401
|
Lee JC, Choe SY, Cha CI. Region-specific changes in the immunoreactivity of Atg9A in the central nervous system of SOD1(G93A) transgenic mice. Anat Cell Biol 2014; 47:101-10. [PMID: 24987546 PMCID: PMC4076416 DOI: 10.5115/acb.2014.47.2.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/14/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a eukaryotic self-degradation system that plays a pivotal role in the maintenance of cellular homeostasis. Atg9 is the only transmembrane Atg protein required for autophagosome formation. Although the subcellular localization of the Atg9A has been examined, little is known about its precise cell and tissue distribution. In the present study, we used G93A mutation in superoxide dismutase 1 [SOD1(G93A)] mutant transgenic mice as an in vivo model of amyotrophic lateral sclerosis (ALS) and performed immunohistochemical studies to investigate the changes of Atg9A immunoreactivity in the central nervous system of these mice. Atg9A-immunoreactivity was detected in the spinal cord, cerebral cortex, hippocampal formation, thalamus and cerebellum of symptomatic SOD1(G93A) transgenic mice. By contrast, no Atg9A-immunoreactivity were observed in any brain and spinal cord region of wtSOD1, pre-symptomatic and early symptomatic mice, and the number and staining intensity of Atg9A-positive cells did not differ in SOD1(G93A) mice between 8 and 13 weeks of age. These results provide evidence that Atg9A-immunoreactivity were found in the central nervous system of SOD1(G93A) transgenic mice after clinical symptoms, suggesting a possible role in the pathologic process of ALS. However, the mechanisms underlying the increased immunoreactivity for Atg9A and the functional implications require elucidation.
Collapse
Affiliation(s)
- Jae Chul Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
- Department of Biology, School of Life Sciences, Chungbuk National University, Cheongju, Korea
| | - Soo Young Choe
- Department of Biology, School of Life Sciences, Chungbuk National University, Cheongju, Korea
| | - Choong Ik Cha
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
402
|
Wang H, Wan H, Li X, Liu W, Chen Q, Wang Y, Yang L, Tang H, Zhang X, Duan E, Zhao X, Gao F, Li W. Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res 2014; 24:852-69. [PMID: 24853953 DOI: 10.1038/cr.2014.70] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/13/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022] Open
Abstract
The acrosome is a specialized organelle that covers the anterior part of the sperm nucleus and plays an essential role in the process of fertilization. The molecular mechanism underlying the biogenesis of this lysosome-related organelle (LRO) is still largely unknown. Here, we show that germ cell-specific Atg7-knockout mice were infertile due to a defect in acrosome biogenesis and displayed a phenotype similar to human globozoospermia; this reproductive defect was successfully rescued by intracytoplasmic sperm injections. Furthermore, the depletion of Atg7 in germ cells did not affect the early stages of development of germ cells, but at later stages of spermatogenesis, the proacrosomal vesicles failed to fuse into a single acrosomal vesicle during the Golgi phase, which finally resulted in irregular or nearly round-headed spermatozoa. Autophagic flux was disrupted in Atg7-depleted germ cells, finally leading to the failure of LC3 conjugation to Golgi apparatus-derived vesicles. In addition, Atg7 partially regulated another globozoospermia-related protein, Golgi-associated PDZ- and coiled-coil motif-containing protein (GOPC), during acrosome biogenesis. Finally, the injection of either autophagy or lysosome inhibitors into testis resulted in a similar phenotype to that of germ cell-specific Atg7-knockout mice. Altogether, our results uncover a new role for Atg7 in the biogenesis of the acrosome, and we provide evidence to support the autolysosome origination hypothesis for the acrosome.
Collapse
Affiliation(s)
- Hongna Wang
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Wan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xixia Li
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiao Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongmei Tang
- College of Life Sciences, Hebei United University, Tangshan, Hebei 063000, China
| | - Xiujun Zhang
- College of Life Sciences, Hebei United University, Tangshan, Hebei 063000, China
| | - Enkui Duan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyang Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
403
|
Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY, Harbour ME, Rubinsztein DC. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nat Commun 2014; 5:3828. [PMID: 24819384 PMCID: PMC4024763 DOI: 10.1038/ncomms4828] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/07/2014] [Indexed: 12/13/2022] Open
Abstract
Endosomal protein sorting controls the localization of many physiologically important proteins and is linked to several neurodegenerative diseases. VPS35 is a component of the retromer complex, which mediates endosome-to-Golgi retrieval of membrane proteins such as the cation-independent mannose 6-phosphate receptor. Furthermore, retromer is also required for the endosomal recruitment of the actin nucleation promoting WASH complex. The VPS35 D620N mutation causes a rare form of autosomal-dominant Parkinson's disease (PD). Here we show that this mutant associates poorly with the WASH complex and impairs WASH recruitment to endosomes. Autophagy is impaired in cells expressing PD-mutant VPS35 or lacking WASH. The autophagy defects can be explained, at least in part, by abnormal trafficking of the autophagy protein ATG9A. Thus, the PD-causing D620N mutation in VPS35 restricts WASH complex recruitment to endosomes, and reveals a novel role for the WASH complex in autophagosome formation.
Collapse
Affiliation(s)
- Eszter Zavodszky
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- These authors contributed equally to this work
| | - Matthew N.J. Seaman
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- These authors contributed equally to this work
| | - Kevin Moreau
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Maria Jimenez-Sanchez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Sophia Y. Breusegem
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
| | - Michael E. Harbour
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
404
|
Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 2014; 41:1103-30. [PMID: 24059496 DOI: 10.1042/bst20130134] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is an intracellular degradation pathway essential for cellular and energy homoeostasis. It functions in the clearance of misfolded proteins and damaged organelles, as well as recycling of cytosolic components during starvation to compensate for nutrient deprivation. This process is regulated by mTOR (mammalian target of rapamycin)-dependent and mTOR-independent pathways that are amenable to chemical perturbations. Several small molecules modulating autophagy have been identified that have potential therapeutic application in diverse human diseases, including neurodegeneration. Neurodegeneration-associated aggregation-prone proteins are predominantly degraded by autophagy and therefore stimulating this process with chemical inducers is beneficial in a wide range of transgenic disease models. Emerging evidence indicates that compromised autophagy contributes to the aetiology of various neurodegenerative diseases related to protein conformational disorders by causing the accumulation of mutant proteins and cellular toxicity. Combining the knowledge of autophagy dysfunction and the mechanism of drug action may thus be rational for designing targeted therapy. The present review describes the cellular signalling pathways regulating mammalian autophagy and highlights the potential therapeutic application of autophagy inducers in neurodegenerative disorders.
Collapse
|
405
|
Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB. Autophagy: regulation and role in development. Autophagy 2014; 9:951-72. [PMID: 24121596 DOI: 10.4161/auto.24273] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular process through which long-lived proteins and damaged organelles are recycled to maintain energy homeostasis. These proteins and organelles are sequestered into a double-membrane structure, or autophagosome, which subsequently fuses with a lysosome in order to degrade the cargo. Although originally classified as a type of programmed cell death, autophagy is more widely viewed as a basic cell survival mechanism to combat environmental stressors. Autophagy genes were initially identified in yeast and were found to be necessary to circumvent nutrient stress and starvation. Subsequent elucidation of mammalian gene counterparts has highlighted the importance of this process to normal development. This review provides an overview of autophagy, the types of autophagy, its regulation and its known impact on development gleaned primarily from murine models.
Collapse
Affiliation(s)
- Amber N Hale
- Department of Biology; University of Kentucky; Lexington, KY USA
| | | | | | | |
Collapse
|
406
|
Ge L, Baskaran S, Schekman R, Hurley JH. The protein-vesicle network of autophagy. Curr Opin Cell Biol 2014; 29:18-24. [PMID: 24681112 DOI: 10.1016/j.ceb.2014.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
The biogenesis of autophagosomes entails the nucleation and growth of a double-membrane sheet, the phagophore, which engulfs cytosol for delivery to the lysosome. Genetic studies have identified a class of Atg proteins that are essential for the process, yet the molecular mechanism of autophagosome biogenesis has been elusive. Proteomic, structural, super-resolution imaging, and biochemical reconstitution experiments have begun to fill in some of the gaps. This review describes progress and prospects for obtaining a four-dimensional network model of the nucleation and growth of the phagophore.
Collapse
Affiliation(s)
- Liang Ge
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, United States
| | - Sulochanadevi Baskaran
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, United States
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, United States
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
407
|
Ng F, Tang BL. Sirtuins' modulation of autophagy. J Cell Physiol 2014; 228:2262-70. [PMID: 23696314 DOI: 10.1002/jcp.24399] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/03/2013] [Indexed: 12/14/2022]
Abstract
The sirtuin family of class III histone deacetylases has been extensively implicated in modulating a myriad of cellular processes, including energy metabolism, stress response, cell/tissue survival and malignancy. Recent studies have also identified multifaceted roles for Sirt1 and Sirt2 in the regulation of autophagy. Sirt1 could influence autophagy directly via its deacetylation of key components of the autophagy induction network, such as the products of autophagy genes (Atg) 5, 7, and 8. Nucleus-localized Sirt1 is also known to induce the expression of autophagy pathway components through the activation of FoxO transcription factor family members. The perception of a linear Sirt1-FoxO axis in autophagy induction is complicated by recent findings that acetylated FoxO1 could bind to Atg7 in the cytoplasm and affect autophagy directly. This occurs with prolonged stress signaling, with FoxO1's continuous dissociation from cytoplasmic Sirt2 and its consequential hyperacetylation. FoxO-mediated nuclear transcription may induce/enhance autophagy in ways that are different compared to cytoplasmic FoxO, thereby leading to contrasting (cell survival versus cell death) outcomes. FoxO and Sirt1 are both subjected to regulation by stress signaling (e.g., through the c-Jun N-terminal kinases (JNK)) in the context of autophagy induction, which are also critical in determining between cell survival and death in a context-dependent manner. We discussed here the emerging molecular intricacies of sirtuins' connections with autophagy. A good understanding of these connections would serve to consolidate a framework of mechanisms underlying Sirt1's protective effects in multiple physiological systems.
Collapse
Affiliation(s)
- Fanny Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | | |
Collapse
|
408
|
Popovic D, Dikic I. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep 2014; 15:392-401. [PMID: 24603492 DOI: 10.1002/embr.201337995] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The RabGAP protein TBC1D5 controls cellular endomembrane trafficking processes and binds the retromer subunit VPS29 and the ubiquitin-like protein ATG8 (LC3). Here, we describe that TBC1D5 also associates with ATG9 and the active ULK1 complex during autophagy. Moreover, ATG9 and TBC1D5 interact with clathrin and the AP2 complex. Depletion of TBC1D5 leads to missorting of ATG9 to late endosomes upon activation of autophagy, whereas inhibition of clathrin-mediated endocytosis or AP2 depletion alters ATG9 trafficking and its association with TBC1D5. Taken together, our data show that TBC1D5 and the AP2 complex are important novel regulators of the rerouting of ATG9-containing vesicular carriers toward sites of autophagosome formation.
Collapse
Affiliation(s)
- Doris Popovic
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Biochemistry II Goethe University School of Medicine, Frankfurt, Germany
| | | |
Collapse
|
409
|
Maruyama Y, Sou YS, Kageyama S, Takahashi T, Ueno T, Tanaka K, Komatsu M, Ichimura Y. LC3B is indispensable for selective autophagy of p62 but not basal autophagy. Biochem Biophys Res Commun 2014; 446:309-15. [PMID: 24582747 DOI: 10.1016/j.bbrc.2014.02.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/23/2014] [Indexed: 11/19/2022]
Abstract
Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.
Collapse
Affiliation(s)
- Yoko Maruyama
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yu-Shin Sou
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Shun Kageyama
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takao Takahashi
- Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Takashi Ueno
- Division of Proteomics and Biomolecular Science, Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masaaki Komatsu
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Biochemistry, School of Medicine, Niigata University, Niigata 951-8510, Japan.
| | - Yoshinobu Ichimura
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| |
Collapse
|
410
|
Abstract
SIGNIFICANCE Autophagy is a highly conserved eukaryotic cellular recycling process. Through the degradation of cytoplasmic organelles, proteins, and macromolecules, and the recycling of the breakdown products, autophagy plays important roles in cell survival and maintenance. Accordingly, dysfunction of this process contributes to the pathologies of many human diseases. RECENT ADVANCES Extensive research is currently being done to better understand the process of autophagy. In this review, we describe current knowledge of the morphology, molecular mechanism, and regulation of mammalian autophagy. CRITICAL ISSUES At the mechanistic and regulatory levels, there are still many unanswered questions and points of confusion that have yet to be resolved. FUTURE DIRECTIONS Through further research, a more complete and accurate picture of the molecular mechanism and regulation of autophagy will not only strengthen our understanding of this significant cellular process, but will aid in the development of new treatments for human diseases in which autophagy is not functioning properly.
Collapse
Affiliation(s)
- Katherine R Parzych
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan , Ann Arbor, Michigan
| | | |
Collapse
|
411
|
Moreira PI, Santos RX, Zhu X, Lee HG, Smith MA, Casadesus G, Perry G. Autophagy in Alzheimer’s disease. Expert Rev Neurother 2014; 10:1209-18. [DOI: 10.1586/ern.10.84] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
412
|
Abstract
Autophagy is used by the cell to degrade various substrates; this is achieved either through the canonical, non-selective autophagy pathway or through selective autophagy. Both pathways proceed via distinct key steps and use specific molecular mechanisms. The canonical autophagy pathway has been studied in detail in mammalian cells and in model organisms, such as yeast. The molecular mechanisms underlying non-canonical autophagy, in addition to alternative pathways that are independent of some of the key autophagy machinery, are beginning to become clear. Besides degradation of cellular proteins, autophagy proteins are also involved in many other functions, some of which are important during bacterial infections. Autophagy functions as an antibacterial mechanism. The induction and recognition mechanisms for several bacterial species have been elucidated. Bacteria can escape killing by autophagy and some can even use autophagy to promote infection of host cells, through the interaction between bacterial effector proteins and autophagy components. The knowledge about bacteria–autophagy interactions will inform the design of new drugs and treatments against bacterial infections.
Autophagy not only degrades components of host cells but can also target intracellular bacteria and thus contribute to host defences. Here, Huang and Brumell discuss the canonical and selective pathways of antibacterial autophagy, as well as the ways in which bacteria can escape from them and sometimes even use them to promote infection. Autophagy is a cellular process that targets proteins, lipids and organelles to lysosomes for degradation, but it has also been shown to combat infection with various pathogenic bacteria. In turn, bacteria have developed diverse strategies to avoid autophagy by interfering with autophagy signalling or the autophagy machinery and, in some cases, they even exploit autophagy for their growth. In this Review, we discuss canonical and non-canonical autophagy pathways and our current knowledge of antibacterial autophagy, with a focus on the interplay between bacterial factors and autophagy components.
Collapse
|
413
|
Stanley RE, Ragusa MJ, Hurley JH. The beginning of the end: how scaffolds nucleate autophagosome biogenesis. Trends Cell Biol 2014; 24:73-81. [PMID: 23999079 PMCID: PMC3877172 DOI: 10.1016/j.tcb.2013.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Autophagy is a conserved mechanism that is essential for cell survival in starvation. Moreover, autophagy maintains cellular health by clearing unneeded or harmful materials from cells. Autophagy proceeds by the engulfment of bulk cytosol and organelles by a cup-shaped double-membrane sheet known as the phagophore. The phagophore closes on itself to form the autophagosome, which delivers its contents to the vacuole or lysosome for degradation. A multiprotein complex comprising the protein kinase autophagy-related protein 1 (Atg1) together with Atg13, Atg17, Atg29, and Atg31 (ULK1, ATG13, FIP200, and ATG101 in humans) has a pivotal role in the earliest steps of this process. This review summarizes recent structural and ultrastructural analysis of the earliest step in autophagosome biogenesis and discusses a model in which the Atg1 complex clusters high-curvature vesicles containing the integral membrane protein Atg9, thereby initiating the phagophore.
Collapse
Affiliation(s)
- Robin E Stanley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Ragusa
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
414
|
Abstract
The year of 2013 marked the 50th anniversary of C de Duve's coining of the term "autophagy" for the degradation process of cytoplasmic constituents in the lysosome/vacuole. This year we regretfully lost this great scientist, who contributed much during the early years of research to the field of autophagy. Soon after the discovery of lysosomes by de Duve, electron microscopy revealed autophagy as a means of delivering intracellular components to the lysosome. For a long time after the discovery of autophagy, studies failed to yield any significant advances at a molecular level in our understanding of this fundamental pathway of degradation. The first breakthrough was made in the early 1990s, as autophagy was discovered in yeast subjected to starvation by microscopic observation. Next, a genetic effort to address the poorly understood problem of autophagy led to the discovery of many autophagy-defective mutants. Subsequent identification of autophagy-related genes in yeast revealed unique sets of molecules involved in membrane dynamics during autophagy. ATG homologs were subsequently found in various organisms, indicating that the fundamental mechanism of autophagy is well conserved among eukaryotes. These findings brought revolutionary changes to research in this field. For instance, the last 10 years have seen remarkable progress in our understanding of autophagy, not only in terms of the molecular mechanisms of autophagy, but also with regard to its broad physiological roles and relevance to health and disease. Now our knowledge of autophagy is dramatically expanding day by day. Here, the historical landmarks underpinning the explosion of autophagy research are described with a particular focus on the contribution of yeast as a model organism.
Collapse
Affiliation(s)
- Yoshinori Ohsumi
- Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
415
|
Abstract
Autophagy is a primarily degradative pathway that takes place in all eukaryotic cells. It is used for recycling cytoplasm to generate macromolecular building blocks and energy under stress conditions, to remove superfluous and damaged organelles to adapt to changing nutrient conditions and to maintain cellular homeostasis. In addition, autophagy plays a critical role in cytoprotection by preventing the accumulation of toxic proteins and through its action in various aspects of immunity including the elimination of invasive microbes and its participation in antigen presentation. The most prevalent form of autophagy is macroautophagy, and during this process, the cell forms a double-membrane sequestering compartment termed the phagophore, which matures into an autophagosome. Following delivery to the vacuole or lysosome, the cargo is degraded and the resulting macromolecules are released back into the cytosol for reuse. The past two decades have resulted in a tremendous increase with regard to the molecular studies of autophagy being carried out in yeast and other eukaryotes. Part of the surge in interest in this topic is due to the connection of autophagy with a wide range of human pathophysiologies including cancer, myopathies, diabetes and neurodegenerative disease. However, there are still many aspects of autophagy that remain unclear, including the process of phagophore formation, the regulatory mechanisms that control its induction and the function of most of the autophagy-related proteins. In this review, we focus on macroautophagy, briefly describing the discovery of this process in mammalian cells, discussing the current views concerning the donor membrane that forms the phagophore, and characterizing the autophagy machinery including the available structural information.
Collapse
Affiliation(s)
- Yuchen Feng
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ding He
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhiyuan Yao
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
416
|
Abstract
The ability of cells to respond to changes in nutrient availability is essential for the maintenance of metabolic homeostasis and viability. One of the key cellular responses to nutrient withdrawal is the upregulation of autophagy. Recently, there has been a rapid expansion in our knowledge of the molecular mechanisms involved in the regulation of mammalian autophagy induction in response to depletion of key nutrients. Intracellular amino acids, ATP, and oxygen levels are intimately tied to the cellular balance of anabolic and catabolic processes. Signaling from key nutrient-sensitive kinases mTORC1 and AMP-activated protein kinase (AMPK) is essential for the nutrient sensing of the autophagy pathway. Recent advances have shown that the nutrient status of the cell is largely passed on to the autophagic machinery through the coordinated regulation of the ULK and VPS34 kinase complexes. Identification of extensive crosstalk and feedback loops converging on the regulation of ULK and VPS34 can be attributed to the importance of these kinases in autophagy induction and maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Ryan C Russell
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0815, USA
| | - Hai-Xin Yuan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0815, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0815, USA
| |
Collapse
|
417
|
Li H, Zhou B, Xu L, Liu J, Zang W, Wu S, Sun H. The reciprocal interaction between autophagic dysfunction and ER stress in adipose insulin resistance. Cell Cycle 2013; 13:565-79. [DOI: 10.4161/cc.27406] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
418
|
Abstract
Autophagy is a bulk degradation system induced by cellular stresses such as nutrient starvation. Its function relies on the formation of double-membrane vesicles called autophagosomes. Unlike other organelles that appear to stably exist in the cell, autophagosomes are formed on demand, and once their formation is initiated, it proceeds surprisingly rapidly. How and where this dynamic autophagosome formation takes place has been a long-standing question, but the discovery of Atg proteins in the 1990's significantly accelerated our understanding of autophagosome biogenesis. In this review, we will briefly introduce each Atg functional unit in relation to autophagosome biogenesis, and then discuss the origin of the autophagosomal membrane with an introduction to selected recent studies addressing this problem.
Collapse
|
419
|
Tang JY, Hsi E, Huang YC, Hsu NCH, Chen YK, Chu PY, Chai CY. ATG9A overexpression is associated with disease recurrence and poor survival in patients with oral squamous cell carcinoma. Virchows Arch 2013; 463:737-42. [PMID: 24085552 DOI: 10.1007/s00428-013-1482-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/27/2013] [Accepted: 09/17/2013] [Indexed: 01/07/2023]
Abstract
ATG9A is an integral membrane protein required for autophagosome formation and a membrane carrier in the autophagy pathways. The present study was designed to investigate the expression of ATG9A in oral squamous cell carcinoma (OSCC). Clinically annotated tumor specimens from 90 patients with OSCC were subjected to immunohistochemistry using an antibody against ATG9A and immunoreactivity was scored using an immunoreactivity score (IRS). Scores were compared with clinical and pathologic data to assess association with outcome. Overexpression of ATG9A was defined as an IRS of ≥9 by receiver operating characteristics curve analysis and was identified in 25 (28 %) of 90 cases. ATG9A overexpression was associated with disease recurrence and overall survival (OS) in both univariate (p = 0.030 and 0.025, respectively) and multivariate (p = 0.026 and 0.038, respectively) Cox analyses. Kaplan-Meier plots also showed that patients with ATG9A overexpression had shorter 3-year OS (p = 0.017) and time to recurrence (p = 0.021) than those with low ATG9A expression. These results suggest that the presence of ATG9A in the cytoplasm of tumor cells may be an independent biomarker for disease recurrence and survival in patients with OSCC.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
420
|
Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 2013; 14:759-74. [PMID: 24201109 DOI: 10.1038/nrm3696] [Citation(s) in RCA: 1038] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Healthy cells use autophagy as a general 'housekeeping' mechanism and to survive stress, including stress induced by nutrient deprivation. Autophagy is initiated at the isolation membrane (originally termed the phagophore), and the coordinated action of ATG (autophagy-related) proteins results in the expansion of this membrane to form the autophagosome. Although the biogenesis of the isolation membrane and the autophagosome is complex and incompletely understood, insight has been gained into the molecular processes involved in initiating the isolation membrane, the source from which this originates (for example, it was recently proposed that the isolation membrane forms from the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM)) and the role of ATG proteins and the vesicular trafficking machinery in autophagosome formation.
Collapse
|
421
|
Puri C, Renna M, Bento C, Moreau K, Rubinsztein D. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 2013; 154:1285-99. [PMID: 24034251 PMCID: PMC3791395 DOI: 10.1016/j.cell.2013.08.044] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 06/28/2013] [Accepted: 08/23/2013] [Indexed: 01/28/2023]
Abstract
Autophagic protein degradation is mediated by autophagosomes that fuse with lysosomes, where their contents are degraded. The membrane origins of autophagosomes may involve multiple sources. However, it is unclear if and where distinct membrane sources fuse during autophagosome biogenesis. Vesicles containing mATG9, the only transmembrane autophagy protein, are seen in many sites, and fusions with other autophagic compartments have not been visualized in mammalian cells. We observed that mATG9 traffics from the plasma membrane to recycling endosomes in carriers that appear to be routed differently from ATG16L1-containing vesicles, another source of autophagosome membrane. mATG9- and ATG16L1-containing vesicles traffic to recycling endosomes, where VAMP3-dependent heterotypic fusions occur. These fusions correlate with autophagosome formation, and both processes are enhanced by perturbing membrane egress from recycling endosomes. Starvation, a primordial autophagy activator, reduces membrane recycling from recycling endosomes and enhances mATG9-ATG16L1 vesicle fusion. Thus, this mechanism may fine-tune physiological autophagic responses. mATG9 traffics from the plasma membrane to recycling endosomes mATG9 vesicles fuse with ATG16L1 vesicles in recycling endosomes VAMP3, Rab11, myosin Vb, and starvation regulate mATG9-ATG16L1 vesicle fusion mATG9-ATG16L1 vesicle fusions regulate autophagosome formation
Collapse
Affiliation(s)
- Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Maurizio Renna
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Carla F. Bento
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Kevin Moreau
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Corresponding author
| |
Collapse
|
422
|
Tang HW, Liao HM, Peng WH, Lin HR, Chen CH, Chen GC. Atg9 interacts with dTRAF2/TRAF6 to regulate oxidative stress-induced JNK activation and autophagy induction. Dev Cell 2013; 27:489-503. [PMID: 24268699 DOI: 10.1016/j.devcel.2013.10.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 09/09/2013] [Accepted: 10/24/2013] [Indexed: 02/07/2023]
Abstract
Autophagy is a highly conserved catabolic process that degrades and recycles intracellular components through the lysosomes. Atg9 is the only integral membrane protein among autophagy-related (Atg) proteins thought to carry the membrane source for forming autophagosomes. Here we show that Drosophila Atg9 interacts with Drosophila tumor necrosis factor receptor-associated factor 2 (dTRAF2) to regulate the c-Jun N-terminal kinase (JNK) signaling pathway. Significantly, depletion of Atg9 and dTRAF2 compromised JNK-mediated intestinal stem cell proliferation and autophagy induction upon bacterial infection and oxidative stress stimulation. In mammalian cells, mAtg9 interacts with TRAF6, the homolog of dTRAF2, and plays an essential role in regulating oxidative stress-induced JNK activation. Moreover, we found that ROS-induced autophagy acts as a negative feedback regulator of JNK activity by dissociating Atg9/mAtg9 from dTRAF2/TRAF6 in Drosophila and mammalian cells, respectively. Our findings indicate a dual role for Atg9 in the regulation of JNK signaling and autophagy under oxidative stress conditions.
Collapse
Affiliation(s)
- Hong-Wen Tang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Hsiao-Man Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Hsin Peng
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Hong-Ru Lin
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Hong Chen
- Institute of Molecular and Genomic Medicine, National Heath Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
423
|
Marchi S, Patergnani S, Pinton P. The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:461-9. [PMID: 24211533 DOI: 10.1016/j.bbabio.2013.10.015] [Citation(s) in RCA: 380] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria are tubular organelles with a characteristic "network structure" that facilitates the formation of interorganellar connections. The ER and mitochondria join together at multiple contact sites to form specific domains, termed mitochondria-ER associated membranes (MAMs), with distinct biochemical properties and a characteristic set of proteins. The functions of these two organelles are coordinated and executed at the ER-mitochondria interface, which provides a platform for the regulation of different processes. The roles played by the ER-mitochondria interface range from the coordination of calcium transfer to the regulation of mitochondrial fission and inflammasome formation as well as the provision of membranes for autophagy. The novel and unconventional processes that occur at the ER-mitochondria interface demonstrate its multifunctional and intrinsically dynamic nature. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
424
|
Chan SN, Tang BL. Location and membrane sources for autophagosome formation - from ER-mitochondria contact sites to Golgi-endosome-derived carriers. Mol Membr Biol 2013; 30:394-402. [PMID: 24175710 DOI: 10.3109/09687688.2013.850178] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances have revealed much about the signaling events and molecular components associated with autophagy. Although it is clear that there are multiple points of intersection and connection between autophagy and known vesicular membrane transport processes between membrane compartments, autophagy is modulated by a distinct set of molecular components, and the autophagosome has a unique membrane composition. A key question that has yet to be resolved with regards to autophagosome formation is its membrane source. Various evidences have indicated that membranes from the endoplasmic reticulum (ER), mitochondria, Golgi, endosomes and the plasma membrane could all potentially act as a source of autophagosomal membrane in non-specialized macroautophagy. Recent investigations have generated advances in terms of the mitochondria's involvement in starvation-induced autophagy, and refined localization of autophagosome formation to ER-mitochondria contact sites. On the other hand, data accumulates on the delivery of membrane sources to the pre-autophagosome structure by Atg9-containing mobile carriers, which likely originated from the Golgi-endosome system. The answer to the question on the origin of membrane materials for autophagosome biogenesis awaits further reconciliation of these different findings.
Collapse
Affiliation(s)
- Shu Ning Chan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Medical Drive , Singapore
| | | |
Collapse
|
425
|
Ro SH, Jung CH, Hahn WS, Xu X, Kim YM, Yun YS, Park JM, Kim KH, Seo M, Ha TY, Arriaga EA, Bernlohr DA, Kim DH. Distinct functions of Ulk1 and Ulk2 in the regulation of lipid metabolism in adipocytes. Autophagy 2013; 9:2103-14. [PMID: 24135897 DOI: 10.4161/auto.26563] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ULK1 (unc-51 like kinase 1) is a serine/threonine protein kinase that plays a key role in regulating the induction of autophagy. Recent studies using autophagy-defective mouse models, such as atg5- or atg7-deficient mice, revealed an important function of autophagy in adipocyte differentiation. Suppression of adipogenesis in autophagy-defective conditions has made it difficult to study the roles of autophagy in metabolism of differentiated adipocytes. In this study, we established autophagy defective-differentiated 3T3-L1 adipocytes, and investigated the roles of Ulk1 and its close homolog Ulk2 in lipid and glucose metabolism using the established adipocytes. Through knockdown approaches, we determined that Ulk1 and Ulk2 are important for basal and MTORC1 inhibition-induced autophagy, basal lipolysis, and mitochondrial respiration. However, unlike other autophagy genes (Atg5, Atg13, Rb1cc1/Fip200, and Becn1) Ulk1 was dispensable for adipogenesis without affecting the expression of CCAAT/enhancer binding protein ? (CEBPA) and peroxisome proliferation-activated receptor gamma (PPARG). Ulk1 knockdown reduced fatty acid oxidation and enhanced fatty acid uptake, the metabolic changes that could contribute to adipogenesis, whereas Ulk2 knockdown had opposing effects. We also found that the expression levels of insulin receptor (INSR), insulin receptor substrate 1 (IRS1), and glucose transporter 4 (SLC2A4/GLUT4) were increased in Ulk1-silenced adipocytes, which was accompanied by upregulation of insulin-stimulated glucose uptake. These results suggest that ULK1, albeit its important autophagic role, regulates lipid metabolism and glucose uptake in adipocytes distinctly from other autophagy proteins.
Collapse
Affiliation(s)
- Seung-Hyun Ro
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota; Minneapolis, MN USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Wirth M, Joachim J, Tooze SA. Autophagosome formation--the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol 2013; 23:301-9. [PMID: 23727157 DOI: 10.1016/j.semcancer.2013.05.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/01/2013] [Accepted: 05/21/2013] [Indexed: 12/18/2022]
Abstract
Autophagy is a conserved and highly regulated degradative membrane trafficking pathway, maintaining energy homeostasis and protein synthesis during nutrient stress. Our understanding of how the autophagy machinery is regulated has expanded greatly over recent years. The ULK and Beclin1-PI3KC3 complexes are key signaling complexes required for autophagosome formation. The nutrient and energy sensors mTORC1 and AMPK signal directly to the ULK complex and affect its activity. Formation and activation of distinct Beclin1-PI3KC3 complexes produces PI3P, a signaling lipid required for the recruitment of autophagy effectors. In this review we discuss how the mammalian ULK1 and Beclin1 complexes are controlled by post-translational modifications and protein-protein interactions and we highlight data linking these complexes together.
Collapse
Affiliation(s)
- Martina Wirth
- London Research Institute, Cancer Research UK, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | | | | |
Collapse
|
427
|
He S, Ni D, Ma B, Lee JH, Zhang T, Ghozalli I, Pirooz SD, Zhao Z, Bharatham N, Li B, Oh S, Lee WH, Takahashi Y, Wang HG, Minassian A, Feng P, Deretic V, Pepperkok R, Tagaya M, Yoon HS, Liang C. PtdIns(3)P-bound UVRAG coordinates Golgi-ER retrograde and Atg9 transport by differential interactions with the ER tether and the beclin 1 complex. Nat Cell Biol 2013; 15:1206-1219. [PMID: 24056303 PMCID: PMC3805255 DOI: 10.1038/ncb2848] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/21/2013] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum (ER)-Golgi membrane transport and autophagy are intersecting trafficking pathways that are tightly regulated and crucial for homeostasis, development and disease. Here, we identify UVRAG, a beclin-1-binding autophagic factor, as a phosphatidylinositol-3-phosphate (PtdIns(3)P)-binding protein that depends on PtdIns(3)P for its ER localization. We further show that UVRAG interacts with RINT-1, and acts as an integral component of the RINT-1-containing ER tethering complex, which couples phosphoinositide metabolism to COPI-vesicle tethering. Displacement or knockdown of UVRAG profoundly disrupted COPI cargo transfer to the ER and Golgi integrity. Intriguingly, autophagy caused the dissociation of UVRAG from the ER tether, which in turn worked in concert with the Bif-1-beclin-1-PI(3)KC3 complex to mobilize Atg9 translocation for autophagosome formation. These findings identify a regulatory mechanism that coordinates Golgi-ER retrograde and autophagy-related vesicular trafficking events through physical and functional interactions between UVRAG, phosphoinositide and their regulatory factors, thereby ensuring spatiotemporal fidelity of membrane trafficking and maintenance of organelle homeostasis.
Collapse
Affiliation(s)
- Shanshan He
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Duojiao Ni
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Binyun Ma
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Joo-Hyung Lee
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Tian Zhang
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Irene Ghozalli
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sara Dolatshahi Pirooz
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhen Zhao
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Nagakumar Bharatham
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Baihong Li
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Soohwan Oh
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Wen-Hwa Lee
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697
| | - Yoshinori Takahashi
- Department of Pharmacology and Penn State Hershey Cancer Institute; The Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Hong-Gang Wang
- Department of Pharmacology and Penn State Hershey Cancer Institute; The Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Arlet Minassian
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Rainer Pepperkok
- European Molecular Biology Laboratory, Heidelberg, Cell Biology/Cell Biophysics Unit, Meyerhofstr. 1, D-69117 Heidelberg Germany
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0393, Japan
| | - Ho Sup Yoon
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| | - Chengyu Liang
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
428
|
Randall-Demllo S, Chieppa M, Eri R. Intestinal epithelium and autophagy: partners in gut homeostasis. Front Immunol 2013; 4:301. [PMID: 24137160 PMCID: PMC3786390 DOI: 10.3389/fimmu.2013.00301] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/10/2013] [Indexed: 12/21/2022] Open
Abstract
One of the most significant challenges of cell biology is to understand how each type of cell copes with its specific workload without suffering damage. Among the most intriguing questions concerns intestinal epithelial cells in mammals; these cells act as a barrier between the internally protected region and the external environment that is exposed constantly to food and microbes. A major process involved in the processing of microbes is autophagy. In the intestine, through multiple, complex signaling pathways, autophagy including macroautophagy and xenophagy is pivotal in mounting appropriate intestinal immune responses and anti-microbial protection. Dysfunctional autophagy mechanism leads to chronic intestinal inflammation, such as inflammatory bowel disease (IBD). Studies involving a number of in vitro and in vivo mouse models in addition to human clinical studies have revealed a detailed role for autophagy in the generation of chronic intestinal inflammation. A number of genome-wide association studies identified roles for numerous autophagy genes in IBD, especially in Crohn’s disease. In this review, we will explore in detail the latest research linking autophagy to intestinal homeostasis and how alterations in autophagy pathways lead to intestinal inflammation.
Collapse
Affiliation(s)
- Sarron Randall-Demllo
- Mucosal Biology Laboratory, School of Human Life Sciences, University of Tasmania , Launceston, TAS , Australia
| | | | | |
Collapse
|
429
|
Abstract
Autophagy is a conserved cellular degradative process important for cellular homoeostasis and survival. An early committal step during the initiation of autophagy requires the actions of a protein kinase called ATG1 (autophagy gene 1). In mammalian cells, ATG1 is represented by ULK1 (uncoordinated-51-like kinase 1), which relies on its essential regulatory cofactors mATG13, FIP200 (focal adhesion kinase family-interacting protein 200 kDa) and ATG101. Much evidence indicates that mTORC1 [mechanistic (also known as mammalian) target of rapamycin complex 1] signals downstream to the ULK1 complex to negatively regulate autophagy. In this chapter, we discuss our understanding on how the mTORC1–ULK1 signalling axis drives the initial steps of autophagy induction. We conclude with a summary of our growing appreciation of the additional cellular pathways that interconnect with the core mTORC1–ULK1 signalling module.
Collapse
|
430
|
Santoni M, Amantini C, Morelli MB, Liberati S, Farfariello V, Nabissi M, Bonfili L, Eleuteri AM, Mozzicafreddo M, Burattini L, Berardi R, Cascinu S, Santoni G. Pazopanib and sunitinib trigger autophagic and non-autophagic death of bladder tumour cells. Br J Cancer 2013; 109:1040-1050. [PMID: 23887605 PMCID: PMC3749583 DOI: 10.1038/bjc.2013.420] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/18/2013] [Accepted: 07/03/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKI) such as sunitinib and pazopanib display their efficacy in a variety of solid tumours. However, their use in therapy is limited by the lack of evidence about the ability to induce cell death in cancer cells. Our aim was to evaluate cytotoxic effects induced by sunitinib and pazopanib in 5637 and J82 bladder cancer cell lines. METHODS Cell viability was tested by MTT assay. Autophagy was evaluated by western blot using anti-LC3 and anti-p62 antibodies, acridine orange staining and FACS analysis. Oxygen radical generation and necrosis were determined by FACS analysis using DCFDA and PI staining. Cathepsin B activation was evaluated by western blot and fluorogenic Z-Arg-Arg-AMC peptide. Finally, gene expression was performed using RT-PCR Profiler array. RESULTS We found that sunitinib treatment for 24 h triggers incomplete autophagy, impairs cathepsin B activation and stimulates a lysosomal-dependent necrosis. By contrast, treatment for 48 h with pazopanib induces cathepsin B activation and autophagic cell death, markedly reversed by CA074-Me and 3-MA, cathepsin B and autophagic inhibitors, respectively. Finally, pazopanib upregulates the α-glucosidase and downregulates the TP73 mRNA expression. CONCLUSION Our results showing distinct cell death mechanisms activated by different TKIs, provide the biological basis for novel molecularly targeted approaches.
Collapse
Affiliation(s)
- M Santoni
- Department of Medical Oncology, Polytechnic University of the Marche Region, 60121 Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
431
|
Ge L, Melville D, Zhang M, Schekman R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife 2013; 2:e00947. [PMID: 23930225 PMCID: PMC3736544 DOI: 10.7554/elife.00947] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/03/2013] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes. DOI:http://dx.doi.org/10.7554/eLife.00947.001.
Collapse
Affiliation(s)
- Liang Ge
- Department of Molecular and Cell Biology , Howard Hughes Medical Institute, University of California, Berkeley , Berkeley , United States
| | | | | | | |
Collapse
|
432
|
Bestebroer J, V'kovski P, Mauthe M, Reggiori F. Hidden behind autophagy: the unconventional roles of ATG proteins. Traffic 2013; 14:1029-41. [PMID: 23837619 PMCID: PMC7169877 DOI: 10.1111/tra.12091] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/03/2013] [Accepted: 07/09/2013] [Indexed: 12/27/2022]
Abstract
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular catabolic transport route that generally allows the lysosomal degradation of cytoplasmic components, including bulk cytosol, protein aggregates, damaged or superfluous organelles and invading microbes. Target structures are sequestered by double‐membrane vesicles called autophagosomes, which are formed through the concerted action of the autophagy (ATG)‐related proteins. Until recently it was assumed that ATG proteins were exclusively involved in autophagy. A growing number of studies, however, have attributed functions to some of them that are distinct from their classical role in autophagosome biogenesis. Autophagy‐independent roles of the ATG proteins include the maintenance of cellular homeostasis and resistance to pathogens. For example, they assist and enhance the turnover of dead cells and microbes upon their phagocytic engulfment, and inhibit murine norovirus replication. Moreover, bone resorption by osteoclasts, innate immune regulation triggered by cytoplasmic DNA and the ER‐associated degradation regulation all have in common the requirement of a subset of ATG proteins. Microorganisms such as coronaviruses, Chlamydia trachomatis or Brucella abortus have even evolved ways to manipulate autophagy‐independent functions of ATG proteins in order to ensure the completion of their intracellular life cycle. Taken together these novel mechanisms add to the repertoire of functions and extend the number of cellular processes involving the ATG proteins.
Collapse
Affiliation(s)
- Jovanka Bestebroer
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands; Department of Cell Biology and Institute of Biomembranes, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
433
|
Abstract
The 3rd EMBO Conference on, "Autophagy: Molecular mechanism, physiology and pathology" organized by Anne Simonsen and Sharon Tooze, was held in May 2013 on a sea cruise along the Norwegian coastline from Bergen to Tromsø. Researchers from all corners of the world presented work covering autophagosome biogenesis, physiological regulation of autophagy, selective autophagy and disease.
Collapse
Affiliation(s)
- Sascha Martens
- Max F. Perutz Laboratories; University of Vienna; Campus Vienna Biocenter; Vienna, Austria
| | | | | |
Collapse
|
434
|
Koyama-Honda I, Itakura E, Fujiwara TK, Mizushima N. Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 2013; 9:1491-9. [PMID: 23884233 DOI: 10.4161/auto.25529] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Autophagosome formation is governed by sequential functions of autophagy-related (ATG) proteins. Although their genetic hierarchy in terms of localization to the autophagosome formation site has been determined, their temporal relationships remain largely unknown. In this study, we comprehensively analyzed the recruitment of mammalian ATG proteins to the autophagosome formation site by live-cell imaging, and determined their temporal relationships. Although ULK1 and ATG5 are separated in the genetic hierarchy, they synchronously accumulate at pre-existing VMP1-positive punctate structures, followed by recruitment of ATG14, ZFYVE1, and WIPI1. Only a small number of ATG9 vesicles appear to be associated with these structures. Finally, LC3 and SQSTM1/p62 accumulate synchronously, while the other ATG proteins dissociate from the autophagic structures. These results suggest that autophagosome formation takes place on the VMP1-containing domain of the endoplasmic reticulum or a closely related structure, where ULK1 and ATG5 complexes are synchronously recruited.
Collapse
Affiliation(s)
- Ikuko Koyama-Honda
- Department of Physiology and Cell Biology; Tokyo Medical and Dental University; Bunkyo-ku, Tokyo Japan; Department of Biochemistry and Molecular Biology; Graduate School and Faculty of Medicine; The University of Tokyo; Bunkyo-ku, Tokyo Japan
| | - Eisuke Itakura
- Department of Physiology and Cell Biology; Tokyo Medical and Dental University; Bunkyo-ku, Tokyo Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Sakyo-ku, Kyoto Japan
| | - Noboru Mizushima
- Department of Physiology and Cell Biology; Tokyo Medical and Dental University; Bunkyo-ku, Tokyo Japan; Department of Biochemistry and Molecular Biology; Graduate School and Faculty of Medicine; The University of Tokyo; Bunkyo-ku, Tokyo Japan
| |
Collapse
|
435
|
Ryter SW, Cloonan SM, Choi AMK. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells 2013; 36:7-16. [PMID: 23708729 PMCID: PMC3887921 DOI: 10.1007/s10059-013-0140-8] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a dynamic process by which cytosolic material, including organelles, proteins, and pathogens, are sequestered into membrane vesicles called autophagosomes, and then delivered to the lysosome for degradation. By recycling cellular components, this process provides a mechanism for adaptation to starvation. The regulation of autophagy by nutrient signals involves a complex network of proteins that include mammalian target of rapamycin, the class III phosphatidylinositol-3 kinase/Beclin 1 complex, and two ubiquitin-like conjugation systems. Additionally, autophagy, which can be induced by multiple forms of chemical and physical stress, including endoplasmic reticulum stress, and hypoxia, plays an integral role in the mammalian stress response. Recent studies indicate that, in addition to bulk assimilation of cytosol, autophagy may proceed through selective pathways that target distinct cargoes to autophagosomes. The principle homeostatic functions of autophagy include the selective clearance of aggregated protein to preserve proteostasis, and the selective removal of dysfunctional mitochondria (mitophagy). Additionally, autophagy plays a central role in innate and adaptive immunity, with diverse functions such as regulation of inflammatory responses, antigen presentation, and pathogen clearance. Autophagy can preserve cellular function in a wide variety of tissue injury and disease states, however, maladaptive or pro-pathogenic outcomes have also been described. Among the many diseases where autophagy may play a role include proteopathies which involve aberrant accumulation of proteins (e.g., neurodegenerative disorders), infectious diseases, and metabolic disorders such as diabetes and metabolic syndrome. Targeting the autophagy pathway and its regulatory components may eventually lead to the development of therapeutics.
Collapse
Affiliation(s)
- Stefan W Ryter
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
436
|
Kubisch J, Türei D, Földvári-Nagy L, Dunai ZA, Zsákai L, Varga M, Vellai T, Csermely P, Korcsmáros T. Complex regulation of autophagy in cancer - integrated approaches to discover the networks that hold a double-edged sword. Semin Cancer Biol 2013; 23:252-61. [PMID: 23810837 DOI: 10.1016/j.semcancer.2013.06.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Autophagy, a highly regulated self-degradation process of eukaryotic cells, is a context-dependent tumor-suppressing mechanism that can also promote tumor cell survival upon stress and treatment resistance. Because of this ambiguity, autophagy is considered as a double-edged sword in oncology, making anti-cancer therapeutic approaches highly challenging. In this review, we present how systems-level knowledge on autophagy regulation can help to develop new strategies and efficiently select novel anti-cancer drug targets. We focus on the protein interactors and transcriptional/post-transcriptional regulators of autophagy as the protein and regulatory networks significantly influence the activity of core autophagy proteins during tumor progression. We list several network resources to identify interactors and regulators of autophagy proteins. As in silico analysis of such networks often necessitates experimental validation, we briefly summarize tractable model organisms to examine the role of autophagy in cancer. We also discuss fluorescence techniques for high-throughput monitoring of autophagy in humans. Finally, the challenges of pharmacological modulation of autophagy are reviewed. We suggest network-based concepts to overcome these difficulties. We point out that a context-dependent modulation of autophagy would be favored in anti-cancer therapy, where autophagy is stimulated in normal cells, while inhibited only in stressed cancer cells. To achieve this goal, we introduce the concept of regulo-network drugs targeting specific transcription factors or miRNA families identified with network analysis. The effect of regulo-network drugs propagates indirectly through transcriptional or post-transcriptional regulation of autophagy proteins, and, as a multi-directional intervention tool, they can both activate and inhibit specific proteins in the same time. The future identification and validation of such regulo-network drug targets may serve as novel intervention points, where autophagy can be effectively modulated in cancer therapy.
Collapse
Affiliation(s)
- János Kubisch
- Department of Genetics, Eötvös Loránd University, Pázmány P. s. 1C, H-1117 Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
437
|
Zavodszky E, Vicinanza M, Rubinsztein DC. Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation. FEBS Lett 2013; 587:1988-96. [PMID: 23669359 DOI: 10.1016/j.febslet.2013.04.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 04/24/2013] [Accepted: 04/24/2013] [Indexed: 01/16/2023]
Abstract
Autophagy is a highly conserved intracytoplasmic degradation pathway for proteins, oligomers, organelles and pathogens. It initiates with the formation of a cup-shaped double membrane structure called the phagophore. The membrane origin for autophagosomes has been a key question for the field. ATG9 and ATG16L1, or their yeast orthologues, are key proteins that regulate autophagosome biogenesis, and may be associated with distinct membrane sources. Here we review the biology of autophagy with a focus on ATG16L1 and ATG9, and we summarise the current knowledge of their trafficking in relation to autophagic stimuli and autophagosome formation.
Collapse
Affiliation(s)
- Eszter Zavodszky
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
438
|
Tumbarello DA, Kendrick-Jones J, Buss F. Myosin VI and its cargo adaptors - linking endocytosis and autophagy. J Cell Sci 2013; 126:2561-70. [PMID: 23781020 DOI: 10.1242/jcs.095554] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The coordinated trafficking and tethering of membrane cargo within cells relies on the function of distinct cytoskeletal motors that are targeted to specific subcellular compartments through interactions with protein adaptors and phospholipids. The unique actin motor myosin VI functions at distinct steps during clathrin-mediated endocytosis and the early endocytic pathway - both of which are involved in cargo trafficking and sorting - through interactions with Dab2, GIPC, Tom1 and LMTK2. This multifunctional ability of myosin VI can be attributed to its cargo-binding tail region that contains two protein-protein interaction interfaces, a ubiquitin-binding motif and a phospholipid binding domain. In addition, myosin VI has been shown to be a regulator of the autophagy pathway, because of its ability to link the endocytic and autophagic pathways through interactions with the ESCRT-0 protein Tom1 and the autophagy adaptor proteins T6BP, NDP52 and optineurin. This function has been attributed to facilitating autophagosome maturation and subsequent fusion with the lysosome. Therefore, in this Commentary, we discuss the relationship between myosin VI and the different myosin VI adaptor proteins, particularly with regards to the spatial and temporal regulation that is required for the sorting of cargo at the early endosome, and their impact on autophagy.
Collapse
Affiliation(s)
- David A Tumbarello
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
439
|
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 2013; 15:741-50. [PMID: 23685627 PMCID: PMC3885611 DOI: 10.1038/ncb2757] [Citation(s) in RCA: 1222] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 04/15/2013] [Indexed: 12/13/2022]
Abstract
Autophagy is the primary cellular catabolic program activated in response to nutrient starvation. Initiation of autophagy, particularly by amino acid withdrawal, requires the ULK kinases. Despite its pivotal role in autophagy initiation, little is known about the mechanisms by which ULK promotes autophagy. Here we describe a molecular mechanism linking ULK to the pro-autophagic lipid kinase VPS34. Upon amino acid starvation or mTOR inhibition the activated ULK1 phosphorylates Beclin-1 on S14, thereby, enhancing the activity of the ATG14L-containing VPS34 complexes. The Beclin-1 S14 phosphorylation by ULK is required for full autophagic induction in mammals and this requirement is conserved in C. elegans. Our study reveals a molecular link from ULK1 to activation of the autophagy specific VPS34 complex and autophagy induction.
Collapse
|
440
|
Zhang L, Zhang J, Shea K, Xu L, Tobin G, Knapton A, Sharron S, Rouse R. Autophagy in pancreatic acinar cells in caerulein-treated mice: immunolocalization of related proteins and their potential as markers of pancreatitis. Toxicol Pathol 2013; 42:435-57. [PMID: 23640381 DOI: 10.1177/0192623313486967] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug-induced pancreatitis (DIP) is an underdiagnosed condition that lacks sensitive and specific biomarkers. To better understand the mechanisms of DIP and to identify potential tissue biomarkers, we studied experimental pancreatitis induced in male C57BL/6 mice by intraperitoneal injection of caerulein (10 or 50 μg/kg) at 1-hr intervals for a total of 7 injections. Pancreata from caerulein-treated mice exhibited consistent acinar cell autophagy and apoptosis with infrequent necrosis. Kinetic assays for serum amylase and lipase also showed a dose-dependent increase. Terminal deoxynucleotidyl transferase-mediated biotin-dNTP nick labeling (TUNEL) detected dose-dependent acinar cell apoptosis. By light microscopy, autophagy was characterized by the formation of autophagosomes and autolysosomes (ALs) within the cytoplasm of acinar cells. Immunohistochemical studies with specific antibodies for proteins related to autophagy and pancreatic stress were conducted to evaluate these proteins as potential biomarkers of pancreatitis. Western blots were used to confirm immunohistochemical results using pancreatic lysates from control and treated animals. Autophagy was identified as a contributing process in caerulein-induced pancreatitis and proteins previously associated with autophagy were upregulated following caerulein treatment. Autophagosomes and ALs were found to be a common pathway, in which cathepsins, lysosome-associated membrane protein 2, vacuole membrane protein 1, microtubule-associated protein 1 light chain 3 (LC3), autophagy-related protein 9, Beclin1, and pancreatitis-associated proteins were simultaneously involved in response to caerulein stimulus. Regenerating islet-derived 3 gamma (Reg3γ), a pancreatic acute response protein, was dose-dependently induced in caerulein-treated mice and colocalized with the autophagosomal marker, LC3. This finding supports Reg3γ as a candidate biomarker for pancreatic injury.
Collapse
Affiliation(s)
- Leshuai Zhang
- 1Division of Drug Safety Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
441
|
Parkhitko AA, Favorova OO, Henske EP. Autophagy: Mechanisms, regulation, and its role in tumorigenesis. BIOCHEMISTRY (MOSCOW) 2013; 78:355-67. [DOI: 10.1134/s0006297913040044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
442
|
Hamasaki M, Shibutani ST, Yoshimori T. Up-to-date membrane biogenesis in the autophagosome formation. Curr Opin Cell Biol 2013; 25:455-60. [PMID: 23578367 DOI: 10.1016/j.ceb.2013.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
When cells are starved, are invaded by foreign bodies such as bacteria, and contain damaged organelles or aggregated proteins, double-membrane organelles called autophagosomes are formed within the cytoplasm to surround, isolate and deliver these materials to lysosomes for degradation. This pathway, called 'autophagy', is conserved from yeast to mammalian cells. Unlike other organelles, the autophagosome forms de novo, thus raising unique questions regarding its membrane biogenesis. Here we highlight a number of recent findings related to autophagosome formation and possible involvement of autophagy-specific vesicles originating from other organelles, but with particular attention on the formation sites and the relationship of the autophagosome to other organelles.
Collapse
Affiliation(s)
- Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
443
|
Lin L, Yang P, Huang X, Zhang H, Lu Q, Zhang H. The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. ACTA ACUST UNITED AC 2013; 201:113-29. [PMID: 23530068 PMCID: PMC3613692 DOI: 10.1083/jcb.201209098] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanism by which protein aggregates are selectively degraded by autophagy is poorly understood. Previous studies show that a family of Atg8-interacting proteins function as receptors linking specific cargoes to the autophagic machinery. Here we demonstrate that during Caenorhabditis elegans embryogenesis, epg-7 functions as a scaffold protein mediating autophagic degradation of several protein aggregates, including aggregates of the p62 homologue SQST-1, but has little effect on other autophagy-regulated processes. EPG-7 self-oligomerizes and is degraded by autophagy independently of SQST-1. SQST-1 directly interacts with EPG-7 and colocalizes with EPG-7 aggregates in autophagy mutants. Mutations in epg-7 impair association of SQST-1 aggregates with LGG-1/Atg8 puncta. EPG-7 interacts with multiple ATG proteins and colocalizes with ATG-9 puncta in various autophagy mutants. Unlike core autophagy genes, epg-7 is dispensable for starvation-induced autophagic degradation of substrate aggregates. Our results indicate that under physiological conditions a scaffold protein endows cargo specificity and also elevates degradation efficiency by linking the cargo-receptor complex with the autophagic machinery.
Collapse
Affiliation(s)
- Long Lin
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
444
|
Lee JS, Ha TK, Park JH, Lee GM. Anti-cell death engineering of CHO cells: Co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction. Biotechnol Bioeng 2013; 110:2195-207. [DOI: 10.1002/bit.24879] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 01/14/2013] [Accepted: 02/15/2013] [Indexed: 12/18/2022]
|
445
|
Kondylis V, van Nispen Tot Pannerden HE, van Dijk S, Ten Broeke T, Wubbolts R, Geerts WJ, Seinen C, Mutis T, Heijnen HFG. Endosome-mediated autophagy: an unconventional MIIC-driven autophagic pathway operational in dendritic cells. Autophagy 2013; 9:861-80. [PMID: 23481895 DOI: 10.4161/auto.24111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIICs) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4B (C74A) mutant and atg4b (-/-) bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPS-induced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC-driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Cell Microscopy Center; Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands, Institute of Biomembranes, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
446
|
Bento CF, Puri C, Moreau K, Rubinsztein DC. The role of membrane-trafficking small GTPases in the regulation of autophagy. J Cell Sci 2013; 126:1059-69. [DOI: 10.1242/jcs.123075] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Summary
Macroautophagy is a bulk degradation process characterised by the formation of double-membrane vesicles, called autophagosomes, which deliver cytoplasmic substrates for degradation in the lysosome. It has become increasingly clear that autophagy intersects with multiple steps of the endocytic and exocytic pathways, sharing many molecular players. A number of Rab and Arf GTPases that are involved in the regulation of the secretory and the endocytic membrane trafficking pathways, have been shown to play key roles in autophagy, adding a new level of complexity to its regulation. Studying the regulation of autophagy by small GTPases that are known to be involved in membrane trafficking is becoming a scientific hotspot and may provide answers to various crucial questions currently debated in the autophagy field, such as the origins of the autophagosomal membrane. Thus, this Commentary highlights the recent advances on the regulation of autophagy by membrane-trafficking small GTPases (Rab, Arf and RalB GTPases) and discusses their putative roles in the regulation of autophagosome formation, autophagosome-dependent exocytosis and autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Carla F. Bento
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Kevin Moreau
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
447
|
Chen D, Chen X, Li M, Zhang H, Ding WX, Yin XM. CCCP-Induced LC3 lipidation depends on Atg9 whereas FIP200/Atg13 and Beclin 1/Atg14 are dispensable. Biochem Biophys Res Commun 2013; 432:226-30. [PMID: 23402761 DOI: 10.1016/j.bbrc.2013.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
Abstract
Treatment of cells with carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial proton gradient uncoupler, can result in mitochondrial damage and autophagy activation, which in turn eliminates the injured mitochondria in a Parkin-dependent way. How CCCP mobilizes the autophagy machinery is not fully understood. By analyzing a key autophagy step, LC3 lipidation, we examined the roles of two kinase complexes typically involved in the initiation and nucleation phases of autophagy, namely the ULK kinase complex (UKC) and the Beclin 1/Atg14 complex. We found that CCCP-induced LC3 lipidation could be independent of Beclin 1 and Atg14. In addition, deletion or knockdown of the UKC component FIP200 or Atg13 only led to a partial reduction in LC3 lipidation, indicating that UKC could be also dispensable for this step during CCCP treatment. In contrast, Atg9, which is important for transporting vesicles to early autophagosomal structure, was required for CCCP-induced LC3 lipidation. Taken together, these data suggest that CCCP-induced autophagy and mitophagy depends more critically on Atg9 vesicles than on UKC and Beclin 1/Atg14 complex.
Collapse
Affiliation(s)
- Daohong Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | | | | | | | | | | |
Collapse
|
448
|
Wong PM, Puente C, Ganley IG, Jiang X. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 2013; 9:124-37. [PMID: 23295650 PMCID: PMC3552878 DOI: 10.4161/auto.23323] [Citation(s) in RCA: 385] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Atg1/ULK1 complex plays a central role in starvation-induced autophagy, integrating signals from upstream sensors such as MTOR and AMPK and transducing them to the downstream autophagy pathway. Much progress has been made in the last few years in understanding the mechanisms by which the complex is regulated through protein-protein interactions and post-translational modifications, providing insights into how the cell modulates autophagy, particularly in response to nutrient status. However, how the ULK1 complex transduces upstream signals to the downstream central autophagy pathway is still unclear. Although the protein kinase activity of ULK1 is required for its autophagic function, its protein substrate(s) responsible for autophagy activation has not been identified. Furthermore, examples of potential ULK1-independent autophagy have emerged, indicating that under certain specific contexts, the ULK1 complex might be dispensable for autophagy activation. This raises the question of how the autophagic machinery is activated independent of the ULK1 complex and what are the biological functions of such noncanonical autophagy pathways.
Collapse
Affiliation(s)
- Pui-Mun Wong
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | - Cindy Puente
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation Unit; University of Dundee; Dundee, Scotland UK
| | - Xuejun Jiang
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| |
Collapse
|
449
|
Abstract
Over this past decade, macroautophagy has gained prominence in the field of adult-onset neurodegeneration: from sporadic disorders such as Alzheimer's and Parkinson's disease, to genetic disorders such as Huntington's disease and frontotemporal dementia, the influence of this fundamental pathway has become an important topic of discussion. While there has been particular emphasis on the potential benefits of macroautophagy, there is growing literature that also suggests that macroautophagy contributes towards neurotoxicity. In this review, we discuss the molecular mechanism of macroautophagy and the currently available pharmacological tools, with special emphasis on mammalian macroautophagy in adult brain. Studies indicate that neuronal context strongly influences the role macroautophagy plays in maintaining cellular health, reflecting an ongoing need for better understanding of how macroautophagic regulation is achieved in the heavily differentiated and polarized neurons if we are to effectively manipulate it to treat neurodegenerative disease.
Collapse
|
450
|
Mleczak A, Millar S, Tooze SA, Olson MF, Chan EYW. Regulation of autophagosome formation by Rho kinase. Cell Signal 2013; 25:1-11. [PMID: 22975682 DOI: 10.1016/j.cellsig.2012.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/04/2012] [Indexed: 01/22/2023]
Abstract
Macroautophagy, commonly referred to as autophagy, is a protein degradation pathway that functions at a constitutive level in cells, which may become further activated by stressors such as nutrient starvation or protein aggregation. Autophagy has multiple beneficial roles for maintaining normal cellular homeostasis and these roles are related to the implications of autophagy in disease mechanisms including neurodegeneration and cancer. We previously searched for novel autophagy regulators and identified Rho-kinase 1 (ROCK1) as a candidate. Here, we show that activated ROCK1 inhibits autophagy in human embryonic kidney 293 cells. Conversely, ROCK inhibitory compounds enhanced the autophagy response to amino acid starvation or rapamycin treatment. Inhibition of ROCK during the starvation period led to a more rapid response with the production of larger early autophagosomes that matured into enlarged late degradative autolysosomes. Despite the production of enlarged LC3-positive early autophagosomes, membrane precursors containing WD-repeat protein interacting with phosphoinositides 1 (WIPI1) and mammalian Atg9 were not affected by ROCK inhibition, suggesting that phagophore elongation had been unusually extended. However, the enlarged autophagosomes were enriched in ULK1 which was essential to allow progression of autophagy flux. Our results demonstrate a novel role for ROCK in the control of autophagosome size and degradative capacity.
Collapse
|