1
|
Shimony S, Stahl M, Stone RM. Acute Myeloid Leukemia: 2025 Update on Diagnosis, Risk-Stratification, and Management. Am J Hematol 2025; 100:860-891. [PMID: 39936576 PMCID: PMC11966364 DOI: 10.1002/ajh.27625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
DISEASE OVERVIEW Acute myeloid leukemia (AML) is a bone marrow stem cell cancer that is often fatal despite available treatments. Diagnosis, risk assessment, monitoring, and therapeutic management of AML have changed dramatically in the last decade due to increased pathophysiologic understanding, improved assessment technology, and the addition of at least 12 approved therapies. DIAGNOSIS The diagnosis is based on the presence of immature leukemia cells in the blood, and/or bone marrow or less often in extra-medullary tissues. New biological insights have been integrated into recent classification systems. RISK ASSESSMENT The European Leukemia Network has published risk classification algorithms for both intensively and non-intensively treated patients based on cytogenetic and on molecular findings. Prognostic factors may differ based on the therapeutic approach. MONITORING Our increasing ability to quantify lower levels of measurable residual disease (MRD) potentially allows better response assessment, as well as dynamic monitoring of disease status. The incorporation of MRD findings into therapeutic decision-making is rapidly evolving. RISK ADAPTED THERAPY The availability of 12 newly approved agents has been welcomed; however, optimal strategies incorporating newer agents into therapeutic algorithms are debated. The overarching approach integrates patient and caregiver goals of care, comorbidities, and disease characteristics.
Collapse
Affiliation(s)
- Shai Shimony
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Maximilian Stahl
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Richard M. Stone
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| |
Collapse
|
2
|
Chen PH, Jhou HJ, Lee CH. Tyrosine kinase inhibitor maintenance therapy after stem cell transplantation for FLT3-mutated acute myeloid leukemia. Cochrane Database Syst Rev 2025; 4:CD016090. [PMID: 40292732 PMCID: PMC12036002 DOI: 10.1002/14651858.cd016090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
OBJECTIVES This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the effects of FLT3 TKIs as maintenance therapy compared to no maintenance therapy or alternative strategies for participants with FLT3-mutated AML after allo-HSCT.
Collapse
Affiliation(s)
- Po-Huang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hong-Jie Jhou
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Cho-Hao Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
Li SQ, Yu CZ, Xu LP, Wang Y, Zhang XH, Chen H, Chen YH, Wang FR, Sun YQ, Yan CH, Lv M, Mo XD, Liu YR, Liu KY, Zhao XS, Zhao XY, Huang XJ, Chang YJ. Pretransplantation risk factors for positive MRD after allogeneic stem cell transplantation in AML patients: a prospective study. Bone Marrow Transplant 2025; 60:277-285. [PMID: 39550501 DOI: 10.1038/s41409-024-02466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
We aimed to prospectively explore the risk factors for measurable residual disease (MRD) positivity after allogeneic stem cell transplantation (allo-SCT) in AML patients (n = 478). The cumulative incidences (CIs) of post-SCT MRD positivity at 100 days, 360 days and 3 years were 4.6%, 12.1% and 18.3%, respectively. Positive pre-SCT MRD and pre-SCT active disease were risk factors for post-SCT MRD positivity at both 360 days and 3 years (P < 0.001). European LeukemiaNet (ELN) 2017 risk stratification was a risk factor for positive post-SCT MRD at 360 days (P = 0.044). A scoring system for predicting post-SCT MRD positivity at 360 days was established by using pre-SCT MRD, pre-SCT active disease and ELN 2017 risk stratification. The CI of positive post-SCT MRD at 3 years was 13.2%, 23.7%, and 43.9% for patients with scores of 0, 1, and 2, respectively (P < 0.001). Multivariate analysis demonstrated that the scoring system was associated with a higher CI of post-SCT MRD positivity, leukemia relapse and inferior survival. Our data indicate that positive pre-SCT MRD status, pre-SCT active disease, and ELN 2017 risk stratification are risk factors for positive post-SCT MRD status in AML patients.
Collapse
Affiliation(s)
- Si-Qi Li
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chun-Zi Yu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Meng Lv
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yan-Rong Liu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
4
|
Ouchi F, Shingai N, Najima Y, Sadato D, Hirama C, Wakita S, Kondo K, Sadaga Y, Kato C, Sakai S, Kambara Y, Shimabukuro M, Inai K, Toya T, Shimizu H, Haraguchi K, Kobayashi T, Harada H, Okuyama Y, Yamaguchi H, Harada Y, Doki N. Quizartinib with donor lymphocyte infusion for post-transplant relapse of FLT3-ITD-positive acute myeloid leukemia. Int J Hematol 2025; 121:137-143. [PMID: 39455536 DOI: 10.1007/s12185-024-03863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD)-positive acute myeloid leukemia (AML) has a poor prognosis, particularly with DNMT3A and NPM1 mutations. Quizartinib, a FLT3 inhibitor showing clinical benefit in FLT3-ITD-positive AML, has unclear safety and efficacy when combined with donor lymphocyte infusion (DLI). We report a case of FLT3-ITD-positive AML with DNMT3A and NPM1 mutations that relapsed after allogeneic hematopoietic stem cell transplantation (allo-HCT) and was treated with quizartinib and DLI. A 49-year-old man was diagnosed with AML. Target-sequencing analysis of the bone marrow revealed FLT3-ITD, DNMT3A R882, and NPM1 mutations. Although the patient achieved complete remission (CR) through induction therapy and received allo-HCT, he relapsed on day 71. Quizartinib was initiated on day 79, and the patient achieved CR with incomplete recovery on day 106. He did not desire a second allo-HCT and continued quizartinib in combination with DLI, which was started on day 156 and administered eight times every 2 to 3 months. The patient achieved hematological CR on day 163 and remained in molecular CR 3 years after allo-HCT without adverse effects. Quizartinib combined with DLI may be a feasible treatment for early relapse of FLT3-ITD-positive AML after allo-HCT, even with concurrent DNMT3A and NPM1 mutations.
Collapse
Affiliation(s)
- Fumihiko Ouchi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Naoki Shingai
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan.
| | - Daichi Sadato
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Chizuko Hirama
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Satoshi Wakita
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Kaori Kondo
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Yasutaka Sadaga
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Chika Kato
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Satoshi Sakai
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Yasuhiro Kambara
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Masashi Shimabukuro
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Kazuki Inai
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Hiroaki Shimizu
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Kyoko Haraguchi
- Division of Transfusion and Cell Therapy, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takeshi Kobayashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| | - Hironori Harada
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshiki Okuyama
- Division of Transfusion and Cell Therapy, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | | | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-8-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan
| |
Collapse
|
5
|
Geramita E, Hou JZ, Shlomchik WD, Ito S. Maintenance strategies for relapse prevention and treatment. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:635-643. [PMID: 39644024 DOI: 10.1182/hematology.2024000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Posttransplant relapse is the most significant challenge in allogeneic stem cell transplantation (alloSCT). Posttransplant interventions, in conjunction with optimal conditioning regimens and donor selection, are increasingly supported by evidence for their potential to prolong patient survival by promoting antileukemia or graft-versus-leukemia effects. Our review begins by highlighting the current evidence supporting maintenance therapy for relapse prevention in acute myeloid leukemia and acute lymphocytic leukemia. This includes a broad spectrum of strategies, such as targeted therapies, hypomethylating agents, venetoclax, and immunotherapies. We then shift our focus to the role of disease monitoring after alloSCT, emphasizing the potential importance of early detection of measurable residual disease and a drop in donor chimerism. We also provide an overview of salvage therapies for overt relapse, including targeted therapies, chemotherapies, immunotherapies, donor lymphocyte infusion, and selected agents under investigation in ongoing clinical trials. Finally, we review the evidence for a second alloSCT (HSCT2) and discuss factors that impact donor selection for HSCT2.
Collapse
Affiliation(s)
- Emily Geramita
- Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Jing-Zhou Hou
- Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Warren D Shlomchik
- Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Sawa Ito
- Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Wang Y, Chang YJ, Chen J, Han M, Hu J, Hu J, Huang H, Lai Y, Liu D, Liu Q, Luo Y, Jiang EL, Jiang M, Song Y, Tang XW, Wu D, Xia LH, Xu K, Zhang X, Zhang XH, Huang X. Consensus on the monitoring, treatment, and prevention of leukaemia relapse after allogeneic haematopoietic stem cell transplantation in China: 2024 update. Cancer Lett 2024; 605:217264. [PMID: 39332587 DOI: 10.1016/j.canlet.2024.217264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
The consensus in 2018 from The Chinese Society of Haematology (CSH) on the monitoring, treatment, and prevention of leukaemia relapse after allogeneic haematopoietic stem cell transplantation (HSCT) facilitated the standardization of clinical practices in China and progressive integration with the world. To integrate recent developments and further improve the consensus, a panel of experts from the CSH recently updated the following consensus: (1) integrate risk-adapted, measurable residual disease (MRD)-guided strategy on modified donor lymphocyte infusion (DLI) and interferon-α into total therapy, which was pioneered and refined by Chinese researchers; (2) provide additional evidence of the superiority of haploidentical HSCT (the dominant donor source in China) to matched HSCT for high-risk populations, especially for pre-HSCT MRD-positive patients; (3) support the rapid progress of techniques for MRD detection, such as next-generation sequencing (NGS) and leukaemia stem cell-based MRD detection; and (4) address the role of new targeted options in transplant settings. In conclusion, the establishment of a "total therapy" strategy represents a great step forward. We hope that the consensus updated by Chinese scholars will include the latest cutting-edge developments and inspire progress in post-HSCT relapse management.
Collapse
Affiliation(s)
- Yu Wang
- Peking University People's Hospital & Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, PR China
| | - Ying-Jun Chang
- Peking University People's Hospital & Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, PR China
| | - Jing Chen
- Shanghai Children's Medical Center, Shanghai, PR China
| | - Mingzhe Han
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Hematology and Blood Disease Hospital, Tianjin, PR China
| | - JianDa Hu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Jiong Hu
- Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - He Huang
- First Affiliated Hospital of Zhejiang University, Hangzhou, PR China
| | - Yongrong Lai
- The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Daihong Liu
- General Hospital of PLA(People's Liberation Army of China), Beijing, PR China
| | - Qifa Liu
- Nanfang Hospital of Southern Medical University, Guangzhou, PR China
| | - Yi Luo
- First Affiliated Hospital of Zhejiang University, Hangzhou, PR China
| | - Er-Lie Jiang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Hematology and Blood Disease Hospital, Tianjin, PR China
| | - Ming Jiang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Yongping Song
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xiao-Wen Tang
- The First Affiliated Hospital of Soochow University, Soochow, PR China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, Soochow, PR China
| | - Ling-Hui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Kailin Xu
- The First Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Xi Zhang
- Xinqiao Hospital, Army Medical University, Chongqing, PR China
| | - Xiao-Hui Zhang
- Peking University People's Hospital & Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, PR China
| | - Xiaojun Huang
- Peking University People's Hospital & Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, PR China; Peking-Tsinghua Center for Life Sciences, Beijing, PR China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, PR China.
| |
Collapse
|
7
|
Nishijima M, Ido K, Okayama Y, Okamura H, Kuno M, Makuuchi Y, Nishimoto M, Nakashima Y, Koh H, Nakamae M, Hino M, Nakamae H. A case of posttransplant isolated extramedullary relapse of acute lymphoblastic leukemia achieving durable treatment-free remission with blinatumomab and donor lymphocyte infusion. Int J Hematol 2024; 120:645-650. [PMID: 39210087 DOI: 10.1007/s12185-024-03839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Acute lymphoblastic leukemia (ALL) relapsed after allogeneic hematopoietic cell transplantation (allo-HCT) has a catastrophic prognosis. Blinatumomab, a CD3/CD19-directed bispecific T cell engager, is reportedly effective for advanced B-cell ALL (B-ALL), even after allo-HCT. However, the efficacy of blinatumomab in extramedullary relapse (EMR) is controversial. Donor lymphocyte infusion (DLI) is another immunological treatment worth considering for ALL relapsed after allo-HCT. We report the case of a 56-year-old woman with B-ALL. Allo-HCT was performed during the second complete remission (CR). Thirteen months after allo-HCT, isolated EMR (iEMR) of B-ALL developed without bone marrow lesions. A third CR was achieved with 2 cycles of blinatumomab. An additional four cycles each of blinatumomab and DLI were then administered. The patient did not develop graft-versus-host disease and has confirmed 2-year treatment-free remission without a second allo-HCT. Therefore, blinatumomab was considered an effective salvage therapy for iEMR of B-ALL after allo-HCT, because iEMR could have a lower tumor burden than that seen in systemic relapse, and low tumor burden was a prognostic factor for response to blinatumomab. Furthermore, immunological consolidation therapies could only provoke graft-versus-leukemia effects if the imbalanced effector/target ratio was restored and the tumor burden was lowered through immunosurveillance.
Collapse
Affiliation(s)
- Makoto Nishijima
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kentaro Ido
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
- Department of Laboratory Medicine and Medical Informatics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| | - Yusuke Okayama
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroshi Okamura
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
- Department of Laboratory Medicine and Medical Informatics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masatomo Kuno
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yosuke Makuuchi
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Mitsutaka Nishimoto
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasuhiro Nakashima
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hideo Koh
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
- Department of Preventive Medicine and Environmental Health, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mika Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
- Department of Laboratory Medicine and Medical Informatics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
8
|
Rambaldi B, Rizzuto G, Rambaldi A, Introna M. Genetically modified and unmodified cellular approaches to enhance graft versus leukemia effect, without increasing graft versus host disease: the use of allogeneic cytokine-induced killer cells. Front Immunol 2024; 15:1459175. [PMID: 39512351 PMCID: PMC11540647 DOI: 10.3389/fimmu.2024.1459175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Although allogeneic hematopoietic cell transplantation (HCT) represents a curative approach for many patients with hematological diseases, post-transplantation relapse occurs in 20-50% of cases, representing the primary cause of treatment failure and mortality. Alloreactive donor T cells are responsible for the graft versus leukemia (GvL) effect, which represents the key mechanism for the long-term curative effect of HCT. However, the downside is represented by graft versus host disease (GvHD), largely contributing to transplant-related mortality (TRM). Multiple factors play a role in regulating the delicate balance between GvL and GvHD, such as the optimization of the donor HLA and KIR match, the type of graft source, and the adaptive use of post-transplant cellular therapy. In addition to the standard donor lymphocyte infusion (DLI), several attempts were made to favor the GvL effect without increasing the GvHD risk. Selected DLI, NK DLI, activated DLI and more sophisticated genetically engineered cells can be employed. In this scenario, cytokine-induced killer (CIK) cells represent a suitable tool to boost GvL while minimizing GvHD. CIK cells are T lymphocytes activated in culture in the presence of monoclonal antibodies against CD3 (OKT3), interferon-gamma (IFN-g), and interleukin-2 (IL-2), characterized by the expression of markers typical of NK cells and T cells (CD3+, CD56+, with a prevalent CD8+ phenotype). CIK cells can mediate cytotoxicity through both MHC and non-MHC restricted recognition, which is the so-called "dual-functional capability" and display minimum alloreactivity. Allogeneic CIK cells showed a favorable rate of response, especially in the setting of minimal residual disease, with a rate of GvHD not exceeding 25%. Finally, the CIK cell platform can be adapted for chimeric antigen receptor (CAR) cell strategy, showing promising results in both preclinical and clinical settings. In this review, we describe the main immunological basis for the development of the GvL and the possible cellular therapy approaches used to boost it, with a particular focus on the use of CIK cells.
Collapse
Affiliation(s)
- Benedetta Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Giuliana Rizzuto
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Molecular and Translational Medicine Doctoral Program (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Alessandro Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Department of Oncology and Hematology, Università degli Studi di Milano, Milan, Italy
| | - Martino Introna
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
9
|
Wang R, Wu Y, Xue R, Shi T, Gu H, Yang Y, Wu W, Yang Y, Sun S, Zhu HH. Personalized therapy guided by single-cell transcriptomic analysis in relapsed and refractory KMT2A::MLLT10 AML with extensive extramedullary infiltration: A case report. Br J Haematol 2024; 205:1444-1449. [PMID: 38740515 DOI: 10.1111/bjh.19522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Affiliation(s)
- Rong Wang
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Wu
- Department of Geriatrics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruicong Xue
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Shi
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haifeng Gu
- Department of Geriatrics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yichen Yang
- Department of Geriatrics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weizhen Wu
- Department of Geriatrics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunmei Yang
- Department of Geriatrics, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shu Sun
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hong-Hu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Chinese Institutes for Medical Research, Beijing, China
| |
Collapse
|
10
|
Cox ER, Summers C, Milano F, Dahlberg A, Bleakley M, Sandmaier BM, Thakar MS. Outcomes of patients undergoing third hematopoietic cell transplantation for hematologic malignancies. Ann Hematol 2024; 103:3737-3743. [PMID: 39003390 DOI: 10.1007/s00277-024-05774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 07/15/2024]
Abstract
With advancements in novel therapeutics, it is unclear whether third hematopoietic cell transplantation (HCT3) has a place in the treatment of recurrent hematopoietic malignancies. We evaluated patients with hematologic malignancies who underwent HCT3 between 2000-2020. Nine patients, with a median age of 18 (9-68) years at HCT3 with acute myelogenous leukemia (n = 5), acute lymphoblastic leukemia (n = 2), myelodysplastic syndrome (n = 1), or undifferentiated acute leukemia (n = 1), were identified. The median time between first HCT and HCT3 was 3.9 (0.7-13.6) years. Indication for HCT3 was relapse (n = 8) or graft failure (n = 1) after second HCT. At HCT3, seven of nine patients were in complete remission by flow cytometry. All experienced robust donor engraftment by one month after HCT3 (≥ 90% CD3) while one died at day + 24 of multi-organ failure and was not evaluable for chimerism. In total, eight patients died from relapse (n = 4), non-relapse, (n = 3) or unknown (n = 1) causes at a median of 0.6 (range, 0.1 - 9.9) years after HCT3. After HCT3, estimated overall survival at 6 months, 1 year, and 5 years was 88%, 63%, and 22%, respectively. In this highly selected group, HCT3 provided a treatment option although long-term survival was still dismal.
Collapse
Affiliation(s)
- Emily R Cox
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Corinne Summers
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Filippo Milano
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ann Dahlberg
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Marie Bleakley
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brenda M Sandmaier
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Monica S Thakar
- Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Rodríguez-Arbolí E, Othus M, Orvain C, Ali N, Milano F, Davis C, Basom R, Baccon D, Sandmaier BM, Appelbaum FR, Walter RB. Second Allogeneic Hematopoietic Cell Transplantation for Relapsed Adult Acute Myeloid Leukemia: Outcomes and Prognostic Factors. Transplant Cell Ther 2024; 30:905.e1-905.e14. [PMID: 38914227 PMCID: PMC11344659 DOI: 10.1016/j.jtct.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Second allogeneic hematopoietic cell transplantation (HCT2) is potentially curative for adults with acute myeloid leukemia (AML) or myelodysplastic neoplasm (MDS)/AML experiencing relapse after a first allograft (HCT1), but prognostic factors for outcomes are poorly characterized. To provide a detailed analysis of HCT2 outcomes and associated prognostic factors in a large single-center cohort, with a focus on identifying predictors of relapse and nonrelapse mortality (NRM), we studied adults ≥18 years who underwent HCT2 at a single institution between April 2006 and June 2022 for relapsed AML (n = 73) or MDS/AML (n = 8). With a median follow-up among survivors of 74.0 (range: 10.4 to 187.3) months, there were 30 relapses and 57 deaths, of which 29 were NRM events, contributing to the estimates for relapse, overall survival (OS), relapse-free survival (RFS), and NRM. Three-year estimates for relapse, RFS, and OS were 37% (95% confidence interval: 27% to 48%), 32% (23% to 44%), and 35% (26% to 47%). The rate of NRM at 100 days and 18 months was 20% (12% to 29%) and 28% (19% to 39%). Outcomes differed markedly across patient subsets and were substantially worse for patients who underwent HCT2 with active disease (ie, morphologic evidence of bone marrow and/or extramedullary disease), for patients who relapsed ≤6 months after HCT1, and for patients with higher HCT-specific Comorbidity Index (HCT-CI) or treatment-related mortality (TRM) scores. After multivariable adjustment, active disease was associated with a higher risk of relapse (hazard ratio [HR] = 3.19, P = .006) and shorter RFS (HR = 2.41, P = .008) as well as OS (HR = 2.17, P = .027) compared to transplant in morphologic remission without multiparameter flow cytometric evidence of measurable residual disease. Similarly, a relapse-free interval ≤6 months after the first allograft was associated with higher risk of relapse (HR = 5.86, P < .001) and shorter RFS (HR = 2.86; P = .001) and OS (HR = 2.45, P = .003). Additionally, a high HCT-CI score was associated with increased NRM (HR = 4.30, P = .035), and shorter RFS (HR = 3.87, P = .003) and OS (HR = 3.74, P = .006). Likewise, higher TRM scores were associated with increased risk of relapse (HR = 2.27; P = .024) and NRM (HR = 2.01, P = .001), and inferior RFS (HR = 1.90 P = .001) and OS (HR = 1.88, P = .001). A significant subset of patients with AML or MDS/AML relapse after HCT1 are alive and leukemia-free 3 years after undergoing HCT2. Our study identifies active leukemia at the time of HCT2 and early relapse after HCT1 as major adverse prognostic factors, highlighting patient subsets in particular need of novel therapeutic approaches, and supports the use of the HCT-CI and TRM scores for outcome prognostication.
Collapse
Affiliation(s)
- Eduardo Rodríguez-Arbolí
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CSIC), University of Seville, Seville, Spain
| | - Megan Othus
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Corentin Orvain
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Maladies du Sang, CHU d'Angers, Angers, France; Fédération Hospitalo-Universitaire Grand-Ouest Acute Leukemia, FHU-GOAL, Angers, France; Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, Angers, France
| | - Naveed Ali
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Filippo Milano
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington
| | - Chris Davis
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ryan Basom
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Domitilla Baccon
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Brenda M Sandmaier
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington
| | - Frederick R Appelbaum
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington
| | - Roland B Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
12
|
Wienecke CP, Heida B, Venturini L, Gabdoulline R, Krüger K, Teich K, Büttner K, Wichmann M, Puppe W, Neziri B, Reuter M, Dammann E, Stadler M, Ganser A, Hambach L, Thol F, Heuser M. Clonal relapse dynamics in acute myeloid leukemia following allogeneic hematopoietic cell transplantation. Blood 2024; 144:296-307. [PMID: 38669617 DOI: 10.1182/blood.2023022697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
ABSTRACT Patients with acute myeloid leukemia (AML) who experience relapse following allogeneic hematopoietic cell transplantation (alloHCT) face unfavorable outcomes regardless of the chosen relapse treatment. Early detection of relapse at the molecular level by measurable residual disease (MRD) assessment enables timely intervention, which may prevent hematological recurrence of the disease. It remains unclear whether molecular MRD assessment can detect MRD before impending relapse and, if so, how long in advance. This study elucidates the molecular architecture and kinetics preceding AML relapse by using error-corrected next-generation sequencing (NGS) in 74 patients with AML relapsing after alloHCT, evaluating 140 samples from peripheral blood collected 0.6 to 14 months before relapse. At least 1 MRD marker became detectable in 10%, 38%, and 64% of patients at 6, 3, and 1 month before relapse, respectively. By translating these proportions into monitoring intervals, 38% of relapses would have been detected through MRD monitoring every 3 months, whereas 64% of relapses would have been detected with monthly intervals. The relapse kinetics after alloHCT are influenced by the functional class of mutations and their stability during molecular progression. Notably, mutations in epigenetic modifier genes exhibited a higher prevalence of MRD positivity and greater stability before relapse, whereas mutations in signaling genes demonstrated a shorter lead time to relapse. Both DTA (DNMT3A, TET2, and ASXL1) and non-DTA mutations displayed similar relapse kinetics during the follow-up period after alloHCT. Our study sets a framework for MRD monitoring after alloHCT by NGS, supporting monthly monitoring from peripheral blood using all variants that are known from diagnosis.
Collapse
Affiliation(s)
- Clara Philine Wienecke
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Bennet Heida
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Letizia Venturini
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Razif Gabdoulline
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Katja Krüger
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Katrin Teich
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Konstantin Büttner
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Martin Wichmann
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Wolfram Puppe
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Blerina Neziri
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Marlene Reuter
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Elke Dammann
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Stadler
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lothar Hambach
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Graff Z, Wachter F, Eapen M, Lehmann L, Cooper T. Navigating Treatment Options and Communication in Relapsed Pediatric AML. Am Soc Clin Oncol Educ Book 2024; 44:e438690. [PMID: 38862135 DOI: 10.1200/edbk_438690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Despite improved outcomes in newly diagnosed pediatric AML, relapsed disease remains a therapeutic challenge. Factors contributing to slow progress in improving outcomes include inherent challenges in pediatric clinical trial accrual and the scarcity of novel targeted/immunotherapy agents available for pediatric development. This paradigm is changing, however, as international collaboration grows in parallel with the development of promising targeted agents. In this review, we discuss the therapeutic landscape of relapsed pediatric AML, including conventional chemotherapy, targeted therapies, and the challenges of drug approvals in this patient population. We highlight current efforts to improve communication among academia, industry, and regulatory authorities and discuss the importance of international collaboration to improve access to new therapies. Among the therapeutic options, we highlight the approach to second hematopoietic stem cell transplant (HSCT) and discuss which patients are most likely to benefit from this potentially curative intervention. Importantly, we acknowledge the challenges in providing these high-risk interventions to our patients and their families and the importance of shared communication and decision making when considering early-phase clinical trials and second HSCT.
Collapse
Affiliation(s)
- Zachary Graff
- Department of Pediatrics, Division of Hematology, Oncology, and BMT, Medical College of Wisconsin, Milwaukee, WI
| | - Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Mary Eapen
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Leslie Lehmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Todd Cooper
- Department of Pediatrics, Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA
| |
Collapse
|
14
|
Sureda A, Carpenter PA, Bacigalupo A, Bhatt VR, de la Fuente J, Ho A, Kean L, Lee JW, Sánchez-Ortega I, Savani BN, Schetelig J, Stadtmauer EA, Takahashi Y, Atsuta Y, Koreth J, Kröger N, Ljungman P, Okamoto S, Popat U, Soiffer R, Stefanski HE, Kharfan-Dabaja MA. Harmonizing definitions for hematopoietic recovery, graft rejection, graft failure, poor graft function, and donor chimerism in allogeneic hematopoietic cell transplantation: a report on behalf of the EBMT, ASTCT, CIBMTR, and APBMT. Bone Marrow Transplant 2024; 59:832-837. [PMID: 38443706 PMCID: PMC11161398 DOI: 10.1038/s41409-024-02251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Despite emergence of novel therapies to treat hematologic malignancies, allogeneic hematopoietic cell transplantation (allo-HCT) remains an essential treatment modality capable of curing these diseases. Allo-HCT has been also shown to be curative in benign hematologic disorders such as aplastic anemia, sickle cell disease, and thalassemia, among others. Recently, the American Society for Transplantation and Cellular Therapy (ASTCT) published standardized definitions for hematopoietic recovery, graft rejection, graft failure, poor graft function, and donor chimerism. To attempt broader international consensus, a panel of adult and pediatric physician transplant experts was assembled from European Society for Blood and Marrow Transplantation (EBMT), ASTCT, the Center for International Blood and Marrow Transplant Research (CIBMTR), and Asia-Pacific Blood and Marrow Transplantation (APBMT). Consensus was defined as ≥70% of voting members strongly agreeing or somewhat agreeing with a definition. With few exceptions, there was a consensus to endorse the prior ASTCT definitions. Importantly, we revised existing EBMT and CIBMTR data collection forms to align with these harmonized definitions that will facilitate research and international collaboration among transplant researchers and across transplant registries.
Collapse
Affiliation(s)
- Anna Sureda
- Clinical Hematology Department, Institut Català d'Oncologia-L'Hospitalet, IDIBELL, Universitat de Barcelona, Barcelona, Spain.
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Vijaya Raj Bhatt
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Josu de la Fuente
- Department of Paediatrics, Imperial College Healthcare NHS Trust, St Mary's Hospital, London, UK
- Department of Immunology & Inflammation, Imperial College London, London, UK
| | - Aloysius Ho
- Department of Haematology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore
| | - Leslie Kean
- Stem Cell Transplantation Program. Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jong Wook Lee
- Division of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Bipin N Savani
- Division of Hematology/ Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Johannes Schetelig
- Medical Department I, University Hospital Carl Gustav Carus. TU Dresden & DKMS Group, Clinical Trials Unit, Dresden, Germany
| | - Edward A Stadtmauer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - John Koreth
- Department of Medical Oncology, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicolaus Kröger
- Department for Stem Cell Transplantation, University Medical Center Hamburg, Hamburg, Germany
| | - Per Ljungman
- Department. of Cellular Therapy and Allogeneic Stem Cell Transplantation. Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Division of Hematology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Uday Popat
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Soiffer
- Department of Medical Oncology, Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Heather E Stefanski
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
15
|
Nagasaki J, Nishimoto M, Koh H, Okamura H, Nakamae M, Sakatoku K, Ido K, Kuno M, Makuuchi Y, Takakuwa T, Nakashima Y, Hino M, Nakamae H. T cells with high BCL-2 expression induced by venetoclax impact anti-leukemic immunity "graft-versus-leukemia effects". Blood Cancer J 2024; 14:79. [PMID: 38744860 PMCID: PMC11094022 DOI: 10.1038/s41408-024-01064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Joji Nagasaki
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsutaka Nishimoto
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| | - Hideo Koh
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Preventive Medicine and Environmental Health, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Okamura
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Laboratory Medicine and Medical Informatics, Osaka Metropolitan University, Osaka, Japan
| | - Mika Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Laboratory Medicine and Medical Informatics, Osaka Metropolitan University, Osaka, Japan
| | - Kazuki Sakatoku
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kentaro Ido
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Laboratory Medicine and Medical Informatics, Osaka Metropolitan University, Osaka, Japan
| | - Masatomo Kuno
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yosuke Makuuchi
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Teruhito Takakuwa
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Nakashima
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
16
|
Schmälter AK, Ngoya M, Galimard JE, Bazarbachi A, Finke J, Kröger N, Bornhäuser M, Stelljes M, Stölzel F, Tischer J, Schroeder T, Dreger P, Blau IW, Savani B, Giebel S, Esteve J, Nagler A, Schmid C, Ciceri F, Mohty M. Continuously improving outcome over time after second allogeneic stem cell transplantation in relapsed acute myeloid leukemia: an EBMT registry analysis of 1540 patients. Blood Cancer J 2024; 14:76. [PMID: 38697960 PMCID: PMC11066014 DOI: 10.1038/s41408-024-01060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Second allogeneic stem cell transplantation (alloSCT2) is among the most effective treatments for acute myeloid leukemia (AML) relapse after first alloSCT (alloSCT1). Long-term EBMT registry data were used to provide large scale, up-to-date outcome results and to identify factors for improved outcome. Among 1540 recipients of alloSCT2, increasing age, better disease control and performance status before alloSCT2, more use of alternative donors and higher conditioning intensity represented important trends over time. Between the first (2000-2004) and last (2015-2019) period, two-year overall and leukemia-free survival (OS/LFS) increased considerably (OS: 22.5-35%, LFS: 14.5-24.5%). Cumulative relapse incidence (RI) decreased from 64% to 50.7%, whereas graft-versus-host disease and non-relapse mortality (NRM) remained unchanged. In multivariable analysis, later period of alloSCT2 was associated with improved OS/LFS (HR = 0.47/0.53) and reduced RI (HR = 0.44). Beyond, remission duration, disease stage and patient performance score were factors for OS, LFS, RI, and NRM. Myeloablative conditioning for alloSCT2 decreased RI without increasing NRM, leading to improved OS/LFS. Haploidentical or unrelated donors and older age were associated with higher NRM and inferior OS. In summary, outcome after alloSCT2 has continuously improved over the last two decades despite increasing patient age. The identified factors provide clues for the optimized implementation of alloSCT2.
Collapse
Affiliation(s)
- Ann-Kristin Schmälter
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Maud Ngoya
- EBMT Paris Study Unit, Department of Hematology and Cell Therapy, Hôpital Saint-Antoine, Paris, France
| | - Jacques-Emmanuel Galimard
- EBMT Paris Study Unit, Department of Hematology and Cell Therapy, Hôpital Saint-Antoine, Paris, France
| | - Ali Bazarbachi
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut, Medical Center, Beirut, Libanon
| | - Jürgen Finke
- University of Freiburg, Department of Medicine, Hematology, Oncology, Freiburg, Germany
| | - Nicolaus Kröger
- University Medical Center Hamburg-Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany
| | - Martin Bornhäuser
- University Hospital Dresden, TU Dresden, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - Matthias Stelljes
- University of Muenster, Department of Hematology and Oncology, Muenster, Germany
| | - Friedrich Stölzel
- University Hospital Schleswig-Holstein, Kiel, Department of Stem Cell Transplantation and Cellular Immunotherapies, Kiel University, Kiel, Germany
| | - Johanna Tischer
- University Hospital of Munich, Campus Grosshadern, Department of Internal Medicine III, Munich, Germany
| | - Thomas Schroeder
- University Hospital Essen, Department of Hematology and Stem Cell Transplantation, Essen, Germany
| | - Peter Dreger
- University of Heidelberg, Medizinische Klinik und Poliklinik V, Heidelberg, Germany
| | - Igor-Wolfgang Blau
- Medizinische Klinik Hämatologie, Onkologie und Tumorimmunologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bipin Savani
- Department of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tenn, USA
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Jordi Esteve
- Hematology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Arnon Nagler
- Hematology and Bone Marrow Transplantation Division, Chaim Sheba Medical Center, Tel Aviv University, Ramat Gan, Israel
| | - Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany.
| | - Fabio Ciceri
- Unit of Hematology and BMT, IRCCS Ospedale San Raffaele, University Vita-Salute San Raffaele, Milano, Italy
| | - Mohamad Mohty
- EBMT Paris Study Unit, Department of Hematology and Cell Therapy, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
17
|
Leung WK, Torres Chavez AG, French-Kim M, Shafer P, Mamonkin M, Hill LC, Kuvalekar M, Velazquez Y, Watanabe A, Watanabe N, Hoyos V, Lulla P, Leen AM. Targeting IDH2R140Q and other neoantigens in acute myeloid leukemia. Blood 2024; 143:1726-1737. [PMID: 38241630 PMCID: PMC11103096 DOI: 10.1182/blood.2023021979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024] Open
Abstract
ABSTRACT For patients with high-risk or relapsed/refractory acute myeloid leukemia (AML), allogeneic stem cell transplantation (allo-HSCT) and the graft-versus-leukemia effect mediated by donor T cells, offer the best chance of long-term remission. However, the concurrent transfer of alloreactive T cells can lead to graft-versus-host disease that is associated with transplant-related morbidity and mortality. Furthermore, ∼60% of patients will ultimately relapse after allo-HSCT, thus, underscoring the need for novel therapeutic strategies that are safe and effective. In this study, we explored the feasibility of immunotherapeutically targeting neoantigens, which arise from recurrent nonsynonymous mutations in AML and thus represent attractive targets because they are exclusively present on the tumor. Focusing on 14 recurrent driver mutations across 8 genes found in AML, we investigated their immunogenicity in 23 individuals with diverse HLA profiles. We demonstrate the immunogenicity of AML neoantigens, with 17 of 23 (74%) reactive donors screened mounting a response. The most immunodominant neoantigens were IDH2R140Q (n = 11 of 17 responders), IDH1R132H (n = 7 of 17), and FLT3D835Y (n = 6 of 17). In-depth studies of IDH2R140Q-specific T cells revealed the presence of reactive CD4+ and CD8+ T cells capable of recognizing distinct mutant-specific epitopes restricted to different HLA alleles. These neo-T cells could selectively recognize and kill HLA-matched AML targets endogenously expressing IDH2R140Q both in vitro and in vivo. Overall, our findings support the clinical translation of neoantigen-specific T cells to treat relapsed/refractory AML.
Collapse
Affiliation(s)
- Wingchi K. Leung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Alejandro G. Torres Chavez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Matthew French-Kim
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - LaQuisa C. Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| | - Ann M. Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX
| |
Collapse
|
18
|
Zhang T, Zhang Y, Zhou M, Zhang Z, Bao X, Wen L, Feng Y, Li X, Zhai M, Liu X, Zeng Z, Wu X, Chen S. Risk factors and survival analysis of human leukocyte antigen loss in relapsed acute myeloid leukaemia/myelodysplastic syndrome patients after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2024; 204:1402-1413. [PMID: 38327115 DOI: 10.1111/bjh.19304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
To investigate the clinical characteristics and risk factors of specific human leukocyte antigen loss (HLA loss) in relapsed acute myeloid leukaemia (AML)/myelodysplastic syndrome (MDS) patients after allogeneic haematopoietic stem cell transplantation (allo-HSCT), and compare the responses of patients with HLA loss relapse with those without HLA loss (non-HLA loss) to different treatment regimens. Clinical data of traceable patients with AML/MDS after myeloablative allo-HSCT in our centre between January 2010 and June 2021, who experienced disease relapse after the transplantation, were collected. The patients were divided into the HLA loss relapse group and the non-HLA loss relapsed group based on HLA loss gene test findings by next-generation sequencing. The patients' median overall survival (OS) after the relapse were compared, and univariate and multivariate analyses were performed using the Kaplan-Meier survival curve and Cox proportional hazard model to explore the responses to different treatments after relapse. A total of 2359 patients were selected. Retrospective HLA gene loss gene detection was performed for the deoxyribonucleic acid in 179 relapsed patients, including 47 patients in the HLA loss group (27.2%), 126 patients in the non-HLA loss group (72.8%) and 6 patients were excluded due to a lack of confirmed results. There was no significant statistical difference in the baseline characteristics of patients between the two groups, but as to transplantation-related characteristics, the donor-recipient relationship and HLA mismatched loci were statistically different between the two groups (both p < 0.001). Multivariate Cox analysis showed that more HLA mismatched loci ≥3 (HR = 3.66; 95% CI: 1.61-8.31; p = 0.002), time (≤6 months) from HSCT to relapse (HR = 7.92; 95% CI: 3.35-18.74; p < 0.001) and donor chimerism (CD3) in bone marrow at relapse (HR = 1.02; 95% CI: 1.00-1.03; p = 0.036) were independent factors affecting HLA loss relapse. The ratio of negative conversion of FLT3-ITD or CEBPA mutation was significantly lower in patients with post-transplantation HLA loss relapse than in the non-HLA loss group (0.0% vs. 45.5%, p = 0.003; 0.0% vs. 80.0%, p = 0.035), with none of the patients with FLT3-ITD or CEBPA mutation turned negative in the HLA loss group. The number of gene mutations turned negative when relapse in the non-HLA loss group was remarkably higher than that in the HLA loss group (p = 0.001). Using donor lymphocyte infusion (DLI) could not prolong OS for the HLA loss group (p = 0.42). Nevertheless, second transplantation had a significant positive impact on OS in the HLA loss group (p = 0.017), although only five patients in the HLA loss group underwent second transplantation. However, patients in the non-HLA loss group using DLI had a relatively longer OS time than those without DLI (p = 0.017). Second transplantation could also prolong OS in the non-HLA loss group, but the effect was not as significant as in the HLA loss group (p = 0.053). In summary, HLA loss detection is essential for patients with recurrence after transplantation, especially for those with more HLA mismatched loci and non-sibling donor. Furthermore, the detection of HLA loss has a guiding role in choosing subsequent therapy when relapsed, as secondary transplantation is more suitable than DLI for those with HLA loss.
Collapse
Affiliation(s)
- Tingting Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuqi Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meijia Zhou
- Department of Hematology, Changshu Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yufeng Feng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaobo Li
- Beijing BoFuRui Gene Diagnostics Co., Ltd., Beijing, China
| | - Mingya Zhai
- Beijing BoFuRui Gene Diagnostics Co., Ltd., Beijing, China
| | - Xiangjun Liu
- Beijing BoFuRui Gene Diagnostics Co., Ltd., Beijing, China
| | - Zhao Zeng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaojin Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Maurer K, Antin JH. The graft versus leukemia effect: donor lymphocyte infusions and cellular therapy. Front Immunol 2024; 15:1328858. [PMID: 38558819 PMCID: PMC10978651 DOI: 10.3389/fimmu.2024.1328858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many hematologic malignancies as well as non-malignant conditions. Part of the curative basis underlying HSCT for hematologic malignancies relies upon induction of the graft versus leukemia (GVL) effect in which donor immune cells recognize and eliminate residual malignant cells within the recipient, thereby maintaining remission. GVL is a clinically evident phenomenon; however, specific cell types responsible for inducing this effect and molecular mechanisms involved remain largely undefined. One of the best examples of GVL is observed after donor lymphocyte infusions (DLI), an established therapy for relapsed disease or incipient/anticipated relapse. DLI involves infusion of peripheral blood lymphocytes from the original HSCT donor into the recipient. Sustained remission can be observed in 20-80% of patients treated with DLI depending upon the underlying disease and the intrinsic burden of targeted cells. In this review, we will discuss current knowledge about mechanisms of GVL after DLI, experimental strategies for augmenting GVL by manipulation of DLI (e.g. neoantigen vaccination, specific cell type selection/depletion) and research outlook for improving DLI and cellular immunotherapies for hematologic malignancies through better molecular definition of the GVL effect.
Collapse
Affiliation(s)
| | - Joseph H. Antin
- Division of Hematologic Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Yafour N, Couturier MA, Borel C, Charbonnier A, Coman T, Fayard A, Masouridi-Levrat S, Yakoub-Agha I, Roy J. [Second allogeneic (update). Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)]. Bull Cancer 2024; 111:S29-S39. [PMID: 37045732 DOI: 10.1016/j.bulcan.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023]
Abstract
Relapse after allogeneic hematopoietic cell transplantation (allo-HCT) remains a major concern because it is associated with poor survival. A second allo-HCT is a valid option in this situation. During the 13th annual harmonization workshops of the francophone Society of bone marrow transplantation and cellular therapy (SFGM-TC), a designated working group reviewed the literature in order to update the second allo-HCT recommendations elaborated during the previous workshop (2016). The main indication for a second allo-HCT remains relapse of initial hematologic malignancy. Disease status; complete remission (CR), and relapse time after the first allo-HCT>6 months impact positively the overall survival of patients after the second allo-HCT. Donor change is a valid option, particularly if there is HLA loss on leukemic cells after a first haploidentical or following a mismatched allo-HCT is documented. Reduced intensity conditioning is recommended, while a sequential protocol is a reasonable option in patients with proliferative disease. A post-transplant maintenance strategy after hematological recovery is recommended as soon as day 60, even if the immunosuppressive treatment has not yet been stopped. Hypomethylating agents, and targeted therapies such as anti FLT3, anti BCL2, anti-IDH1/2, TKI, anti-TP53, anti-CD33, anti-CD19, anti-CD22, anti-CD30, check point inhibitors, and CAR-T cells can be used as a bridge to transplant or as an alternative treatment to the second allo-HCT.
Collapse
Affiliation(s)
- Nabil Yafour
- Établissement hospitalier et universitaire 1(er) Novembre 1954, faculté de médecine, service d'hématologie et de thérapie cellulaire, BP 4166 Ibn Rochd, université d'Oran 1, Ahmed-Ben-Bella, 31000 Oran, Algérie.
| | - Marie-Anne Couturier
- Hôpital Morvan, institut cancérologie-hématologie, CHRU Brest, 2, avenue Foch, 29200 Brest, France
| | - Cécile Borel
- CHU de Toulouse, institut universitaire du cancer de Toulouse Oncopole, service d'hématologie, 1, avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Amandine Charbonnier
- CHU d'Amiens, groupe hospitalier Amiens Sud, hématologie clinique et thérapie cellulaire, 80034 Amiens cedex 1, France
| | - Tereza Coman
- Institut Gustave-Roussy, département d'hématologie, 114, rue Edouard-Vaillant, Villejuif, France
| | - Amandine Fayard
- CHU de Clermont-Ferrand, service hématologie, 1, rue Lucie- et Raymond-Aubrac, 63003 Clermont-Ferrand, France
| | - Stavroula Masouridi-Levrat
- Hôpitaux universitaires de Genève, service d'hématologie, département d'oncologie, 4, rue Gabrielle-Perret-Gentil, 1205 Genève, Suisse
| | - Ibrahim Yakoub-Agha
- Inserm U1286, Infinite, CHU de Lille, université de Lille, 59000 Lille, France
| | - Jean Roy
- Hôpital maisonneuve-rosemont, université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
21
|
Thol F, Döhner H, Ganser A. How I treat refractory and relapsed acute myeloid leukemia. Blood 2024; 143:11-20. [PMID: 37944143 DOI: 10.1182/blood.2023022481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
ABSTRACT Most patients with acute myeloid leukemia (AML) develop refractory/relapsed (R/R) disease even in the presence of novel and targeted therapies. Given the biological complexity of the disease and differences in frontline treatments, there are therapies approved for only subgroups of R/R AML, and enrollment in clinical trials should be first priority. Allogeneic hematopoietic cell transplantation (HCT) is the only potentially curative strategy for most patients. Therapeutic approaches, including allogeneic HCT, triggered by the presence of measurable residual disease (MRD), have recently evolved to prevent overt hematologic relapse. Salvage therapy with chemotherapy or targeted therapy is frequently administered before HCT to reduce the leukemic burden. Gilteritinib is approved by the Food and Drug Administration and European Medicines Agency for patients with relapsed FLT3 mutated AML, whereas targeted therapy for relapsed IDH1/2 mutated AML has only FDA approval. Patients who are R/R after azacitidine and venetoclax (AZA/VEN) have a dismal outcome. In this setting, even available targeted therapies show unsatisfactory results. Examples of ongoing developments include menin inhibitors, a targeted therapy for patients with mutated NPM1 or KMT2A rearrangements, antibodies targeting the macrophage immune checkpoint CD47, and triple combinations involving AZA/VEN. The latter cause significant myelosuppressive effects, which make it challenging to find the right schedule and dose.
Collapse
Affiliation(s)
- Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Li L, Zhang R, Cao W, Bian Z, Qin Y, Guo R, Zhang S, Peng Y, Wan D, Ma W. Comparative analysis of hypomethylating agents as maintenance therapy after allogeneic hematopoietic stem cell transplantation for high-risk acute leukemia. Leuk Lymphoma 2023; 64:2113-2122. [PMID: 37732615 DOI: 10.1080/10428194.2023.2252948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
We retrospectively analyzed the outcomes of 136 consecutive patients who received allogeneic hematopoietic stem cell transplantation (allo-HSCT) at our center. Among them, 76 cases used hypomethylating agents (decitabine, n = 40; azacitidine, n = 36) as post-transplant maintenance therapy, whereas 60 contemporaneous patients did not adopt maintenance therapy. The 3-year incidences of relapse in two groups were 16.6% and 39.2% (p = .001). The 3-year OS and DFS in maintenance group were 84.0% and 78.6%, which were remarkably improved than in control group (60.0% and 58.0%) (p = .004, p = .011). Moreover, the 3-year relapse rates for patients receiving decitabine and azacitidine therapy were 8.5% and 25.0%, respectively (p = .019). Patients utilizing decitabine had more common possibility of grade 3-4 neutropenia than azacitidine (20.0% vs. 2.8%, p = .031). These results indicate that maintenance therapies using hypomethylating agents could reduce the risk of post-transplant recurrence, resulting into remarkable superior survival. Decitabine might lower relapse after allo-HSCT with somewhat more severe myelosuppression when being compared to azacitidine.
Collapse
Affiliation(s)
- Li Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Qin
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suping Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingnan Peng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Sauerer T, Velázquez GF, Schmid C. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: immune escape mechanisms and current implications for therapy. Mol Cancer 2023; 22:180. [PMID: 37951964 PMCID: PMC10640763 DOI: 10.1186/s12943-023-01889-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the expansion of immature myeloid cells in the bone marrow (BM) and peripheral blood (PB) resulting in failure of normal hematopoiesis and life-threating cytopenia. Allogeneic hematopoietic stem cell transplantation (allo-HCT) is an established therapy with curative potential. Nevertheless, post-transplant relapse is common and associated with poor prognosis, representing the major cause of death after allo-HCT. The occurrence of relapse after initially successful allo-HCT indicates that the donor immune system is first able to control the leukemia, which at a later stage develops evasion strategies to escape from immune surveillance. In this review we first provide a comprehensive overview of current knowledge regarding immune escape in AML after allo-HCT, including dysregulated HLA, alterations in immune checkpoints and changes leading to an immunosuppressive tumor microenvironment. In the second part, we draw the line from bench to bedside and elucidate to what extend immune escape mechanisms of relapsed AML are yet exploited in treatment strategies. Finally, we give an outlook how new emerging technologies could help to improve the therapy for these patients, and elucidate potential new treatment options.
Collapse
Affiliation(s)
- Tatjana Sauerer
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Giuliano Filippini Velázquez
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany.
| |
Collapse
|
24
|
Montoro J, Balaguer-Roselló A, Sanz J. Recent advances in allogeneic transplantation for acute myeloid leukemia. Curr Opin Oncol 2023; 35:564-573. [PMID: 37820092 DOI: 10.1097/cco.0000000000000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW This review highlights recent advancements in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for patients with acute myeloid leukemia (AML). RECENT FINDINGS Important improvements have been observed throughout the allo-HSCT procedure and patient management. Universal donor availability and reduced risk of graft-versus-host disease (GVHD) have been achieved with the introduction of posttransplant cyclophosphamide for GVHD prophylaxis. It has contributed, together with advances in conditioning regimens, GVHD treatment and supportive care, to a reduced overall toxicity of the procedure. Relapse is now the most frequent cause of transplant failure. With increased knowledge of the biological characterization of AML, better prediction of transplant risks and more profound and standardized minimal residual disease (MRD) monitoring, pharmacological, and immunological strategies to prevent relapse are been developed. SUMMARY Allo-HSCT remains the standard of care for high-risk AML. Increased access to transplant, reduced toxicity and relapse are improving patient outcomes. Further research is needed to optimize MRD monitoring, refine conditioning regimens, and explore new GVHD management and relapse prevention therapies.
Collapse
Affiliation(s)
- Juan Montoro
- Hematology Department, Hospital Universitario y Politécnico La Fe
- Departamento de Medicina, Universidad Católica de Valencia
| | - Aitana Balaguer-Roselló
- Hematology Department, Hospital Universitario y Politécnico La Fe
- CIBERONC, Instituto Carlos III, Madrid
| | - Jaime Sanz
- Hematology Department, Hospital Universitario y Politécnico La Fe
- CIBERONC, Instituto Carlos III, Madrid
- Departamento de Medicina, Universidad de Valencia, Spain
| |
Collapse
|
25
|
Oh S, Kim E. Efficacy of epigenetic agents for older patients with acute myeloid leukemia and myelodysplastic syndrome in randomized controlled trials: a systematic review and network meta-analysis. Clin Exp Med 2023; 23:2705-2714. [PMID: 36964818 DOI: 10.1007/s10238-023-01041-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023]
Abstract
Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are hematologic malignancies that mostly affect the elderly and have poor prognoses. Mutations in epigenetic regulatory genes cause AML/MDS through changes in DNA methylation and histone modifications. Some epigenetic agents are used in patients with AML and MDS. However, most studies have focused on azacitidine (AZA) or decitabine (DEC), and few studies have been conducted on combination therapies or other epigenetic therapies. This network meta-analysis (NMA) aimed to compare the efficacy of epigenetic agents overall in patients with AML and MDS. A systematic review and NMA of all available II-III phase randomized controlled trials (RCTs) comparing epigenetic agents were performed. The Embase and PubMed databases were searched for relevant studies. The Bayesian model was used in the NMA, and the surface under the cumulative ranking curve (SUCRA) was used to rank comparisons. The primary endpoint was overall survival (OS), and the secondary endpoints were complete response (CR) and partial response (PR). OS was extended by AZA + venetoclax (SUCRA 0.94) in patients with AML and MDS. DEC (SUCRA 0.78) relatively improved CR and PR. In this study, AZA-related treatment was relatively effective in improving the OS of patients with AML and MDS, and DEC-related treatment showed a relatively high effect on CR and PR. The protocol for this systematic review was registered with the International Prospective Register of Systematic Reviews (CRD42022303601).
Collapse
Affiliation(s)
- SuA Oh
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - EunYoung Kim
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
26
|
Shah NA. Donor lymphocyte infusion in Acute Myeloid Leukemia. Best Pract Res Clin Haematol 2023; 36:101484. [PMID: 37612002 DOI: 10.1016/j.beha.2023.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 08/25/2023]
Abstract
Donor lymphocyte infusion (DLI) is an important treatment modality in the management of relapsed hematological malignancies after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T lymphocytes can be used in a therapeutic, pre-emptive or prophylactic manner in an attempt to stimulate a graft versus leukemia (GVL) effect and eradicate residual disease or even prevent relapse in a high-risk setting. DLIs are not without complications, however, graft versus host disease (GVHD) in particular. Data to date is limited to retrospective and small prospective studies. This review summarizes the available literature on approaches to managing relapse, dosing and timing of DLI, complications and potential future therapies.
Collapse
|
27
|
Stadler M, Hambach L, Dammann E, Diedrich H, Kamal H, Hamwi I, Schultze-Florey C, Varvenne M, Ehrlich S, Buchholz S, Koenecke C, Beutel G, Weissinger EM, Krauter J, Eder M, Hertenstein B, Ganser A. The graft-versus-leukemia effect of prophylactic donor lymphocyte infusions after allogeneic stem cell transplantation is equally effective in relapse prevention but safer compared to spontaneous graft-versus-host disease. Ann Hematol 2023; 102:2529-2542. [PMID: 37490114 PMCID: PMC10444690 DOI: 10.1007/s00277-023-05276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/12/2023] [Indexed: 07/26/2023]
Abstract
Therapeutic donor lymphocyte infusions (tDLI) are used to reinforce the graft-versus-leukemia (GvL) effect in relapse after allogeneic stem cell transplantation (alloSCT). In contrast, the role of prophylactic DLI (proDLI) in preventing leukemia relapse has been less clearly established, although supported by retrospective, case-control, and registry analyses. We report a prospective, monocentric, ten year cohort of patients with high risk acute leukemias (AL) or myelodysplasia (MDS) in whom proDLI were applied beyond day +120 post alloSCT to compensate for lack of GvL.272 consecutive allotransplanted AL or MDS patients in complete remission and off immunosuppression at day +120 were stratified according to the prior appearance of relevant GvHD (acute GvHD °II-IV or extensive chronic GvHD) as a clinical indicator for GvL. Escalating doses of unmodified proDLI were applied to 72/272 patients without prior relevant GvHD. Conversely, 157/272 patients with prior spontaneous GvHD did not receive proDLI, nor did 43/272 patients with contraindications (uncontrolled infections, patient refusal, DLI unavailability).By day 160-landmark analysis (median day of first DLI application), proDLI recipients had significantly higher five-year overall (OS) and disease free survival (DFS) (77% and 67%) than patients with spontaneous GvHD (54% and 53%) or with contraindications (46% and 45%) (p=0.003). Relapse incidence for patients with proDLI (30%) or spontaneous GvHD (29%) was significantly lower than in patients with contraindications (39%; p=0.021). With similar GvHD incidence beyond day +160, non-relapse mortality (NRM) was less with proDLI (5%) than without proDLI (18%; p=0.036).In conclusion, proDLI may be able to compensate for lack of GvL in alloSCT recipients with high risk AL or MDS.
Collapse
Affiliation(s)
- Michael Stadler
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany.
| | - Lothar Hambach
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Elke Dammann
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Helmut Diedrich
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Haytham Kamal
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Iyas Hamwi
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Christian Schultze-Florey
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Michael Varvenne
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Steve Ehrlich
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Stefanie Buchholz
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Christian Koenecke
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Gernot Beutel
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Eva M Weissinger
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Jürgen Krauter
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Matthias Eder
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Bernd Hertenstein
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str. 1 , D - 30625, Hannover, Germany
| |
Collapse
|
28
|
Du Y, Li C, Zhao Z, Liu Y, Zhang C, Yan J. Efficacy and safety of venetoclax combined with hypomethylating agents for relapse of acute myeloid leukemia and myelodysplastic syndrome post allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. BMC Cancer 2023; 23:764. [PMID: 37592239 PMCID: PMC10433628 DOI: 10.1186/s12885-023-11259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Currently, there is no standard treatment for managing relapse in patients with acute myeloid leukemia and myelodysplastic syndrome (AML/MDS) after allogeneic hematopoietic cell transplantation. Venetoclax-based therapies have been increasingly used for treating post-transplantation relapse of AML. The aim of this systematic review and meta-analysis was to evaluate the efficacy and adverse events of Venetoclax combined with hypomethylating agents (HMAs) for AML/MDS relapse post-transplantation. METHODS We searched PubMed, Web of Science, Excerpta Medica Database, Cochrane Library, and Clinical. gov for eligible studies from the inception to February 2022. The Methodological Index for Non-Randomized Studies was used to evaluate the quality of the included literatures. The inverse variance method calculated the pooled proportion and 95% confidence interval (CI). RESULTS This meta-analysis included 10 studies involving a total of 243 patients. The pooled complete response and complete response with incomplete blood count recovery rate of Venetoclax combined with HMAs for post-transplantation relapse in AML/MDS was 32% (95% CI, 26-39%, I2 = 0%), with an overall response rate of 48% (95% CI, 39-56%, I2 = 37%). The 6-month survival rate was 42% (95% CI, 29-55%, I2 = 62%) and the 1-year survival rate was 23% (95% CI, 11-38%, I2 = 78%). CONCLUSION This study demonstrated a moderate benefit of Venetoclax in combination with HMAs for patients with relapsed AML/MDS post-transplantation (including those who have received prior HMAs therapy), and may become one of treatment options in the future. Large-scale prospective studies are needed to confirm the potential benefit from venetoclax combined with HMAs.
Collapse
Affiliation(s)
- Yufeng Du
- Department of Hematology, Dalian Key Laboratory of hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Blood Stem Cell Transplantation Institute, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Medical University, Dalian, 116044, China
| | - Chunhong Li
- Department of Hematology, Dalian Key Laboratory of hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Zhijia Zhao
- Department of Hematology, Dalian Key Laboratory of hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Yikun Liu
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Chengtao Zhang
- Department of Hematology, Dalian Key Laboratory of hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Jinsong Yan
- Department of Hematology, Dalian Key Laboratory of hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Blood Stem Cell Transplantation Institute, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Medical University, Dalian, 116044, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, Diamond Bay institute of Hematology, Second Hospital of Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
29
|
Filippini Velázquez G, Labopin M, Tischer J, Raiola AM, Angelucci E, Kulagin AD, Galieni P, Bermúdez A, Bulabois CE, Kröger N, Díez-Martín JL, Kwon M, Nagler A, Schmid C, Ciceri F, Mohty M. Second haploidentical stem cell transplantation (HAPLO-SCT2) after relapse from a first HAPLO-SCT in acute leukaemia-a study on behalf of the Acute Leukaemia Working Party (ALWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2023; 58:907-915. [PMID: 37160941 PMCID: PMC10400422 DOI: 10.1038/s41409-023-01985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
For patients with acute myeloid and lymphoblastic leukaemia (AML/ALL) lacking a matched sibling or unrelated donor, haploidentical stem cell transplantation (HAPLO-SCT) is increasingly used. However, available data on the treatment of relapse after HAPLO-SCT, including feasibility and efficacy of a second HAPLO-SCT (HAPLO-SCT2), is scarce. Hence, adults with AML/ALL, that had undergone HAPLO-SCT2 without ex-vivo manipulation after haematologic relapse from HAPLO-SCT1 were selected for a retrospective registry analysis. Eighty-two patients (AML, n = 63, ALL, n = 19, median follow-up: 33 months) were identified. Engraftment rate was 87%. At day +180, cumulative incidences of acute GvHD II-IV°/chronic GvHD were 23.9%/22.6%, respectively. Two-year overall survival/leukaemia-free survival (OS/LFS) were 34.3%/25.4%; 2-year non-relapse mortality (NRM) and relapse incidence (RI) were 17.6% and 57%. Leukaemia was the most frequent cause of death. Separated by disease, 2-year OS/LFS/NRM/RI were 28.7%/22.3%/16.2%/61.6% in AML, and 55.3%/38.4%/23.5%/38.2% in ALL patients. In a risk-factor analysis among patients with AML, stage at HAPLO-SCT1 and HAPLO-SCT2, and interval from HAPLO-SCT1 to relapse significantly influenced outcome. Our data demonstrate that HAPLO-SCT2 is a viable option in acute leukaemia relapse after HAPLO-SCT1. Engraftment, toxicity, risk factors and long-term outcome are comparable to data reported after allo-SCT2 in a matched donor setting.
Collapse
Affiliation(s)
| | - Myriam Labopin
- EBMT Paris Study Unit, Saint-Antoine Hospital, Paris, France
- Department of Haematology, Hôpital Saint-Antoine, Sorbonne University, INSERM UMRs 938, Paris, France
| | - Johanna Tischer
- Department of Internal Medicine III, University Hospital of Munich, Campus Grosshadern, Munich, Germany
| | - Anna Maria Raiola
- Hematology and cellular therapy unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Emanuele Angelucci
- Hematology and cellular therapy unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Alexander D Kulagin
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg, Russian Federation
| | - Piero Galieni
- Haematology Service, Mazzoni Hospital, Ascoli Piceno, Italy
| | - Arancha Bermúdez
- Servicio de Hematología-Hemoterapia, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Claude-Eric Bulabois
- Service d'Hématologie, CHU Grenoble Alpes-Université Grenoble Alpes, Grenoble, France
| | - Nicolaus Kröger
- University Medical Center Hamburg-Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany
| | | | - Mi Kwon
- Sección de Trasplante de Médula Ósea, Hospital Gregorio Marañón, Madrid, Spain
| | - Arnon Nagler
- Hematology and Bone Marrow Transplant Unit, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Christoph Schmid
- Section for Stem Cell Transplantation, Augsburg University Hospital and Medical Faculty, Augsburg, Germany.
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Mohamad Mohty
- Department of Haematology, Hôpital Saint-Antoine, Sorbonne University, INSERM UMRs 938, Paris, France
| |
Collapse
|
30
|
Yuan XL, Lai XY, Wu YB, Yang LX, Shi JM, Liu LZ, Yu J, Zhao YM, Zheng WY, He JS, Sun J, Wu WJ, Zhao Y, Ye YS, Cai Z, Huang H, Luo Y. A novel risk model for predicting early relapse in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem-cell transplantation. Bone Marrow Transplant 2023; 58:801-810. [PMID: 37072477 DOI: 10.1038/s41409-023-01979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023]
Abstract
Relapse remains the leading cause of death in acute myeloid leukemia (AML) patients following allogeneic hematopoietic stem-cell transplantation (allo-HSCT), limiting the efficacy of allo-HSCT. Thus, the ability to identify high-risk patients in a manner that permits early intervention has the potential to improve survival outcomes. We retrospectively enrolled 414 younger patients (aged 14-60 years) with AML who received allo-HSCT between January 2014 and May 2020. From June 2020 to June 2021, 110 consecutive patients were included prospectively in the validation cohort. The primary outcome was early relapse (relapse within 1 year). The cumulative incidence of early relapse after allo-HSCT was 11.8%. The overall survival rate for patients who relapsed within 1-year was 4.1% at 3 years after relapse. After multivariable adjustment, statistically significant associations between primary resistance, pre-transplantation measurable residual disease, DNMT3A mutation, or white blood cell count at diagnosis and early relapse were observed. An early relapse prediction model was developed based on these factors and the model performed well. Patients deemed to have a high risk or a low risk of early relapse had early relapse rates of 26.2% and 6.8%, respectively (P < 0.001). The prediction model could be used to help identify patients at risk for early relapse and to guide personalized relapse prevention.
Collapse
Affiliation(s)
- Xiao-Lin Yuan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xiao-Yu Lai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi-Bo Wu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lu-Xin Yang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ji-Min Shi
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Li-Zhen Liu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jian Yu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yan-Min Zhao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Wei-Yan Zheng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jing-Song He
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jie Sun
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Wen-Jun Wu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi Zhao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi-Shan Ye
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Yi Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
31
|
Zhao YQ, Song YZ, Li ZH, Yang F, Xu T, Li FF, Yang DF, Wu T. [Second allogeneic hematopoietic stem cell transplantation with reduced-intensity conditioning and donor changes in relapsed hematological malignancies after the first allogeneic transplant]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:465-471. [PMID: 37550201 PMCID: PMC10450545 DOI: 10.3760/cma.j.issn.0253-2727.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 08/09/2023]
Abstract
Objective: The purpose of this study was to assess the safety and efficacy of a second allogeneic hematopoietic stem cell transplantation (allo-HSCT) with reduced-intensity conditioning (RIC) in patients with hematological malignancies who had relapsed after the first allo-HSCT. Methods: Between April 2018 and June 2021, 44 patients with hematological malignancies (B-ALL 23, T-ALL/T-LBL 4, AML15, and MDS 2) were enrolled and retrospectively examined. Unrelated donors (n=12) or haploidentical donors (n=32) were used. Donors were replaced in all patients for the second allo-HSCT. Hematological and immunological germline predisposition genes and hematopoietic and immune function tests were used to select the best-related donor. Total body irradiation (TBI) /fludarabine (FLU) -based (n=38), busulfan (BU) /FLU-based (n=4), total marrow irradiation (TMI) /FLU-based (n=1), and BU/cladribine-based (n=1) were the RIC regimens used. For graft versus host disease (GVHD) prevention, cyclosporine, mycophenolate mofetil, short-term methotrexate, and ATG were used. Eighteen (40.9%) of 44 patients with gene variations for which targeted medications are available underwent post-transplant maintenance therapy. Results: The median age was 25 years old (range: 7-55). The median interval between the first and second HSCT was 19.5 months (range: 6-77). Before the second allo-HSCT, 33 (75%) of the patients were in complete remission (CR), whereas 11 (25%) were not. All patients had long-term engraftment. The grade Ⅱ-Ⅳ GVHD and severe acute GVHD rates were 20.5% and 9.1%, respectively. Chronic GVHD was found in 20.5% of limited patterns and 22.7% of severe patterns. CMV and EBV reactivation rates were 29.5% and 6.8%, respectively. Hemorrhage cystitis occurred in 15.9% of cases, grade Ⅰ or Ⅱ. The 1-yr disease-free survival (DFS), overall survival (OS), and cumulative recurrence incidence (RI) rates of all patients were 72.5% (95% CI, 54.5%-84.3%), 80.6% (95% CI, 63.4%-90.3%), and 25.1% (95% CI, 13.7%-43.2%), respectively, with a median follow-up of 14 (2-39) months. There were eight deaths (seven relapses and one infection). The rate of non-relapse mortality (NRM) was only 2.3%. The CR patients' 1-yr RI rate was significantly lower than the NR patients (16.8% vs 48.1%, P=0.026). The DFS rate in CR patients was greater than in NR patients, although there was no statistical difference (79.9% vs 51.9%, P=0.072). Univariate analysis revealed that CR before the second allo-HSCT was an important prognostic factor. Conclusion: With our RIC regimens, donor change, and post-transplant maintenance therapy, the second allo-HSCT in relapsed hematological malignancies after the first allo-HSCT is a safe and effective treatment with high OS and DFS and low NRM and relapse rate. The most important factor influencing the prognosis of the second allo-HSCT is the patient's illness condition before the transplant.
Collapse
Affiliation(s)
- Y Q Zhao
- Department of Bone Marrow Transplantation, Beijing Gobroad Boren Hospital, Beijing 100070, China
| | - Y Z Song
- Department of Bone Marrow Transplantation, Beijing Gobroad Boren Hospital, Beijing 100070, China
| | - Z H Li
- Department of Bone Marrow Transplantation, Beijing Gobroad Boren Hospital, Beijing 100070, China
| | - F Yang
- Department of Bone Marrow Transplantation, Beijing Gobroad Boren Hospital, Beijing 100070, China
| | - T Xu
- Department of Bone Marrow Transplantation, Beijing Gobroad Boren Hospital, Beijing 100070, China
| | - F F Li
- Department of Bone Marrow Transplantation, Beijing Gobroad Boren Hospital, Beijing 100070, China
| | - D F Yang
- Department of Bone Marrow Transplantation, Beijing Gobroad Boren Hospital, Beijing 100070, China
| | - T Wu
- Department of Bone Marrow Transplantation, Beijing Gobroad Boren Hospital, Beijing 100070, China
| |
Collapse
|
32
|
Mu X, Chen C, Dong L, Kang Z, Sun Z, Chen X, Zheng J, Zhang Y. Immunotherapy in leukaemia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:974-987. [PMID: 37272727 PMCID: PMC10326417 DOI: 10.3724/abbs.2023101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Leukaemia is the common name for a group of malignant diseases of the haematopoietic system with complex classifications and characteristics. Remarkable progress has been made in basic research and preclinical studies for acute leukaemia compared to that of the many other types/subtypes of leukaemia, especially the exploration of the biological basis and application of immunotherapy in acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). In this review, we summarize the basic approaches to immunotherapy for leukaemia and focus on the research progress made in immunotherapy development for AML and ALL. Importantly, despite the advances made to date, big challenges still exist in the effectiveness of leukaemia immunotherapy, especially in AML. Therefore, we use AML as an example and summarize the mechanisms of tumour cell immune evasion, describe recently reported data and known therapeutic targets, and discuss the obstacles in finding suitable treatment targets and the results obtained in recent clinical trials for several types of single and combination immunotherapies, such as bispecific antibodies, cell therapies (CAR-T-cell treatment), and checkpoint blockade. Finally, we summarize novel immunotherapy strategies for treating lymphocytic leukaemia and clinical trial results.
Collapse
Affiliation(s)
- Xingmei Mu
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chumao Chen
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Loujie Dong
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhaowei Kang
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhixian Sun
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xijie Chen
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Junke Zheng
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yaping Zhang
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
33
|
Fei X, Zhang S, Gu J, Wang J. FLT3 inhibitors as maintenance therapy post allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia patients with FLT3 mutations: A meta-analysis. Cancer Med 2023; 12:6877-6888. [PMID: 36411731 PMCID: PMC10067110 DOI: 10.1002/cam4.5480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) patients with a Fms-like tyrosine kinase 3 (FLT3) mutation have a high incidence of relapse despite allogeneic hematopoietic stem cell transplantation (allo-HSCT) and a subsequent poor prognosis. FLT3 inhibitors (FLT3i) have been suggested to reduce the post-transplant relapse risk in recent studies. As more evidence is accumulated, we perform the present meta-analysis to assess the efficacy and safety of FLT3i as post-transplant maintenance therapy in AML patients. METHODS Literature search was performed in public databases from inception to December 31, 2021. Overall survival (OS), relapse-free survival (RFS), cumulative incidence of relapse (CIR), non-relapse mortality (NRM), graft-versus-host disease (GVHD) and adverse events were compared between FLT3i and control groups. Pooled hazard ratio (HR) or relative risk (RR) with corresponding 95% confidence interval (CI) were calculated. RESULTS We identified 12 eligible studies with 2282 FLT3-mutated AML patients who had received HSCT. There was no between-study heterogeneity and a fix-effect model was used. Post-transplant FLT3i maintenance significantly prolonged OS (HR = 0.41, 95%CI: 0.32-0.52, p < 0.001) and RFS (HR = 0.39, 95%CI 0.31-0.50, p < 0.001), and reduced CIR (HR = 0.31, 95%CI 0.20-0.46, p < 0.001) as compared with control. There were no significant risk differences in NRM (RR = 0.69, 95%CI 0.41-1.17, p = 0.169), acute GVHD (RR = 1.17, 95%CI 0.93-1.47, p = 0.175), chronic GVHD (RR = 1.31, 95%CI 0.91-1.39, p = 0.276) and grade ≥3 adverse events between both groups, except for skin toxicity (RR = 5.86, 95%CI 1.34-25.57, p = 0.019). CONCLUSION Post-transplant FLT3i maintenance can improve survival and reduce relapse in FLT3-mutated AML patients and is tolerable.
Collapse
Affiliation(s)
- Xinhong Fei
- Department of HematologyAerospace Center HospitalBeijingChina
| | - Shuqin Zhang
- Department of HematologyAerospace Center HospitalBeijingChina
| | - Jiangying Gu
- Department of HematologyAerospace Center HospitalBeijingChina
| | - Jingbo Wang
- Department of HematologyAerospace Center HospitalBeijingChina
| |
Collapse
|
34
|
Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 2023; 98:502-526. [PMID: 36594187 DOI: 10.1002/ajh.26822] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
DISEASE OVERVIEW Acute myeloid leukemia (AML) is a frequently fatal bone marrow stem cell cancer characterized by unbridled proliferation of malignant marrow stem cells with associated infection, anemia, and bleeding. An improved understanding of pathophysiology, improvements in measurement technology and at least 10 recently approved therapies have led to revamping the diagnostic, prognostic, and therapeutic landscape of AML. DIAGNOSIS One updated and one new classification system were published in 2022, both emphasizing the integration of molecular analysis into daily practice. Differences between the International Consensus Classification and major revisions from the previous 2016 WHO system provide both challenges and opportunities for care and clinical research. RISK ASSESSMENT AND MONITORING The European Leukemia Net 2022 risk classification integrates knowledge from novel molecular findings and recent trial results, as well as emphasizing dynamic risk based on serial measurable residual disease assessment. However, how to leverage our burgeoning ability to measure a small number of potentially malignant myeloid cells into therapeutic decision making is controversial. RISK ADAPTED THERAPY The diagnostic and therapeutic complexity plus the availability of newly approved agents requires a nuanced therapeutic algorithm which should integrate patient goals of care, comorbidities, and disease characteristics including the specific mutational profile of the patient's AML. The framework we suggest only represents the beginning of the discussion.
Collapse
Affiliation(s)
- Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Rabin Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Lee JH, Cho BS, Kwag D, Min GJ, Park SS, Park S, Yoon JH, Lee SE, Eom KS, Kim YJ, Lee S, Min CK, Cho SG, Lee JW, Kim HJ. Haploidentical versus Double-Cord Blood Stem Cells as a Second Transplantation for Relapsed Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:454. [PMID: 36672403 PMCID: PMC9856318 DOI: 10.3390/cancers15020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
There are limited data on second stem cell transplantation (SCT2) outcomes with alternative donors for relapsed AML after the first stem cell transplantation (SCT1). We analyzed the outcomes of 52 adult AML patients who received SCT2 from haploidentical donors (HIT, N = 32) and double-cord blood (dCBT, N = 20) between 2008 and 2021. The HIT group received T-cell-replete peripheral blood stem cells after reduced-toxicity conditioning with anti-thymocyte globulin (ATG), while the dCBT group received myeloablative conditioning. For a median follow-up of 64.9 months, the HIT group, compared to the dCBT group, had earlier engraftment, superior 2-year overall survival (OS), disease-free survival (DFS), and non-relapse mortality (NRM) with similar relapse. Multivariate analysis demonstrated that HIT was significantly associated with better OS, DFS, and lower NRM than dCBT. Both longer remission duration after SCT1 and complete remission at SCT2 were significantly associated with a lower relapse rate. In addition, bone marrow WT1 measurable residual disease (MRD) positivity was significantly associated with inferior OS and higher relapse. This study suggests that T-cell-replete HIT with ATG-based GVHD prophylaxis may be preferred over dCBT as SCT2 for relapsed AML and that WT1-MRD negativity may be warranted for better SCT2 outcomes.
Collapse
Affiliation(s)
- Jong-Hyuk Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Byung-Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Daehun Kwag
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Gi-June Min
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung-Soo Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Silvia Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung-Eun Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ki-Seong Eom
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoo-Jin Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chang-Ki Min
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seok-Goo Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong-Wook Lee
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
36
|
Wei Y, Wang L, Zhu C, Li H, Bo J, Zhang R, Lu N, Wu Y, Gao X, Dou L, Liu D, Gao C. A phase II study of chidamide, cytarabine, aclarubicin, granulocyte colony-stimulating factor, and donor lymphocyte infusion for relapsed acute myeloid leukemia and myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Med Oncol 2023; 40:77. [PMID: 36625951 PMCID: PMC9832090 DOI: 10.1007/s12032-022-01911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023]
Abstract
Chemotherapy followed by donor lymphocyte infusion (DLI) is a promising treatment for relapsed acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the best strategy for administering this therapy is still unclear. This study sought to explore the efficacy and safety of chidamide and CAG (cytarabine, aclarubicin, and granulocyte colony-stimulating factor) (CCAG) regimen followed by DLI in relapsed AML/MDS after allo-HSCT. This was a single-arm, phase II trial in patients with relapsed AML/MDS after allo-HSCT. CCAG regimen followed by DLI was given according to the inclusion and exclusion criteria. Twenty adult patients were enrolled. The median follow-up time was 12 months. The complete remission (CR) rate was 45% and the partial remission (PR) rate was 5%. The 1-year overall survival (OS) was 56.7% (95% confidence interval (95% CI), 31.6-75.6%), and the median OS was 19 months. The 1-year relapse-free survival (RFS) was 83.3% (95% CI, 27.3-97.5%). Patients relapsing more than 6 months after HSCT and achieving CR/PR after CCAG plus DLI regimen attained significantly higher survival rates. The cumulative incidence of grade III-IV acute graft-versus-host disease (aGVHD) was 9.4%. There was no treatment-related mortality (TRM). These data suggest that CCAG plus DLI regimen is safe and induces durable remission and superior survival in patients with relapsed AML/MDS after allo-HSCT. Trial registration number: ChiCTR.org identifier: ChiCTR1800017740 and date of registration: August 12, 2018.
Collapse
Affiliation(s)
- Yan Wei
- Medical School of Chinese PLA, Beijing, China
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Lijun Wang
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Chengying Zhu
- School of Medicine, Nankai University, Tianjin, China
| | - Honghua Li
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Jian Bo
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Ran Zhang
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Ning Lu
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Yongli Wu
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Xiaoning Gao
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Liping Dou
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Daihong Liu
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Chunji Gao
- Department of Hematology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
37
|
Biederstädt A, Rezvani K. How I treat high-risk acute myeloid leukemia using preemptive adoptive cellular immunotherapy. Blood 2023; 141:22-38. [PMID: 35512203 PMCID: PMC10023741 DOI: 10.1182/blood.2021012411] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/21/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a potentially curative treatment for patients with high-risk acute leukemias, but unfortunately disease recurrence remains the major cause of death in these patients. Infusion of donor lymphocytes (DLI) has the potential to restore graft-versus-leukemia immunologic surveillance; however, efficacy varies across different hematologic entities. Although relapsed chronic myeloid leukemia, transplanted in chronic phase, has proven remarkably susceptible to DLI, response rates are more modest for relapsed acute myeloid leukemia and acute lymphoblastic leukemia. To prevent impending relapse, a number of groups have explored administering DLI preemptively on detection of measurable residual disease (MRD) or mixed chimerism. Evidence for the effectiveness of this strategy, although encouraging, comes from only a few, mostly single-center retrospective, nonrandomized studies. This article seeks to (1) discuss the available evidence supporting this approach while highlighting some of the inherent challenges of MRD-triggered treatment decisions post-transplant, (2) portray other forms of postremission cellular therapies, including the role of next-generation target-specific immunotherapies, and (3) provide a practical framework to support clinicians in their decision-making process when considering preemptive cellular therapy for this difficult-to-treat patient population.
Collapse
Affiliation(s)
- Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Medicine III: Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
38
|
Lu Y, Zhang JP, Zhao YL, Xiong M, Sun RJ, Cao XY, Wei ZJ, Zhou JR, Liu DY, Yang JF, Zhang X, Lu DP, Lu P. Prognostic factors of second hematopoietic allogeneic stem cell transplantation among hematological malignancy patients relapsed after first hematopoietic stem cell transplantation: A single center study. Front Immunol 2023; 13:1066748. [PMID: 36685540 PMCID: PMC9846785 DOI: 10.3389/fimmu.2022.1066748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction We aimed to evaluate prognostic factors of a second allogeneic stem cell transplantation (allo-HSCT2) among hematological malignancy patients who have relapsed after the first allo-HSCT(allo-HSCT1). Methods We retrospectively analyzed 199 hematological malignancy patients who received allo-HSCT2 as a salvage treatment post allo-HSCT1 relapse between November 2012 and October 2021. Results The median age at allo-HSCT2 was 23 (range: 3-60) years. The median time to relapse after HSCT1 was 9 (range: 1-72) months. Prior to allo-HSCT2, patients had the following hematopoietic cell transplantation-comorbidity indexes (HCT-CI): 127 with a score of 0, 52 with a score of 1, and 20 with a score of 2 or greater. Fifty percent of patients received chimeric antigen receptor (CAR) T-cell therapy following HSCT1 relapse. Disease status was minimal residual disease (MRD)-negative complete remission (CR) among 119 patients, MRD-positive CR among 37 patients and non-remission (NR) for 43 patients prior to allo-HSCT2. Allo-HSCT2 was performed from a new donor in 194 patients (97.4%) and 134 patients (67.3%) received a graft with a new mismatched haplotype. The median follow-up time was 24 months (range: 6-98 months), and the 2-year OS and LFS were 43.8% ± 4.0% and 42.1% ± 4.1%, respectively. The 2-year cumulative incidence of relapse (CIR) and non-relapse mortality (NRM) was 30.0%±4.8% and 38.5%±3.8%, respectively. Cox regression multivariate analysis showed that disease statusof MRD-negative CR, HCT-CI score of 0 prior to allo-HSCT2, and new mismatched haplotype donor were predictive factors of improved OS and LFS compared to patients without these characteristics. Based on these three favorable factors, we developed a predictive scoring system for patients who received allo-HSCT2. Patients with a prognostic score of 3 who had the three factors showed a superior 2-year OS of 63.3% ± 6.7% and LFS of 63.3% ± 6.7% and a lower CIR of 5.5% ± 3.1% than patients with a prognostic score of 0. Allo-HSCT2 is feasible and patients with good prognostic features prior to allo-HSCT2 -disease status of CR/MRD- and HCT-CI score of 0 as well as a second donor with a new mismatched haplotype could have the maximal benefit from the second allo-HSCT. Conclusions Allo-HSCT2 is feasible and patients with good prognostic features prior to allo-HSCT2 -disease status of CR/MRD- and HCT-CI score of 0 as well as a second donor with a new mismatched haplotype could have the maximal benefit from the second allo-HSCT.
Collapse
Affiliation(s)
- Yue Lu
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China,*Correspondence: Yue Lu, ; Peihua Lu,
| | - Jian-Ping Zhang
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yan-Li Zhao
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Min Xiong
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Rui-Juan Sun
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xing-Yu Cao
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Zhi-Jie Wei
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jia-Rui Zhou
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - De-Yan Liu
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jun-Fang Yang
- Department of Hematology and Immunology, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xian Zhang
- Department of Hematology and Immunology, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Dao-Pei Lu
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Peihua Lu
- Department of Hematology and Immunology, Hebei Yanda Lu Daopei Hospital, Langfang, China,Beijing Lu Daopei Institute of Hematology, Beijing, China,*Correspondence: Yue Lu, ; Peihua Lu,
| |
Collapse
|
39
|
Jiang S, Yan H, Lu X, Wei R, Chen H, Zhang A, Shi W, Xia L. How to improve the outcomes of elderly acute myeloid leukemia patients through allogeneic hematopoietic stem cell transplantation. Front Immunol 2023; 14:1102966. [PMID: 37207218 PMCID: PMC10189056 DOI: 10.3389/fimmu.2023.1102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
In recent years, with the gradual advancement of haploidentical transplantation technology, the availability of donors has increased significantly, along with the widespread use of reduced-intensity conditioning and the improvement of nursing techniques, giving more elderly acute myeloid leukemia (AML) patients the chance to receive allogeneic hematopoietic stem cell transplantation. We have summarized the classic and recently proposed pre-transplant assessment methods and assessed the various sources of donors, conditioning regimens, and post-transplant complication management based on the outcomes of large-scale clinical studies for elderly AML patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Shi
- *Correspondence: Linghui Xia, ; Wei Shi,
| | | |
Collapse
|
40
|
Restoring NK cell functions in AML relapse. Blood 2022; 140:2765-2766. [PMID: 36580344 DOI: 10.1182/blood.2022018079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
41
|
Odak I, Sikora R, Riemann L, Bayir LM, Beck M, Drenker M, Xiao Y, Schneider J, Dammann E, Stadler M, Eder M, Ganser A, Förster R, Koenecke C, Schultze-Florey CR. Spectral flow cytometry cluster analysis of therapeutic donor lymphocyte infusions identifies T cell subsets associated with outcome in patients with AML relapse. Front Immunol 2022; 13:999163. [PMID: 36275657 PMCID: PMC9579313 DOI: 10.3389/fimmu.2022.999163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Identification of immune phenotypes linked to durable graft-versus-leukemia (GVL) response following donor lymphocyte infusions (DLI) is of high clinical relevance. In this prospective observational study of 13 AML relapse patients receiving therapeutic DLI, we longitudinally investigated changes in differentiation stages and exhaustion markers of T cell subsets using cluster analysis of 30-color spectral flow cytometry during 24 months follow-up. DLI cell products and patient samples after DLI were analyzed and correlated to the clinical outcome. Analysis of DLI cell products revealed heterogeneity in the proportions of naïve and antigen experienced T cells. Cell products containing lower levels of effector memory (eff/m) cells and higher amounts of naïve CD4+ and CD8+ T cells were associated with long-term remission. Furthermore, investigation of patient blood samples early after DLI showed that patients relapsing during the study period, had higher levels of CD4+ eff/m T cells and expressed a mosaic of surface molecules implying an exhausted functional state. Of note, this observation preceded the clinical diagnosis of relapse by five months. On the other hand, patients with continuous remission retained lower levels of exhausted CD4+ eff/m T cells more than four months post DLI. Moreover, lower frequencies of exhausted CD8+ eff/m T cells as well as higher amounts of CD4+temra CD45RO+ T cells were present in this group. These results imply the formation of functional long-term memory pool of T cells. Finally, unbiased sample analysis showed that DLI cell products with low levels of eff/m cells both in CD4+ and CD8+ T cell subpopulations associate with a lower relapse incidence. Additionally, competing risk analysis of patient samples taken early after DLI revealed that patients with high amounts of exhausted CD4+ eff/m T cells in their blood exhibited significantly higher rates of relapse. In conclusion, differentially activated T cell clusters, both in the DLI product and in patients post infusion, were associated with AML relapse after DLI. Our study suggests that differences in DLI cell product composition might influence GVL. In-depth monitoring of T cell dynamics post DLI might increase safety and efficacy of this immunotherapy, while further studies are needed to assess the functionality of T cells found in the DLI.
Collapse
Affiliation(s)
- Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- *Correspondence: Christian R. Schultze-Florey, ; Ivan Odak,
| | - Ruth Sikora
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lennart Riemann
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lâle M. Bayir
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Maleen Beck
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Melanie Drenker
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Yankai Xiao
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Jessica Schneider
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Elke Dammann
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Stadler
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Matthias Eder
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Christian R. Schultze-Florey
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- *Correspondence: Christian R. Schultze-Florey, ; Ivan Odak,
| |
Collapse
|
42
|
Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022; 140:1345-1377. [PMID: 35797463 DOI: 10.1182/blood.2022016867] [Citation(s) in RCA: 1428] [Impact Index Per Article: 476.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
The 2010 and 2017 editions of the European LeukemiaNet (ELN) recommendations for diagnosis and management of acute myeloid leukemia (AML) in adults are widely recognized among physicians and investigators. There have been major advances in our understanding of AML, including new knowledge about the molecular pathogenesis of AML, leading to an update of the disease classification, technological progress in genomic diagnostics and assessment of measurable residual disease, and the successful development of new therapeutic agents, such as FLT3, IDH1, IDH2, and BCL2 inhibitors. These advances have prompted this update that includes a revised ELN genetic risk classification, revised response criteria, and treatment recommendations.
Collapse
|
43
|
Hematopoietic Cell Transplantation in the Treatment of Pediatric Acute Myelogenous Leukemia and Myelodysplastic Syndromes: Guidelines from the American Society of Transplantation and Cellular Therapy. Transplant Cell Ther 2022; 28:530-545. [DOI: 10.1016/j.jtct.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
|
44
|
Finke J, Schmoor C, Stelljes M, Burchert A, Dreger P, Hegenbart U, Wagner-Drouet EM, Bornhäuser M, Sohlbach K, Schub N, Reicherts C, Kobbe G, Glass B, Bertz H, Grishina O. Thiotepa-fludarabine-treosulfan conditioning for 2nd allogeneic HCT from an alternative unrelated donor for patients with AML: a prospective multicenter phase II trial. Bone Marrow Transplant 2022; 57:1664-1670. [PMID: 35982219 DOI: 10.1038/s41409-022-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
Abstract
Therapeutic options for patients with AML relapsing after allogeneic HCT range from chemotherapy or hypomethylating agents with or without donor lymphocyte infusions to a 2nd allogeneic HCT. Available data are based on retrospective single center or registry studies. The aim of this multicenter trial was to investigate prospectively intensive conditioning with Thiotepa, Fludarabine and Treosulfan (TFT) for 2nd allogeneic HCT from an alternative unrelated donor in patients with AML relapse > 6 months after a 1st allogeneic HCT. Primary endpoint was disease-free survival (DFS) at one year after 2nd HCT. 50 patients median age 53.5 years, in CR/PR (34%) or active relapse (66%) were included. 33 of 38 patients (86.8%) with available data achieved CR 100 days post transplant. 23 patients were alive and free of relapse at primary endpoint one year after 2nd HCT (DFS rate 0.46, 95%-CI (0.32-0.61). Three-year rates of DFS, relapse, non-relapse mortality, and overall survival were 0.24, 95%-CI (0.13-0.36); 0.36 (0.25-0.52); 0.40 (0.29-0.57); and 0.24 (0.13-0.37). Second HCT with TFT conditioning is feasible and has high anti-leukemic efficacy in chemosensitive or refractory AML relapse after prior allogeneic HCT. Still, relapse rates and NRM after 2nd allogeneic HCT remain a challenge. The trial is registered in the German Clinical Trials Registry (number DRKS00005126).
Collapse
Affiliation(s)
- Jürgen Finke
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.
| | - Claudia Schmoor
- Clinical Trials Unit, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Matthias Stelljes
- Department of Medicine A, Hematology and Oncology, University of Muenster, Münster, Germany
| | - Andreas Burchert
- Department of Internal Medicine, Hematology, Oncology and Immunology, Philipps University Marburg and University Hospital Gießen and Marburg, Campus Marburg, Marburg, Germany
| | - Peter Dreger
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Ute Hegenbart
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Eva-Maria Wagner-Drouet
- Medical Department III, Hematology, Medical Oncology and Pneumology, University Mainz, Mainz, Germany
| | - Martin Bornhäuser
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Kristina Sohlbach
- Department of Internal Medicine, Hematology, Oncology and Immunology, Philipps University Marburg and University Hospital Gießen and Marburg, Campus Marburg, Marburg, Germany
| | - Natalie Schub
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University of Kiel, Kiel, Germany
| | - Christian Reicherts
- Department of Medicine A, Hematology and Oncology, University of Muenster, Münster, Germany
| | - Guido Kobbe
- Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Bertram Glass
- Department of Hematology, Oncology and Stem Cell Transplantation, Asklepios Klinik St Georg, Hamburg, Germany
| | - Hartmut Bertz
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Olga Grishina
- Clinical Trials Unit, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Stadler M, Venturini L, Bünting I, Dammann E, Weissinger EM, Schwarzer A, Schultze-Florey C, Ehrlich S, Markel D, Lueck C, Gladysz A, Fröhlich T, Damrah N, Beutel G, Eder M, Ganser A, Hambach L. Navigating preemptive and therapeutic donor lymphocyte infusions in advanced myeloid malignancies by high-sensitivity chimerism analysis. Front Oncol 2022; 12:867356. [PMID: 36059667 PMCID: PMC9428843 DOI: 10.3389/fonc.2022.867356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/05/2022] [Indexed: 12/18/2022] Open
Abstract
Preemptive and therapeutic donor lymphocyte infusions (preDLI and tDLI) are widely used in relapsing and relapsed hematopoietic malignancies after allogeneic stem cell transplantation (alloSCT) to enhance the graft-versus-malignancy effect. However, in advanced myeloid malignancies, long-term survival after preDLI and tDLI remains low, reflecting our inability to master the double-edged sword of alloreactivity, balancing anti-neoplastic activity versus graft-versus-host disease (GvHD). We previously evaluated a quantitative PCR-based high-sensitivity chimerism (hs-chimerism) based on insertion/deletion polymorphisms instead of short tandem repeats, where increasing host chimerism in peripheral blood predicts relapse more than a month before clinical diagnosis, and declining host chimerism signals anti-host alloreactivity. Here we report 32 consecutive patients with advanced myeloid malignancies receiving preDLI or tDLI “navigated” by hs-chimerism (“navigated DLI”). We compared them to a historical cohort of 110 consecutive preDLI or tDLI recipients, prior to implementation of hs-chimerism at our institution (“controls”). Both groups were comparable regarding age, gender, conditioning, donor type, and time to DLI. With longer median follow-up of the navigated DLI group (8.5 versus 5 months), their landmark overall (64%) and disease-free survival (62%) at 2 years from first DLI compared favorably with controls (23% and 21%, respectively). Improved survival of navigated DLI was due to both reduced relapse incidence (38% versus 60%) and non-relapse mortality (17% versus 44%) at 2 years. Early relapse prediction by hs-chimerism allowed a preemptive approach in 28% of navigated DLI versus 7% in controls. Our results confirm hs-chimerism as a highly valuable tool for monitoring and steering immune interventions after alloSCT.
Collapse
|
46
|
Kharfan-Dabaja MA, Reljic T, Yassine F, Nishihori T, Kumar A, Tawk MM, Keller K, Ayala E, Savani B, Mohty M, Aljurf M, Saber W. Efficacy of a Second Allogeneic Hematopoietic Cell Transplant in Relapsed Acute Myeloid Leukemia: Results of a Systematic Review and Meta-Analysis. Transplant Cell Ther 2022; 28:767.e1-767.e11. [DOI: 10.1016/j.jtct.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
|
47
|
Reducing Mortality of Single-Unit Unrelated Cord Blood Transplantation for Relapsed Acute Myeloid Leukemia after a Previous Allogeneic Transplantation: A Real-World Retrospective Study Over the Past 19 Years in Japan. Transplant Cell Ther 2022; 28:777.e1-777.e11. [DOI: 10.1016/j.jtct.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
|
48
|
Kreidieh F, Abou Dalle I, Moukalled N, El-Cheikh J, Brissot E, Mohty M, Bazarbachi A. Relapse after allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia: an overview of prevention and treatment. Int J Hematol 2022; 116:330-340. [PMID: 35841458 DOI: 10.1007/s12185-022-03416-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/17/2022]
Abstract
Despite therapeutic progress in acute myeloid leukemia (AML), relapse post-allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a major challenge. Here, we aim to provide an overview of prevention and treatment of relapse in this population, including cell-based and pharmacologic options. Post-transplant maintenance therapy is used in patients who have undetectable measurable residual disease (MRD), while pre-emptive treatment is administered upon detection of MRD. Prompt transfusion of prophylactic donor lymphocyte infusion (DLI) was found to be effective in preventing relapse and overcoming the negative impact of detectable MRD. In addition, patients with persistent targetable mutations can benefit from targeted post-transplant pharmacological interventions. IDH inhibitors have shown promising results in relapsed/refractory AML. Hypomethylating agents, such as decitabine and azacitidine, have been studied in the post-allo-HSCT setting, both as pre-emptive and prophylactic. Venetoclax has been shown effective in combination with hypomethylating agents or low-dose cytarabine in patients with newly diagnosed AML, especially those unfit for intensive chemotherapy. FLT3 inhibitors, the topic of another section in this review series, have significantly improved survival in FLT-3-ITD mutant AML. The role of other cell-based therapies, including CAR-T cells, in AML is currently being investigated.
Collapse
Affiliation(s)
- Firas Kreidieh
- Department of Internal Medicine, Medical Center, Bone Marrow Transplant Program, American University of Beirut, Beirut, Lebanon
| | - Iman Abou Dalle
- Department of Internal Medicine, Medical Center, Bone Marrow Transplant Program, American University of Beirut, Beirut, Lebanon
| | - Nour Moukalled
- Department of Internal Medicine, Medical Center, Bone Marrow Transplant Program, American University of Beirut, Beirut, Lebanon
| | - Jean El-Cheikh
- Department of Internal Medicine, Medical Center, Bone Marrow Transplant Program, American University of Beirut, Beirut, Lebanon
| | - Eolia Brissot
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, INSERM UMR 938 and Sorbonne University, Paris, France
| | - Mohamed Mohty
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, INSERM UMR 938 and Sorbonne University, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine, Medical Center, Bone Marrow Transplant Program, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
49
|
Nagler A, Peczynski C, Dholaria B, Labopin M, Valerius T, Dreger P, Kröger N, Reinhardt HC, Finke J, Franke GN, Ciceri F, Verbeek M, Blau IW, Bornhäuser M, Spyridonidis A, Bug G, Bazarbachi A, Schmid C, Yakoub-Agha I, Savani BN, Mohty M. Impact of conditioning regimen intensity on outcomes of second allogeneic hematopoietic cell transplantation for secondary acute myelogenous leukemia. Bone Marrow Transplant 2022; 57:1116-1123. [PMID: 35501565 DOI: 10.1038/s41409-022-01693-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
Limited data is available on factors impacting the outcomes of second hematopoietic cell transplantation (HCT2) in patients with secondary acute myeloid leukemia (sAML). This study aimed to assess HCT2 outcome for sAML comparing reduced-intensity (RIC) to myeloablative (MAC) conditioning. Two hundred and fifteen patients were included: RIC (n = 134), MAC (n = 81). The median follow-up was 41.1 (95% CI: 26.7-69.3) and 28.5 (95% CI: 23.9-75.4) months, respectively. At two years, the relapse incidence (RI) was 58.3% versus 51.1% in RIC and MAC, respectively. The 2-year leukemia free survival (LFS) was 26.6% versus 26%, and the graft-versus-host disease (GVHD)-free, relapse-free survival (GRFS) was 16.4% versus 12.1%, while OS was 31.4% and 39.7%, for RIC and MAC respectively. MVA showed a significantly lower RI [hazard ratio (HR) = 0.46 (95% CI, 0.26-0.8, p = 0.006)] and improved LFS [HR = 0.62 (95% CI, 0.39-0.98, p = 0.042)] with MAC versus RIC. The choice of conditioning regimen did not impact non-relapse mortality [HR = 1.14 (95% CI, 0.52-2.5, p = 0.74)], overall survival (OS) [HR = 0.72 (95% CI, 0.44-1.17, p = 0.18)] or GRFS [HR = 0.89 (95% CI, 0.59-1.36, p = 0.6)]. In conclusion, MAC was associated with a lower RI and superior LFS. These results support the use of MAC for eligible patients with sAML who are being considered for HCT2.
Collapse
Affiliation(s)
- Arnon Nagler
- Division of Hematology, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | - Myriam Labopin
- Sorbonne University, Sevice d'hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, INSERM UMRs 938, Paris, France
| | - Thomas Valerius
- University Medical Center Schleswig Holstein, Campus Kiel, Section for Stem Cell Transplantation and Immunotherapy, Kiel, Germany
| | - Peter Dreger
- University of Heidelberg, Medizinische Klinik u. Poliklinik V, Heidelberg, Germany
| | - Nicolaus Kröger
- University Hospital Eppendorf, Bone Marrow Transplantation Centre, Hamburg, Germany
| | - Hans Christian Reinhardt
- University Duisburg-Essen, University Hospital Essen, Dept. of Bone Marrow Hematology and Stem Cell Transplantation, Essen, Germany
| | - Jürgen Finke
- University of Freiburg, Dept. of Medicine -Hematology, Oncology, Freiburg, Germany
| | - Georg-Nikolaus Franke
- Medical Clinic and Policinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Fabio Ciceri
- Ospedale San Raffaele s.r.l., Haematology and BMT, Milano, Italy
| | - Mareike Verbeek
- Klinikum Rechts der Isar, III Med Klinik der TU, Munich, Germany
| | - Igor Wolfgang Blau
- Medizinische Klinik m. S. Hämatologie, Onkologie und Tumorimmunologie, Charité Universitätsmedizin, Berlin, Germany
| | - Martin Bornhäuser
- Universitaetsklinikum Dresden, Medizinische Klinik und Poliklinik I, Dresden, Germany
| | - Alexandros Spyridonidis
- Hematology Stem Cell Transplant Unit, School of Medicine, University of Patras, Patras, Greece
| | - Gesine Bug
- Department of Medicine 2, Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Ali Bazarbachi
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christophe Schmid
- Department of Hematology and Oncology, University Hospital Augsburg, Augsburg, Germany
| | | | - Bipin N Savani
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohamad Mohty
- Sorbonne University, Sevice d'hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, INSERM UMRs 938, Paris, France
| |
Collapse
|
50
|
Shumilov E, Hasenkamp J, Maulhardt M, Mazzeo P, Schmidt N, Boyadzhiev H, Jung W, Ganster C, Haase D, Koch R, Wulf G. Outcomes of second allogeneic stem cell transplantation and anti‐relapse strategies in patients with relapsed/refractory AML: a unicentric retrospective analysis. Hematol Oncol 2022; 40:763-776. [DOI: 10.1002/hon.2995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Evgenii Shumilov
- Department of Hematology and Medical Oncology University Medicine Göttingen (UMG) Göttingen Germany
- Department of Medicine A Hematology Oncology and Pneumology University Hospital Muenster Muenster Germany
| | - Justin Hasenkamp
- Department of Hematology and Medical Oncology University Medicine Göttingen (UMG) Göttingen Germany
| | - Markus Maulhardt
- Department of Hematology and Medical Oncology University Medicine Göttingen (UMG) Göttingen Germany
| | - Paolo Mazzeo
- Department of Hematology and Medical Oncology University Medicine Göttingen (UMG) Göttingen Germany
| | - Nicole Schmidt
- Department of Hematology and Medical Oncology University Medicine Göttingen (UMG) Göttingen Germany
| | - Hristo Boyadzhiev
- Department of Hematology and Medical Oncology University Medicine Göttingen (UMG) Göttingen Germany
| | - Wolfram Jung
- Department of Hematology and Medical Oncology University Medicine Göttingen (UMG) Göttingen Germany
| | - Christina Ganster
- Department of Hematology and Medical Oncology University Medicine Göttingen (UMG) Göttingen Germany
| | - Detlef Haase
- Department of Hematology and Medical Oncology University Medicine Göttingen (UMG) Göttingen Germany
| | - Raphael Koch
- Department of Hematology and Medical Oncology University Medicine Göttingen (UMG) Göttingen Germany
| | - Gerald Wulf
- Department of Hematology and Medical Oncology University Medicine Göttingen (UMG) Göttingen Germany
| |
Collapse
|