401
|
Ferreira DMS, Simão AL, Rodrigues CMP, Castro RE. Revisiting the metabolic syndrome and paving the way for microRNAs in non-alcoholic fatty liver disease. FEBS J 2014; 281:2503-24. [PMID: 24702768 DOI: 10.1111/febs.12806] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/16/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of stages from simple steatosis to non-alcoholic steatohepatitis, which can progress to fibrosis, cirrhosis and, ultimately, hepatocellular carcinoma. Despite being one of the most common chronic liver diseases, NAFLD pathogenesis remains largely unknown. In this review, we discuss the key molecular mechanisms involved in NAFLD development and progression, focusing on the emerging role of microRNAs. NAFLD is intrinsically related to obesity and the metabolic syndrome. Changes in lipid metabolism increase free fatty acids in blood, which in turn induces peripheral insulin resistance and increases oxidative and endoplasmic reticulum stress. Although not yet considered in the diagnosis of NAFLD, recent reports also reinforce the crucial role of apoptosis in disease progression via activation of either death receptor or mitochondrial pathways and p53. In addition, the role of gut microbiota and the gut-liver axis has been recently associated with NAFLD. Finally, there is an accumulating and growing body of evidence supporting the role of microRNAs in NAFLD pathogenesis and progression, as well as hinting at their use as biomarkers or therapeutic tools. The ultimate goal is to review different molecular pathways that may underlie NAFLD pathogenesis in the hope of finding targets for new and efficient therapeutic interventions.
Collapse
Affiliation(s)
- Duarte M S Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | |
Collapse
|
402
|
Almontashiri NAM, Chen HH, Mailloux RJ, Tatsuta T, Teng ACT, Mahmoud AB, Ho T, Stewart NAS, Rippstein P, Harper ME, Roberts R, Willenborg C, Erdmann J, Pastore A, McBride HM, Langer T, Stewart AFR. SPG7 variant escapes phosphorylation-regulated processing by AFG3L2, elevates mitochondrial ROS, and is associated with multiple clinical phenotypes. Cell Rep 2014; 7:834-47. [PMID: 24767997 DOI: 10.1016/j.celrep.2014.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/06/2014] [Accepted: 03/20/2014] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial production of reactive oxygen species (ROS) affects many processes in health and disease. SPG7 assembles with AFG3L2 into the mAAA protease at the inner membrane of mitochondria, degrades damaged proteins, and regulates the synthesis of mitochondrial ribosomes. SPG7 is cleaved and activated by AFG3L2 upon assembly. A variant in SPG7 that replaces arginine 688 with glutamine (Q688) is associated with several phenotypes, including toxicity of chemotherapeutic agents, type 2 diabetes mellitus, and (as reported here) coronary artery disease. We demonstrate that SPG7 processing is regulated by tyrosine phosphorylation of AFG3L2. Carriers of Q688 bypass this regulation and constitutively process and activate SPG7 mAAA protease. Cells expressing Q688 produce higher ATP levels and ROS, promoting cell proliferation. Our results thus reveal an unexpected link between the phosphorylation-dependent regulation of the mitochondria mAAA protease affecting ROS production and several clinical phenotypes.
Collapse
Affiliation(s)
- Naif A M Almontashiri
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Center for Genetics and Inherited Diseases, Department of Applied Medical Sciences, Taibah University, Almedinah, P.O. Box 41477, Saudi Arabia
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Takashi Tatsuta
- Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Allen C T Teng
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ahmad B Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tiffany Ho
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada
| | - Nicolas A S Stewart
- Center for Clinical Pharmacology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Peter Rippstein
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada
| | - Mary Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robert Roberts
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada
| | | | | | | | - Annalisa Pastore
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | - Thomas Langer
- Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Alexandre F R Stewart
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
403
|
Proteomic survey reveals altered energetic patterns and metabolic failure prior to retinal degeneration. J Neurosci 2014; 34:2797-812. [PMID: 24553922 DOI: 10.1523/jneurosci.2982-13.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inherited mutations that lead to misfolding of the visual pigment rhodopsin (Rho) are a prominent cause of photoreceptor neuron (PN) degeneration and blindness. How Rho proteotoxic stress progressively impairs PN viability remains unknown. To identify the pathways that mediate Rho toxicity in PNs, we performed a comprehensive proteomic profiling of retinas from Drosophila transgenics expressing Rh1(P37H), the equivalent of mammalian Rho(P23H), the most common Rho mutation linked to blindness in humans. Profiling of young Rh1(P37H) retinas revealed a coordinated upregulation of energy-producing pathways and attenuation of energy-consuming pathways involving target of rapamycin (TOR) signaling, which was reversed in older retinas at the onset of PN degeneration. We probed the relevance of these metabolic changes to PN survival by using a combination of pharmacological and genetic approaches. Chronic suppression of TOR signaling, using the inhibitor rapamycin, strongly mitigated PN degeneration, indicating that TOR signaling activation by chronic Rh1(P37H) proteotoxic stress is deleterious for PNs. Genetic inactivation of the endoplasmic reticulum stress-induced JNK/TRAF1 axis as well as the APAF-1/caspase-9 axis, activated by damaged mitochondria, dramatically suppressed Rh1(P37H)-induced PN degeneration, identifying the mitochondria as novel mediators of Rh1(P37H) toxicity. We thus propose that chronic Rh1(P37H) proteotoxic stress distorts the energetic profile of PNs leading to metabolic imbalance, mitochondrial failure, and PN degeneration and therapies normalizing metabolic function might be used to alleviate Rh1(P37H) toxicity in the retina. Our study offers a glimpse into the intricate higher order interactions that underlie PN dysfunction and provides a useful resource for identifying other molecular networks that mediate Rho toxicity in PNs.
Collapse
|
404
|
Bhuvanendran S, Salka K, Rainey K, Sreetama SC, Williams E, Leeker M, Prasad V, Boyd J, Patterson GH, Jaiswal JK, Colberg-Poley AM. Superresolution imaging of human cytomegalovirus vMIA localization in sub-mitochondrial compartments. Viruses 2014; 6:1612-36. [PMID: 24721787 PMCID: PMC4014713 DOI: 10.3390/v6041612] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/16/2014] [Accepted: 03/27/2014] [Indexed: 01/04/2023] Open
Abstract
The human cytomegalovirus (HCMV) viral mitochondria-localized inhibitor of apoptosis (vMIA) protein, traffics to mitochondria-associated membranes (MAM), where the endoplasmic reticulum (ER) contacts the outer mitochondrial membrane (OMM). vMIA association with the MAM has not been visualized by imaging. Here, we have visualized this by using a combination of confocal and superresolution imaging. Deconvolution of confocal microscopy images shows vMIA localizes away from mitochondrial matrix at the Mitochondria-ER interface. By gated stimulated emission depletion (GSTED) imaging, we show that along this interface vMIA is distributed in clusters. Through multicolor, multifocal structured illumination microscopy (MSIM), we find vMIA clusters localize away from MitoTracker Red, indicating its OMM localization. GSTED and MSIM imaging show vMIA exists in clusters of ~100–150 nm, which is consistent with the cluster size determined by Photoactivated Localization Microscopy (PALM). With these diverse superresolution approaches, we have imaged the clustered distribution of vMIA at the OMM adjacent to the ER. Our findings directly compare the relative advantages of each of these superresolution imaging modalities for imaging components of the MAM and sub-mitochondrial compartments. These studies establish the ability of superresolution imaging to provide valuable insight into viral protein location, particularly in the sub-mitochondrial compartments, and into their clustered organization.
Collapse
Affiliation(s)
- Shivaprasad Bhuvanendran
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Kyle Salka
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Kristin Rainey
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sen Chandra Sreetama
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Elizabeth Williams
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Margretha Leeker
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Vidhya Prasad
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Jonathan Boyd
- Life Science Division, Leica Microsystems, Inc., 1700 Leider Lane, Buffalo Grove, IL 60089, USA.
| | - George H Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jyoti K Jaiswal
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | - Anamaris M Colberg-Poley
- Research Center for Genetic Medicine, Children's Research Institute, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| |
Collapse
|
405
|
Cano M, Wang L, Wan J, Barnett BP, Ebrahimi K, Qian J, Handa JT. Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. Free Radic Biol Med 2014; 69:1-14. [PMID: 24434119 PMCID: PMC3960355 DOI: 10.1016/j.freeradbiomed.2014.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/06/2013] [Accepted: 01/03/2014] [Indexed: 01/18/2023]
Abstract
How cells degenerate from oxidative stress in aging-related disease is incompletely understood. This study's intent was to identify key cytoprotective pathways activated by oxidative stress and determine the extent of their protection. Using an unbiased strategy with microarray analysis, we found that retinal pigmented epithelial (RPE) cells treated with cigarette smoke extract (CSE) had overrepresented genes involved in the antioxidant and unfolded protein response (UPR). Differentially expressed antioxidant genes were predominantly located in the cytoplasm, with no induction of genes that neutralize superoxide and H2O2 in the mitochondria, resulting in accumulation of superoxide and decreased ATP production. Simultaneously, CSE induced the UPR sensors IRE1α, p-PERK, and ATP6, including CHOP, which was cytoprotective because CHOP knockdown decreased cell viability. In mice given intravitreal CSE, the RPE had increased IRE1α and decreased ATP and developed epithelial-mesenchymal transition, as suggested by decreased LRAT abundance, altered ZO-1 immunolabeling, and dysmorphic cell shape. Mildly degenerated RPE from early age-related macular degeneration (AMD) samples had prominent IRE1α, but minimal mitochondrial TOM20 immunolabeling. Although oxidative stress is thought to induce an antioxidant response with cooperation between the mitochondria and the ER, herein we show that mitochondria become impaired sufficiently to induce epithelial-mesenchymal transition despite a protective UPR. With similar responses in early AMD samples, these results suggest that mitochondria are vulnerable to oxidative stress despite a protective UPR during the early phases of aging-related disease.
Collapse
Affiliation(s)
- Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jun Wan
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Bradley P Barnett
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Katayoon Ebrahimi
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
406
|
van Vliet AR, Verfaillie T, Agostinis P. New functions of mitochondria associated membranes in cellular signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2253-62. [PMID: 24642268 DOI: 10.1016/j.bbamcr.2014.03.009] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/12/2014] [Accepted: 03/09/2014] [Indexed: 12/19/2022]
Abstract
In all eukaryotic cells, the endoplasmic reticulum (ER) and the mitochondria establish a tight interplay, which is structurally and functionally modulated through a proteinaceous tether formed at specific subdomains of the ER membrane, designated mitochondria-associated membranes or MAMs. The tethering function of the MAMs allows the regulation of lipid synthesis and rapid transmission of calcium (Ca(2+)) signals between the ER and mitochondria, which is crucial to shape intracellular Ca(2+) signaling and regulate mitochondrial bioenergetics. Research on the molecular characterization and function of MAMs has boomed in the last few years and the list of signaling and structural proteins dynamically associated with the ER-mitochondria contact sites in physiological and pathological conditions, is rapidly increasing along with the realization of an unprecedented complexity underlying the functional role of MAMs. Besides their established role as a signaling hub for Ca(2+) and lipid transfer between ER and mitochondria, MAMs have been recently shown to regulate mitochondrial shape and motility, energy metabolism and redox status and to be central to the modulation of various key processes like ER stress, autophagy and inflammasome signaling. In this review we will discuss some emerging cell-autonomous and cell non-autonomous roles of the MAMs in mammalian cells and their relevance for important human diseases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Alexander R van Vliet
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven B-3000, Belgium
| | - Tom Verfaillie
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven B-3000, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven B-3000, Belgium.
| |
Collapse
|
407
|
Morales PE, Torres G, Sotomayor-Flores C, Peña-Oyarzún D, Rivera-Mejías P, Paredes F, Chiong M. GLP-1 promotes mitochondrial metabolism in vascular smooth muscle cells by enhancing endoplasmic reticulum-mitochondria coupling. Biochem Biophys Res Commun 2014; 446:410-6. [PMID: 24613839 DOI: 10.1016/j.bbrc.2014.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 11/27/2022]
Abstract
Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)-mitochondria communication, as it allows for a more efficient transfer of Ca(2+) into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER-mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3h of GLP-1 treatment, paralleled by increased Ca(2+) transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca(2+) increases in GLP-1 treated cells. Inhibiting both Ca(2+) release from the ER and Ca(2+) entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER-mitochondria communication in VSMC, resulting in higher mitochondrial activity.
Collapse
Affiliation(s)
- Pablo E Morales
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Gloria Torres
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Cristian Sotomayor-Flores
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Daniel Peña-Oyarzún
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Pablo Rivera-Mejías
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Felipe Paredes
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases, Centro Estudios Moleculares de la Célula, Departamento Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
408
|
Endoplasmic reticulum stress in cerebral ischemia. Neurochem Int 2014; 68:18-27. [DOI: 10.1016/j.neuint.2014.02.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/27/2013] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
|
409
|
Collins HE, He L, Zou L, Qu J, Zhou L, Litovsky SH, Yang Q, Young ME, Marchase RB, Chatham JC. Stromal interaction molecule 1 is essential for normal cardiac homeostasis through modulation of ER and mitochondrial function. Am J Physiol Heart Circ Physiol 2014; 306:H1231-9. [PMID: 24585777 DOI: 10.1152/ajpheart.00075.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endoplasmic reticulum (ER) Ca(2+) sensor stromal interaction molecule 1 (STIM1) has been implicated as a key mediator of store-dependent and store-independent Ca(2+) entry pathways and maintenance of ER structure. STIM1 is present in embryonic, neonatal, and adult cardiomyocytes and has been strongly implicated in hypertrophic signaling; however, the physiological role of STIM1 in the adult heart remains unknown. We, therefore, developed a novel cardiomyocyte-restricted STIM1 knockout ((cr)STIM1-KO) mouse. In cardiomyocytes isolated from (cr)STIM1-KO mice, STIM1 expression was reduced by ∼92% with no change in the expression of related store-operated Ca(2+) entry proteins, STIM2, and Orai1. Immunoblot analyses revealed that (cr)STIM1-KO hearts exhibited increased ER stress from 12 wk, as indicated by increased levels of the transcription factor C/EBP homologous protein (CHOP), one of the terminal markers of ER stress. Transmission electron microscopy revealed ER dilatation, mitochondrial disorganization, and increased numbers of smaller mitochondria in (cr)STIM1-KO hearts, which was associated with increased mitochondrial fission. Using serial echocardiography and histological analyses, we observed a progressive decline in cardiac function in (cr)STIM1-KO mice, starting at 20 wk of age, which was associated with marked left ventricular dilatation by 36 wk. In addition, we observed the presence of an inflammatory infiltrate and evidence of cardiac fibrosis from 20 wk in (cr)STIM1-KO mice, which progressively worsened by 36 wk. These data demonstrate for the first time that STIM1 plays an essential role in normal cardiac function in the adult heart, which may be important for the regulation of ER and mitochondrial function.
Collapse
Affiliation(s)
- Helen E Collins
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Sepulveda-Falla D, Barrera-Ocampo A, Hagel C, Korwitz A, Vinueza-Veloz MF, Zhou K, Schonewille M, Zhou H, Velazquez-Perez L, Rodriguez-Labrada R, Villegas A, Ferrer I, Lopera F, Langer T, De Zeeuw CI, Glatzel M. Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Invest 2014; 124:1552-67. [PMID: 24569455 DOI: 10.1172/jci66407] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/19/2013] [Indexed: 12/24/2022] Open
Abstract
Familial Alzheimer's disease (FAD) is characterized by autosomal dominant heritability and early disease onset. Mutations in the gene encoding presenilin-1 (PS1) are found in approximately 80% of cases of FAD, with some of these patients presenting cerebellar damage with amyloid plaques and ataxia with unclear pathophysiology. A Colombian kindred carrying the PS1-E280A mutation is the largest known cohort of PS1-FAD patients. Here, we investigated PS1-E280A-associated cerebellar dysfunction and found that it occurs early in PS1-E208A carriers, while cerebellar signs are highly prevalent in patients with dementia. Postmortem analysis of cerebella of PS1-E280A carrier revealed greater Purkinje cell (PC) loss and more abnormal mitochondria compared with controls. In PS1-E280A tissue, ER/mitochondria tethering was impaired, Ca2+ channels IP3Rs and CACNA1A were downregulated, and Ca2+-dependent mitochondrial transport proteins MIRO1 and KIF5C were reduced. Accordingly, expression of PS1-E280A in a neuronal cell line altered ER/mitochondria tethering and transport compared with that in cells expressing wild-type PS1. In a murine model of PS1-FAD, animals exhibited mild ataxia and reduced PC simple spike activity prior to cerebellar β-amyloid deposition. Our data suggest that impaired calcium homeostasis and mitochondrial dysfunction in PS1-FAD PCs reduces their activity and contributes to motor coordination deficits prior to Aβ aggregation and dementia. We propose that PS1-E280A affects both Ca2+ homeostasis and Aβ precursor processing, leading to FAD and neurodegeneration.
Collapse
|
411
|
Bravo-Sagua R, Torrealba N, Paredes F, Morales PE, Pennanen C, López-Crisosto C, Troncoso R, Criollo A, Chiong M, Hill JA, Simmen T, Quest AF, Lavandero S. Organelle communication: signaling crossroads between homeostasis and disease. Int J Biochem Cell Biol 2014; 50:55-9. [PMID: 24534274 DOI: 10.1016/j.biocel.2014.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/10/2014] [Accepted: 01/26/2014] [Indexed: 01/14/2023]
Abstract
Cellular organelles do not function as isolated or static units, but rather form dynamic contacts between one another that can be modulated according to cellular needs. The physical interfaces between organelles are important for Ca2+ and lipid homeostasis, and serve as platforms for the control of many essential functions including metabolism, signaling, organelle integrity and execution of the apoptotic program. Emerging evidence also highlights the importance of organelle communication in disorders such as Alzheimer's disease, pulmonary arterial hypertension, cancer, skeletal and cardiac muscle dysfunction. Here, we provide an overview of the current literature on organelle communication and the link to human pathologies.
Collapse
Affiliation(s)
- Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Natalia Torrealba
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Felipe Paredes
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; Instituto de Investigación en Ciencias Ontológicas, Facultad Odontología, Universidad de Chile, Santiago 8380492, Chile; Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Andrew F Quest
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; Instituto Ciencias Biomedicas, Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; Instituto Ciencias Biomedicas, Facultad Medicina, Universidad de Chile, Santiago 8380492, Chile; Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
412
|
Rubiolo J, López-Alonso H, Martínez P, Millán A, Cagide E, Vieytes M, Vega F, Botana L. Yessotoxin induces ER-stress followed by autophagic cell death in glioma cells mediated by mTOR and BNIP3. Cell Signal 2014. [DOI: 10.1016/j.cellsig.2013.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
413
|
Vishnu N, Jadoon Khan M, Karsten F, Groschner LN, Waldeck-Weiermair M, Rost R, Hallström S, Imamura H, Graier WF, Malli R. ATP increases within the lumen of the endoplasmic reticulum upon intracellular Ca2+ release. Mol Biol Cell 2014; 25:368-79. [PMID: 24307679 PMCID: PMC3907277 DOI: 10.1091/mbc.e13-07-0433] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 01/02/2023] Open
Abstract
Multiple functions of the endoplasmic reticulum (ER) essentially depend on ATP within this organelle. However, little is known about ER ATP dynamics and the regulation of ER ATP import. Here we describe real-time recordings of ER ATP fluxes in single cells using an ER-targeted, genetically encoded ATP sensor. In vitro experiments prove that the ATP sensor is both Ca(2+) and redox insensitive, which makes it possible to monitor Ca(2+)-coupled ER ATP dynamics specifically. The approach uncovers a cell type-specific regulation of ER ATP homeostasis in different cell types. Moreover, we show that intracellular Ca(2+) release is coupled to an increase of ATP within the ER. The Ca(2+)-coupled ER ATP increase is independent of the mode of Ca(2+) mobilization and controlled by the rate of ATP biosynthesis. Furthermore, the energy stress sensor, AMP-activated protein kinase, is essential for the ATP increase that occurs in response to Ca(2+) depletion of the organelle. Our data highlight a novel Ca(2+)-controlled process that supplies the ER with additional energy upon cell stimulation.
Collapse
Affiliation(s)
- Neelanjan Vishnu
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Muhammad Jadoon Khan
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Felix Karsten
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Lukas N. Groschner
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Rene Rost
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Seth Hallström
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Hiromi Imamura
- Precursory Research for Embryonic Science, Japan Science and Technology Agency, Tokyo 102-0075, Japan
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Center of Physiological Medicine, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
414
|
|
415
|
del Campo A, Parra V, Vásquez-Trincado C, Gutiérrez T, Morales PE, López-Crisosto C, Bravo-Sagua R, Navarro-Marquez MF, Verdejo HE, Contreras-Ferrat A, Troncoso R, Chiong M, Lavandero S. Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca2+ uptake. Am J Physiol Endocrinol Metab 2014; 306:E1-E13. [PMID: 24085037 DOI: 10.1152/ajpendo.00146.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Insulin is a major regulator of glucose metabolism, stimulating its mitochondrial oxidation in skeletal muscle cells. Mitochondria are dynamic organelles that can undergo structural remodeling in order to cope with these ever-changing metabolic demands. However, the process by which mitochondrial morphology impacts insulin signaling in the skeletal muscle cells remains uncertain. To address this question, we silenced the mitochondrial fusion proteins Mfn2 and Opa1 and assessed insulin-dependent responses in L6 rat skeletal muscle cells. We found that mitochondrial fragmentation attenuates insulin-stimulated Akt phosphorylation, glucose uptake and cell respiratory rate. Importantly, we found that insulin induces a transient rise in mitochondrial Ca(2+) uptake, which was attenuated by silencing Opa1 or Mfn2. Moreover, treatment with Ruthenium red, an inhibitor of mitochondrial Ca(2+) uptake, impairs Akt signaling without affecting mitochondrial dynamics. All together, these results suggest that control of mitochondrial Ca(2+) uptake by mitochondrial morphology is a key event for insulin-induced glucose uptake.
Collapse
Affiliation(s)
- Andrea del Campo
- Advanced Center for Chronic Diseases (ACCDiSCEMC, Facultad Ciencias Químicas y Farmacéuticas y Facultad Medicina, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Santos CXC, Nabeebaccus AA, Shah AM, Camargo LL, Filho SV, Lopes LR. Endoplasmic reticulum stress and Nox-mediated reactive oxygen species signaling in the peripheral vasculature: potential role in hypertension. Antioxid Redox Signal 2014; 20:121-34. [PMID: 23472786 PMCID: PMC3880927 DOI: 10.1089/ars.2013.5262] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) are produced during normal endoplasmic reticulum (ER) metabolism. There is accumulating evidence showing that under stress conditions such as ER stress, ROS production is increased via enzymes of the NADPH oxidase (Nox) family, especially via the Nox2 and Nox4 isoforms, which are involved in the regulation of blood pressure. Hypertension is a major contributor to cardiovascular and renal disease, and it has a complex pathophysiology involving the heart, kidney, brain, vessels, and immune system. ER stress activates the unfolded protein response (UPR) signaling pathway that has prosurvival and proapoptotic components. RECENT ADVANCES Here, we summarize the evidence regarding the association of Nox enzymes and ER stress, and its potential contribution in the setting of hypertension, including the role of other conditions that can lead to hypertension (e.g., insulin resistance and diabetes). CRITICAL ISSUES A better understanding of this association is currently of great interest, as it will provide further insights into the cellular mechanisms that can drive the ER stress-induced adaptive versus maladaptive pathways linked to hypertension and other cardiovascular conditions. More needs to be learnt about the precise signaling regulation of Nox(es) and ER stress in the cardiovascular system. FUTURE DIRECTIONS The development of specific approaches that target individual Nox isoforms and the UPR signaling pathway may be important for the achievement of therapeutic efficacy in hypertension.
Collapse
Affiliation(s)
- Celio X C Santos
- 1 Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence , London, United Kingdom
| | | | | | | | | | | |
Collapse
|
417
|
Chakroborty S, Stutzmann GE. Calcium channelopathies and Alzheimer's disease: insight into therapeutic success and failures. Eur J Pharmacol 2013; 739:83-95. [PMID: 24316360 DOI: 10.1016/j.ejphar.2013.11.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/22/2013] [Accepted: 11/07/2013] [Indexed: 01/06/2023]
Abstract
Calcium ions are versatile and universal biological signaling factors that regulate numerous cellular processes ranging from cell fertilization, to neuronal plasticity that underlies learning and memory, to cell death. For these functions to be properly executed, calcium signaling requires precise regulation, and failure of this regulation may tip the scales from a signal for life to a signal for death. Disruptions in calcium channel function can generate complex multi-system disorders collectively referred to as "calciumopathies" that can target essentially any cell type or organ. In this review, we focus on the multifaceted involvement of calcium signaling in the pathophysiology of Alzheimer's disease (AD), and summarize the various therapeutic options currently available to combat this disease. Detailing the series of disappointing AD clinical trial results on cognitive outcomes, we emphasize the urgency to design alternative therapeutic strategies if synaptic and memory functions are to be preserved. One such approach is to target early calcium channelopathies centrally linked to AD pathogenesis.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| |
Collapse
|
418
|
Quiroga C, Gatica D, Paredes F, Bravo R, Troncoso R, Pedrozo Z, Rodriguez AE, Toro B, Chiong M, Vicencio JM, Hetz C, Lavandero S. Herp depletion protects from protein aggregation by up-regulating autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3295-3305. [PMID: 24120520 DOI: 10.1016/j.bbamcr.2013.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/21/2013] [Accepted: 09/10/2013] [Indexed: 01/04/2023]
Abstract
Herp is an endoplasmic reticulum (ER) stress inducible protein that participates in the ER-associated protein degradation (ERAD) pathway. However, the contribution of Herp to other protein degradation pathways like autophagy and its connection to other types of stress responses remain unknown. Here we report that Herp regulates autophagy to clear poly-ubiquitin (poly-Ub) protein aggregates. Proteasome inhibition and glucose starvation (GS) led to a high level of poly-Ub protein aggregation that was drastically reduced by stably knocking down Herp (shHerp cells). The enhanced removal of poly-Ub inclusions protected cells from death caused by glucose starvation. Under basal conditions and increasingly after stress, higher LC3-II levels and GFP-LC3 puncta were observed in shHerp cells compared to control cells. Herp knockout cells displayed basal up-regulation of two essential autophagy regulators-Atg5 and Beclin-1, leading to increased autophagic flux. Beclin-1 up-regulation was due to a reduction in Hrd1 dependent proteasomal degradation, and not at transcriptional level. The consequent higher autophagic flux was necessary for the clearance of aggregates and for cell survival. We conclude that Herp operates as a relevant factor in the defense against glucose starvation by modulating autophagy levels. These data may have important implications due to the known up-regulation of Herp in pathological states such as brain and heart ischemia, both conditions associated to acute nutritional stress.
Collapse
Affiliation(s)
- Clara Quiroga
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile; Harvard School of Public Health, Boston, MA, USA
| | - Damian Gatica
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Felipe Paredes
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Roberto Bravo
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Zully Pedrozo
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Andrea E Rodriguez
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Barbra Toro
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile
| | - Jose Miguel Vicencio
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile; The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Claudio Hetz
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380492, Chile; The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS) & Center for Molecular Studies of the Cell, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380492, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
419
|
Vannuvel K, Renard P, Raes M, Arnould T. Functional and morphological impact of ER stress on mitochondria. J Cell Physiol 2013; 228:1802-18. [PMID: 23629871 DOI: 10.1002/jcp.24360] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
Over the past years, knowledge and evidence about the existence of crosstalks between cellular organelles and their potential effects on survival or cell death have been constantly growing. More recently, evidence accumulated showing an intimate relationship between endoplasmic reticulum (ER) and mitochondria. These close contacts not only establish extensive physical links allowing exchange of lipids and calcium but they can also coordinate pathways involved in cell life and death. It is now obvious that ER dysfunction/stress and unfolded protein response (UPR) as well as mitochondria play major roles in apoptosis. However, while the effects of major ER stress on cell death have been largely studied and reviewed, it becomes more and more evident that cells might regularly deal with sublethal ER stress, a condition that does not necessarily lead to cell death but might affect the function/activity of other organelles such as mitochondria. In this review, we will particularly focus on these new, interesting and intriguing metabolic and morphological events that occur during the early adaptative phase of the ER stress, before the onset of cell death, and that remain largely unknown. Relevance and implication of these mitochondrial changes in response to ER stress conditions for human diseases such as type II diabetes and Alzheimer's disease will also be considered.
Collapse
Affiliation(s)
- Kayleen Vannuvel
- Laboratory of Biochemistry and Cellular Biology, URBC-NARILIS, University of Namur, Namur, Belgium
| | | | | | | |
Collapse
|
420
|
Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3507-3517. [PMID: 23988738 DOI: 10.1016/j.bbamcr.2013.07.024] [Citation(s) in RCA: 355] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress is a common feature of several physiological and pathological conditions affecting the function of the secretory pathway. To restore ER homeostasis, an orchestrated signaling pathway is engaged that is known as the unfolded protein response (UPR). The UPR has a primary function in stress adaptation and cell survival; however, under irreversible ER stress a switch to pro-apoptotic signaling events induces apoptosis of damaged cells. The mechanisms that initiate ER stress-dependent apoptosis are not fully understood. Several pathways have been described where we highlight the participation of the BCL-2 family of proteins and ER calcium release. In addition, recent findings also suggest that microRNAs and oxidative stress are relevant players on the transition from adaptive to cell death programs. Here we provide a global and integrated overview of the signaling networks that may determine the elimination of a cell under chronic ER stress. This article is part of a Special Section entitled: Cell Death Pathways.
Collapse
Affiliation(s)
- Hery Urra
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Estefanie Dufey
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernanda Lisbona
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA; Neurounion Biomedical Foundation, Santiago, Chile.
| |
Collapse
|
421
|
Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J 2013; 32:2348-61. [PMID: 23921556 DOI: 10.1038/emboj.2013.168] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 07/03/2013] [Indexed: 12/11/2022] Open
Abstract
Mitofusin 2 (Mfn2) is a key protein in mitochondrial fusion and it participates in the bridging of mitochondria to the endoplasmic reticulum (ER). Recent data indicate that Mfn2 ablation leads to ER stress. Here we report on the mechanisms by which Mfn2 modulates cellular responses to ER stress. Induction of ER stress in Mfn2-deficient cells caused massive ER expansion and excessive activation of all three Unfolded Protein Response (UPR) branches (PERK, XBP-1, and ATF6). In spite of an enhanced UPR, these cells showed reduced activation of apoptosis and autophagy during ER stress. Silencing of PERK increased the apoptosis of Mfn2-ablated cells in response to ER stress. XBP-1 loss-of-function ameliorated autophagic activity of these cells upon ER stress. Mfn2 physically interacts with PERK, and Mfn2-ablated cells showed sustained activation of this protein kinase under basal conditions. Unexpectedly, PERK silencing in these cells reduced ROS production, normalized mitochondrial calcium, and improved mitochondrial morphology. In summary, our data indicate that Mfn2 is an upstream modulator of PERK. Furthermore, Mfn2 loss-of-function reveals that PERK is a key regulator of mitochondrial morphology and function.
Collapse
|
422
|
Lynes EM, Raturi A, Shenkman M, Ortiz Sandoval C, Yap MC, Wu J, Janowicz A, Myhill N, Benson MD, Campbell RE, Berthiaume LG, Lederkremer GZ, Simmen T. Palmitoylation is the switch that assigns calnexin to quality control or ER Ca2+ signaling. J Cell Sci 2013; 126:3893-903. [PMID: 23843619 DOI: 10.1242/jcs.125856] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The palmitoylation of calnexin serves to enrich calnexin on the mitochondria-associated membrane (MAM). Given a lack of information on the significance of this finding, we have investigated how this endoplasmic reticulum (ER)-internal sorting signal affects the functions of calnexin. Our results demonstrate that palmitoylated calnexin interacts with sarcoendoplasmic reticulum (SR) Ca(2+) transport ATPase (SERCA) 2b and that this interaction determines ER Ca(2+) content and the regulation of ER-mitochondria Ca(2+) crosstalk. In contrast, non-palmitoylated calnexin interacts with the oxidoreductase ERp57 and performs its well-known function in quality control. Interestingly, our results also show that calnexin palmitoylation is an ER-stress-dependent mechanism. Following a short-term ER stress, calnexin quickly becomes less palmitoylated, which shifts its function from the regulation of Ca(2+) signaling towards chaperoning and quality control of known substrates. These changes also correlate with a preferential distribution of calnexin to the MAM under resting conditions, or the rough ER and ER quality control compartment (ERQC) following ER stress. Our results have therefore identified the switch that assigns calnexin either to Ca(2+) signaling or to protein chaperoning.
Collapse
Affiliation(s)
- Emily M Lynes
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
423
|
Redpath CJ, Bou Khalil M, Drozdzal G, Radisic M, McBride HM. Mitochondrial hyperfusion during oxidative stress is coupled to a dysregulation in calcium handling within a C2C12 cell model. PLoS One 2013; 8:e69165. [PMID: 23861961 PMCID: PMC3704522 DOI: 10.1371/journal.pone.0069165] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/11/2013] [Indexed: 01/04/2023] Open
Abstract
Atrial Fibrillation is the most common sustained cardiac arrhythmia worldwide harming millions of people every year. Atrial Fibrillation (AF) abruptly induces rapid conduction between atrial myocytes which is associated with oxidative stress and abnormal calcium handling. Unfortunately this new equilibrium promotes perpetuation of the arrhythmia. Recently, in addition to being the major source of oxidative stress within cells, mitochondria have been observed to fuse, forming mitochondrial networks and attach to intracellular calcium stores in response to cellular stress. We sought to identify a potential role for rapid stimulation, oxidative stress and mitochondrial hyperfusion in acute changes to myocyte calcium handling. In addition we hoped to link altered calcium handling to increased sarcoplasmic reticulum (SR)-mitochondrial contacts, the so-called mitochondrial associated membrane (MAM). We selected the C2C12 murine myotube model as it has previously been successfully used to investigate mitochondrial dynamics and has a myofibrillar system similar to atrial myocytes. We observed that rapid stimulation of C2C12 cells resulted in mitochondrial hyperfusion and increased mitochondrial colocalisation with calcium stores. Inhibition of mitochondrial fission by transfection of mutant DRP1K38E resulted in similar effects on mitochondrial fusion, SR colocalisation and altered calcium handling. Interestingly the effects of 'forced fusion' were reversed by co-incubation with the reducing agent N-Acetyl cysteine (NAC). Subsequently we demonstrated that oxidative stress resulted in similar reversible increases in mitochondrial fusion, SR-colocalisation and altered calcium handling. Finally, we believe we have identified that myocyte calcium handling is reliant on baseline levels of reactive oxygen species as co-incubation with NAC both reversed and retarded myocyte response to caffeine induced calcium release and re-uptake. Based on these results we conclude that the coordinate regulation of mitochondrial fusion and MAM contacts may form a point source for stress-induced arrhythmogenesis. We believe that the MAM merits further investigation as a therapeutic target in AF-induced remodelling.
Collapse
Affiliation(s)
- Calum J Redpath
- Cellular Electrophysiology Laboratory, University of Ottawa Heart Institute, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | | | |
Collapse
|
424
|
Bononi A, Bonora M, Marchi S, Missiroli S, Poletti F, Giorgi C, Pandolfi PP, Pinton P. Identification of PTEN at the ER and MAMs and its regulation of Ca(2+) signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ 2013; 20:1631-43. [PMID: 23811847 DOI: 10.1038/cdd.2013.77] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 04/30/2013] [Accepted: 05/09/2013] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor activity of PTEN (phosphatase and tensin homolog deleted on chromosome 10) is thought to be largely attributable to its lipid phosphatase activity. PTEN dephosphorylates the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate to directly antagonize the phosphoinositide 3-kinase-Akt pathway and prevent the activating phosphorylation of Akt. PTEN has also other proposed mechanisms of action, including a poorly characterized protein phosphatase activity, protein-protein interactions, as well as emerging functions in different compartment of the cells such as nucleus and mitochondria. We show here that a fraction of PTEN protein localizes to the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs), signaling domains involved in calcium ((2+)) transfer from the ER to mitochondria and apoptosis induction. We demonstrate that PTEN silencing impairs ER Ca(2+) release, lowers cytosolic and mitochondrial Ca(2+) transients and decreases cellular sensitivity to Ca(2+)-mediated apoptotic stimulation. Specific targeting of PTEN to the ER is sufficient to enhance ER-to-mitochondria Ca(2+) transfer and sensitivity to apoptosis. PTEN localization at the ER is further increased during Ca(2+)-dependent apoptosis induction. Importantly, PTEN interacts with the inositol 1,4,5-trisphosphate receptors (IP3Rs) and this correlates with the reduction in their phosphorylation and increased Ca(2+) release. We propose that ER-localized PTEN regulates Ca(2+) release from the ER in a protein phosphatase-dependent manner that counteracts Akt-mediated reduction in Ca(2+) release via IP3Rs. These findings provide new insights into the mechanisms and the extent of PTEN tumor-suppressive functions, highlighting new potential strategies for therapeutic intervention.
Collapse
Affiliation(s)
- A Bononi
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
425
|
Crosstalk between Endoplasmic Reticulum Stress and Protein Misfolding in Neurodegenerative Diseases. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/256404] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Under physiological conditions, the endoplasmic reticulum (ER) is a central subcellular compartment for protein quality control in the secretory pathway that prevents protein misfolding and aggregation. Instrumental in protein quality control in the ER is the unfolded protein response (UPR), which is activated upon ER stress to reestablish homeostasis through a sophisticated transcriptionally and translationally regulated signaling network. However, this response can lead to apoptosis if the stress cannot be alleviated. The presence of abnormal protein aggregates containing specific misfolded proteins is recognized as the basis of numerous human conformational disorders, including neurodegenerative diseases. Here, I will highlight the overwhelming evidence that the presence of specific aberrant proteins in Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), prion diseases, and Amyotrophic Lateral Sclerosis (ALS) is intimately associated with perturbations in the ER protein quality control machinery that become incompetent to restore protein homeostasis and shift adaptive programs toward the induction of apoptotic signaling to eliminate irreversibly damaged neurons. Increasing our understanding about the deadly crosstalk between ER dysfunction and protein misfolding in these neurodegenerative diseases may stimulate the development of novel therapeutic strategies able to support neuronal survival and ameliorate disease progression.
Collapse
|
426
|
Jin G, Wang YJ, Lin HK. Emerging Cellular Functions of Cytoplasmic PML. Front Oncol 2013; 3:147. [PMID: 23761861 PMCID: PMC3674320 DOI: 10.3389/fonc.2013.00147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/21/2013] [Indexed: 11/23/2022] Open
Abstract
The tumor suppressor promyelocytic leukemia protein (PML) is located primarily in the nucleus, where it is the scaffold component of the PML nuclear bodies (PML-NBs). PML-NBs regulate multiple cellular functions, such as apoptosis, senescence, DNA damage response, and resistance to viral infection. Despite its nuclear localization, a small portion of PML has been identified in the cytoplasm. The cytoplasmic PML (cPML) could be originally derived from the retention of exported nuclear PML (nPML). In addition, bona fide cPML isoforms devoid of nuclear localization signal (NLS) have also been identified. Recently, emerging evidence showed that cPML performs its specific cellular functions in tumorigenesis, glycolysis, antiviral responses, laminopothies, and cell cycle regulation. In this review, we will summarize the emerging roles of cPML in cellular functions.
Collapse
Affiliation(s)
- Guoxiang Jin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | | | | |
Collapse
|
427
|
Botta A, Malena A, Loro E, Del Moro G, Suman M, Pantic B, Szabadkai G, Vergani L. Altered Ca2+ homeostasis and endoplasmic reticulum stress in myotonic dystrophy type 1 muscle cells. Genes (Basel) 2013; 4:275-92. [PMID: 24705164 PMCID: PMC3899969 DOI: 10.3390/genes4020275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/03/2013] [Accepted: 05/16/2013] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of Myotonic Dystrophy type 1 (DM1) is linked to unstable CTG repeats in the DMPK gene which induce the mis-splicing to fetal/neonatal isoforms of many transcripts, including those involved in cellular Ca2+ homeostasis. Here we monitored the splicing of three genes encoding for Ca2+ transporters and channels (RyR1, SERCA1 and CACN1S) during maturation of primary DM1 muscle cells in parallel with the functionality of the Excitation-Contraction (EC) coupling machinery. At 15 days of differentiation, fetal isoforms of SERCA1 and CACN1S mRNA were significantly higher in DM1 myotubes compared to controls. Parallel functional studies showed that the cytosolic Ca2+ response to depolarization in DM1 myotubes did not increase during the progression of differentiation, in contrast to control myotubes. While we observed no differences in the size of intracellular Ca2+ stores, DM1 myotubes showed significantly reduced RyR1 protein levels, uncoupling between the segregated ER/SR Ca2+ store and the voltage-induced Ca2+ release machinery, parallel with induction of endoplasmic reticulum (ER) stress markers. In conclusion, our data suggest that perturbed Ca2+ homeostasis, via activation of ER stress, contributes to muscle degeneration in DM1 muscle cells likely representing a premature senescence phenotype.
Collapse
Affiliation(s)
- Annalisa Botta
- Department of Genetics, University "Tor Vergata", Roma 00133, Italy.
| | - Adriana Malena
- Department of Neurosciences SNPSRR, University of Padova, Padova 35100, Italy.
| | - Emanuele Loro
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Giulia Del Moro
- Department of Neurosciences SNPSRR, University of Padova, Padova 35100, Italy.
| | - Matteo Suman
- Department of Biomedical Sciences, University of Padua and CNR Neuroscience Institute, Padua 35100, Italy.
| | - Boris Pantic
- Department of Neurosciences SNPSRR, University of Padova, Padova 35100, Italy.
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua and CNR Neuroscience Institute, Padua 35100, Italy.
| | - Lodovica Vergani
- Department of Neurosciences SNPSRR, University of Padova, Padova 35100, Italy.
| |
Collapse
|
428
|
Lagace TA, Ridgway ND. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2499-510. [PMID: 23711956 DOI: 10.1016/j.bbamcr.2013.05.018] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/09/2013] [Accepted: 05/15/2013] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is an interconnected network of tubular and planar membranes that supports the synthesis and export of proteins, carbohydrates and lipids. Phospholipids, in particular phosphatidylcholine (PC), are synthesized in the ER where they have essential functions including provision of membranes required for protein synthesis and export, cholesterol homeostasis, and triacylglycerol storage and secretion. Coordination of these biological processes is essential, as highlighted by findings that link phospholipid metabolism in the ER with perturbations in lipid storage/secretion and stress responses, ultimately contributing to obesity/diabetes, atherosclerosis and neurological disorders. Phospholipid synthesis is not uniformly distributed in the ER but is localized at membrane interfaces or contact zones with other organelles, and in dynamic, proliferating ER membranes. The topology of phospholipid synthesis is an important consideration when establishing the etiology of diseases that arise from ER dysfunction. This review will highlight our current understanding of the contribution of phospholipid synthesis to proper ER function, and how alterations contribute to aberrant stress responses and disease. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Thomas A Lagace
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | | |
Collapse
|
429
|
Abstract
Whereas most of what we know today about the Ras-related small GTPases of the Rab family stems from observations made on Golgi complex, endosome and plasma membrane trafficking, a subset of Rabs localizes in part or predominantly to the ER (endoplasmic reticulum). Here, Rabs such as Rab1, Rab2, Rab6 and Rab33 can regulate the anterograde and retrograde trafficking of vesicles between the Golgi complex, the ERGIC (ER-Golgi intermediate compartment) and the ER itself. However, among the ER-associated Rabs, some Rabs appear to perform roles not directly related to trafficking: these Rabs (e.g. Rab32 or Rab24) could aid proteins of the atlastin and reticulon families in determining the extent and direction of ER tubulation. In so doing, these Rabs regulate not only ER contacts with other organelles such as mitochondria, but also the formation of autophagosomes.
Collapse
|
430
|
Hedskog L, Pinho CM, Filadi R, Rönnbäck A, Hertwig L, Wiehager B, Larssen P, Gellhaar S, Sandebring A, Westerlund M, Graff C, Winblad B, Galter D, Behbahani H, Pizzo P, Glaser E, Ankarcrona M. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer's disease and related models. Proc Natl Acad Sci U S A 2013; 110:7916-21. [PMID: 23620518 PMCID: PMC3651455 DOI: 10.1073/pnas.1300677110] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well-established that subcompartments of endoplasmic reticulum (ER) are in physical contact with the mitochondria. These lipid raft-like regions of ER are referred to as mitochondria-associated ER membranes (MAMs), and they play an important role in, for example, lipid synthesis, calcium homeostasis, and apoptotic signaling. Perturbation of MAM function has previously been suggested in Alzheimer's disease (AD) as shown in fibroblasts from AD patients and a neuroblastoma cell line containing familial presenilin-2 AD mutation. The effect of AD pathogenesis on the ER-mitochondria interplay in the brain has so far remained unknown. Here, we studied ER-mitochondria contacts in human AD brain and related AD mouse and neuronal cell models. We found uniform distribution of MAM in neurons. Phosphofurin acidic cluster sorting protein-2 and σ1 receptor, two MAM-associated proteins, were shown to be essential for neuronal survival, because siRNA knockdown resulted in degeneration. Up-regulated MAM-associated proteins were found in the AD brain and amyloid precursor protein (APP)Swe/Lon mouse model, in which up-regulation was observed before the appearance of plaques. By studying an ER-mitochondria bridging complex, inositol-1,4,5-triphosphate receptor-voltage-dependent anion channel, we revealed that nanomolar concentrations of amyloid β-peptide increased inositol-1,4,5-triphosphate receptor and voltage-dependent anion channel protein expression and elevated the number of ER-mitochondria contact points and mitochondrial calcium concentrations. Our data suggest an important role of ER-mitochondria contacts and cross-talk in AD pathology.
Collapse
Affiliation(s)
- Louise Hedskog
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Catarina Moreira Pinho
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Annica Rönnbäck
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Laura Hertwig
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Birgitta Wiehager
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Pia Larssen
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Sandra Gellhaar
- Department of Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden; and
| | - Anna Sandebring
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Marie Westerlund
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
- Genetics Unit, Department of Geriatric Medicine, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Dagmar Galter
- Department of Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden; and
| | - Homira Behbahani
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Maria Ankarcrona
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| |
Collapse
|
431
|
Hu Z, Guo D, Yip SS, Zhan D, Misaghi S, Joly JC, Snedecor BR, Shen AY. Chinese hamster ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11-derived dihydrofolate reductase deficient host cell. Biotechnol Prog 2013; 29:980-5. [DOI: 10.1002/btpr.1730] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/10/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Zhilan Hu
- Dept. of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way South San Francisco CA 94080
| | - Donglin Guo
- Dept. of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way South San Francisco CA 94080
| | - Shirley S.M. Yip
- Dept. of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way South San Francisco CA 94080
| | - Dejin Zhan
- Dept. of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way South San Francisco CA 94080
| | - Shahram Misaghi
- Dept. of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way South San Francisco CA 94080
| | - John C. Joly
- Dept. of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way South San Francisco CA 94080
| | - Bradley R. Snedecor
- Dept. of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way South San Francisco CA 94080
| | - Amy Y. Shen
- Dept. of Early Stage Cell Culture; Genentech Inc.; 1 DNA Way South San Francisco CA 94080
| |
Collapse
|
432
|
Verdejo HE, del Campo A, Troncoso R, Gutierrez T, Toro B, Quiroga C, Pedrozo Z, Munoz JP, Garcia L, Castro PF, Lavandero S. Mitochondria, myocardial remodeling, and cardiovascular disease. Curr Hypertens Rep 2013; 14:532-9. [PMID: 22972531 DOI: 10.1007/s11906-012-0305-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca(2+) buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca(2+) handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease.
Collapse
Affiliation(s)
- Hugo E Verdejo
- Centro Estudios Moleculares de la Célula, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
433
|
Parra V, Moraga F, Kuzmicic J, López-Crisosto C, Troncoso R, Torrealba N, Criollo A, Díaz-Elizondo J, Rothermel BA, Quest AFG, Lavandero S. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1334-44. [PMID: 23602992 DOI: 10.1016/j.bbadis.2013.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 10/27/2022]
Abstract
Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains.
Collapse
Affiliation(s)
- Valentina Parra
- Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Bachar-Wikstrom E, Wikstrom JD, Ariav Y, Tirosh B, Kaiser N, Cerasi E, Leibowitz G. Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 2013; 62:1227-37. [PMID: 23274896 PMCID: PMC3609555 DOI: 10.2337/db12-1474] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulation of misfolded proinsulin in the β-cell leads to dysfunction induced by endoplasmic reticulum (ER) stress, with diabetes as a consequence. Autophagy helps cellular adaptation to stress via clearance of misfolded proteins and damaged organelles. We studied the effects of proinsulin misfolding on autophagy and the impact of stimulating autophagy on diabetes progression in Akita mice, which carry a mutation in proinsulin, leading to its severe misfolding. Treatment of female diabetic Akita mice with rapamycin improved diabetes, increased pancreatic insulin content, and prevented β-cell apoptosis. In vitro, autophagic flux was increased in Akita β-cells. Treatment with rapamycin further stimulated autophagy, evidenced by increased autophagosome formation and enhancement of autophagosome-lysosome fusion. This was associated with attenuation of cellular stress and apoptosis. The mammalian target of rapamycin (mTOR) kinase inhibitor Torin1 mimicked the rapamycin effects on autophagy and stress, indicating that the beneficial effects of rapamycin are indeed mediated via inhibition of mTOR. Finally, inhibition of autophagy exacerbated stress and abolished the anti-ER stress effects of rapamycin. In conclusion, rapamycin reduces ER stress induced by accumulation of misfolded proinsulin, thereby improving diabetes and preventing β-cell apoptosis. The beneficial effects of rapamycin in this context strictly depend on autophagy; therefore, stimulating autophagy may become a therapeutic approach for diabetes.
Collapse
Affiliation(s)
- Etty Bachar-Wikstrom
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jakob D. Wikstrom
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yafa Ariav
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Boaz Tirosh
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nurit Kaiser
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Erol Cerasi
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Corresponding author: Gil Leibowitz,
| |
Collapse
|
435
|
Pla-Martín D, Rueda CB, Estela A, Sánchez-Piris M, González-Sánchez P, Traba J, de la Fuente S, Scorrano L, Renau-Piqueras J, Alvarez J, Satrústegui J, Palau F. Silencing of the Charcot-Marie-Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry. Neurobiol Dis 2013; 55:140-51. [PMID: 23542510 DOI: 10.1016/j.nbd.2013.03.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 11/25/2022] Open
Abstract
GDAP1 is an outer mitochondrial membrane protein that acts as a regulator of mitochondrial dynamics. Mutations of the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. We show that GDAP1 interacts with the vesicle-organelle trafficking proteins RAB6B and caytaxin, which suggests that GDAP1 may participate in the mitochondrial movement within the cell. GDAP1 silencing in the SH-SY5Y cell line induces abnormal distribution of the mitochondrial network, reduces the contact between mitochondria and endoplasmic reticulum (ER) and alters the mobilization of mitochondria towards plasma membrane upon depletion of ER-Ca(2+) stores. GDAP1 silencing does not affect mitochondrial Ca(2+) uptake, ER-Ca(2+), or Ca(2+) flow from ER to mitochondria, but reduces Ca(2+) inflow through store-operated Ca(2+) entry (SOCE) following mobilization of ER-Ca(2+) and SOCE-driven Ca(2+) entry in mitochondria. Our studies suggest that the pathophysiology of GDAP1-related CMT neuropathies may be associated with abnormal distribution and movement of mitochondria throughout cytoskeleton towards the ER and subplasmalemmal microdomains, resulting in a decrease in SOCE activity and impaired SOCE-driven Ca(2+) uptake in mitochondria.
Collapse
Affiliation(s)
- David Pla-Martín
- Laboratory of Genetics and Molecular Medicine, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Jose C, Melser S, Benard G, Rossignol R. Mitoplasticity: adaptation biology of the mitochondrion to the cellular redox state in physiology and carcinogenesis. Antioxid Redox Signal 2013; 18:808-49. [PMID: 22989324 DOI: 10.1089/ars.2011.4357] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adaptation and transformation biology of the mitochondrion to redox status is an emerging domain of physiology and pathophysiology. Mitochondrial adaptations occur in response to accidental changes in cellular energy demand or supply while mitochondrial transformations are a part of greater program of cell metamorphosis. The possible role of mitochondrial adaptations and transformations in pathogenesis remains unexplored, and it has become critical to decipher the stimuli and the underlying molecular pathways. Immediate activation of mitochondrial function was described during acute exercise, respiratory chain injury, Endoplasmic Reticulum stress, genotoxic stress, or environmental toxic insults. Delayed adaptations of mitochondrial form, composition, and functions were evidenced for persistent changes in redox status as observed in endurance training, in fibroblasts grown in presence of respiratory chain inhibitors or in absence of glucose, in the smooth muscle of patients with severe asthma, or in the skeletal muscle of patients with a mitochondrial disease. Besides, mitochondrial transformations were observed in the course of human cell differentiation, during immune response activation, or in cells undergoing carcinogenesis. Little is known on the signals and downstream pathways that govern mitochondrial adaptations and transformations. Few adaptative loops, including redox sensors, kinases, and transcription factors were deciphered, but their implication in physiology and pathology remains elusive. Mitoplasticity could play a protective role against aging, diabetes, cancer, or neurodegenerative diseases. Research on adaptation and transformation could allow the design of innovative therapies, notably in cancer.
Collapse
Affiliation(s)
- Caroline Jose
- University Bordeaux, Maladies Rares: Génétique et Métabolisme, France
| | | | | | | |
Collapse
|
437
|
Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1612-24. [PMID: 23380704 DOI: 10.1016/j.bbamcr.2013.01.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/13/2013] [Accepted: 01/21/2013] [Indexed: 12/15/2022]
Abstract
The endoplasmic reticulum (ER) performs multiple functions in the cell: it is the major site of protein and lipid synthesis as well as the most important intracellular Ca(2+) reservoir. Adverse conditions, including a decrease in the ER Ca(2+) level or an increase in oxidative stress, impair the formation of new proteins, resulting in ER stress. The subsequent unfolded protein response (UPR) is a cellular attempt to lower the burden on the ER and to restore ER homeostasis by imposing a general arrest in protein synthesis, upregulating chaperone proteins and degrading misfolded proteins. This response can also lead to autophagy and, if the stress can not be alleviated, to apoptosis. The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and IP3-induced Ca(2+) signaling are important players in these processes. Not only is the IP3R activity modulated in a dual way during ER stress, but also other key proteins involved in Ca(2+) signaling are modulated. Changes also occur at the structural level with a strengthening of the contacts between the ER and the mitochondria, which are important determinants of mitochondrial Ca(2+) uptake. The resulting cytoplasmic and mitochondrial Ca(2+) signals will control cellular decisions that either promote cell survival or cause their elimination via apoptosis. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
438
|
Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E, Quest AFG, Lavandero S. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:215-90. [PMID: 23317820 DOI: 10.1016/b978-0-12-407704-1.00005-1] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a dynamic intracellular organelle with multiple functions essential for cellular homeostasis, development, and stress responsiveness. In response to cellular stress, a well-established signaling cascade, the unfolded protein response (UPR), is activated. This intricate mechanism is an important means of re-establishing cellular homeostasis and alleviating the inciting stress. Now, emerging evidence has demonstrated that the UPR influences cellular metabolism through diverse mechanisms, including calcium and lipid transfer, raising the prospect of involvement of these processes in the pathogenesis of disease, including neurodegeneration, cancer, diabetes mellitus and cardiovascular disease. Here, we review the distinct functions of the ER and UPR from a metabolic point of view, highlighting their association with prevalent pathologies.
Collapse
Affiliation(s)
- Roberto Bravo
- Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
439
|
Bhandary B, Marahatta A, Kim HR, Chae HJ. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 2012; 14:434-56. [PMID: 23263672 PMCID: PMC3565273 DOI: 10.3390/ijms14010434] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/01/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is the major site of calcium storage and protein folding. It has a unique oxidizing-folding environment due to the predominant disulfide bond formation during the process of protein folding. Alterations in the oxidative environment of the ER and also intra-ER Ca2+ cause the production of ER stress-induced reactive oxygen species (ROS). Protein disulfide isomerases, endoplasmic reticulum oxidoreductin-1, reduced glutathione and mitochondrial electron transport chain proteins also play crucial roles in ER stress-induced production of ROS. In this article, we discuss ER stress-associated ROS and related diseases, and the current understanding of the signaling transduction involved in ER stress.
Collapse
Affiliation(s)
- Bidur Bhandary
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
| | - Anu Marahatta
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, Dental School, Wonkwang University, Iksan 570-749, South Korea
- Authors to whom correspondence should be addressed; E-Mails: (H.-R.K.); (H.-J.C.); Tel.: +82-63-850-6640 (H.-R.K.); +82-63-270-3092 (H.-J.C.); Fax: +82-63-854-0285 (H.-R.K.); +82-63-275-8799 (H.-J.C.)
| | - Han-Jung Chae
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
- Authors to whom correspondence should be addressed; E-Mails: (H.-R.K.); (H.-J.C.); Tel.: +82-63-850-6640 (H.-R.K.); +82-63-270-3092 (H.-J.C.); Fax: +82-63-854-0285 (H.-R.K.); +82-63-275-8799 (H.-J.C.)
| |
Collapse
|
440
|
Abstract
The underlying causes of nonalcoholic fatty liver disease are unclear, although recent evidence has implicated the endoplasmic reticulum in both the development of steatosis and progression to nonalcoholic steatohepatitis. Disruption of endoplasmic reticulum homeostasis, often termed ER stress, has been observed in liver and adipose tissue of humans with nonalcoholic fatty liver disease and/or obesity. Importantly, the signaling pathway activated by disruption of endoplasmic reticulum homeostasis, the unfolded protein response, has been linked to lipid and membrane biosynthesis, insulin action, inflammation, and apoptosis. Therefore, understanding the mechanisms that disrupt endoplasmic reticulum homeostasis in nonalcoholic fatty liver disease and the role of the unfolded protein response in the broader context of chronic, metabolic diseases have become topics of intense investigation. The present review examines the endoplasmic reticulum and the unfolded protein response in the context of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Michael J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
441
|
Quarato G, Scrima R, Agriesti F, Moradpour D, Capitanio N, Piccoli C. Targeting mitochondria in the infection strategy of the hepatitis C virus. Int J Biochem Cell Biol 2012; 45:156-66. [PMID: 22710347 DOI: 10.1016/j.biocel.2012.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) infection induces a state of oxidative stress more pronounced than that observed in many other inflammatory diseases. Here, we propose a temporal sequence of events in the HCV-infected cell whereby the primary alteration consists of a release of Ca(2+) from the endoplasmic reticulum, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen species and a progressive metabolic adaptive response. Evidence is provided for a positive feed-back mechanism between alterations of calcium and redox homeostasis. This likely involves deregulation of the mitochondrial permeability transition and induces progressive dysfunction of cellular bioenergetics. Pathogenetic implications of the model and new opportunities for therapeutic intervention are discussed. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Giovanni Quarato
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | |
Collapse
|
442
|
Ferreiro E, Baldeiras I, Ferreira IL, Costa RO, Rego AC, Pereira CF, Oliveira CR. Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer's disease: from pathogenesis to biomarkers. Int J Cell Biol 2012; 2012:735206. [PMID: 22701485 PMCID: PMC3373122 DOI: 10.1155/2012/735206] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/06/2012] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting several million of people worldwide. Pathological changes in the AD brain include the presence of amyloid plaques, neurofibrillary tangles, loss of neurons and synapses, and oxidative damage. These changes strongly associate with mitochondrial dysfunction and stress of the endoplasmic reticulum (ER). Mitochondrial dysfunction is intimately linked to the production of reactive oxygen species (ROS) and mitochondrial-driven apoptosis, which appear to be aggravated in the brain of AD patients. Concomitantly, mitochondria are closely associated with ER, and the deleterious crosstalk between both organelles has been shown to be involved in neuronal degeneration in AD. Stimuli that enhance expression of normal and/or folding-defective proteins activate an adaptive unfolded protein response (UPR) that, if unresolved, can cause apoptotic cell death. ER stress also induces the generation of ROS that, together with mitochondrial ROS and decreased activity of several antioxidant defenses, promotes chronic oxidative stress. In this paper we discuss the critical role of mitochondrial and ER dysfunction in oxidative injury in AD cellular and animal models, as well as in biological fluids from AD patients. Progress in developing peripheral and cerebrospinal fluid biomarkers related to oxidative stress will also be summarized.
Collapse
Affiliation(s)
- E. Ferreiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - I. Baldeiras
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
- University Coimbra Hospital, 3000-075, Coimbra, Portugal
| | - I. L. Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - R. O. Costa
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - A. C. Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| | - C. F. Pereira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| | - C. R. Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| |
Collapse
|
443
|
Abstract
SIGNIFICANCE The biogenesis of most secreted and outer membrane proteins involves the formation of structure stabilizing disulfide bonds. Hence knowledge of the mechanisms for their formation is critical for understanding a myriad of cellular processes and associated disease states. RECENT ADVANCES Until recently it was thought that members of the Ero1 sulfhydryl oxidase family were responsible for catalyzing the majority of disulfide bond formation in the endoplasmic reticulum. However, multiple eukaryotic organisms are now known to show no or minor phenotypes when these enzymatic pathways are disrupted, suggesting that other pathways can catalyze disulfide bond formation to an extent sufficient to maintain normal physiology. CRITICAL ISSUES AND FUTURE DIRECTIONS This lack of a strong phenotype raises multiple questions regarding what pathways are acting and whether they themselves constitute the major route for disulfide bond formation. This review critically examines the potential low molecular oxidants that maybe involved in the catalyzed or noncatalyzed formation of disulfide bonds, with an emphasis on the mammalian endoplasmic reticulum, via an examination of their thermodynamics, kinetics, and availability and gives pointers to help guide future experimental work.
Collapse
|
444
|
Raturi A, Simmen T. Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:213-24. [PMID: 22575682 DOI: 10.1016/j.bbamcr.2012.04.013] [Citation(s) in RCA: 356] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/12/2012] [Accepted: 04/25/2012] [Indexed: 01/01/2023]
Abstract
More than a billion years ago, bacterial precursors of mitochondria became endosymbionts in what we call eukaryotic cells today. The true significance of the word "endosymbiont" has only become clear to cell biologists with the discovery that the endoplasmic reticulum (ER) superorganelle dedicates a special domain for the metabolic interaction with mitochondria. This domain, identified in all eukaryotic cell systems from yeast to man and called the mitochondria-associated membrane (MAM), has a distinct proteome, specific tethers on the cytosolic face and regulatory proteins in the ER lumen of the ER. The MAM has distinct biochemical properties and appears as ER tubules closely apposed to mitochondria on electron micrographs. The functions of the MAM range from lipid metabolism and calcium signaling to inflammasome formation. Consistent with these functions, the MAM is enriched in lipid metabolism enzymes and calcium handling proteins. During cellular stress situations, like an altered cellular redox state, the MAM alters its set of regulatory proteins and thus alters MAM functions. Notably, this set prominently comprises ER chaperones and oxidoreductases that connect protein synthesis and folding inside the ER to mitochondrial metabolism. Moreover, ER membranes associated with mitochondria also accommodate parts of the machinery that determines mitochondrial membrane dynamics and connect mitochondria to the cytoskeleton. Together, these exciting findings demonstrate that the physiological interactions between the ER and mitochondria are so bilateral that we are tempted to compare their relationship to the one of a married couple: distinct, but inseparable and certainly dependent on each other. In this paradigm, the MAM stands for the intracellular location where the two organelles tie the knot. Resembling "real life", the happy marriage between the two organelles prevents the onset of diseases that are characterized by disrupted metabolism and decreased lifespan, including neurodegeneration and cancer. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
Affiliation(s)
- Arun Raturi
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
445
|
Irvine KM, Gallego P, An X, Best SE, Thomas G, Wells C, Harris M, Cotterill A, Thomas R. Peripheral blood monocyte gene expression profile clinically stratifies patients with recent-onset type 1 diabetes. Diabetes 2012; 61:1281-90. [PMID: 22403299 PMCID: PMC3331753 DOI: 10.2337/db11-1549] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel biomarkers of disease progression after type 1 diabetes onset are needed. We profiled peripheral blood (PB) monocyte gene expression in six healthy subjects and 16 children with type 1 diabetes diagnosed ∼3 months previously and analyzed clinical features from diagnosis to 1 year. Monocyte expression profiles clustered into two distinct subgroups, representing mild and severe deviation from healthy control subjects, along the same continuum. Patients with strongly divergent monocyte gene expression had significantly higher insulin dose-adjusted HbA(1c) levels during the first year, compared with patients with mild deviation. The diabetes-associated expression signature identified multiple perturbations in pathways controlling cellular metabolism and survival, including endoplasmic reticulum and oxidative stress (e.g., induction of HIF1A, DDIT3, DDIT4, and GRP78). Quantitative PCR (qPCR) of a 9-gene panel correlated with glycemic control in 12 additional recent-onset patients. The qPCR signature was also detected in PB from healthy first-degree relatives. A PB gene expression signature correlates with glycemic control in the first year after diabetes diagnosis and is present in at-risk subjects. These findings implicate monocyte phenotype as a candidate biomarker for disease progression pre- and postonset and systemic stresses as contributors to innate immune function in type 1 diabetes.
Collapse
Affiliation(s)
- Katharine M. Irvine
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Patricia Gallego
- Mater Children’s Hospital, Brisbane, Queensland, Australia
- The University of Western Ontario Department of Pediatrics, London Health Sciences Centre, Children's Hospital, London, Ontario, Canada
| | - Xiaoyu An
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Shannon E. Best
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Gethin Thomas
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Christine Wells
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark Harris
- Mater Children’s Hospital, Brisbane, Queensland, Australia
| | | | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
- Corresponding author: Ranjeny Thomas,
| |
Collapse
|
446
|
ER-Mitochondria Crosstalk during Cerebral Ischemia: Molecular Chaperones and ER-Mitochondrial Calcium Transfer. Int J Cell Biol 2012; 2012:493934. [PMID: 22577383 PMCID: PMC3335182 DOI: 10.1155/2012/493934] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/12/2012] [Indexed: 11/24/2022] Open
Abstract
It is commonly believed that sustained elevations in the mitochondrial matrix Ca2+ concentration are a major feature of the intracellular cascade of lethal events during cerebral ischemia. The physical association between the endoplasmic reticulum (ER) and mitochondria, known as the mitochondria-associated ER membrane (MAM), enables highly efficient transmission of Ca2+ from the ER to mitochondria under both physiological and pathological conditions. Molecular chaperones are well known for their protective effects during cerebral ischemia. It has been demonstrated recently that many molecular chaperones coexist with MAM and regulate the MAM and thus Ca2+ concentration inside mitochondria. Here, we review recent research on cerebral ischemia and MAM, with a focus on molecular chaperones and ER-mitochondrial calcium transfer.
Collapse
|
447
|
Zampese E, Pizzo P. Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes? Cell Mol Life Sci 2012; 69:1077-104. [PMID: 21968921 PMCID: PMC11114864 DOI: 10.1007/s00018-011-0845-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
Abstract
An increase in the concentration of cytosolic free Ca(2+) is a key component regulating different cellular processes ranging from egg fertilization, active secretion and movement, to cell differentiation and death. The multitude of phenomena modulated by Ca(2+), however, do not simply rely on increases/decreases in its concentration, but also on specific timing, shape and sub-cellular localization of its signals that, combined together, provide a huge versatility in Ca(2+) signaling. Intracellular organelles and their Ca(2+) handling machineries exert key roles in this complex and precise mechanism, and this review will try to depict a map of Ca(2+) routes inside cells, highlighting the uniqueness of the different Ca(2+) toolkit components and the complexity of the interactions between them.
Collapse
Affiliation(s)
- Enrico Zampese
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
448
|
Shinde VM, Sizova OS, Lin JH, LaVail MM, Gorbatyuk MS. ER stress in retinal degeneration in S334ter Rho rats. PLoS One 2012; 7:e33266. [PMID: 22432009 PMCID: PMC3303830 DOI: 10.1371/journal.pone.0033266] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/06/2012] [Indexed: 11/18/2022] Open
Abstract
The S334ter rhodopsin (Rho) rat (line 4) bears the rhodopsin gene with an early termination codon at residue 334 that is a model for several such mutations found in human patients with autosomal dominant retinitis pigmentosa (ADRP). The Unfolded Protein Response (UPR) is implicated in the pathophysiology of several retinal disorders including ADRP in P23H Rho rats. The aim of this study was to examine the onset of UPR gene expression in S334ter Rho retinas to determine if UPR is activated in ADRP animal models and to investigate how the activation of UPR molecules leads to the final demise of S334ter Rho photoreceptors. RT-PCR was performed to evaluate the gene expression profiles for the P10, P12, P15, and P21 stages of the development and progression of ADRP in S334ter Rho photoreceptors. We determined that during the P12–P15 period, ER stress-related genes are strongly upregulated in transgenic retinas, resulting in the activation of the UPR that was confirmed using western blot analysis and RT-PCR. The activation of UPR was associated with the increased expression of JNK, Bik, Bim, Bid, Noxa, and Puma genes and cleavage of caspase-12 that together with activated calpains presumably compromise the integrity of the mitochondrial MPTP, leading to the release of pro-apoptotic AIF1 into the cytosol of S334ter Rho photoreceptor cells. Therefore, two major cross-talking pathways, the UPR and mitochondrial MPTP occur in S334ter-4 Rho retina concomitantly and eventually promote the death of the photoreceptor cells.
Collapse
Affiliation(s)
- Vishal M Shinde
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, North Texas Eye Research Institute, Fort Worth, Texas, United States of America
| | | | | | | | | |
Collapse
|
449
|
Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJM, Annaert W, Golab J, de Witte P, Vandenabeele P, Agostinis P. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 2012; 31:1062-79. [PMID: 22252128 PMCID: PMC3298003 DOI: 10.1038/emboj.2011.497] [Citation(s) in RCA: 615] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 12/21/2011] [Indexed: 12/19/2022] Open
Abstract
Surface-exposed calreticulin (ecto-CRT) and secreted ATP are crucial damage-associated molecular patterns (DAMPs) for immunogenic apoptosis. Inducers of immunogenic apoptosis rely on an endoplasmic reticulum (ER)-based (reactive oxygen species (ROS)-regulated) pathway for ecto-CRT induction, but the ATP secretion pathway is unknown. We found that after photodynamic therapy (PDT), which generates ROS-mediated ER stress, dying cancer cells undergo immunogenic apoptosis characterized by phenotypic maturation (CD80(high), CD83(high), CD86(high), MHC-II(high)) and functional stimulation (NO(high), IL-10(absent), IL-1β(high)) of dendritic cells as well as induction of a protective antitumour immune response. Intriguingly, early after PDT the cancer cells displayed ecto-CRT and secreted ATP before exhibiting biochemical signatures of apoptosis, through overlapping PERK-orchestrated pathways that require a functional secretory pathway and phosphoinositide 3-kinase (PI3K)-mediated plasma membrane/extracellular trafficking. Interestingly, eIF2α phosphorylation and caspase-8 signalling are dispensable for this ecto-CRT exposure. We also identified LRP1/CD91 as the surface docking site for ecto-CRT and found that depletion of PERK, PI3K p110α and LRP1 but not caspase-8 reduced the immunogenicity of the cancer cells. These results unravel a novel PERK-dependent subroutine for the early and simultaneous emission of two critical DAMPs following ROS-mediated ER stress.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research and Therapy Unit, Department of Cellular and Molecular Medicine KU Leuven, KU Leuven, Leuven, Belgium
| | - Dmitri V Krysko
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Verfaillie
- Cell Death Research and Therapy Unit, Department of Cellular and Molecular Medicine KU Leuven, KU Leuven, Leuven, Belgium
| | - Agnieszka Kaczmarek
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Gabriela B Ferreira
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Thierry Marysael
- Laboratory for Pharmaceutical Biology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Noemi Rubio
- Cell Death Research and Therapy Unit, Department of Cellular and Molecular Medicine KU Leuven, KU Leuven, Leuven, Belgium
| | - Malgorzata Firczuk
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
- Department 3, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Chantal Mathieu
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Anton J M Roebroek
- Experimental Mouse Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, Department of Human Genetics, KU Leuven and VIB-Center for the Biology of Disease, Leuven, Belgium
| | - Jakub Golab
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
- Department 3, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Peter de Witte
- Laboratory for Pharmaceutical Biology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Unit, Department of Cellular and Molecular Medicine KU Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
450
|
Zheng M, Kim SK, Joe Y, Back SH, Cho HR, Kim HP, Ignarro LJ, Chung HT. Sensing endoplasmic reticulum stress by protein kinase RNA-like endoplasmic reticulum kinase promotes adaptive mitochondrial DNA biogenesis and cell survival via heme oxygenase-1/carbon monoxide activity. FASEB J 2012; 26:2558-68. [PMID: 22391129 DOI: 10.1096/fj.11-199604] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response, allowing cells to recover folding capacity in the organelle. However, the overwhelming response to severe damage results in apoptotic cell death. Because of the physical proximity between ER and mitochondria, a functional interrelationship between these two organelles, including mitochondrial ATP production and apoptosis, has been suggested. The adaptive response to ER stress includes the maintenance of cellular energetics, which eventually determines cell fate. We previously demonstrated that heme oxygenase-1 (HO-1) activity protects cells against ER stress in a protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent pathway. Here, we provide evidence that PERK-mediated induction of HO-1 in murine macrophages, RAW264.7, relays ER stress to mitochondrial DNA (mtDNA) replication and function. ER stress induced by thapsigargin treatments (10-100 nM) resulted in a 2-fold increase in mtDNA contents compared with that in the untreated control. HO-1 activity on ER stress is proven to be critical for mitochondrial integrity because chemical inhibition (zinc protoporphyrin, 5-20 μM) and genetic depletion of HO-1 by small interference RNA transfection suppress the activation of transcription factors for mitochondrial biogenesis. Carbon monoxide (CO), an enzymatic by-product of HO-1 activity is responsible for the function of HO-1. Limited bioavailability of CO by hemoglobin treatment triggers cell death with a concomitant decline in ATP production. Approximately 78.1% of RAW264.7 cells were damaged in the presence of hemoglobin compared with the percentage of injured cells (26.9%) under ER stress alone. Mitochondrial generation of ATP levels significantly declined when CO availability was limited under prolonged ER stress. Taken together, these results suggest that the cellular HO-1/CO system conveys ER stress to cell survival signals from mitochondria via both the activation of transcriptional factors and functional integrity of mtDNA.
Collapse
Affiliation(s)
- Min Zheng
- Department of Surgery, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|