and lifestyles were also recorded. RESULTS Patients had a greater quantity of Fn in the oral cavity than matched CC and adjacent non-neoplastic mucosa (adj t) tissues (p = 0.004 and p < 0.001). Instead, Pg was not significantly detected in colonic tissues. There was an association between the Fn quantity in the oral and CC tissue and a statistically significant relation between the Fn abundance in adenocarcinoma (ADK) and staging (p = 0.016). The statistical analysis revealed a tendency towards a greater Fn quantity in CC (p = 0.073, η2p = 0.12) for high-meat consumers. CONCLUSION In our study, Pg was absent in colon tissues but was correlated with the oral inflammation gingival and plaque indices. For the first time, there was evidence that the Fn oral concentration can influence colon tissue concentrations and predict CC prognosis.
Collapse
Affiliation(s)
- Pamela Pignatelli
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| | - Lorena Iezzi
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| | - Martina Pennese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| | - Paolo Raimondi
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
| | - Anna Cichella
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Rossella Grande
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
- Villa Serena Foundation for Research, Città Sant’Angelo, 65013 Pescara, Italy
| | - Nicola Di Bartolomeo
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
| | - Paolo Innocenti
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
- Villa Serena Foundation for Research, Città Sant’Angelo, 65013 Pescara, Italy
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
- Villa Serena Foundation for Research, Città Sant’Angelo, 65013 Pescara, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| |
Collapse
|
443
|
Eisele Y, Mallea PM, Gigic B, Stephens WZ, Warby CA, Buhrke K, Lin T, Boehm J, Schrotz-King P, Hardikar S, Huang LC, Pickron TB, Scaife CL, Viskochil R, Koelsch T, Peoples AR, Pletneva MA, Bronner M, Schneider M, Ulrich AB, Swanson EA, Toriola AT, Shibata D, Li CI, Siegel EM, Figueiredo J, Janssen KP, Hauner H, Round J, Ulrich CM, Holowatyj AN, Ose J. Fusobacterium nucleatum and Clinicopathologic Features of Colorectal Cancer: Results From the ColoCare Study. Clin Colorectal Cancer 2021; 20:e165-e172. [PMID: 33935016 DOI: 10.1016/j.clcc.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fusobacterium nucleatum (Fn), a bacterium associated with a wide spectrum of infections, has emerged as a key microbe in colorectal carcinogenesis. However, the underlying mechanisms and clinical relevance of Fn in colorectal cancer (CRC) remain incompletely understood. PATIENTS AND METHODS We examined associations between Fn abundance and clinicopathologic characteristics among 105 treatment-naïve CRC patients enrolled in the international, prospective ColoCare Study. Electronic medical charts, including pathological reports, were reviewed to document clinicopathologic features. Quantitative real-time polymerase chain reaction (PCR) was used to amplify/detect Fn DNA in preoperative fecal samples. Multinomial logistic regression was used to analyze associations between Fn abundance and patient sex, age, tumor stage, grade, site, microsatellite instability, body mass index (BMI), alcohol consumption, and smoking history. Cox proportional hazards models were used to investigate associations of Fn abundance with overall survival in adjusted models. RESULTS Compared to patients with undetectable or low Fn abundance, patients with high Fn abundance (n = 22) were 3-fold more likely to be diagnosed with rectal versus colon cancer (odds ratio [OR] = 3.01; 95% confidence interval [CI], 1.06-8.57; P = .04) after adjustment for patient sex, age, BMI, and study site. Patients with high Fn abundance also had a 5-fold increased risk of being diagnosed with rectal cancer versus right-sided colon cancer (OR = 5.32; 95% CI, 1.23-22.98; P = .03). There was no statistically significant association between Fn abundance and overall survival. CONCLUSION Our findings suggest that Fn abundance in fecal samples collected prior to surgery varies by tumor site among treatment-naïve CRC patients. Overall, fecal Fn abundance may have diagnostic and prognostic significance in the clinical management of CRC.
Collapse
Affiliation(s)
- Yannick Eisele
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT; Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Patrick M Mallea
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - W Zac Stephens
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Christy A Warby
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Kate Buhrke
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Juergen Boehm
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Sheetal Hardikar
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Lyen C Huang
- Division of General Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - T Bartley Pickron
- Division of General Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Courtney L Scaife
- Division of General Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Richard Viskochil
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Torsten Koelsch
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Anita R Peoples
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Maria A Pletneva
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Pathology, University of Utah, Salt Lake City, UT
| | - Mary Bronner
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Pathology, University of Utah, Salt Lake City, UT
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Alexis B Ulrich
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Eric A Swanson
- Department of Pathology, University of Utah, Salt Lake City, UT
| | | | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Erin M Siegel
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jane Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Klaus-Peter Janssen
- Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Else Kröner-Fresenius-Centre for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - June Round
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Andreana N Holowatyj
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt-Ingram Cancer Center, Nashville, TN.
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT.
| |
Collapse
|
444
|
Zhang X, Zhang W, Cao P. Advances in CpG Island Methylator Phenotype Colorectal Cancer Therapies. Front Oncol 2021; 11:629390. [PMID: 33718206 PMCID: PMC7952756 DOI: 10.3389/fonc.2021.629390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
With the aging of the population, the incidence of colorectal cancer in China is increasing. One of the epigenetic alterations: CpG island methylator phenotype (CIMP) plays an important role in the incidence of colorectal cancer. Recent studies have shown that CIMP is closely related to some specific clinicopathological phenotypes and multiple molecular phenotypes in colorectal cancer. In this paper, the newest progress of CIMP colorectal cancer in chemotherapeutic drugs, targeted agents and small molecular methylation inhibitors are going to be introduced. We hope to provide potential clinical treatment strategies for personalized and precise treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Medical Oncology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Wenjun Zhang
- Department of Colorectal Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Pingan Cao
- Department of Medical Oncology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| |
Collapse
|
445
|
Kiousi DE, Rathosi M, Tsifintaris M, Chondrou P, Galanis A. Pro-biomics: Omics Technologies To Unravel the Role of Probiotics in Health and Disease. Adv Nutr 2021; 12:1802-1820. [PMID: 33626128 PMCID: PMC8483974 DOI: 10.1093/advances/nmab014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
The comprehensive characterization of probiotic action has flourished during the past few decades, alongside the evolution of high-throughput, multiomics platforms. The integration of these platforms into probiotic animal and human studies has provided valuable insights into the holistic effects of probiotic supplementation on intestinal and extraintestinal diseases. Indeed, these methodologies have informed about global molecular changes induced in the host and residing commensals at multiple levels, providing a bulk of metagenomic, transcriptomic, proteomic, and metabolomic data. The meaningful interpretation of generated data remains a challenge; however, the maturation of the field of systems biology and artificial intelligence has supported analysis of results. In this review article, we present current literature on the use of multiomics approaches in probiotic studies, we discuss current trends in probiotic research, and examine the possibility of tailor-made probiotic supplementation. Lastly, we delve deeper into newer technologies that have been developed in the last few years, such as single-cell multiomics analyses, and provide future directions for the maximization of probiotic efficacy.
Collapse
Affiliation(s)
- Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Marina Rathosi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Pelagia Chondrou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
446
|
Villar-Ortega P, Expósito-Ruiz M, Gutiérrez-Soto M, Ruiz-Cabello Jiménez M, Navarro-Marí JM, Gutiérrez-Fernández J. The association between Fusobacterium nucleatum and cancer colorectal: a systematic review and meta-analysis. Enferm Infecc Microbiol Clin 2021; 40:S0213-005X(21)00026-4. [PMID: 33632539 DOI: 10.1016/j.eimc.2021.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The etiological factors of colorectal cancer (CRC) are not precisely known, although genetic and environmental factors have been implicated. A possible association with Fusobacterium nucleatum may provide opportunities for an early diagnosis. OBJECTIVE To review studies that address the association between F. nucleatum and CRC. METHODS The MEDLINE PubMed database was searched using the terms «colorectal cancer» and «Fusobacterium nucleatum», retrieving publications published up to January 1 2020. Stata software was used for a meta-analysis. RESULTS The systematic review included 57 articles. Meta-analysis results indicated a more frequent presence of F. nucleatum in CRC tumor tissue samples in comparison to control samples of healthy tissue, with an odds ratio of 4.558 (95% CI: 3.312-6.272), and in comparison, to control samples of colorectal adenomas, with an odds ratio of 3.244 (95% CI: 2.359-4.462). CONCLUSION There is a more frequent presence of F. nucleatum in the CRC. However, further studies are needed to verify this relationship.
Collapse
Affiliation(s)
- Paola Villar-Ortega
- Departamento de Microbiología, Universidad de Granada-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España
| | - Manuela Expósito-Ruiz
- Departamento de Bioestadística de FIBAO. Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España
| | | | - Miguel Ruiz-Cabello Jiménez
- UGC de Digestivo, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España
| | - José María Navarro-Marí
- Laboratorio de Microbiología, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España
| | - José Gutiérrez-Fernández
- Departamento de Microbiología, Universidad de Granada-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España; Laboratorio de Microbiología, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España.
| |
Collapse
|
447
|
Fukuda S, Ito S, Nishikawa J, Takagi T, Kubota N, Otsuyama KI, Tsuneoka H, Nojima J, Harada K, Mishima K, Suehiro Y, Yamasaki T, Sakaida I. Deep Ultraviolet Light-Emitting Diode Light Therapy for Fusobacterium nucleatum. Microorganisms 2021; 9:microorganisms9020430. [PMID: 33669771 PMCID: PMC7922187 DOI: 10.3390/microorganisms9020430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Fusobacterium nucleatum, which is associated with periodontitis and gingivitis, has been detected in colorectal cancer (CRC). Methods: We evaluated the bactericidal effect of deep ultraviolet (DUV) light-emitting diode (LED) light therapy on F. nucleatum both qualitatively and quantitatively. Two DUV-LEDs with peak wavelengths of 265 and 280-nm were used. DNA damage to F. nucleatum was evaluated by the production of cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproducts (6–4PP). Results: DUV-LEDs showed a bactericidal effect on F. nucleatum. No colony growth was observed after 3 min of either 265 nm or 280 nm DUV-LED irradiation. The survival rates of F. nucleatum under 265 nm DUV-LED light irradiation dropped to 0.0014% for 10 s and to 0% for 20 s irradiation. Similarly, the survival rate of F. nucleatum under 280 nm DUV-LED light irradiation dropped to 0.00044% for 10 s and 0% for 20 s irradiation. The irradiance at the distance of 35 mm from the DUV-LED was 0.265 mW/cm2 for the 265 nm LED and 0.415 mW/cm2 for the 280 nm LED. Thus, the radiant energy for lethality was 5.3 mJ/cm2 for the 265 nm LED and 8.3 mJ/cm2 for the 280 nm LED. Amounts of CPD and 6–4PP in F. nucleatum irradiated with 265 nm DUV-LED light were 6.548 ng/µg and 1.333 ng/µg, respectively. Conclusions: DUV-LED light exerted a bactericidal effect on F. nucleatum by causing the formation of pyrimidine dimers indicative of DNA damage. Thus, DUV-LED light therapy may have the potential to prevent CRC.
Collapse
Affiliation(s)
- Soichiro Fukuda
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Shunsuke Ito
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.I.); (I.S.)
| | - Jun Nishikawa
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
- Correspondence: ; Tel.: +81-836-22-2835
| | - Tatsuya Takagi
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Naoto Kubota
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Ken-ichiro Otsuyama
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Hidehiro Tsuneoka
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Junzo Nojima
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Koji Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (K.H.); (K.M.)
| | - Katsuaki Mishima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (K.H.); (K.M.)
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (Y.S.); (T.Y.)
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (Y.S.); (T.Y.)
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.I.); (I.S.)
| |
Collapse
|
448
|
PM2RA: A Framework for Detecting and Quantifying Relationship Alterations in Microbial Community. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:154-167. [PMID: 33581337 PMCID: PMC8498968 DOI: 10.1016/j.gpb.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/28/2020] [Accepted: 08/09/2020] [Indexed: 11/21/2022]
Abstract
The dysbiosis of gut microbiota is associated with the pathogenesis of human diseases. However, observing shifts in the microbe abundance cannot fully reveal underlying perturbations. Examining the relationship alterations (RAs) in the microbiome between health and disease statuses provides additional hints about the pathogenesis of human diseases, but no methods were designed to detect and quantify the RAs between different conditions directly. Here, we present profile monitoring for microbial relationship alteration (PM2RA), an analysis framework to identify and quantify the microbial RAs. The performance of PM2RA was evaluated with synthetic data, and it showed higher specificity and sensitivity than the co-occurrence-based methods. Analyses of real microbial datasets showed that PM2RA was robust for quantifying microbial RAs across different datasets in several diseases. By applying PM2RA, we identified several novel or previously reported microbes implicated in multiple diseases. PM2RA is now implemented as a web-based application available at http://www.pm2ra-xingyinliulab.cn/.
Collapse
|
449
|
Velikova T, Krastev B, Lozenov S, Gencheva R, Peshevska-Sekulovska M, Nikolaev G, Peruhova M. Antibiotic-Related Changes in Microbiome: The Hidden Villain behind Colorectal Carcinoma Immunotherapy Failure. Int J Mol Sci 2021; 22:1754. [PMID: 33578709 PMCID: PMC7916407 DOI: 10.3390/ijms22041754] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
The interplay between drugs and microbiota is critical for successful treatment. An accumulating amount of evidence has identified the significant impact of intestinal microbiota composition on cancer treatment response, particularly immunotherapy. The possible molecular pathways of the interaction between immune checkpoint inhibitors (ICIs) and the microbiome can be used to reverse immunotherapy tolerance in cancer by using various kinds of interventions on the intestinal bacteria. This paper aimed to review the data available on how the antibiotic-related changes in human microbiota during colorectal cancer (CRC) treatment can affect and determine ICI treatment outcomes. We also covered the data that support the potential intimate mechanisms of both local and systemic immune responses induced by changes in the intestinal microbiota. However, further better-powered studies are needed to thoroughly assess the clinical significance of antibiotic-induced alteration of the gut microbiota and its impact on CRC treatment by direct observations of patients receiving antibiotic treatment.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia University St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria
| | - Boris Krastev
- Clinic of Medical Oncology, MHAT Hospital for Women Health Nadezhda, 1330 Sofia, Bulgaria; (B.K.); (R.G.)
| | - Stefan Lozenov
- Laboratory for Control and Monitoring of the Antibiotic Resistance, National Centre for Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd, 1504 Sofia, Bulgaria;
| | - Radostina Gencheva
- Clinic of Medical Oncology, MHAT Hospital for Women Health Nadezhda, 1330 Sofia, Bulgaria; (B.K.); (R.G.)
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, Sofia University St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (M.P.)
| | - Georgi Nikolaev
- Faculty of Biology, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria;
| | - Milena Peruhova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia University St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (M.P.)
| |
Collapse
|
450
|
Darbyshire AL, Mothersole RG, Wolthers KR. A Fold Type II PLP-Dependent Enzyme from Fusobacterium nucleatum Functions as a Serine Synthase and Cysteine Synthase. Biochemistry 2021; 60:524-536. [PMID: 33539704 DOI: 10.1021/acs.biochem.0c00902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine synthase (SS) from Fusobacterium nucleatum is a fold type II pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the β-replacement of l-cysteine with water to form l-serine and H2S. Herein, we show that SS can also function as a cysteine synthase, catalyzing the β-replacement of l-serine with bisulfide to produce l-cysteine and H2O. The forward (serine synthase) and reverse (cysteine synthase) reactions occur with comparable turnover numbers and catalytic efficiencies for the amino acid substrate. Reaction of SS with l-cysteine leads to transient formation of a quinonoid species, suggesting that deprotonation of the Cα and β-elimination of the thiolate group from l-cysteine occur via a stepwise mechanism. In contrast, the quinonoid species was not detected in the formation of the α-aminoacrylate intermediate following reaction of SS with l-serine. A key active site residue, D232, was shown to stabilize the more chemically reactive ketoenamine PLP tautomer and also function as an acid/base catalyst in the forward and reverse reactions. Fluorescence resonance energy transfer between PLP and W99, the enzyme's only tryptophan residue, supports ligand-induced closure of the active site, which shields the PLP cofactor from the solvent and increases the basicity of D232. These results provide new insight into amino acid metabolism in F. nucleatum and highlight the multiple catalytic roles of D232 in a new member of the fold type II family of PLP-dependent enzymes.
Collapse
Affiliation(s)
- Amanda L Darbyshire
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Robert G Mothersole
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|