1
|
Wybitul M, Langer N, Hock C, Gietl A, Treyer V. Voxel-wise insights into early Alzheimer's disease pathology progression: the association with APOE and memory decline. GeroScience 2025:10.1007/s11357-025-01610-z. [PMID: 40167963 DOI: 10.1007/s11357-025-01610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
Longitudinal investigation of the Apolipoprotein E (APOE) genotype's impact on Alzheimer's disease (AD) biomarker progression, focusing on amyloid beta (Aβ) accumulation and gray matter (GM) atrophy, integrating cognitive decline and baseline levels. Longitudinal florbetapir-PET and T1-weighted MRI data from 100 cognitively normal (CN) and mild cognitive impaired (MCI) participants both with considerable global Aβ accumulation ("high Aβ accumulators") were analyzed using a voxel-wise approach. Associations of APOE genotype and memory decline with Aβ accumulation and GM atrophy were examined separately for each neuroimaging modality, controlling for baseline Aβ levels and diagnosis. Alternatively, the effect of baseline diagnosis, while controlling for memory decline, was investigated. A multimodal analysis evaluated interactions between genotype, memory decline, and GM atrophy on Aβ accumulation. High Aβ accumulators displayed extensive Aβ pathology predominantly in the medial orbito-frontal cortex, cingulate cortex, and precuneus, along with GM atrophy in temporal, occipital, orbito-frontal, and parietal areas. ɛ4 carriers with memory decline exhibited greater Aβ accumulation and GM atrophy in selective regions compared to non-carriers with memory decline, while no genotype difference was observed in individuals without decline. No interaction effect was observed for MCI diagnosis. Regional associations between the two biomarkers were similarly dependent on genotype and memory decline. ɛ4 carriers exhibiting memory decline present an accelerated neurobiological pattern at predementia stages, supporting early ɛ4 carrier monitoring and interventions in this at-risk group. Importantly, memory decline might be more informative than MCI regarding AD pathology progression emphasizing the importance of repeated cognitive assessments.
Collapse
Affiliation(s)
- Maha Wybitul
- Institute for Regenerative Medicine, Faculty of Medicine, University of Zurich, 8952, Schlieren, Switzerland
- Department of Psychology, Faculty of Philosophy, University of Zurich, 8050, Zurich, Switzerland
| | - Nicolas Langer
- Methods of Plasticity Research, Department of Psychology, University of Zurich, 8050, Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, Faculty of Medicine, University of Zurich, 8952, Schlieren, Switzerland
- Neurimmune, 8952, Schlieren, Switzerland
| | - Anton Gietl
- Institute for Regenerative Medicine, Faculty of Medicine, University of Zurich, 8952, Schlieren, Switzerland
- University Hospital of Psychiatry Zurich, Geriatric Psychiatry and Psychotherapy, 8008, Zurich, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, Faculty of Medicine, University of Zurich, 8952, Schlieren, Switzerland.
- Department of Nuclear Medicine, University of Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
2
|
Bejaoui Y, Srour L, Qannan A, Oshima J, Saad C, Horvath S, Mbarek H, El Hajj N. The role of protective genetic variants in modulating epigenetic aging. GeroScience 2025:10.1007/s11357-025-01548-2. [PMID: 39928272 DOI: 10.1007/s11357-025-01548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
Several progeroid syndromes' causative mutations have been linked to epigenetic age acceleration as measured via several epigenetic clocks. At the same time, several protective variants have also been discovered that can reduce the risk of developing certain age-related disorders. However, the impact of these protective variants on epigenetic aging has not been well elucidated. Our research, which involved screening over 14,669 healthy individuals enrolled in the Qatar BioBank (QBB) and sequenced by the Qatar Genome Project (QGP), identified individuals carrying protective variants against age-related disorders, including Alzheimer's disease (AD), type 2 diabetes (T2D), and atherosclerosis. In this study, we measured methylation levels in blood DNA using the EPIC v2 arrays. In addition, epigenetic age was calculated using various epigenetic clocks. Our analysis revealed that the APOE*E2 protective variant reduces the rate of GrimAge epigenetic aging when compared to individuals with the APOE4 AD risk allele. Furthermore, our differential DNA methylation analysis discovered the association of the PCSK9 protective variant with specific biological processes related to immune function and the cardiovascular system. In conclusion, APOE*E2 protective variants have a positive impact on epigenetic aging, while PCSK9 protective variants have a significant effect on DNA methylation signatures. Further studies are needed to better understand the underlying mechanisms by which protective variants influence epigenetic aging, particularly the role of APOE*E2 protective variants in biological aging. Furthermore, additional research is required to fully uncover the processes that might enable specific targeted therapies to mimic the effects of beneficial mutations, such as LOF variants in PCSK9, in reducing the risk of geriatric disorders.
Collapse
Affiliation(s)
- Yosra Bejaoui
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Luma Srour
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abeer Qannan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98105, USA
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chadi Saad
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, Qatar
| | - Steve Horvath
- Altos Labs, San Diego, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hamdi Mbarek
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, Qatar
| | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
3
|
Yang Z, Xiong Q, He R, Wu C, Huang Y, Li Q, Liu X. Association between apolipoprotein E gene polymorphism and early MR findings in individuals with acute intracerebral hemorrhage: A retrospective cohort analysis. J Stroke Cerebrovasc Dis 2025; 34:108128. [PMID: 39528057 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The Apolipoprotein E (APOE) gene plays a significant role in the development and prognosis of intracerebral hemorrhage (ICH). Imaging features identified within 48 h of ICH onset, particularly on magnetic resonance imaging (MRI), are indicative of cerebral small vessel diseases (CSVD). Our study aimed to assess these imaging characteristics and investigate their association with the APOE gene among ICH patients. METHODS Clinical and imaging data from patients meeting specific inclusion and exclusion criteria from October 2021 to March 2022 were collected. MR signs or scores were evaluated following international accreditation standards and then analyzed in connection with the APOE allele genes. RESULTS In a cohort of 220 patients, ε2 was identified as an independent risk factor for the "multiple subcortical spots" sign (OR = 13.29, 95% CI 1.88-22.59). Furthermore, ε4 emerged as an independent risk factor for the presence of perivascular space (PVS) in the centrum semiovale (OR = 2.46, 95% CI 1.03-5.89) and basal ganglia (OR = 2.64, 95% CI 1.10-6.35), as well as for cerebral microbleeds (CMB) across all locations (OR = 2.38, 95% CI 1.15-6.97), lobar CMB (OR = 2.92, 95% CI 1.11-7.65), and deep CMB (OR = 2.29, 95% CI 1.12-8.67). CONCLUSION The association between APOE ɛ2 and ɛ4 alleles and the presence of "subcortical multiple spots," "PVS," and "CMB" indirectly implies the potential role of APOE gene-related pathological changes in the progression of ICH and small vessel pathology.
Collapse
Affiliation(s)
- Zhenjie Yang
- Department of Radiology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404000, China; School of Medicine, Chongqing University, Chongqing, 404010, China
| | - Qiuxia Xiong
- Department of Radiology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404000, China; School of Medicine, Chongqing University, Chongqing, 404010, China
| | - Rui He
- Department of Ultrasound Medicine, Chongqing Wanzhou District Maternal and Child Health Care Hospital, Wanzhou, Chongqing, 404000, China
| | - Chuyue Wu
- School of Medicine, Chongqing University, Chongqing, 404010, China; Department of Neurology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404010, China; Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404000, China
| | - Yu Huang
- School of Medicine, Chongqing University, Chongqing, 404010, China; Department of Neurology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404010, China
| | - Qian Li
- School of Medicine, Chongqing University, Chongqing, 404010, China; Department of Neurology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404010, China
| | - Xinghua Liu
- Department of Radiology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, 404000, China; School of Medicine, Chongqing University, Chongqing, 404010, China.
| |
Collapse
|
4
|
Ye M, Ji Q, Liu Q, Kang X, Zhan Y. Longitudinal associations of lipid profiles with sleep disorders in patients with Parkinson's disease. Lipids 2024. [PMID: 39702743 DOI: 10.1002/lipd.12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
To examine the associations of apolipoprotein E (APOE) carrier status and lipid profiles with sleep disorders, including excessive daytime sleepiness (EDS) and probable rapid eye movement sleep behavior disorder (pRBD), among patients with early Parkinson's disease (PD) over 5-year follow-up periods. The Parkinson's Progression Markers Initiative is a multicenter cohort study based on an ongoing and open-ended registry. Data from baseline and 5-year follow-up visits from participants of de novo PD were analyzed. Longitudinal associations of APOE carrier status and lipid profiles with sleep disorders were estimated via linear mixed-effects models. A total of 657 participants with complete APOE genotypes were enrolled at baseline. Among them, 153 (25.3%) had available lipid profiles at baseline. In the linear mixed-effects models, baseline APOE ε2/ε3/ε4 carrier status did not exhibit significant associations with EDS and pRBD (all p > 0.05) in all models. However, reduced high-density lipoprotein (HDL) and elevated triglycerides (TG) were associated with developing EDS (β = -0.04, 95% CI: -0.07, -0.00) and pRBD (β = 0.01, 95% CI: 0.00, 0.02) in PD patients, respectively. In the APOE ε4+ subgroup, decreased HDL and increased TG displayed substantial associations with developing EDS and sleep disorders (all p < 0.05) in all models, respectively, whereas no significant differences were noted in the APOE ε4- subgroup (all p > 0.05). Our study did not demonstrate a clear association between APOE ε2/ε3/ε4 and sleep disorders in PD patients. However, the presence of APOE ε4 was associated with changes in lipid profiles, notably affecting TG and HDL levels.
Collapse
Affiliation(s)
- Meijie Ye
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qi Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xiaoying Kang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Moore A, Ritchie MD. Is the Relationship Between Cardiovascular Disease and Alzheimer's Disease Genetic? A Scoping Review. Genes (Basel) 2024; 15:1509. [PMID: 39766777 PMCID: PMC11675426 DOI: 10.3390/genes15121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cardiovascular disease (CVD) and Alzheimer's disease (AD) are two diseases highly prevalent in the aging population and often co-occur. The exact relationship between the two diseases is uncertain, though epidemiological studies have demonstrated that CVDs appear to increase the risk of AD and vice versa. This scoping review aims to examine the current identified overlapping genetics between CVDs and AD at the individual gene level and at the shared pathway level. METHODS Following PRISMA-ScR guidelines for a scoping review, we searched the PubMed and Scopus databases from 1990 to October 2024 for articles that involved (1) CVDs, (2) AD, and (3) used statistical methods to parse genetic relationships. RESULTS Our search yielded 2918 articles, of which 274 articles passed screening and were organized into two main sections: (1) evidence of shared genetic risk; and (2) shared mechanisms. The genes APOE, PSEN1, and PSEN2 reportedly have wide effects across the AD and CVD spectrum, affecting both cardiac and brain tissues. Mechanistically, changes in three main pathways (lipid metabolism, blood pressure regulation, and the breakdown of the blood-brain barrier (BBB)) contribute to subclinical and etiological changes that promote both AD and CVD progression. However, genetic studies continue to be limited by the availability of longitudinal data and lack of cohorts that are representative of diverse populations. CONCLUSIONS Highly penetrant familial genes simultaneously increase the risk of CVDs and AD. However, in most cases, sets of dysregulated genes within larger-scale mechanisms, like changes in lipid metabolism, blood pressure regulation, and BBB breakdown, increase the risk of both AD and CVDs and contribute to disease progression.
Collapse
Affiliation(s)
- Anni Moore
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Division of Informatics, Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Ding Y, Palecek SP, Shusta EV. iPSC-derived blood-brain barrier modeling reveals APOE isoform-dependent interactions with amyloid beta. Fluids Barriers CNS 2024; 21:79. [PMID: 39394110 PMCID: PMC11468049 DOI: 10.1186/s12987-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Three common isoforms of the apolipoprotein E (APOE) gene - APOE2, APOE3, and APOE4 - hold varying significance in Alzheimer's Disease (AD) risk. The APOE4 allele is the strongest known genetic risk factor for late-onset Alzheimer's Disease (AD), and its expression has been shown to correlate with increased central nervous system (CNS) amyloid deposition and accelerated neurodegeneration. Conversely, APOE2 is associated with reduced AD risk and lower CNS amyloid burden. Recent clinical data have suggested that increased blood-brain barrier (BBB) leakage is commonly observed among AD patients and APOE4 carriers. However, it remains unclear how different APOE isoforms may impact AD-related pathologies at the BBB. METHODS To explore potential impacts of APOE genotypes on BBB properties and BBB interactions with amyloid beta, we differentiated isogenic human induced pluripotent stem cell (iPSC) lines with different APOE genotypes into both brain microvascular endothelial cell-like cells (BMEC-like cells) and brain pericyte-like cells. We then compared the effect of different APOE isoforms on BBB-related and AD-related phenotypes. Statistical significance was determined via ANOVA with Tukey's post hoc testing as appropriate. RESULTS Isogenic BMEC-like cells with different APOE genotypes had similar trans-endothelial electrical resistance, tight junction integrity and efflux transporter gene expression. However, recombinant APOE4 protein significantly impeded the "brain-to-blood" amyloid beta 1-40 (Aβ40) transport capabilities of BMEC-like cells, suggesting a role in diminished amyloid clearance. Conversely, APOE2 increased amyloid beta 1-42 (Aβ42) transport in the model. Furthermore, we demonstrated that APOE-mediated amyloid transport by BMEC-like cells is dependent on LRP1 and p-glycoprotein pathways, mirroring in vivo findings. Pericyte-like cells exhibited similar APOE secretion levels across genotypes, yet APOE4 pericyte-like cells showed heightened extracellular amyloid deposition, while APOE2 pericyte-like cells displayed the least amyloid deposition, an observation in line with vascular pathologies in AD patients. CONCLUSIONS While APOE genotype did not directly impact general BMEC or pericyte properties, APOE4 exacerbated amyloid clearance and deposition at the model BBB. Conversely, APOE2 demonstrated a potentially protective role by increasing amyloid transport and decreasing deposition. Our findings highlight that iPSC-derived BBB models can potentially capture amyloid pathologies at the BBB, motivating further development of such in vitro models in AD modeling and drug development.
Collapse
Affiliation(s)
- Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Abrego-Guandique DM, Saraceno GF, Cannataro R, Manzzo de Burnside M, Caroleo MC, Cione E. Apolipoprotein E and Alzheimer's Disease in Italian Population: Systematic Review and Meta-Analysis. Brain Sci 2024; 14:908. [PMID: 39335404 PMCID: PMC11430190 DOI: 10.3390/brainsci14090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Objective: This meta-analysis with a systematic review was undertaken to assess the association between APOE allelic genotypes and the risk of Alzheimer's disease (AD) in the Italian population. Methods: The Web of Science, PubMed, and Scopus databases were searched until 15 November 2023. The odds ratio (OR) with a 95% confidence interval (CI) was calculated using fixed and random effect models, depending on the I2 statistic value. The systematic review and meta-analysis were conducted in agreement with the PRISMA guideline and registered with PROSPERO (CRD42023492580). Results: Our meta-analysis based on 15 studies revealed a higher risk of AD among Italian individuals carrying the APOE ε4 allele (OR = 3.60, 95% CI [2.90-4.47], p < 0.0001). The association of AD genotype APOE ε2ε4 (OR = 1.36, 95% CI [0.76-2.41], p = 0.29) was not statistically significant, while APOE ε3ε4 (OR = 3.43, 95% CI [2.95-3.99], p < 0.0001) has a high risk of AD development; the risk is more notably in the APOE ε4ε4 genotype (OR = 7.08, 95% CI [4.22-11.86], p < 0.0001). The APOE ε2 allele has a protective effect (APOE ε2 (OR = 0.47, 95% CI [0.29-0.74], p = 0.0013)), and similar results were achieved by APOE ε3 (OR = 0.49, 95% CI [0.37-0.65], p < 0.0001). Subgroup analysis of three areas of Italy (southern, northern, and center) revealed that that APOE ε4 allele was a risk factor with a higher OR in northern Italy (OR 4.22; 95% CI [3.46-5.16], p < 0.0001) compared to southern and center Italy (OR 3.02; 95% CI [2.28-4.01], p < 0.0001 and OR 3.97; 95% CI [1.37-11.56], p < 0.0001, respectively). As well, APOE ε4ε4 genotype carriers had a significantly higher OR in northern Italy (OR 9.69; 95% CI [4.94-18.99], p < 0.0001) compared to in southern and center Italy (OR 4.38; 95% CI [1.54-12.47], p < 0.0001 and OR 3.59; 95% CI [0.87-14.86], p < 0.0001, respectively). Conclusions: This systematic review with a meta-analysis of the Italian population on APOE alleles, genotyping, and AD incidence, highlights that individuals harboring APOE ε4 have a higher risk of developing AD compared to those with other alleles. It also supports the protective effect of the APOE ε2 allele against the progress of AD. The qualitative analysis on the complex genetic interactions influencing Alzheimer risk emphasizes the need for further research on genetic and environmental factors for effective prevention strategies.
Collapse
Affiliation(s)
| | - Giorgia Francesca Saraceno
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende, Italy; (G.F.S.); (E.C.)
| | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110311, Colombia
| | | | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Erika Cione
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende, Italy; (G.F.S.); (E.C.)
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
8
|
Jackson RJ, Hyman BT, Serrano-Pozo A. Multifaceted roles of APOE in Alzheimer disease. Nat Rev Neurol 2024; 20:457-474. [PMID: 38906999 DOI: 10.1038/s41582-024-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-β - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| |
Collapse
|
9
|
Mattsson-Carlgren N. Disentangling genetic risks for development and progression of Alzheimer's disease. Brain 2024; 147:2604-2606. [PMID: 39018494 PMCID: PMC11292895 DOI: 10.1093/brain/awae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
This scientific commentary refers to ‘Towards cascading genetic risk in Alzheimer’s disease’ by Altmann et al. (https://doi.org/10.1093/brain/awae176).
Collapse
Affiliation(s)
- Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 20502 Malmö, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, 22185 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 22184 Lund, Sweden
| |
Collapse
|
10
|
Winarni TI, Hwang YH, Rivera SM, Hessl D, Durbin-Johnson BP, Utari A, Hagerman R, Tassone F. Apolipoproteine and KLOTHO Gene Variants Do Not Affect the Penetrance of Fragile X-Associated Tremor/Ataxia Syndrome. Int J Mol Sci 2024; 25:8103. [PMID: 39125677 PMCID: PMC11312271 DOI: 10.3390/ijms25158103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, the potential role and interaction of the APOε and KLOTHO genes on the penetrance of fragile X-associated tremor/ataxia syndrome (FXTAS) and on the IQ trajectory were investigated. FXTAS was diagnosed based on molecular, clinical and radiological criteria. Males with the premutation (PM) over 50 years, 165 with and 34 without an FXTAS diagnosis, were included in this study and were compared based on their APO (ε2-ε3-ε4) and KLOTHO variant (KL-VS) genotypes. The effect of APOε4 on FXTAS stage and on diagnosis did not differ significantly by KL-VS genotype with interaction effect p = 0.662 and p = 0.91, respectively. In the FXTAS individuals with an APOε2 allele, a marginal significance was observed towards a larger decline in verbal IQ (VIQ) in individuals with an APOε4 allele compared to those without an APOε4 allele (p = 0.071). In conclusion, our findings suggest that the APOε4 and KL-VS genotypes alone or through their interaction effect do not appear to predispose to either FXTAS diagnosis or stage in male carriers of the PM allele. A further study is needed to establish the trend of IQ decline in the FXTAS individuals who carry APOε4 with APOε2 compared to those without APOε4.
Collapse
Affiliation(s)
- Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia; (T.I.W.); (A.U.)
| | - Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Susan M. Rivera
- Department of Psychology, University of Marlyand, College Park, MD 20742, USA;
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (D.H.); (R.H.)
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (D.H.); (R.H.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Blythe P. Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Agustini Utari
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia; (T.I.W.); (A.U.)
- Department of Pediatrics, Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
| | - Randi Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (D.H.); (R.H.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (D.H.); (R.H.)
| |
Collapse
|
11
|
Marino FR, Deal JA, Dougherty RJ, Bilgel M, Tian Q, An Y, Simonsick EM, Resnick SM, Ferrucci L, Spira AP, Wanigatunga AA, Schrack JA. Differences in Daily Physical Activity by Alzheimer's Risk Markers Among Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glae119. [PMID: 38742659 PMCID: PMC11157965 DOI: 10.1093/gerona/glae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Daily physical activity patterns differ by Alzheimer's disease (AD) status and might signal cognitive risk. It is critical to understand whether patterns are disrupted early in the AD pathological process. Yet, whether established AD risk markers (β-amyloid [Aβ] or apolipoprotein E-ε4 [APOE-ε4]) are associated with differences in objectively measured activity patterns among cognitively unimpaired older adults is unclear. METHODS Wrist accelerometry, brain Aβ (+/-), and APOE-ε4 genotype were collected in 106 (Aβ) and 472 (APOE-ε4) participants (mean age 76 [standard deviation{SD}: 8.5) or 75 [SD: 9.2] years, 60% or 58% women) in the Baltimore Longitudinal Study of Aging. Adjusted linear and function-on-scalar regression models examined whether Aβ or APOE-ε4 status was cross-sectionally associated with activity patterns (amount, variability, or fragmentation) overall and by time of day, respectively. Differences in activity patterns by combinations of Aβ and APOE-ε4 status were descriptively examined (n = 105). RESULTS There were no differences in any activity pattern by Aβ or APOE-ε4 status overall. Aβ+ was associated with lower total amount and lower within-day variability of physical activity overnight and early evening, and APOE-ε4 carriers had higher total amount of activity in the evening and lower within-day variability of activity in the morning. Diurnal curves of activity were blunted among those with Aβ+ regardless of APOE-ε4 status, but only when including older adults with mild cognitive impairment/dementia. CONCLUSIONS Aβ+ in cognitively unimpaired older adults might manifest as lower amount and variability of daily physical activity, particularly during overnight/evening hours. Future research is needed to examine changes in activity patterns in larger samples and by other AD biomarkers.
Collapse
Affiliation(s)
- Francesca R Marino
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center on Aging & Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer A Deal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ryan J Dougherty
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Murat Bilgel
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Qu Tian
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Yang An
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Susan M Resnick
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | - Adam P Spira
- Center on Aging & Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amal A Wanigatunga
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center on Aging & Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center on Aging & Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Wybitul M, Buchmann A, Langer N, Hock C, Treyer V, Gietl A. Trajectories of amyloid beta accumulation - Unveiling the relationship with APOE genotype and cognitive decline. Neurobiol Aging 2024; 139:44-53. [PMID: 38593527 DOI: 10.1016/j.neurobiolaging.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Amyloid beta (Aβ) follows a sigmoidal time function with varying accumulation rates. We studied how the position on this function, reflected by different Aβ accumulation phases, influences APOE ɛ4's association with Aβ and cognitive decline in 503 participants without dementia using Aβ-PET imaging over 5.3-years. First, Aβ load and accumulation were analyzed irrespective of phases using linear mixed regression. Generally, ɛ4 carriers displayed a higher Aβ load. Moreover, Aβ normal (Aβ-) ɛ4 carriers demonstrated higher accumulation. Next, we categorized accumulation phases as "decrease", "stable", or "increase" based on trajectory shapes. After excluding the Aβ-/decrease participants from the initial regression, the difference in accumulation attributable to genotype among Aβ- individuals was no longer significant. Further analysis revealed that in increase phases, Aβ accumulation was higher among noncarriers, indicating a genotype-related timeline shift. Finally, cognitive decline was analyzed across phases and was already evident in the Aβ-/increase phase. Our results encourage early interventions for ɛ4 carriers and imply that monitoring accumulating Aβ- individuals might help identify those at risk for cognitive decline.
Collapse
Affiliation(s)
- Maha Wybitul
- Institute for Regenerative Medicine, Faculty of Medicine, University of Zurich, Schlieren 8952, Switzerland; Department of Psychology, Faculty of Philosophy, University of Zurich, Zurich 8050, Switzerland
| | - Andreas Buchmann
- Institute for Regenerative Medicine, Faculty of Medicine, University of Zurich, Schlieren 8952, Switzerland
| | - Nicolas Langer
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich 8050, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, Faculty of Medicine, University of Zurich, Schlieren 8952, Switzerland; Neurimmune, Schlieren 8952, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, Faculty of Medicine, University of Zurich, Schlieren 8952, Switzerland; Department of Nuclear Medicine, University of Zurich, Zurich 8091, Switzerland.
| | - Anton Gietl
- Institute for Regenerative Medicine, Faculty of Medicine, University of Zurich, Schlieren 8952, Switzerland; University Hospital for Geriatric Psychiatry, Zurich 8008, Switzerland
| |
Collapse
|
13
|
Yu Y, Yu S, Battaglia G, Tian X. Amyloid-β in Alzheimer's disease: Structure, toxicity, distribution, treatment, and prospects. IBRAIN 2024; 10:266-289. [PMID: 39346788 PMCID: PMC11427815 DOI: 10.1002/ibra.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 10/01/2024]
Abstract
Amyloid-β (Aβ) is a pivotal biomarker in Alzheimer's disease (AD), attracting considerable attention from numerous researchers. There is uncertainty regarding whether clearing Aβ is beneficial or harmful to cognitive function. This question has been a central topic of research, especially given the lack of success in developing Aβ-targeted drugs for AD. However, with the Food and Drug Administration's approval of Lecanemab as the first anti-Aβ medication in July 2023, there is a significant shift in perspective on the potential of Aβ as a therapeutic target for AD. In light of this advancement, this review aims to illustrate and consolidate the molecular structural attributes and pathological ramifications of Aβ. Furthermore, it elucidates the determinants influencing its expression levels while delineating the gamut of extant Aβ-targeted pharmacotherapies that have been subjected to clinical or preclinical evaluation. Subsequently, a comprehensive analysis is presented, dissecting the research landscape of Aβ across the domains above, culminating in the presentation of informed perspectives. Concluding reflections contemplate the supplementary advantages conferred by nanoparticle constructs, conceptualized within the framework of multivalent theory, within the milieu of AD diagnosis and therapeutic intervention, supplementing conventional modalities.
Collapse
Affiliation(s)
- Yifan Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Shilong Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Xiaohe Tian
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
14
|
Wei B, Xu Y, Du Y, Zhou J, Zhong F, Wu C, Lou Y. Feasibility of Using Magnetic Resonance Spectroscopy Test Biomarkers to Diagnose Alzheimer's Disease: Systematic Evaluation and Meta-Analysis. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:161-171. [PMID: 38622011 PMCID: PMC11016455 DOI: 10.62641/aep.v52i2.1552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of dementia, resulting in impairments in memory, cognition, decision-making, and social skills. Thus, accurate preclinical diagnosis of Alzheimer's disease is paramount. The identification of biomarkers for Alzheimer's disease through magnetic resonance spectroscopy (MRS) represents a novel adjunctive diagnostic approach. OBJECTIVE This study conducted a meta-analysis of the diagnostic results of this technology to explore its feasibility and accuracy. METHODS PubMed, Cochrane Library, EMBASE, and Web of Science databases were searched without restrictions, with the search period extending up to July 31, 2022. The search strategy employed a combination of subject headings and keywords. All retrieved documents underwent screening by two researchers, who selected them for meta-analysis. The included literature was analyzed using Review Manager 5.4 software, with corresponding bias maps, forest plots, and summary receiver operating characteristic (SROC) curves generated and analyzed. RESULTS A total of 344 articles were retrieved initially, with 11 articles meeting the criteria for inclusion in the analysis. The analysis encompassed data from approximately 1766 patients. In the forest plot, both sensitivity (95% CI) and specificity (95% CI) approached 1. Examining the true positive rate, false positive rate, true negative rate, and false negative rate, all studies on the summary receiver operating characteristic (SROC) curve clustered in the upper left quadrant, suggesting a very high accuracy of biomarkers detected by MRS for diagnosing Alzheimer's disease. CONCLUSION The detection of biomarkers by MRS demonstrates feasibility and high accuracy in diagnosing AD. This technology holds promise for widespread adoption in the clinical diagnosis of AD in the future.
Collapse
Affiliation(s)
- Bo Wei
- Department of Neurology, Shaoxing People's Hospital, 312000 Shaoxing, Zhejiang, China
| | - Yiqin Xu
- Department of Neurology, Shaoxing People's Hospital, 312000 Shaoxing, Zhejiang, China
| | - Ye Du
- Department of Neurology, Shaoxing People's Hospital, 312000 Shaoxing, Zhejiang, China
| | - Jie Zhou
- Department of Radiology, Shaoxing Seventh People's Hospital (Affiliated Mental Health Center, Medical College of Shaoxing University), 312000 Shaoxing, Zhejiang, China
| | - Fangfang Zhong
- Department of Neurology, Shaoxing People's Hospital, 312000 Shaoxing, Zhejiang, China
| | - Chenglong Wu
- Department of Neurology, Shaoxing People's Hospital, 312000 Shaoxing, Zhejiang, China
| | - Yiping Lou
- Department of Neurology, Shaoxing People's Hospital, 312000 Shaoxing, Zhejiang, China
| |
Collapse
|
15
|
Aksman LM, Oxtoby NP, Scelsi MA, Wijeratne PA, Young AL, Alves IL, Collij LE, Vogel JW, Barkhof F, Alexander DC, Altmann A. A data-driven study of Alzheimer's disease related amyloid and tau pathology progression. Brain 2023; 146:4935-4948. [PMID: 37433038 PMCID: PMC10690020 DOI: 10.1093/brain/awad232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
Amyloid-β is thought to facilitate the spread of tau throughout the neocortex in Alzheimer's disease, though how this occurs is not well understood. This is because of the spatial discordance between amyloid-β, which accumulates in the neocortex, and tau, which accumulates in the medial temporal lobe during ageing. There is evidence that in some cases amyloid-β-independent tau spreads beyond the medial temporal lobe where it may interact with neocortical amyloid-β. This suggests that there may be multiple distinct spatiotemporal subtypes of Alzheimer's-related protein aggregation, with potentially different demographic and genetic risk profiles. We investigated this hypothesis, applying data-driven disease progression subtyping models to post-mortem neuropathology and in vivo PET-based measures from two large observational studies: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Religious Orders Study and Rush Memory and Aging Project (ROSMAP). We consistently identified 'amyloid-first' and 'tau-first' subtypes using cross-sectional information from both studies. In the amyloid-first subtype, extensive neocortical amyloid-β precedes the spread of tau beyond the medial temporal lobe, while in the tau-first subtype, mild tau accumulates in medial temporal and neocortical areas prior to interacting with amyloid-β. As expected, we found a higher prevalence of the amyloid-first subtype among apolipoprotein E (APOE) ε4 allele carriers while the tau-first subtype was more common among APOE ε4 non-carriers. Within tau-first APOE ε4 carriers, we found an increased rate of amyloid-β accumulation (via longitudinal amyloid PET), suggesting that this rare group may belong within the Alzheimer's disease continuum. We also found that tau-first APOE ε4 carriers had several fewer years of education than other groups, suggesting a role for modifiable risk factors in facilitating amyloid-β-independent tau. Tau-first APOE ε4 non-carriers, in contrast, recapitulated many of the features of primary age-related tauopathy. The rate of longitudinal amyloid-β and tau accumulation (both measured via PET) within this group did not differ from normal ageing, supporting the distinction of primary age-related tauopathy from Alzheimer's disease. We also found reduced longitudinal subtype consistency within tau-first APOE ε4 non-carriers, suggesting additional heterogeneity within this group. Our findings support the idea that amyloid-β and tau may begin as independent processes in spatially disconnected regions, with widespread neocortical tau resulting from the local interaction of amyloid-β and tau. The site of this interaction may be subtype-dependent: medial temporal lobe in amyloid-first, neocortex in tau-first. These insights into the dynamics of amyloid-β and tau may inform research and clinical trials that target these pathologies.
Collapse
Affiliation(s)
- Leon M Aksman
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1V 6LJ, UK
| | - Neil P Oxtoby
- Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, UK
| | - Marzia A Scelsi
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1V 6LJ, UK
| | - Peter A Wijeratne
- Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, UK
| | - Alexandra L Young
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, UK
| | | | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam 1081 HV, The Netherlands
| | - Jacob W Vogel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederik Barkhof
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1V 6LJ, UK
- Brain Research Center, Amsterdam 1081 GN, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1007MB, The Netherlands
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, UK
| | - Andre Altmann
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1V 6LJ, UK
| | | |
Collapse
|
16
|
Wang SM, Kang DW, Um YH, Kim S, Kim REY, Kim D, Lee CU, Lim HK. Cognitive Normal Older Adults with APOE-2 Allele Show a Distinctive Functional Connectivity Pattern in Response to Cerebral Aβ Deposition. Int J Mol Sci 2023; 24:11250. [PMID: 37511008 PMCID: PMC10380008 DOI: 10.3390/ijms241411250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The ε2 allele of apolipoprotein E (ε2) has neuroprotective effects against beta-amyloid (Aβ) pathology in Alzheimer's disease (AD). However, its impact on the functional connectivity and hub efficiency in cognitively normal older adults (CN) with ε2 is unclear. We investigated the functional connectivity differences in the default mode network (DMN), salience network, and central executive network (CEN) between A-PET-negative (N = 29) and A-PET-positive (N = 15) CNs with ε2/ε2 or ε2/ε3 genotypes. The A-PET-positive CNs exhibited a lower anterior DMN functional connectivity, higher posterior DMN functional connectivity, and increased CEN functional connectivity compared to the A-PET-negative CNs. Cerebral Aβ retention was negatively correlated with anterior DMN functional connectivity and positively correlated with posterior DMN and anterior CEN functional connectivity. A graph theory analysis showed that the A-PET-positive CNs displayed a higher betweenness centrality in the middle frontal gyrus (left) and medial fronto-parietal regions (left). The betweenness centrality in the middle frontal gyrus (left) was positively correlated with Aβ retention. Our findings reveal a reversed anterior-posterior dissociation in the DMN functional connectivity and heightened CEN functional connectivity in A-PET-positive CNs with ε2. Hub efficiencies, measured by betweenness centrality, were increased in the DMN and CEN of the A-PET-positive CNs with ε2. These results suggest unique functional connectivity responses to Aβ pathology in CN individuals with ε2.
Collapse
Affiliation(s)
- Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Regina E Y Kim
- Research Institute, Neurophet Inc., Seoul 08380, Republic of Korea
| | - Donghyeon Kim
- Research Institute, Neurophet Inc., Seoul 08380, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
17
|
Lamontagne-Kam D, Ulfat AK, Hervé V, Vu TM, Brouillette J. Implication of tau propagation on neurodegeneration in Alzheimer's disease. Front Neurosci 2023; 17:1219299. [PMID: 37483337 PMCID: PMC10360202 DOI: 10.3389/fnins.2023.1219299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Propagation of tau fibrils correlate closely with neurodegeneration and memory deficits seen during the progression of Alzheimer's disease (AD). Although it is not well-established what drives or attenuates tau spreading, new studies on human brain using positron emission tomography (PET) have shed light on how tau phosphorylation, genetic factors, and the initial epicenter of tau accumulation influence tau accumulation and propagation throughout the brain. Here, we review the latest PET studies performed across the entire AD continuum looking at the impact of amyloid load on tau pathology. We also explore the effects of structural, functional, and proximity connectivity on tau spreading in a stereotypical manner in the brain of AD patients. Since tau propagation can be quite heterogenous between individuals, we then consider how the speed and pattern of propagation are influenced by the starting localization of tau accumulation in connected brain regions. We provide an overview of some genetic variants that were shown to accelerate or slow down tau spreading. Finally, we discuss how phosphorylation of certain tau epitopes affect the spreading of tau fibrils. Since tau pathology is an early event in AD pathogenesis and is one of the best predictors of neurodegeneration and memory impairments, understanding the process by which tau spread from one brain region to another could pave the way to novel therapeutic avenues that are efficient during the early stages of the disease, before neurodegeneration induces permanent brain damage and severe memory loss.
Collapse
|
18
|
Insel PS, Kumar A, Hansson O, Mattsson-Carlgren N. Genetic Moderation of the Association of β-Amyloid With Cognition and MRI Brain Structure in Alzheimer Disease. Neurology 2023; 101:e20-e29. [PMID: 37085326 PMCID: PMC10351305 DOI: 10.1212/wnl.0000000000207305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/03/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES There is considerable heterogeneity in the association between increasing β-amyloid (Aβ) pathology and early cognitive dysfunction in preclinical Alzheimer disease (AD). At this stage, some individuals show no signs of cognitive dysfunction, while others show clear signs of decline. The factors explaining this heterogeneity are particularly important for understanding progression in AD but remain largely unknown. In this study, we examined an array of genetic variants that may influence the relationships among Aβ, brain structure, and cognitive performance in 2 large cohorts. METHODS In 2,953 cognitively unimpaired participants from the Anti-Amyloid Treatment in Asymptomatic Alzheimer disease (A4) study, interactions between genetic variants and 18F-Florbetapir PET standardized uptake value ratio (SUVR) to predict the Preclinical Alzheimer Cognitive Composite (PACC) were assessed. Genetic variants identified in the A4 study were evaluated in the Alzheimer Disease Neuroimaging Initiative (ADNI, N = 527) for their association with longitudinal cognition and brain atrophy in both cognitively unimpaired participants and those with mild cognitive impairment. RESULTS In the A4 study, 4 genetic variants significantly moderated the association between Aβ load and cognition. Minor alleles of 3 variants were associated with additional decreases in PACC scores with increasing Aβ SUVR (rs78021285, β = -2.29, SE = 0.40, p FDR = 0.02, nearest gene ARPP21; rs71567499, β = -2.16, SE = 0.38, p FDR = 0.02, nearest gene PPARD; and rs10974405, β = -1.68, SE = 0.29, p FDR = 0.02, nearest gene GLIS3). The minor allele of rs7825645 was associated with less decrease in PACC scores with increasing Aβ SUVR (β = 0.71, SE = 0.13, p FDR = 0.04, nearest gene FGF20). The genetic variant rs76366637, in linkage disequilibrium with rs78021285, was available in both the A4 and ADNI. In the A4, rs76366637 was strongly associated with reduced PACC scores with increasing Aβ SUVR (β = -1.01, SE = 0.21, t = -4.90, p < 0.001). In the ADNI, rs76366637 was associated with accelerated cognitive decline (χ2 = 15.3, p = 0.004) and atrophy over time (χ2 = 26.8, p < 0.001), with increasing Aβ SUVR. DISCUSSION Patterns of increased cognitive dysfunction and accelerated atrophy due to specific genetic variation may explain some of the heterogeneity in cognition in preclinical and prodromal AD. The genetic variant near ARPP21 associated with lower cognitive scores in the A4 and accelerated cognitive decline and brain atrophy in the ADNI may help to identify those at the highest risk of accelerated progression of AD.
Collapse
Affiliation(s)
- Philip S Insel
- From the Clinical Memory Research Unit (P.S.I., A.K., O.H., N.M.-C.), Faculty of Medicine, Lund University, Sweden; Department of Psychiatry and Behavioral Sciences (P.S.I.), University of California, San Francisco; Memory Clinic (O.H.), Department of Neurology (N.M.-C.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University, Sweden.
| | - Atul Kumar
- From the Clinical Memory Research Unit (P.S.I., A.K., O.H., N.M.-C.), Faculty of Medicine, Lund University, Sweden; Department of Psychiatry and Behavioral Sciences (P.S.I.), University of California, San Francisco; Memory Clinic (O.H.), Department of Neurology (N.M.-C.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University, Sweden
| | - Oskar Hansson
- From the Clinical Memory Research Unit (P.S.I., A.K., O.H., N.M.-C.), Faculty of Medicine, Lund University, Sweden; Department of Psychiatry and Behavioral Sciences (P.S.I.), University of California, San Francisco; Memory Clinic (O.H.), Department of Neurology (N.M.-C.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University, Sweden
| | - Niklas Mattsson-Carlgren
- From the Clinical Memory Research Unit (P.S.I., A.K., O.H., N.M.-C.), Faculty of Medicine, Lund University, Sweden; Department of Psychiatry and Behavioral Sciences (P.S.I.), University of California, San Francisco; Memory Clinic (O.H.), Department of Neurology (N.M.-C.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University, Sweden
| |
Collapse
|
19
|
Lou T, Tao B, Chen M. Relationship of Apolipoprotein E with Alzheimer's Disease and Other Neurological Disorders: An Updated Review. Neuroscience 2023; 514:123-140. [PMID: 36736614 DOI: 10.1016/j.neuroscience.2023.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) and other neurodegenerative diseases, for which there is no effective cure, cause great social burden. Apolipoprotein E (APOE) is an important lipid transporter, which has been shown to have a close relationship with AD and other neurological disorders in an increasing number of studies, suggesting its potential as a therapeutic target. In this review, we summarize the recent advances in clinical and basic research on the role of APOE in the pathogenesis of multiple neurological diseases, with an emphasis on the new associations between APOE and AD, and between APOE and depression. The progress of APOE research in Parkinson's disease (PD) and some other neurological diseases is briefly discussed.
Collapse
Affiliation(s)
- Tianwen Lou
- The First Clinical Medical College, Anhui Medical University, Hefei, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Borui Tao
- The First Clinical Medical College, Anhui Medical University, Hefei, China; Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
20
|
Srisaikaew P, Chad JA, Mahakkanukrauh P, Anderson ND, Chen JJ. Effect of sex on the APOE4-aging interaction in the white matter microstructure of cognitively normal older adults using diffusion-tensor MRI with orthogonal-tensor decomposition (DT-DOME). Front Neurosci 2023; 17:1049609. [PMID: 36908785 PMCID: PMC9992882 DOI: 10.3389/fnins.2023.1049609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
The influence of the apolipoprotein E ε4 allele (APOE4) on brain microstructure of cognitively normal older adults remains incompletely understood, in part due to heterogeneity within study populations. In this study, we examined white-matter microstructural integrity in cognitively normal older adults as a function of APOE4 carrier status using conventional diffusion-tensor imaging (DTI) and the novel orthogonal-tensor decomposition (DT-DOME), accounting for the effects of age and sex. Age associations with white-matter microstructure did not significantly depend on APOE4 status, but did differ between sexes, emphasizing the importance of accounting for sex differences in APOE research. Moreover, we found the DT-DOME to be more sensitive than conventional DTI metrics to such age-related and sex effects, especially in crossing WM fiber regions, and suggest their use in further investigation of white matter microstructure across the life span in health and disease.
Collapse
Affiliation(s)
- Patcharaporn Srisaikaew
- Ph.D. Program in Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jordan A. Chad
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| | - Nicole D. Anderson
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Department of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - J. Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Geerts H, Walker M, Rose R, Bergeler S, van der Graaf PH, Schuck E, Koyama A, Yasuda S, Hussein Z, Reyderman L, Swanson C, Cabal A. A combined physiologically-based pharmacokinetic and quantitative systems pharmacology model for modeling amyloid aggregation in Alzheimer's disease. CPT Pharmacometrics Syst Pharmacol 2023; 12:444-461. [PMID: 36632701 PMCID: PMC10088087 DOI: 10.1002/psp4.12912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Antibody-mediated removal of aggregated β-amyloid (Aβ) is the current, most clinically advanced potential disease-modifying treatment approach for Alzheimer's disease. We describe a quantitative systems pharmacology (QSP) approach of the dynamics of Aβ monomers, oligomers, protofibrils, and plaque using a detailed microscopic model of Aβ40 and Aβ42 aggregation and clearance of aggregated Aβ by activated microglia cells, which is enhanced by the interaction of antibody-bound Aβ. The model allows for the prediction of Aβ positron emission tomography (PET) imaging load as measured by a standardized uptake value ratio. A physiology-based pharmacokinetic model is seamlessly integrated to describe target exposure of monoclonal antibodies and simulate dynamics of cerebrospinal fluid (CSF) and plasma biomarkers, including CSF Aβ42 and plasma Aβ42 /Aβ40 ratio biomarkers. Apolipoprotein E genotype is implemented as a difference in microglia clearance. By incorporating antibody-bound, plaque-mediated macrophage activation in the perivascular compartment, the model also predicts the incidence of amyloid-related imaging abnormalities with edema (ARIA-E). The QSP platform is calibrated with pharmacological and clinical information on aducanumab, bapineuzumab, crenezumab, gantenerumab, lecanemab, and solanezumab, predicting adequately the change in PET imaging measured amyloid load and the changes in the plasma Aβ42 /Aβ40 ratio while slightly overestimating the change in CSF Aβ42 . ARIA-E is well predicted for all antibodies except bapineuzumab. This QSP model could support the clinical trial design of different amyloid-modulating interventions, define optimal titration and maintenance schedules, and provide a first step to understand the variability of biomarker response in clinical practice.
Collapse
|
22
|
Young CB, Johns E, Kennedy G, Belloy ME, Insel PS, Greicius MD, Sperling RA, Johnson KA, Poston KL, Mormino EC. APOE effects on regional tau in preclinical Alzheimer's disease. Mol Neurodegener 2023; 18:1. [PMID: 36597122 PMCID: PMC9811772 DOI: 10.1186/s13024-022-00590-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND APOE variants are strongly associated with abnormal amyloid aggregation and additional direct effects of APOE on tau aggregation are reported in animal and human cell models. The degree to which these effects are present in humans when individuals are clinically unimpaired (CU) but have abnormal amyloid (Aβ+) remains unclear. METHODS We analyzed data from CU individuals in the Anti-Amyloid Treatment in Asymptomatic AD (A4) and Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) studies. Amyloid PET data were available for 4486 participants (3163 Aβ-, 1323 Aβ+) and tau PET data were available for a subset of 447 participants (55 Aβ-, 392 Aβ+). Linear models examined APOE (number of e2 and e4 alleles) associations with global amyloid and regional tau burden in medial temporal lobe (entorhinal, amygdala) and early neocortical regions (inferior temporal, inferior parietal, precuneus). Consistency of APOE4 effects on regional tau were examined in 220 Aβ + CU and mild cognitive impairment (MCI) participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS APOE2 and APOE4 were associated with lower and higher amyloid positivity rates, respectively. Among Aβ+ CU, e2 and e4 were associated with reduced (-12 centiloids per allele) and greater (+15 centiloids per allele) continuous amyloid burden, respectively. APOE2 was associated with reduced regional tau in all regions (-0.05 to -0.09 SUVR per allele), whereas APOE4 was associated with greater regional tau (+0.02 to +0.07 SUVR per allele). APOE differences were confirmed by contrasting e3/e3 with e2/e3 and e3/e4. Mediation analyses among Aβ+ s showed that direct effects of e2 on regional tau were present in medial temporal lobe and early neocortical regions, beyond an indirect pathway mediated by continuous amyloid burden. For e4, direct effects on regional tau were only significant in medial temporal lobe. The magnitude of protective e2 effects on regional tau was consistent across brain regions, whereas detrimental e4 effects were greatest in medial temporal lobe. APOE4 patterns were confirmed in Aβ+ ADNI participants. CONCLUSIONS APOE influences early regional tau PET burden, above and beyond effects related to cross-sectional amyloid PET burden. Therapeutic strategies targeting underlying mechanisms related to APOE may modify tau accumulation among Aβ+ individuals.
Collapse
Affiliation(s)
- Christina B Young
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA.
| | - Emily Johns
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA
| | - Gabriel Kennedy
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA
| | - Michael E Belloy
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA
| | - Philip S Insel
- University of California San Francisco, San Francisco, CA, USA
| | - Michael D Greicius
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA
| | - Reisa A Sperling
- Brigham and Women's Hospital, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Brigham and Women's Hospital, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Kathleen L Poston
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA
| | - Elizabeth C Mormino
- Stanford University School of Medicine, 453 Quarry Rd., Palo Alto, Stanford, CA, 94304, USA
| |
Collapse
|
23
|
Zhao B, Ou YN, Zhang XY, Fu Y, Tan L. Differential Associations of APOEɛ2 and APOEɛ4 Genotypes with Cerebrospinal Fluid Biomarkers of Alzheimer's Disease in Individuals Without Dementia. J Alzheimers Dis 2023; 96:1813-1825. [PMID: 38073392 DOI: 10.3233/jad-230761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND The APOE genotype has emerged as the major genetic factor for AD but differs among different alleles. OBJECTIVE To investigate the discrepant effects of APOE genotype on AD cerebrospinal fluid (CSF) biomarkers. METHODS A total of 989 non-demented ADNI participants were included. The associations of APOEɛ2 and APOEɛ4 with CSF biomarkers were investigated using linear regression models. Interaction and subgroup analyses were used to investigate the effects of sex and age on these associations. Furthermore, we used mediation analyses to assess whether Aβ mediated the associations between APOE genotypes and tau. RESULTS APOEɛ2 carriers only showed higher Aβ levels (β [95% CI] = 0.07 [0.01, 0.13], p = 0.026). Conversely, APOEɛ4 carriers exhibited lower Aβ concentration (β [95% CI] = -0.27 [-0.31, -0.24], p < 0.001), higher t-Tau (β [95% CI] = 0.25 [0.08, 0.18], p < 0.001) and higher p-Tau (β [95% CI] = 0.31 [0.25, 0.37], p < 0.001). Subgroup analysis showed that APOE ɛ2 was significantly positively associated with Aβ only in females (β [95% CI] = 0.12 [0.04, 0.21], p = 0.005) and older people (β [95% CI] = 0.06 [0.001, 0.12], p = 0.048). But the effects of APOE ɛ4 were independent of gender and age. Besides, the associations of APOE ɛ4 with t-Tau and p-Tau were both mediated by baseline Aβ. CONCLUSIONS Our data suggested that APOEɛ2 could promote Aβ clearance, while the process could be modified by sex and age. However, APOEɛ4 might cause the accumulation of Aβ and tau pathology independent of sex and age.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuan-Yue Zhang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Li Y, Chang J, Chen X, Liu J, Zhao L. Advances in the Study of APOE and Innate Immunity in Alzheimer's Disease. J Alzheimers Dis 2023; 93:1195-1210. [PMID: 37182889 DOI: 10.3233/jad-230179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease (AD) is a progressive degenerative disease of the nervous system (CNS) with an insidious onset. Clinically, it is characterized by a full range of dementia manifestations including memory impairment, aphasia, loss of speech, loss of use, loss of recognition, impairment of visuospatial skills, and impairment of executive function, as well as changes in personality and behavior. The exact cause of AD has not yet been identified. Nevertheless, modern research indicates that genetic factors contribute to 70% of human's risk of AD. Apolipoprotein (APOE) accounts for up to 90% of the genetic predisposition. APOE is a crucial gene that cannot be overstated. In addition, innate immunity plays a significant role in the etiology and treatment of AD. Understanding the different subtypes of APOE and their interconnections is of paramount importance. APOE and innate immunity, along with their relationship to AD, are primary research motivators for in-depth research and clinical trials. The exploration of novel technologies has led to an increasing trend in the study of AD at the cellular and molecular levels and continues to make more breakthroughs and progress. As of today, there is no effective treatment available for AD around the world. This paper aims to summarize and analyze the role of APOE and innate immunity, as well as development trends in recent years. It is anticipated that APOE and innate immunity will provide a breakthrough for humans to hinder AD progression in the near future.
Collapse
Affiliation(s)
- Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xi Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
25
|
Sattarov R, Toresson H, Orbjörn C, Mattsson-Carlgren N. Direct Conversion of Fibroblast into Neurons for Alzheimer's Disease Research: A Systematic Review. J Alzheimers Dis 2023; 95:805-828. [PMID: 37661882 PMCID: PMC10578293 DOI: 10.3233/jad-230119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without a cure. Innovative disease models, such as induced neurons (iNs), could enhance our understanding of AD mechanisms and accelerate treatment development. However, a review of AD human iN studies is necessary to consolidate knowledge. OBJECTIVE The objective of this review is to examine the current body of literature on AD human iN cells and provide an overview of the findings to date. METHODS We searched two databases for relevant studies published between 2010 and 2023, identifying nine studies meeting our criteria. RESULTS Reviewed studies indicate the feasibility of generating iNs directly from AD patients' fibroblasts using chemical induction or viral vectors. These cells express mature neuronal markers, including MAP-2, NeuN, synapsin, and tau. However, most studies were limited in sample size and primarily focused on autosomal dominant familial AD (FAD) rather than the more common sporadic forms of AD. Several studies indicated that iNs derived from FAD fibroblasts exhibited abnormal amyloid-β metabolism, a characteristic feature of AD in humans. Additionally, elevated levels of hyperphosphorylated tau, another hallmark of AD, were reported in some studies. CONCLUSION Although only a limited number of small-scale studies are currently available, AD patient-derived iNs hold promise as a valuable model for investigating AD pathogenesis. Future research should aim to conduct larger studies, particularly focusing on sporadic AD cases, to enhance the clinical relevance of the findings for the broader AD patient population. Moreover, these cells can be utilized in screening potential novel treatments for AD.
Collapse
Affiliation(s)
- Roman Sattarov
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Håkan Toresson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Camilla Orbjörn
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Hansson O, Edelmayer RM, Boxer AL, Carrillo MC, Mielke MM, Rabinovici GD, Salloway S, Sperling R, Zetterberg H, Teunissen CE. The Alzheimer's Association appropriate use recommendations for blood biomarkers in Alzheimer's disease. Alzheimers Dement 2022; 18:2669-2686. [PMID: 35908251 PMCID: PMC10087669 DOI: 10.1002/alz.12756] [Citation(s) in RCA: 308] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 01/31/2023]
Abstract
Blood-based markers (BBMs) have recently shown promise to revolutionize the diagnostic and prognostic work-up of Alzheimer's disease (AD), as well as to improve the design of interventional trials. Here we discuss in detail further research needed to be performed before widespread use of BBMs. We already now recommend use of BBMs as (pre-)screeners to identify individuals likely to have AD pathological changes for inclusion in trials evaluating disease-modifying therapies, provided the AD status is confirmed with positron emission tomography (PET) or cerebrospinal fluid (CSF) testing. We also encourage studying longitudinal BBM changes in ongoing as well as future interventional trials. However, BBMs should not yet be used as primary endpoints in pivotal trials. Further, we recommend to cautiously start using BBMs in specialized memory clinics as part of the diagnostic work-up of patients with cognitive symptoms and the results should be confirmed whenever possible with CSF or PET. Additional data are needed before use of BBMs as stand-alone diagnostic AD markers, or before considering use in primary care.
Collapse
Affiliation(s)
- Oskar Hansson
- ClinicalMemory Research UnitDepartment of Clinical Sciences MalmöLund UniversityMalmöSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | | | - Adam L. Boxer
- Department of NeurologyUniversity of California San FranciscoMemory and Aging CenterSan FranciscoCaliforniaUSA
| | | | - Michelle M. Mielke
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Gil D. Rabinovici
- Department of NeurologyUniversity of California San FranciscoMemory and Aging CenterSan FranciscoCaliforniaUSA
| | - Stephen Salloway
- Departments of Neurology and PsychiatryAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Reisa Sperling
- Centerfor Alzheimer Research and TreatmentBrigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongPeople's Republic of China
| | - Charlotte E. Teunissen
- NeurochemistryLaboratoryDepartment of Clinical ChemistryAmsterdam University Medical CentersVrije UniversiteitAmsterdam NeuroscienceAmsterdamthe Netherlands
| |
Collapse
|
27
|
Savignac C, Villeneuve S, Badhwar A, Saltoun K, Shafighi K, Zajner C, Sharma V, Gagliano Taliun SA, Farhan S, Poirier J, Bzdok D. APOE alleles are associated with sex-specific structural differences in brain regions affected in Alzheimer's disease and related dementia. PLoS Biol 2022; 20:e3001863. [PMID: 36512526 PMCID: PMC9747055 DOI: 10.1371/journal.pbio.3001863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease is marked by intracellular tau aggregates in the medial temporal lobe (MTL) and extracellular amyloid aggregates in the default network (DN). Here, we examined codependent structural variations between the MTL's most vulnerable structure, the hippocampus (HC), and the DN at subregion resolution in individuals with Alzheimer's disease and related dementia (ADRD). By leveraging the power of the approximately 40,000 participants of the UK Biobank cohort, we assessed impacts from the protective APOE ɛ2 and the deleterious APOE ɛ4 Alzheimer's disease alleles on these structural relationships. We demonstrate ɛ2 and ɛ4 genotype effects on the inter-individual expression of HC-DN co-variation structural patterns at the population level. Across these HC-DN signatures, recurrent deviations in the CA1, CA2/3, molecular layer, fornix's fimbria, and their cortical partners related to ADRD risk. Analyses of the rich phenotypic profiles in the UK Biobank cohort further revealed male-specific HC-DN associations with air pollution and female-specific associations with cardiovascular traits. We also showed that APOE ɛ2/2 interacts preferentially with HC-DN co-variation patterns in estimating social lifestyle in males and physical activity in females. Our structural, genetic, and phenotypic analyses in this large epidemiological cohort reinvigorate the often-neglected interplay between APOE ɛ2 dosage and sex and link APOE alleles to inter-individual brain structural differences indicative of ADRD familial risk.
Collapse
Affiliation(s)
- Chloé Savignac
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - AmanPreet Badhwar
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche de l’Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Quebec, Canada
| | - Karin Saltoun
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kimia Shafighi
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chris Zajner
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Vaibhav Sharma
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah A. Gagliano Taliun
- Department of Neurosciences & Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Judes Poirier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Raulin AC, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu CC. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener 2022; 17:72. [PMID: 36348357 PMCID: PMC9644639 DOI: 10.1186/s13024-022-00574-4] [Citation(s) in RCA: 264] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-β (Aβ) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aβ-related or Aβ-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.
Collapse
|
29
|
Kumar A, Janelidze S, Stomrud E, Palmqvist S, Hansson O, Mattsson-Carlgren N. β-Amyloid-Dependent and -Independent Genetic Pathways Regulating CSF Tau Biomarkers in Alzheimer Disease. Neurology 2022; 99:e476-e487. [PMID: 35641311 PMCID: PMC9421595 DOI: 10.1212/wnl.0000000000200605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Abnormal metabolism of β-amyloid (Aβ) and soluble phosphorylated tau (P-tau), as well as neurodegeneration, are key components of Alzheimer disease (AD), but it is unclear how these different processes are related to genetic risk factors for AD. METHODS In the Swedish BioFINDER study, we tested associations between a priori defined polygenic risk scores (PRSs) for AD (excluding single-nucleotide polymorphism [SNP] within the APOE region in the main analysis) and biomarkers in CSF (total tau [T-tau] and P-tau181; Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-42/1-40; and neurofilament light [NfL]) in cognitively unimpaired (CU) individuals (n = 751), and in patients with mild cognitive impairment (MCI) (n = 212) and AD dementia (n = 150). Results were validated in the Alzheimer's Disease Neuroimaging Initiative data set with 777 individuals (AD = 119, MCI = 442, and CU = 216). RESULTS PRSs with SNPs significant at p < 5e-03 (∼1,742 variants) were associated with higher CSF P-tau181 (β = 0.13, p = 5.6e-05) and T-tau (β = 0.12, p = 4.3e-04). The associations between PRS and tau measures were partly attenuated but remained significant after adjusting for Aβ status. Aβ pathology mediated 37% of the effect of this PRS on tau levels. Aβ-dependent and Aβ-independent subsets of the PRS were identified and characterized. There were also associations between PRSs and CSF Aβ biomarkers with nominal significance, but not when corrected for multiple comparisons. There were no associations between PRSs and CSF NfL. DISCUSSION Genetic pathways implicated in causing AD are related to altered levels of soluble tau through both Aβ-dependent and Aβ-independent mechanisms, which may have relevance for anti-tau drug development.
Collapse
Affiliation(s)
- Atul Kumar
- From the Clinical Memory Research Unit (A.K., S.J., E.S., S.P., O.H., N.M.-C.), Department of Clinical Sciences, Lund University, Malmö; Memory Clinic (E.S., S.P., O.H.), Skåne University Hospital, Malmö; Department of Neurology (N.M.-C.), Skåne University Hospital, Lund; and Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden.
| | - Shorena Janelidze
- From the Clinical Memory Research Unit (A.K., S.J., E.S., S.P., O.H., N.M.-C.), Department of Clinical Sciences, Lund University, Malmö; Memory Clinic (E.S., S.P., O.H.), Skåne University Hospital, Malmö; Department of Neurology (N.M.-C.), Skåne University Hospital, Lund; and Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden
| | - Erik Stomrud
- From the Clinical Memory Research Unit (A.K., S.J., E.S., S.P., O.H., N.M.-C.), Department of Clinical Sciences, Lund University, Malmö; Memory Clinic (E.S., S.P., O.H.), Skåne University Hospital, Malmö; Department of Neurology (N.M.-C.), Skåne University Hospital, Lund; and Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden
| | - Sebastian Palmqvist
- From the Clinical Memory Research Unit (A.K., S.J., E.S., S.P., O.H., N.M.-C.), Department of Clinical Sciences, Lund University, Malmö; Memory Clinic (E.S., S.P., O.H.), Skåne University Hospital, Malmö; Department of Neurology (N.M.-C.), Skåne University Hospital, Lund; and Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden
| | - Oskar Hansson
- From the Clinical Memory Research Unit (A.K., S.J., E.S., S.P., O.H., N.M.-C.), Department of Clinical Sciences, Lund University, Malmö; Memory Clinic (E.S., S.P., O.H.), Skåne University Hospital, Malmö; Department of Neurology (N.M.-C.), Skåne University Hospital, Lund; and Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden
| | - Niklas Mattsson-Carlgren
- From the Clinical Memory Research Unit (A.K., S.J., E.S., S.P., O.H., N.M.-C.), Department of Clinical Sciences, Lund University, Malmö; Memory Clinic (E.S., S.P., O.H.), Skåne University Hospital, Malmö; Department of Neurology (N.M.-C.), Skåne University Hospital, Lund; and Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden
| |
Collapse
|
30
|
Thrush KL, Bennett DA, Gaiteri C, Horvath S, van Dyck CH, Higgins-Chen AT, Levine ME. Aging the brain: multi-region methylation principal component based clock in the context of Alzheimer's disease. Aging (Albany NY) 2022; 14:5641-5668. [PMID: 35907208 PMCID: PMC9365556 DOI: 10.18632/aging.204196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) risk increases exponentially with age and is associated with multiple molecular hallmarks of aging, one of which is epigenetic alterations. Epigenetic age predictors based on 5' cytosine methylation (DNAm), or epigenetic clocks, have previously suggested that epigenetic age acceleration may occur in AD brain tissue. Epigenetic clocks are promising tools for the quantification of biological aging, yet we hypothesize that investigation of brain aging in AD will be assisted by the development of brain-specific epigenetic clocks. Therefore, we generated a novel age predictor termed PCBrainAge that was trained solely in cortical samples. This predictor utilizes a combination of principal components analysis and regularized regression, which reduces technical noise and greatly improves test-retest reliability. To characterize the scope of PCBrainAge's utility, we generated DNAm data from multiple brain regions in a sample from the Religious Orders Study and Rush Memory and Aging Project. PCBrainAge captures meaningful heterogeneity of aging: Its acceleration demonstrates stronger associations with clinical AD dementia, pathologic AD, and APOE ε4 carrier status compared to extant epigenetic age predictors. It further does so across multiple cortical and subcortical regions. Overall, PCBrainAge's increased reliability and specificity makes it a particularly promising tool for investigating heterogeneity in brain aging, as well as epigenetic alterations underlying AD risk and resilience.
Collapse
Affiliation(s)
- Kyra L. Thrush
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher Gaiteri
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA 90095, USA
| | - Christopher H. van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Alzheimer’s Disease Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Albert T. Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Morgan E. Levine
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA 92114, USA
| |
Collapse
|
31
|
Fassier P, Kang JH, Lee IM, Grodstein F, Vercambre MN. Vigorous Physical Activity and Cognitive Trajectory Later in Life: Prospective Association and Interaction by Apolipoprotein E e4 in the Nurses' Health Study. J Gerontol A Biol Sci Med Sci 2022; 77:817-825. [PMID: 34125204 PMCID: PMC8974346 DOI: 10.1093/gerona/glab169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The apolipoprotein E (APOE) e4 allele is a well-established genetic risk factor of brain aging. Vigorous physical activity may be particularly important in APOE-e4 carriers, but data have been inconsistent, likely due to differences in the timing of the physical activity assessment, definition of cognitive decline, and/or sample size. METHODS We prospectively evaluated the association between vigorous physical activity and cognition assessed at least 9 years later, according to APOE-e4 carrier status. Biennially from 1986, Nurses' Health Study participants reported their leisure-time physical activities. Starting in 1995-2001 and through 2008, participants (aged 70+ years) underwent up to 4 repeated cognitive telephone assessments (6 tasks averaged together using z-scores). RESULTS Among 7252 women, latent process mixed models identified 3 major patterns of cognitive change over 6 years: high-stable, medium-stable, and decline. Taking the high-stable cognitive trajectory as the outcome reference in multinomial logistic regressions, highest tertile of vigorous physical activity (≥5.9 metabolic-equivalent [MET]-hours/wk) compared to lowest tertile (≤0.9 MET-hours/wk) was significantly associated with subsequent lower likelihood of the medium-stable trajectory in the global score (odds ratio [OR] [95% CI] = 0.72 [0.63, 0.82]), verbal memory (OR [95% CI] = 0.78 [0.68-0.89]), and telephone interview of cognitive status score (OR [95% CI] = 0.81 [0.70-0.94]). Vigorous physical activity was also associated with lower likelihood of decline in category fluency (OR [95% CI] = 0.72 [0.56, 0.92]). We observed some evidence (p-interaction = .07 for the global score) that the association was stronger among APOE-e4 carriers than noncarriers (OR [95% CI] = 0.60 [0.39, 0.92] vs 0.82 [0.59, 1.16]). CONCLUSION Midlife vigorous physical activity was associated with better cognitive trajectories in women in their seventies, with suggestions of stronger associations among APOE-e4 carriers.
Collapse
Affiliation(s)
| | - Jae Hee Kang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - I-Min Lee
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Francine Grodstein
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | | |
Collapse
|
32
|
Hu Y, Kirmess KM, Meyer MR, Rabinovici GD, Gatsonis C, Siegel BA, Whitmer RA, Apgar C, Hanna L, Kanekiyo M, Kaplow J, Koyama A, Verbel D, Holubasch MS, Knapik SS, Connor J, Contois JH, Jackson EN, Harpstrite SE, Bateman RJ, Holtzman DM, Verghese PB, Fogelman I, Braunstein JB, Yarasheski KE, West T. Assessment of a Plasma Amyloid Probability Score to Estimate Amyloid Positron Emission Tomography Findings Among Adults With Cognitive Impairment. JAMA Netw Open 2022; 5:e228392. [PMID: 35446396 PMCID: PMC9024390 DOI: 10.1001/jamanetworkopen.2022.8392] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IMPORTANCE The diagnostic evaluation for Alzheimer disease may be improved by a blood-based diagnostic test identifying presence of brain amyloid plaque pathology. OBJECTIVE To determine the clinical performance associated with a diagnostic algorithm incorporating plasma amyloid-β (Aβ) 42:40 ratio, patient age, and apoE proteotype to identify brain amyloid status. DESIGN, SETTING, AND PARTICIPANTS This cohort study includes analysis from 2 independent cross-sectional cohort studies: the discovery cohort of the Plasma Test for Amyloidosis Risk Screening (PARIS) study, a prospective add-on to the Imaging Dementia-Evidence for Amyloid Scanning study, including 249 patients from 2018 to 2019, and MissionAD, a dataset of 437 biobanked patient samples obtained at screenings during 2016 to 2019. Data were analyzed from May to November 2020. EXPOSURES Amyloid detected in blood and by positron emission tomography (PET) imaging. MAIN OUTCOMES AND MEASURES The main outcome was the diagnostic performance of plasma Aβ42:40 ratio, together with apoE proteotype and age, for identifying amyloid PET status, assessed by accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). RESULTS All 686 participants (mean [SD] age 73.2 [6.3] years; 368 [53.6%] men; 378 participants [55.1%] with amyloid PET findings) had symptoms of mild cognitive impairment or mild dementia. The AUC of plasma Aβ42:40 ratio for PARIS was 0.79 (95% CI, 0.73-0.85) and 0.86 (95% CI, 0.82-0.89) for MissionAD. Ratio cutoffs for Aβ42:40 based on the Youden index were similar between cohorts (PARIS: 0.089; MissionAD: 0.092). A logistic regression model (LRM) incorporating Aβ42:40 ratio, apoE proteotype, and age improved diagnostic performance within each cohort (PARIS: AUC, 0.86 [95% CI, 0.81-0.91]; MissionAD: AUC, 0.89 [95% CI, 0.86-0.92]), and overall accuracy was 78% (95% CI, 72%-83%) for PARIS and 83% (95% CI, 79%-86%) for MissionAD. The model developed on the prospectively collected samples from PARIS performed well on the MissionAD samples (AUC, 0.88 [95% CI, 0.84-0.91]; accuracy, 78% [95% CI, 74%-82%]). Training the LRM on combined cohorts yielded an AUC of 0.88 (95% CI, 0.85-0.91) and accuracy of 81% (95% CI, 78%-84%). The output of this LRM is the Amyloid Probability Score (APS). For clinical use, 2 APS cutoff values were established yielding 3 categories, with low, intermediate, and high likelihood of brain amyloid plaque pathology. CONCLUSIONS AND RELEVANCE These findings suggest that this blood biomarker test could allow for distinguishing individuals with brain amyloid-positive PET findings from individuals with amyloid-negative PET findings and serve as an aid for Alzheimer disease diagnosis.
Collapse
Affiliation(s)
- Yan Hu
- C2N Diagnostics, St Louis, Missouri
| | | | | | - Gil D. Rabinovici
- Departments of Neurology, Radiology & Biomedical Imaging, University of California, San Francisco
| | - Constantine Gatsonis
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Barry A. Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Rachel A. Whitmer
- Department of Public Health Sciences, University of California, Davis
| | | | - Lucy Hanna
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
| | | | | | | | | | | | | | | | | | | | | | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | | | | | | | | | - Tim West
- C2N Diagnostics, St Louis, Missouri
| |
Collapse
|
33
|
Jansen WJ, Janssen O, Tijms BM, Vos SJB, Ossenkoppele R, Visser PJ, Aarsland D, Alcolea D, Altomare D, von Arnim C, Baiardi S, Baldeiras I, Barthel H, Bateman RJ, Van Berckel B, Binette AP, Blennow K, Boada M, Boecker H, Bottlaender M, den Braber A, Brooks DJ, Van Buchem MA, Camus V, Carill JM, Cerman J, Chen K, Chételat G, Chipi E, Cohen AD, Daniels A, Delarue M, Didic M, Drzezga A, Dubois B, Eckerström M, Ekblad LL, Engelborghs S, Epelbaum S, Fagan AM, Fan Y, Fladby T, Fleisher AS, Van der Flier WM, Förster S, Fortea J, Frederiksen KS, Freund-Levi Y, Frings L, Frisoni GB, Fröhlich L, Gabryelewicz T, Gertz HJ, Gill KD, Gkatzima O, Gómez-Tortosa E, Grimmer T, Guedj E, Habeck CG, Hampel H, Handels R, Hansson O, Hausner L, Hellwig S, Heneka MT, Herukka SK, Hildebrandt H, Hodges J, Hort J, Huang CC, Iriondo AJ, Itoh Y, Ivanoiu A, Jagust WJ, Jessen F, Johannsen P, Johnson KA, Kandimalla R, Kapaki EN, Kern S, Kilander L, Klimkowicz-Mrowiec A, Klunk WE, Koglin N, Kornhuber J, Kramberger MG, Kuo HC, Van Laere K, Landau SM, Landeau B, Lee DY, de Leon M, Leyton CE, Lin KJ, Lleó A, Löwenmark M, Madsen K, Maier W, Marcusson J, Marquié M, et alJansen WJ, Janssen O, Tijms BM, Vos SJB, Ossenkoppele R, Visser PJ, Aarsland D, Alcolea D, Altomare D, von Arnim C, Baiardi S, Baldeiras I, Barthel H, Bateman RJ, Van Berckel B, Binette AP, Blennow K, Boada M, Boecker H, Bottlaender M, den Braber A, Brooks DJ, Van Buchem MA, Camus V, Carill JM, Cerman J, Chen K, Chételat G, Chipi E, Cohen AD, Daniels A, Delarue M, Didic M, Drzezga A, Dubois B, Eckerström M, Ekblad LL, Engelborghs S, Epelbaum S, Fagan AM, Fan Y, Fladby T, Fleisher AS, Van der Flier WM, Förster S, Fortea J, Frederiksen KS, Freund-Levi Y, Frings L, Frisoni GB, Fröhlich L, Gabryelewicz T, Gertz HJ, Gill KD, Gkatzima O, Gómez-Tortosa E, Grimmer T, Guedj E, Habeck CG, Hampel H, Handels R, Hansson O, Hausner L, Hellwig S, Heneka MT, Herukka SK, Hildebrandt H, Hodges J, Hort J, Huang CC, Iriondo AJ, Itoh Y, Ivanoiu A, Jagust WJ, Jessen F, Johannsen P, Johnson KA, Kandimalla R, Kapaki EN, Kern S, Kilander L, Klimkowicz-Mrowiec A, Klunk WE, Koglin N, Kornhuber J, Kramberger MG, Kuo HC, Van Laere K, Landau SM, Landeau B, Lee DY, de Leon M, Leyton CE, Lin KJ, Lleó A, Löwenmark M, Madsen K, Maier W, Marcusson J, Marquié M, Martinez-Lage P, Maserejian N, Mattsson N, de Mendonça A, Meyer PT, Miller BL, Minatani S, Mintun MA, Mok VCT, Molinuevo JL, Morbelli SD, Morris JC, Mroczko B, Na DL, Newberg A, Nobili F, Nordberg A, Olde Rikkert MGM, de Oliveira CR, Olivieri P, Orellana A, Paraskevas G, Parchi P, Pardini M, Parnetti L, Peters O, Poirier J, Popp J, Prabhakar S, Rabinovici GD, Ramakers IH, Rami L, Reiman EM, Rinne JO, Rodrigue KM, Rodríguez-Rodriguez E, Roe CM, Rosa-Neto P, Rosen HJ, Rot U, Rowe CC, Rüther E, Ruiz A, Sabri O, Sakhardande J, Sánchez-Juan P, Sando SB, Santana I, Sarazin M, Scheltens P, Schröder J, Selnes P, Seo SW, Silva D, Skoog I, Snyder PJ, Soininen H, Sollberger M, Sperling RA, Spiru L, Stern Y, Stomrud E, Takeda A, Teichmann M, Teunissen CE, Thompson LI, Tomassen J, Tsolaki M, Vandenberghe R, Verbeek MM, Verhey FRJ, Villemagne V, Villeneuve S, Vogelgsang J, Waldemar G, Wallin A, Wallin ÅK, Wiltfang J, Wolk DA, Yen TC, Zboch M, Zetterberg H. Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum. JAMA Neurol 2022; 79:228-243. [PMID: 35099509 DOI: 10.1001/jamaneurol.2021.5216] [Show More Authors] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design. OBJECTIVE To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria. EXPOSURES Alzheimer disease biomarkers detected on PET or in CSF. MAIN OUTCOMES AND MEASURES Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations. RESULTS Among the 19 097 participants (mean [SD] age, 69.1 [9.8] years; 10 148 women [53.1%]) included, 10 139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P = .04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P = .004), subjective cognitive decline (9%; 95% CI, 3%-15%; P = .005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P = .004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P = .18). CONCLUSIONS AND RELEVANCE This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.
Collapse
Affiliation(s)
- Willemijn J Jansen
- Alzheimer Centre Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Banner Alzheimer's Institute, Phoenix, Arizona
| | - Olin Janssen
- Alzheimer Centre Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (UMC), Amsterdam, the Netherlands
| | - Stephanie J B Vos
- Alzheimer Centre Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (UMC), Amsterdam, the Netherlands.,Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Pieter Jelle Visser
- Alzheimer Centre Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (UMC), Amsterdam, the Netherlands.,Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | - Dag Aarsland
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden.,Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Daniel Alcolea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Daniele Altomare
- Laboratory Alzheimer's Neuroimaging and Epidemiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Christine von Arnim
- Division of Geriatrics, University of Goettingen Medical School, Goettingen, Germany.,Clinic for Neurogeriatrics and Neurological Rehabilitation, University and Rehabilitation Hospital Ulm, Ulm, Germany
| | - Simone Baiardi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Spain
| | - Ines Baldeiras
- Center for Neuroscience and Cell Biology (CIBB), University of Coimbra, Coimbra, Portugal.,Neurology Department and Laboratory of Neurochemistry, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Randall J Bateman
- Department of Neurology and the Alzheimer's Disease Research Center, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Bart Van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alexa Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgren's University Hospital, Mölndal, Sweden
| | - Merce Boada
- Research Center and Memory Clinic of Fundació Alzheimer Centre Educacional, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Henning Boecker
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
| | - Michel Bottlaender
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot (CEA), French National Centre for Scientific Research (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), BioMaps, Service Hospitalier Frederic Joliot, Orsay, France
| | - Anouk den Braber
- Department of Neurology, Alzheimer Centre Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - David J Brooks
- Translational and Clinical Research Institute, University of Newcastle upon Tyne, United Kingdom.,Department of Nuclear Medicine, Positron Emission Tomography Centre, Aarhus University, Aarhus, Denmark.,Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Mark A Van Buchem
- Department of Neurology, University Hospital Leiden, Leiden, the Netherlands
| | - Vincent Camus
- Unite Mixte de Recherche, INSERM U930, French National Centre for Scientific Research (CNRS) ERL, Tours, France
| | - Jose Manuel Carill
- Nuclear Medicine Department, University Hospital Marqués de Valdecilla, Molecular Imaging, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), University of Cantabria, Santander, Spain
| | - Jiri Cerman
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, Arizona
| | - Gaël Chételat
- Normandie University, University of Caen Normandie (UNICAEN), INSERM, U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| | - Elena Chipi
- Centro Disturbi della Memoria, Laboratorio di Neurochimica Clinica, Clinica Neurologica, Università di Perugia, Perugia, Italy
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alisha Daniels
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Marion Delarue
- Normandie University, University of Caen Normandie (UNICAEN), INSERM, U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| | - Mira Didic
- Assistance Publique Hôpitaux de Marseille (AP-HM), Timone, Service de Neurologie et Neuropsychologie, Hôpital Timone Adultes, Marseille, France.,Aix Marseille Univ, INSERM, Institut de Neurosciences des Systèmes (INS), Marseille, France
| | - Alexander Drzezga
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany.,Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
| | - Bruno Dubois
- Department of Neurology, Institut de la Mémoire et de la Maladie d'Alzheimer, Centre de Référence Démences Rares, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marie Eckerström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | | | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium.,Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stéphane Epelbaum
- Department of Neurology, Institut de la Mémoire et de la Maladie d'Alzheimer, Centre de Référence Démences Rares, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anne M Fagan
- Department of Neurology and the Alzheimer's Disease Research Center, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | | | - Wiesje M Van der Flier
- Department of Neurology, Alzheimer Centre Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Stefan Förster
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Nuclear Medicine, Klinikum Bayreuth, Bayreuth, Germany
| | - Juan Fortea
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Kristian Steen Frederiksen
- Danish Dementia Research Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Yvonne Freund-Levi
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet Center for Alzheimer Research, Stockholm, Sweden.,Department of Old Age Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lars Frings
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Giovanni B Frisoni
- Memory Clinic, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lutz Fröhlich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tomasz Gabryelewicz
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Hermann-Josef Gertz
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Kiran Dip Gill
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Olymbia Gkatzima
- Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece
| | | | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Eric Guedj
- Aix Marseille University, AP-HM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Centre Européen de Recherche en Imagerie Médicale (CERIMED), Nuclear Medicine Department, Marseille, France
| | - Christian G Habeck
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York
| | - Harald Hampel
- Sorbonne University, Clinical Research Group no. 21, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Ron Handels
- Alzheimer Centre Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Lucrezia Hausner
- Universität Heidelberg, Abteilung Gerontopsychiatrie, Zentralinstitut für Seelische Gesundheit Mannheim, Mannheim, Germany
| | - Sabine Hellwig
- Department of Psychiatry and Psychotherapy Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital of Bonn, Bonn, Germany.,Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Helmut Hildebrandt
- Klinikum Bremen-Ost, University of Oldenburg, Institute of Psychology, Oldenburg, Germany
| | - John Hodges
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jakub Hort
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Ane Juaristi Iriondo
- Center for Research and Advanced Therapies, Centro de Investigación y Ciencias Avanzadas-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Yoshiaki Itoh
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Adrian Ivanoiu
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley.,Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Frank Jessen
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,DZNE, Bonn, Germany
| | - Peter Johannsen
- Memory Disorder Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Boston
| | - Ramesh Kandimalla
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.,Department of Radiation Oncology, Emory University, Atlanta, Georgia.,Applied Biology, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana State, India.,Department of Biochemistry, Kakatiya Medical College/Mahatma Gandhi Memorial Hospital, Warangal, Telangana State, India
| | - Elisabeth N Kapaki
- National and Kapodistrian University of Athens, School of Medicine, 1st Department of Neurology, Eginition Hospital, Athens, Greece
| | - Silke Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - William E Klunk
- Department of Psychiatry, Massachusetts General Hospital, Boston.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Milica G Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Hung-Chou Kuo
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Koen Van Laere
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley
| | - Brigitte Landeau
- Normandie University, University of Caen Normandie (UNICAEN), INSERM, U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Mony de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Cristian E Leyton
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Kun-Ju Lin
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan, Taiwan
| | - Alberto Lleó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Malin Löwenmark
- Memory Clinic, Department of Geriatrics, Uppsala University Hospital, Uppsala, Sweden
| | - Karine Madsen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Wolfgang Maier
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Jan Marcusson
- Acute Internal Medicine and Geriatrics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Marta Marquié
- Research Center and Memory Clinic of Fundació Alzheimer Centre Educacional, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo Martinez-Lage
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | | | - Niklas Mattsson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | | | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Shinobu Minatani
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mark A Mintun
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,BrainNow Research Institute, Guangdong Province, Shenzhen, China
| | - Jose Luis Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinic University Hospital, Barcelona, Spain
| | - Silvia Daniela Morbelli
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - John C Morris
- Department of Neurology and the Alzheimer's Disease Research Center, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland.,Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Andrew Newberg
- Myrna Brind Center of Integrative Medicine, Thomas Jefferson University and Hospital, Philadelphia, Pennsylvania
| | - Flavio Nobili
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden.,Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | | | | | - Pauline Olivieri
- Department of Neurology of Memory and Language, Groupe Hospitalier Universitaire Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France.,Université de Paris, Paris, Université Paris-Saclay, BioMaps, CEA, CNRS, INSERM, Orsay, France
| | - Adela Orellana
- Research Center and Memory Clinic of Fundació Alzheimer Centre Educacional, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - George Paraskevas
- National and Kapodistrian University of Athens, School of Medicine, 1st Department of Neurology, Eginition Hospital, Athens, Greece
| | - Piero Parchi
- Istituto delle Scienze Neurologiche di Bologna, IRCCS, Bologna, Italy.,DIMES, University of Bologna, Bologna, Italy
| | | | - Lucilla Parnetti
- Centro Disturbi della Memoria, Laboratorio di Neurochimica Clinica, Clinica Neurologica, Università di Perugia, Perugia, Italy
| | - Oliver Peters
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin-CBF, Berlin, Deutschland
| | - Judes Poirier
- Studies on Prevention of Alzheimer's Disease (StOP-AD) Centre, Montreal, Quebec, Canada
| | - Julius Popp
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich and University of Zürich, Zürich, Switzerland.,Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Sudesh Prabhakar
- Department of Neurology, Nehru Hospital, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Inez H Ramakers
- Alzheimer Centre Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Lorena Rami
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | | | | | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas
| | | | - Catherine M Roe
- Department of Neurology and the Alzheimer's Disease Research Center, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Pedro Rosa-Neto
- Studies on Prevention of Alzheimer's Disease (StOP-AD) Centre, Montreal, Quebec, Canada
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco
| | - Uros Rot
- Department of Neurology, Medical Center, Zaloska 7, Ljubljana, Slovenia
| | - Christopher C Rowe
- Department of Molecular Imaging, Austin Health, Melbourne, Victoria, Australia.,Florey Department of Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Eckart Rüther
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Agustín Ruiz
- Research Center and Memory Clinic of Fundació Alzheimer Centre Educacional, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Jayant Sakhardande
- Cognitive Neuroscience Division, Department of Neurology and the Taub Institute, Columbia University, New York, New York
| | - Pascual Sánchez-Juan
- Service of Neurology, University Hospital Marqués de Valdecilla-IDIVAL, CIBERNED, Santander, Spain
| | - Sigrid Botne Sando
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology, University Hospital of Trondheim, Trondheim, Norway
| | - Isabel Santana
- Center for Neuroscience and Cell Biology (CIBB), University of Coimbra, Coimbra, Portugal.,Neurology Department and Laboratory of Neurochemistry, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Marie Sarazin
- Department of Neurology of Memory and Language, Groupe Hospitalier Universitaire Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France.,Université de Paris, Paris, Université Paris-Saclay, BioMaps, CEA, CNRS, INSERM, Orsay, France
| | - Philip Scheltens
- Department of Neurology, Alzheimer Centre Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Johannes Schröder
- Section for Geriatric Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Sang Won Seo
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Dina Silva
- Faculty of Medicine, University of Lisboa, Lisboa, Portugal
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Peter J Snyder
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Marc Sollberger
- Memory Clinic, University Department of Geriatric Medicine, Felix Platter-Hospital, Basel, Switzerland.,Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Reisa A Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Harvard Aging Brain Study, Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Luisa Spiru
- Geriatrics, Gerontology and Old Age Psychiatry Clinical Department, Carol Davila University of Medicine and Pharmacy-Elias, Emergency Clinical Hospital, Bucharest, Romania.,Memory Clinic and Longevity Medicine, Ana Aslan International Foundation, Bucharest, Romania
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology and the Taub Institute, Columbia University, New York, New York
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Akitoshi Takeda
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Marc Teichmann
- Department of Neurology, Institut de la Mémoire et de la Maladie d'Alzheimer, Centre de Référence Démences Rares, Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Centre de Référence Démences Rares, Pitié-Salpêtrière University Hospital, AP-HP, Paris, France
| | - Charlotte E Teunissen
- Department of Neurology, Alzheimer Centre Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Louisa I Thompson
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Jori Tomassen
- Department of Neurology, Alzheimer Centre Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Magda Tsolaki
- Aristotle University of Thessaloniki, Memory and Dementia Center, 3rd Department of Neurology, George Papanicolau General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of Leuven, Leuven, Belgium.,Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Marcel M Verbeek
- Departments of Neurology and Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, the Netherlands
| | - Frans R J Verhey
- Alzheimer Centre Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Victor Villemagne
- Department of Molecular Imaging, Austin Health, Melbourne, Victoria, Australia.,Molecular Biomarkers in Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, Montreal, Quebec, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Jonathan Vogelgsang
- Translational Neuroscience Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Gunhild Waldemar
- Danish Dementia Research Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anders Wallin
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Åsa K Wallin
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Guishan, Taoyuan, Taiwan.,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Marzena Zboch
- Research-Scientific-Didactic Centre of Dementia-Related Diseases in Scinawa, Medical University of Wroclaw, Wroclaw, Poland
| | - Henrik Zetterberg
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, University College London (UCL) Queen Square Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute, London, United Kingdom.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
34
|
Ali DG, Bahrani AA, Barber JM, El Khouli RH, Gold BT, Harp JP, Jiang Y, Wilcock DM, Jicha GA. Amyloid-PET Levels in the Precuneus and Posterior Cingulate Cortices Are Associated with Executive Function Scores in Preclinical Alzheimer's Disease Prior to Overt Global Amyloid Positivity. J Alzheimers Dis 2022; 88:1127-1135. [PMID: 35754276 PMCID: PMC10349398 DOI: 10.3233/jad-220294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Global amyloid-β (Aβ) deposition in the brain can be quantified by Aβ-PET scans to support or refute a diagnosis of preclinical Alzheimer's disease (pAD). Yet, Aβ-PET scans enable quantitative evaluation of regional Aβ elevations in pAD, potentially allowing even earlier detection of pAD, long before global positivity is achieved. It remains unclear as to whether such regional changes are clinically meaningful. OBJECTIVE Test the hypothesis that early focal regional amyloid deposition in the brain is associated with cognitive performance in specific cognitive domain scores in pAD. METHODS Global and regional standardized uptake value ratios (SUVr) from 18F-florbetapir PET/CT scanning were determined using the Siemens Syngo.via® Neurology software package across a sample of 99 clinically normal participants with Montreal Cognitive Assessment (MoCA) scores≥23. Relationships between regional SUVr and cognitive test scores were analyzed using linear regression models adjusted for age, sex, and education. Participants were divided into two groups based on SUVr in the posterior cingulate and precuneus gyri (SUVR≥1.17). Between group differences in cognitive test scores were analyzed using ANCOVA models. RESULTS Executive function performance was associated with increased regional SUVr in the precuneus and posterior cingulate regions only (p < 0.05). There were no significant associations between memory and Aβ-PET SUVr in any regions of the brain. CONCLUSION These data demonstrate that increased Aβ deposition in the precuneus and posterior cingulate (the earliest brain regions affected with Aβ pathology) is associated with changes in executive function that may precede memory decline in pAD.
Collapse
Affiliation(s)
- Doaa G. Ali
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
| | - Ahmed A. Bahrani
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
| | - Justin M. Barber
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
| | - Riham H. El Khouli
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian T. Gold
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jordan P. Harp
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
| | - Yang Jiang
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
| | - Donna M. Wilcock
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Gregory A. Jicha
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40506, United States
| |
Collapse
|
35
|
Lekchand Dasriya V, Samtiya M, Dhewa T, Puniya M, Kumar S, Ranveer S, Chaudhary V, Vij S, Behare P, Singh N, Aluko RE, Puniya AK. Etiology and management of Alzheimer's disease: Potential role of gut microbiota modulation with probiotics supplementation. J Food Biochem 2021; 46:e14043. [PMID: 34927261 DOI: 10.1111/jfbc.14043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the leading type of dementia in aging people and is a progressive condition that causes neurodegeneration, resulting in confusion, memory loss, and deterioration of mental functions. AD happens because of abnormal twisting of the microtubule tau protein in neurons into a tangled neurofibrillary structure. Different factors responsible for AD pathogenesis include heavy metals, aging, cardiovascular disease, and environmental and genetic factors. Market available drugs for AD have several side effects that include hepato-toxicity, accelerated cognitive decline, worsened neuropsychiatric symptoms, and triggered suicidal ideation. Therefore, an emerging alternative therapeutic approach is probiotics, which can improve AD by modulating the gut-brain axis. Probiotics modulate different neurochemical pathways by regulating the signalling pathways associated with inflammation, histone deacetylation, and microglial cell activation and maturation. In addition, probiotics-derived metabolites (i.e., short-chain fatty acid, neurotransmitters, and antioxidants) have shown ameliorative effects against AD. Probiotics also modulate gut microbiota, with a beneficial impact on neural signalling and cognitive activity, which can attenuate AD progression. Therefore, the current review describes the etiology and mechanism of AD progression as well as various treatment options with a focus on the use of probiotics. PRACTICAL APPLICATIONS: In an aging population, dementia concerns are quite prevalent globally. AD is one of the most commonly occurring cognition disorders, which is linked to diminished brain functions. Scientific evidence supports the findings that probiotics and gut microbiota can regulate/modulate brain functions, one of the finest strategies to alleviate such disorders through the gut-brain axis. Thus, gut microbiota modulation, especially through probiotic supplementation, could become an effective solution to ameliorate AD.
Collapse
Affiliation(s)
| | - Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Monica Puniya
- Food Safety and Standards Authority of India, FDA Bhawan, New Delhi, India
| | - Sanjeev Kumar
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Soniya Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Vishu Chaudhary
- Department of Microbiology, Punjab Agriculture University, Ludhiana, India
| | - Shilpa Vij
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pradip Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
36
|
Salvadó G, Ferreira D, Operto G, Cumplido-Mayoral I, Arenaza-Urquijo EM, Cacciaglia R, Falcon C, Vilor-Tejedor N, Minguillon C, Groot C, van der Flier WM, Barkhof F, Scheltens P, Ossenkoppele R, Kern S, Zettergren A, Skoog I, Hort J, Stomrud E, van Westen D, Hansson O, Molinuevo JL, Wahlund LO, Westman E, Gispert JD. The protective gene dose effect of the APOE ε2 allele on gray matter volume in cognitively unimpaired individuals. Alzheimers Dement 2021; 18:1383-1395. [PMID: 34877786 PMCID: PMC9542211 DOI: 10.1002/alz.12487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Harboring two copies of the apolipoprotein E (APOE) ε2 allele strongly protects against Alzheimer's disease (AD). However, the effect of this genotype on gray matter (GM) volume in cognitively unimpaired individuals has not yet been described. METHODS Multicenter brain magnetic resonance images (MRIs) from cognitively unimpaired ε2 homozygotes were matched (1:1) against all other APOE genotypes for relevant confounders (n = 223). GM volumes of ε2 genotypic groups were compared to each other and to the reference group (APOE ε3/ε3). RESULTS Carrying at least one ε2 allele was associated with larger GM volumes in brain areas typically affected by AD and also in areas associated with cognitive resilience. APOE ε2 homozygotes, but not APOE ε2 heterozygotes, showed larger GM volumes in areas related to successful aging. DISCUSSION In addition to the known resistance against amyloid-β deposition, the larger GM volumes in key brain regions may confer APOE ε2 homozygotes additional protection against AD-related cognitive decline.
Collapse
Affiliation(s)
- Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Irene Cumplido-Mayoral
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Natàlia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Department of Clinical Genetics, ERASMUS MC, Rotterdam, the Netherlands
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Department of Epidemiology & Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU Medical Center, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands.,Institutes of Neurology & Healthcare Engineering, University College London, London, UK
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Silke Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Jakub Hort
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic.,Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Erik Stomrud
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Danielle van Westen
- Diagnostic Radiology, Institution for Clinical Sciences, Lund University, Lund, Sweden.,Image and Function, Skåne University Hospital, Lund, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | | |
Collapse
|
37
|
Genetic effects on longitudinal cognitive decline during the early stages of Alzheimer's disease. Sci Rep 2021; 11:19853. [PMID: 34615922 PMCID: PMC8494841 DOI: 10.1038/s41598-021-99310-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Cognitive decline in early-stage Alzheimer's disease (AD) may depend on genetic variability. In the Swedish BioFINDER study, we used polygenic scores (PGS) (for AD, intelligence, and educational attainment) to predict longitudinal cognitive change (measured by mini-mental state examination (MMSE) [primary outcome] and other cognitive tests) over a mean of 4.2 years. We included 260 β-amyloid (Aβ) negative cognitively unimpaired (CU) individuals, 121 Aβ-positive CU (preclinical AD), 50 Aβ-negative mild cognitive impairment (MCI) patients, and 127 Aβ-positive MCI patients (prodromal AD). Statistical significance was determined at Bonferroni corrected p value < 0.05. The PGS for intelligence (beta = 0.1, p = 2.9e-02) was protective against decline in MMSE in CU and MCI participants regardless of Aβ status. The polygenic risk score for AD (beta = - 0.12, p = 9.4e-03) was correlated with the rate of change in MMSE and was partially mediated by Aβ-pathology (mediation effect 20%). There was no effect of education PGS on cognitive measures. Genetic variants associated with intelligence mitigate cognitive decline independent of Aβ-pathology, while effects of genetic variants associated with AD are partly mediated by Aβ-pathology.
Collapse
|
38
|
Hu ML, Quinn J, Xue K. Interactions between Apolipoprotein E Metabolism and Retinal Inflammation in Age-Related Macular Degeneration. Life (Basel) 2021; 11:life11070635. [PMID: 34210002 PMCID: PMC8305051 DOI: 10.3390/life11070635] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial retinal disorder that is a major global cause of severe visual impairment. The development of an effective therapy to treat geographic atrophy, the predominant form of AMD, remains elusive due to the incomplete understanding of its pathogenesis. Central to AMD diagnosis and pathology are the hallmark lipid and proteinaceous deposits, drusen and reticular pseudodrusen, that accumulate in the subretinal pigment epithelium and subretinal spaces, respectively. Age-related changes and environmental stressors, such as smoking and a high-fat diet, are believed to interact with the many genetic risk variants that have been identified in several major biochemical pathways, including lipoprotein metabolism and the complement system. The APOE gene, encoding apolipoprotein E (APOE), is a major genetic risk factor for AMD, with the APOE2 allele conferring increased risk and APOE4 conferring reduced risk, in comparison to the wildtype APOE3. Paradoxically, APOE4 is the main genetic risk factor in Alzheimer’s disease, a disease with features of neuroinflammation and amyloid-beta deposition in common with AMD. The potential interactions of APOE with the complement system and amyloid-beta are discussed here to shed light on their roles in AMD pathogenesis, including in drusen biogenesis, immune cell activation and recruitment, and retinal inflammation.
Collapse
Affiliation(s)
- Monica L. Hu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia;
| | - Joel Quinn
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Correspondence:
| |
Collapse
|
39
|
Cullen NC, Leuzy A, Janelidze S, Palmqvist S, Svenningsson AL, Stomrud E, Dage JL, Mattsson-Carlgren N, Hansson O. Plasma biomarkers of Alzheimer's disease improve prediction of cognitive decline in cognitively unimpaired elderly populations. Nat Commun 2021; 12:3555. [PMID: 34117234 PMCID: PMC8196018 DOI: 10.1038/s41467-021-23746-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma biomarkers of amyloid, tau, and neurodegeneration (ATN) need to be characterized in cognitively unimpaired (CU) elderly individuals. We therefore tested if plasma measurements of amyloid-β (Aβ)42/40, phospho-tau217 (P-tau217), and neurofilament light (NfL) together predict clinical deterioration in 435 CU individuals followed for an average of 4.8 ± 1.7 years in the BioFINDER study. A combination of all three plasma biomarkers and basic demographics best predicted change in cognition (Pre-Alzheimer's Clinical Composite; R2 = 0.14, 95% CI [0.12-0.17]; P < 0.0001) and subsequent AD dementia (AUC = 0.82, 95% CI [0.77-0.91], P < 0.0001). In a simulated clinical trial, a screening algorithm combining all three plasma biomarkers would reduce the required sample size by 70% (95% CI [54-81]; P < 0.001) with cognition as trial endpoint, and by 63% (95% CI [53-70], P < 0.001) with subsequent AD dementia as trial endpoint. Plasma ATN biomarkers show usefulness in cognitively unimpaired populations and could make large clinical trials more feasible and cost-effective.
Collapse
Affiliation(s)
| | - Antoine Leuzy
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | | | - Sebastian Palmqvist
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Anna L Svenningsson
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | | | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Department of Neurology, Skåne University Hospital, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
40
|
Influence of APOE genotype in primary age-related tauopathy. Acta Neuropathol Commun 2020; 8:215. [PMID: 33287896 PMCID: PMC7720601 DOI: 10.1186/s40478-020-01095-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
The term “Primary age-related tauopathy” (PART) was coined in 2014 to describe the common neuropathological observation of neurofibrillary tangles without associated beta-amyloid (Aβ) pathology. It is possible for PART pathology to be present in both cognitively normal and cognitively impaired individuals. Genetically, Apolipoprotein E (APOE) ε4 has been shown to occur less commonly in PART than in Alzheimer’s disease (AD). Here, we investigate the relationships between PART, AD and those pathologically normal for age, with an emphasis on APOE and cognition, using 152 selected participants from The University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age and the Manchester arm of the Brains for Dementia Research cohort. APOE genotype differed between PART and AD with APOE ε2 more common in the former and APOE ε4 more common in the latter. Individuals with definite PART were less likely to be cognitively impaired than those with AD and those with pathology considered pathologically normal for age. We postulate that the lack of Aβ in definite PART cases may be due either to an increased frequency of APOE ε2 or decreased frequency of APOE ε4 as their resulting protein isoforms have differing binding properties in relation to Aβ. Similarly, an increased frequency of APOE ε2 or decreased frequency of APOE ε4 may lead to decreased levels of cognitive impairment, which raises questions regarding the impact of Aβ pathology on overall cognition in elderly subjects. We suggest that it may be possible to use the increased frequency of APOE ε2 in definite PART to assist neuropathological diagnosis.
Collapse
|