1
|
Oluloro A, Swisher EM, Gray HJ, Goff B, Doll KM. Gynecologic cancer clinical trial eligibility criteria as a marker for equitable clinical trial access. J Natl Cancer Inst 2025; 117:980-988. [PMID: 39700440 DOI: 10.1093/jnci/djae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Racial and ethnic minorities remain underrepresented in gynecologic cancer clinical trials despite disproportionately worse oncologic outcomes. Research shows differential racial enrollment patterns because of comorbidity-based exclusion criteria. Our objective was to evaluate contemporary trends in comorbidity-based exclusion criteria among National Cancer Institute-sponsored gynecologic cancer clinical trials and protocol adherence to broadened eligibility criteria guidelines as an assessment of equitable enrollment access. METHODS The ClinicalTrials.gov registry was queried for National Cancer Institute-sponsored gynecologic cancer clinical trials (1994-2021). Study characteristics and comorbidity-based exclusion criteria were abstracted from protocols. Descriptive statistics and temporal trends were calculated using χ2 testing with STATA v17 software. RESULTS Among 279 clinical trials identified, 65% completed enrollment, 53% were phase II, and 48% focused on ovarian cancer. Pharmaceutical agents (85%) were the primary therapeutic interventions. Several inequitably restrictive exclusion criteria increased over time such as hepatitis infection (17% in 1994-2000 vs 49% in 2015-2021, P < .001) and cardiovascular disease (47% in 1994-2000 vs 66% in 2015-2021, P = .002). A previously rare exclusion, "mental illness and/or social situations," dramatically increased from 5% to 51% (P < .001) over 3 decades. Adherence to broadened eligibility criteria recommendations was mixed. Renal function, cardiovascular disease, and performance status criteria were not broadened, but HIV, prior or concurrent malignancies, and brain metastasis criteria were. CONCLUSIONS Some, but not all, of the known restrictive comorbidity-based exclusion criteria have increased in gynecologic cancer clinical trial design, despite calls for improving racial and ethnic minority representation. Exclusion criteria are critical for trial safety, however, they must be carefully considered given the differential racial impact on eligibility.
Collapse
Affiliation(s)
| | | | | | | | - Kemi M Doll
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
2
|
Viramontes KM, Thone MN, De La Torre JJ, Neubert EN, DeRogatis JM, Garcia C, Henriquez ML, Tinoco R. Contrasting roles of PSGL-1 and PD-1 in regulating T-cell exhaustion and function during chronic viral infection. J Virol 2025; 99:e0224224. [PMID: 39912665 PMCID: PMC11915808 DOI: 10.1128/jvi.02242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025] Open
Abstract
Immune checkpoints are critical regulators of T-cell exhaustion, impairing their ability to eliminate antigens present during chronic viral infections. Current immune checkpoint inhibitors (ICIs) used in the clinic aim to reinvigorate exhausted T cells; yet, most patients fail to respond or develop resistance to these therapies, underscoring the need to better understand these immunosuppressive pathways. PSGL-1 (Selplg), a recently discovered immune checkpoint, negatively regulates T-cell function. We investigated the cell-intrinsic effects of PSGL-1, PD-1, and combined deletion on CD8+ T cells during chronic viral infection. We found that combined PSGL-1 and PD-1 (Selplg-/-Pdcd1-/-) deficiency in CD8+ T cells increased their frequencies and numbers throughout chronic infection compared to the wild type. This phenotype was primarily driven by PD-1 deficiency. Furthermore, while PD-1 deletion increased virus-specific T-cell frequencies, it was detrimental to their function. Conversely, PSGL-1 deletion improved T-cell function but resulted in lower frequencies and numbers. The primary mechanism behind these differences in cell maintenance was driven by proliferation rather than survival. Combined PSGL-1 and PD-1 deletion resulted in defective T-cell differentiation, driving cells from a progenitor self-renewal state to a more terminal dysfunctional state. These findings suggest that PD-1 and PSGL-1 have distinct, yet complementary, roles in regulating T-cell exhaustion and differentiation during chronic viral infection. Overall, this study provides novel insights into the individual and combined roles of PSGL-1 and PD-1 in CD8+ T-cell exhaustion. It underscores the potential of targeting these checkpoints in a more dynamic and sequential manner to optimize virus-specific T-cell responses, offering critical perspectives for improving therapeutic strategies aimed at reinvigorating exhausted CD8+ T cells.IMPORTANCEOur findings provide a comprehensive analysis of how the dual deletion of PD-1 and PSGL-1 impacts the response and function of virus-specific CD8+ T cells, revealing novel insights into their roles in chronic infection. Notably, our findings show that while PD-1 deletion enhances T-cell frequencies, it paradoxically reduces T-cell functionality. Conversely, PSGL-1 deletion improves T-cell function but reduces their survival. Whereas the combined deletion of PSGL-1 and PD-1 in CD8+ T cells improved their survival but decreased their function and progenitor-exhausted phenotypes during infection. We believe our study advances the understanding of immune checkpoint regulation in chronic infections and has significant implications for developing more effective immune checkpoint inhibitor (ICI) therapies.
Collapse
Affiliation(s)
- Karla M. Viramontes
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Melissa N. Thone
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Jamie-Jean De La Torre
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Emily N. Neubert
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Julia M. DeRogatis
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Chris Garcia
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Monique L. Henriquez
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Institute for Immunology, University of California Irvine, Irvine, California, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| |
Collapse
|
3
|
Gong E, Zawacki L, Fan X, Hippe DS, Menon AA, Remington AJ, Lachance K, Akaike T, Tachiki L, Park SY, Nghiem P. Immunotherapy response in immunosuppressed patients with Merkel cell carcinoma: analysis of 183 patients. BMJ ONCOLOGY 2025; 4:e000654. [PMID: 40099002 PMCID: PMC11911694 DOI: 10.1136/bmjonc-2024-000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Objective Merkel cell carcinoma (MCC) is an aggressive skin cancer with poor outcomes in immunosuppressed patients. While immune checkpoint inhibitors (ICIs) achieve ~60% response rates in immunocompetent MCC patients, their efficacy in immunosuppressed patients remains unclear due to exclusion from trials. This study compares ICI outcomes, safety and the impact of immunosuppression subtypes between these groups. Methods and analysis This retrospective study analysed 183 advanced MCC patients on first-line ICIs from a Seattle-based data repository. Of these, 147 were immunocompetent, and 36 were immunosuppressed (chronic lymphocytic leukaemia (CLL) n=10, autoimmune disorders n=10, other haematologic malignancies n=9, solid organ transplants n=4 and HIV/AIDS n=3). Outcomes included objective response rate, disease progression, MCC-specific and overall survival probability, adjusted for age, sex and stage at ICI initiation. Results Initial ICI response rates at 6 months were 50% in immunosuppressed and 61.5% in immunocompetent patients (HR=0.71, p=0.17). Immunosuppressed patients had higher risks of disease progression (2 years: 53.9% vs 42.1%, HR=1.65, p=0.05) and MCC-specific mortality (2 years: 38.7% vs 24.4%, HR=1.85, p=0.04). CLL patients (n=10) had a particularly low response rate (response rate: 20.0% vs 61.5%, HR=0.18, p=0.02) and high progression risk (2 years: 80.0% vs 42.1%, HR=4.09, p=0.01). Immunosuppressed patients faced higher rates of ICI toxicity (6-month risk: 51.6% vs 36.6%, HR=1.79, p=0.03). Conclusions ICIs provide meaningful benefits to immunosuppressed MCC patients, though their response rates are lower, and progression risk is higher compared with immunocompetent patients.
Collapse
Affiliation(s)
- Emily Gong
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Lauren Zawacki
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Xinyi Fan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Daniel S Hippe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ankita A Menon
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Allison J Remington
- Department of Dermatology, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kristina Lachance
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Tomoko Akaike
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Lisa Tachiki
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, Division of Hematology/Oncology, University of Washington, Seattle, Washington, USA
| | - Song Y Park
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Paul Nghiem
- Department of Dermatology, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
4
|
De Martin E, Fulgenzi CAM, Celsa C, Laurent-Bellue A, Torkpour A, Lombardi P, D'Alessio A, Pinato DJ. Immune checkpoint inhibitors and the liver: balancing therapeutic benefit and adverse events. Gut 2024:gutjnl-2024-332125. [PMID: 39658265 DOI: 10.1136/gutjnl-2024-332125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Immune checkpoint inhibitors (ICI) have led to breakthrough improvements in the management of malignancy including hepatocellular (HCC) and biliary tract cancer, improving decades-old standards of care and increasing patient survival. In both liver tumour types, which commonly arise in the context of liver inflammation and underlying functional impairment, the lack of validated predictors of response underscores the need to balance predicted gains in survival with risk of treatment-related hepatoxicity and decompensation of underlying chronic liver disease.In addition, the liver is implicated in the toxicity associated with ICI therapy for non-liver cancers, which exhibits a high degree of variability in presentation and severity. An accurate assessment is mandatory for the diagnosis and management of ICI-induced liver injury.In this Recent Advances article, we provide an overview of the mechanisms of efficacy and toxicity of anticancer immunotherapy in liver tumours and liver toxicity in extrahepatic malignancies.We compare and contrast characteristics, management strategies and outcomes from immune-related liver injury in patients with chronic hepatitis/cirrhosis or with an underlying healthy liver and discuss the latest findings on how toxicity and decompensation may impact the outlook of patients with liver tumours and extrahepatic malignancies offering insights into the future directions of clinical research and practice in the field.
Collapse
Affiliation(s)
- Eleonora De Martin
- Centre Hepatobiliaire, Paul Brousse Hospital, Villejuif, France
- Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicetre, France
| | | | - Ciro Celsa
- Surgery & Cancer, Imperial College London, London, UK
- Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, Gastroenterology and Hepatology Unit, Palermo, Italy
| | - Astrid Laurent-Bellue
- Hôpital Kremlin Bicêtre, Anatomie & Cytologie Pathologiques, Le Kremlin Bicetre, France
| | - Aria Torkpour
- Surgery & Cancer, Imperial College London, London, UK
| | - Pasquale Lombardi
- Surgery & Cancer, Imperial College London, London, UK
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonio D'Alessio
- Surgery & Cancer, Imperial College London, London, UK
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - David J Pinato
- Surgery & Cancer, Imperial College London, London, UK
- Imperial College London, University of Eastern Piedmont Amedeo Avogadro, Department of Translational Medicine, Novara, Italy
| |
Collapse
|
5
|
Beas-Lozano EL, Contreras S, Donald-Jaramillo MAM, Frayde-Aguilar C, Carrillo-Vidales J, Jaime-Casas S, Martinez-Cannon BA. Current management of cervical cancer in women living with HIV. Crit Rev Oncol Hematol 2024; 204:104519. [PMID: 39322024 DOI: 10.1016/j.critrevonc.2024.104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Cervical cancer is a significant global health issue, particularly in low- and middle-income countries. Women living with HIV (WLWH) are not only at higher risk of cervical cancer due to their increased susceptibility to high-risk human papillomavirus (HPV) infection and compromised immune status, but also higher mortality rates have been reported. Therefore, prevention, optimal screening, use of highly active antiretroviral therapy (HAART), and early access to treatment are of utmost importance in this population. While international guidelines for cervical cancer state no treatment differences should be made for WLWH, there is evidence that this population of patients represents a challenge in decision-making for medical oncologists, radiation oncologists, and surgical oncologists. This review summarizes the available evidence on the different treatment strategies for WLWH and invasive cervical cancer and highlights the need for special considerations in screening andprevention of cervical cancer in WLWH.
Collapse
Affiliation(s)
- Evelyn Lilian Beas-Lozano
- Hemato-Oncology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Sergio Contreras
- Hemato-Oncology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | | | - Citlali Frayde-Aguilar
- Hemato-Oncology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Javier Carrillo-Vidales
- Surgery Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Salvador Jaime-Casas
- Hemato-Oncology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Bertha Alejandra Martinez-Cannon
- Hemato-Oncology Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico; Gynaecology Unit, The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, London SW3 6JJ, UK.
| |
Collapse
|
6
|
Takahashi-Watanabe M, Fujimura T, Amagai R, Ohuchi K, Yamazaki E, Tamabuchi E, Kuroki S, Kambayashi Y, Hashimoto A, Asano Y. Radiation-induced cutaneous squamous cell carcinoma showing a significant response to pembrolizumab: A case report. J Dermatol 2024; 51:1500-1503. [PMID: 38629702 DOI: 10.1111/1346-8138.17221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 11/03/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) arising from radiation dermatitis has a higher risk of metastasis than conventional cSCC. Immunosuppression is another risk factor for cSCC, suggesting that mycosis fungoides (MF) could be a risk factor for cSCC. Here we report a case of radiation-induced cSCC with a high level of tumor-mutation burden that developed in a patient with MF who was successfully treated with pembrolizumab. The present case suggests that pembrolizumab might be an optimal therapy for radiation-induced cSCC, even at advanced stages.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/therapy
- Carcinoma, Squamous Cell/pathology
- Mycosis Fungoides/drug therapy
- Mycosis Fungoides/pathology
- Mycosis Fungoides/diagnosis
- Neoplasms, Radiation-Induced/diagnosis
- Neoplasms, Radiation-Induced/etiology
- Neoplasms, Radiation-Induced/pathology
- Neoplasms, Radiation-Induced/drug therapy
- Skin/pathology
- Skin/radiation effects
- Skin Neoplasms/pathology
- Skin Neoplasms/drug therapy
- Skin Neoplasms/diagnosis
- Skin Neoplasms/etiology
- Treatment Outcome
Collapse
Affiliation(s)
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Amagai
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kentaro Ohuchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emi Yamazaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Erika Tamabuchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeru Kuroki
- Department of Dermatology, Sendai Tokushukai Hospital, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Hashimoto
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihide Asano
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Yazji A, Brown EN, De La Torre R, Umoru GO. Immune checkpoint blockade effect on immunologic and virologic profile of five cancer patients living with human immunodeficiency virus (HIV) infection. J Oncol Pharm Pract 2024; 30:1249-1254. [PMID: 39042933 DOI: 10.1177/10781552241264258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICI) have changed the prognostic outlook for several malignancies. Despite the unprecedented durable responses and improvement in survival outcomes with ICIs, exclusion of oncology patients living with human immunodeficiency virus (HIV) from most ICI-related trials has limited utility of these agents. Clinical outcomes related to concomitant use of antiretroviral therapy and ICI remain unclear. We present a case series based on our institution's experience to address this unmet need of clinical outcomes with ICI in oncology patients living with HIV. METHODS Electronic medical records were queried to identify patients living with HIV who were also diagnosed with cancer and treated with ICI from May 2019 to September 2022. RESULTS A total of five patients were on concurrent antiretroviral therapy and immunotherapy. From an efficacy perspective, three patients were observed to have a response (one complete response, one partial response, and one stable disease). There were three patients with known cluster of differentiation (CD4 + ) levels who had an increase in CD4 + cell count with ICI treatment. The HIV viral load remained undetected in most of the patients on ICI treatment. No confirmed immune-related adverse effects were documented for any patients in this review. CONCLUSION Immune checkpoint inhibitors may be efficacious and tolerable for treatment of cancer in patients living with HIV. Upward trends in CD4 + cell counts observed in this case series suggest that immune checkpoint inhibitors may enhance HIV disease control. Further research is needed for this patient population to supply more robust evidence for clinical practice.
Collapse
Affiliation(s)
- Azzam Yazji
- University of Houston College of Pharmacy, Houston, TX, USA
| | - Erika Nicole Brown
- Department of Pharmacy, Houston Methodist Willowbrook Hospital, Houston, TX, USA
| | - Rodrigo De La Torre
- Department of Pharmacy, Houston Methodist Willowbrook Hospital, Houston, TX, USA
| | | |
Collapse
|
8
|
Li S, Townes T, Na'ara S. Current Advances and Challenges in the Management of Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients. Cancers (Basel) 2024; 16:3118. [PMID: 39335091 PMCID: PMC11430974 DOI: 10.3390/cancers16183118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin malignancy and poses a significant risk to immunosuppressed patients, such as solid organ transplant recipients and those with hematopoietic malignancies, who are up to 100 times more likely to develop cSCC compared with the general population. This review summarizes the current state of treatment for cSCC in immunosuppressed patients, focusing on prevention, prophylaxis, surgical and non-surgical treatments, and emerging therapies. Preventative measures, including high-SPF sunscreen and prophylactic retinoids, are crucial for reducing cSCC incidence in these patients. Adjusting immunosuppressive regimens, particularly favoring mTOR inhibitors over calcineurin inhibitors, has been shown to lower cSCC risk. Surgical excision and Mohs micrographic surgery remain the primary treatments, with adjuvant radiation therapy recommended for high-risk cases. Traditional chemotherapy and targeted therapies like EGFR inhibitors have been utilized, though their efficacy varies. Immunotherapy, particularly with agents like cemiplimab and pembrolizumab, has shown promise, but its use in immunosuppressed patients requires further investigation due to potential risks of organ rejection and exacerbation of underlying conditions. Treatment of cSCC in immunosuppressed patients is multifaceted, involving preventive strategies, tailored surgical approaches, and cautious use of systemic therapies. While immunotherapy has emerged as a promising option, its application in immunosuppressed populations necessitates further research to optimize safety and efficacy. Future studies should focus on the integration of personalized medicine and combination therapies to improve outcomes for this vulnerable patient group.
Collapse
Affiliation(s)
- Sophie Li
- The Department of Head and Neck Surgery, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Thomas Townes
- The Department of Head and Neck Surgery, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Shorook Na'ara
- The Department of Head and Neck Surgery, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| |
Collapse
|
9
|
Odeny TA, Fink V, Muchengeti M, Gopal S. Cancer in People with HIV. Infect Dis Clin North Am 2024; 38:531-557. [PMID: 39111924 PMCID: PMC11529824 DOI: 10.1016/j.idc.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
We review the intersection of human immunodeficiency virus (HIV) and cancer globally, including the complex interplay of oncogenic infections, chronic inflammation, and behavioral and other factors in increasing cancer risk among people with HIV (PWH). We discuss current cancer screening, prevention, and treatment recommendations for PWH. Specific interventions include vaccination, behavioral risk reduction, timely HIV diagnosis and treatment, screening for specific cancer sites, and multifaceted treatment considerations unique to PWH including supportive care and drug interactions. Finally, the potential of novel therapies and the need for inclusive cancer clinical trials are highlighted. Collaborative multidisciplinary efforts are critical for continued progress against cancer among PWH.
Collapse
Affiliation(s)
- Thomas A Odeny
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., CB 8056, St. Louis, MO 63110-1093, USA
| | - Valeria Fink
- Research Department, Fundación Huésped, Av. Forest 345 (C1427CEA) Buenos Aires, Argentina
| | - Mazvita Muchengeti
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa; South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, South Africa
| | - Satish Gopal
- Center for Global Health, National Cancer Institute, 9609 Medical Center Drive, Rockville MD 20850, USA.
| |
Collapse
|
10
|
Sun W, Hu S, Wang X. Advances and clinical applications of immune checkpoint inhibitors in hematological malignancies. Cancer Commun (Lond) 2024; 44:1071-1097. [PMID: 39073258 PMCID: PMC11492363 DOI: 10.1002/cac2.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Immune checkpoints are differentially expressed on various immune cells to regulate immune responses in tumor microenvironment. Tumor cells can activate the immune checkpoint pathway to establish an immunosuppressive tumor microenvironment and inhibit the anti-tumor immune response, which may lead to tumor progression by evading immune surveillance. Interrupting co-inhibitory signaling pathways with immune checkpoint inhibitors (ICIs) could reinvigorate the anti-tumor immune response and promote immune-mediated eradication of tumor cells. As a milestone in tumor treatment, ICIs have been firstly used in solid tumors and subsequently expanded to hematological malignancies, which are in their infancy. Currently, immune checkpoints have been investigated as promising biomarkers and therapeutic targets in hematological malignancies, and novel immune checkpoints, such as signal regulatory protein α (SIRPα) and tumor necrosis factor-alpha-inducible protein 8-like 2 (TIPE2), are constantly being discovered. Numerous ICIs have received clinical approval for clinical application in the treatment of hematological malignancies, especially when used in combination with other strategies, including oncolytic viruses (OVs), neoantigen vaccines, bispecific antibodies (bsAb), bio-nanomaterials, tumor vaccines, and cytokine-induced killer (CIK) cells. Moreover, the proportion of individuals with hematological malignancies benefiting from ICIs remains lower than expected due to multiple mechanisms of drug resistance and immune-related adverse events (irAEs). Close monitoring and appropriate intervention are needed to mitigate irAEs while using ICIs. This review provided a comprehensive overview of immune checkpoints on different immune cells, the latest advances of ICIs and highlighted the clinical applications of immune checkpoints in hematological malignancies, including biomarkers, targets, combination of ICIs with other therapies, mechanisms of resistance to ICIs, and irAEs, which can provide novel insight into the future exploration of ICIs in tumor treatment.
Collapse
Affiliation(s)
- Wenyue Sun
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
11
|
Assoumou L, Baldé R, Katlama C, Abbar B, Delobel P, Allegre T, Lavole A, Makinson A, Zaegel-Faucher O, Greillier L, Soulie C, Veyri M, Bertheau M, Algarte Genin M, Gibowski S, Marcelin AG, Bihan K, Baron M, Costagliola D, Lambotte O, Spano JP. Safety and tolerability of immune checkpoint inhibitors in people with HIV infection and cancer: insights from the national prospective real-world OncoVIHAC ANRS CO24 cohort study. J Immunother Cancer 2024; 12:e009728. [PMID: 39179255 PMCID: PMC11344510 DOI: 10.1136/jitc-2024-009728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been a major advance in cancer management. However, we still lack prospective real-world data regarding their usage in people with HIV infection (PWH). METHODS The ANRS CO24 OncoVIHAC study (NCT03354936) is an ongoing prospective observational cohort study in France of PWH with cancer treated with ICI. We assessed the incidence of grade ≥3 immune-related adverse events (irAEs). All grade ≥3 irAEs were reviewed by an event review. RESULTS Between January 17, 2018, and December 05, 2023, 150 participants were recruited from 33 sites and 140 were included in this analysis. At the data cut-off date of December 05, 2023, the median follow-up was 9.2 months (IQR: 3.9-18.3), with a total of 126.2 person-years.Median age was 59 years (IQR: 54-64) and 111 (79.3%) were men. Median time since HIV diagnosis was 25 years (12-31), the median duration on antiretroviral (ARV) was 19.5 years (7.7-25.4), and the CD4 nadir was 117/µL (51-240). ICI regimens comprised anti-programmed cell death protein-1 (PD-1) for 111 (79.3%) participants, anti-programmed death-ligand 1 for 25 (17.9%), a combination of anti-PD-1 and anti-cytotoxic T-lymphocyte associated protein 4 for 3 (2.1%), and anti-PD-1 along with anti-vascular endothelial growth factor receptor for 1 (0.7%). The most frequent cancers were lung (n=65), head/neck (n=15), melanoma (n=12), liver (n=11) and Hodgkin's lymphoma (n=9).During follow-up, a total of 34 grade ≥3 irAEs occurred in 20 participants, leading to an incidence rate of 26.9 per 100 person-years. The Kaplan-Meier estimates of the proportion of participants with at least one episode of grade ≥3 irAEs were 13.8% at 6 months, 15.0% at 12 months and 18.7% at 18 months. One treatment-related death due to myocarditis was reported (0.7%). Multivariable analysis of cumulative incidence showed that participants with time since HIV diagnosis >17 years (incidence rate ratio (IRR)=4.66, p=0.002), with CD4<200 cells/µL (IRR=4.39, p<0.0001), with positive cytomegalovirus (CMV) serology (IRR=2.76, p=0.034), with history of cancer surgery (IRR=3.44, p=0.001) had a higher risk of incidence of grade ≥3 irAEs. CONCLUSION This study showed that the incidence of a first episode of grade ≥3 irAE was 15.0% (95% CI: 9.6% to 22.9%) at 1 year and the cumulative incidence of all severe irAE episodes was 26.9 per 100 person-years. Low CD4 count, positive CMV serology, history of cancer surgery and a longer time since HIV diagnosis were associated with the occurrence of severe irAEs.
Collapse
Affiliation(s)
- Lambert Assoumou
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
| | - Raghiatou Baldé
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
| | - Christine Katlama
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, service des maladies infectieuses, Paris, France
| | - Baptiste Abbar
- Sorbonne University, Department of Medical Oncology Assistance Publique - Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Institut Universitaire de Cancérologie, CLIP² Galilée, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Pierre Delobel
- CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, INSERM, UMR1291, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Thierry Allegre
- Department of Hematology Oncology & Internal Médicine Centre Hospitalier d’Aix en Provence, Centre Hospitalier du Pays d'Aix, Aix-en-Provence, France
| | - Armelle Lavole
- GRC#04 Theranoscan, Département de Pneumologie et Oncologie Thoracique, AP-HP, Hôpital Tenon, Sorbonne Université, Paris, France
| | - Alain Makinson
- INSERM U1175, Département de Maladies Infectieuses, Centre Hospitalier Universitaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Olivia Zaegel-Faucher
- Aix-Marseille Université, APHM Sainte-Marguerite, Service d'immuno-hématologie Clinique, Marseille, France
| | - Laurent Greillier
- Multidisciplinary Oncology and Therapeutic Innovations Department, Assistance Publique—Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Cathia Soulie
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, laboratoire de virologie, Paris, France
| | - Marianne Veyri
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Département d’Oncologie Médicale, Paris, France
| | | | - Michèle Algarte Genin
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
| | | | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, laboratoire de virologie, Paris, France
| | - Kevin Bihan
- Sorbonne University, INSERM CIC Paris-Est, AP-HP, ICAN, Regional Pharmacovigilance Centre, Department of Pharmacology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Marine Baron
- Sorbonne University, Department of Medical Oncology Assistance Publique - Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Institut Universitaire de Cancérologie, CLIP² Galilée, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Dominique Costagliola
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Paris, France
| | - Olivier Lambotte
- Département d’Immunologie Clinique, AP-HP, Hôpital Bicêtre, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jean-Philippe Spano
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Département d’Oncologie Médicale, Paris, France
| |
Collapse
|
12
|
Gao Z, Xu G, Wang S, Guo N, Yu Y, Wang X. Unusual presentation of PD-1 inhibitors in people living with HIV with advanced gastric cancer: Case report. Int J STD AIDS 2024; 35:733-738. [PMID: 38644514 DOI: 10.1177/09564624241248676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
This paper seeks to determine the effect of combination anti-PD-1 and antiretroviral therapy (ART) on people living with HIV (PLWH) with advanced gastric cancer. In our case, a PLWH with recurrent locally advanced gastric cancer was treated with anti-PD-1 inhibitor and ART. A significant reduction in tumor lesions (as demonstrated by contrast-enhanced CT imaging) and a better quality of life were achieved following treatment. There have been limited studies on the treatment of PLWH with advanced gastric cancer. Chemotherapy is most often used, however, with unsatisfactory outcomes. to date, there have been no published reports on the use of PD-1 inhibitors in PLWH with advanced gastric cancer. Our report provides a valuable reference for future management of such patients.
Collapse
Affiliation(s)
- Zhidi Gao
- Department of Oncology, Qingdao Branch of Shandong Public Health Clinical Center, Qingdao, People's Republic of China
| | - Guangyong Xu
- Department of Infectious Diseases, Qingdao Branch of Shandong Public Health Clinical Center, Qingdao, People's Republic of China
| | - Su Wang
- Department of Oncology, Hiser Hospital Affiliated to Qingdao University, Shandong, People's Republic of China
| | - Na Guo
- Department of Oncology, Qingdao Branch of Shandong Public Health Clinical Center, Qingdao, People's Republic of China
| | - Yang Yu
- Department of Oncology, Qingdao Branch of Shandong Public Health Clinical Center, Qingdao, People's Republic of China
| | - Xiaoni Wang
- Imaging Department, Qingdao Branch of Shandong Public Health Clinical Center, Qingdao, People's Republic of China
| |
Collapse
|
13
|
Lurain K, Zarif TE, Ramaswami R, Nassar AH, Adib E, Abdel-Wahab N, Chintapally N, Drolen CE, Feldman T, Haykal T, Nebhan CA, Thiruvengadam SK, Li M, Mittra A, Lorentsen M, Kim C, Drakaki A, Morse M, Johnson DB, Mangla A, Dittus C, Ravi P, Baiocchi RA, Chiao EY, Rubinstein PG, Yellapragada SV, LaCasce AS, Sonpavde GP, Naqash AR, Herrera AF. Real-World Multicenter Study of PD-1 Blockade in HIV-Associated Classical Hodgkin Lymphoma Across the United States. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:523-530. [PMID: 38714474 PMCID: PMC11283942 DOI: 10.1016/j.clml.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 05/10/2024]
Abstract
BACKGROUND Despite a higher risk of classical Hodgkin lymphoma (cHL) in people with HIV and the demonstrated safety and efficacy of PD-1 blockade in cHL, there are limited data on the use of these agents in HIV-associated cHL (HIV-cHL). PATIENTS/METHODS We retrospectively identified patients with HIV-cHL from the "Cancer Therapy using Checkpoint inhibitors in People with HIV-International (CATCH-IT)" database who received nivolumab or pembrolizumab, alone or in combination with other agents, and reviewed records for demographics, disease characteristics, immune-mediated adverse events (imAEs), and treatment outcomes. Changes in CD4+ T-cell counts with treatment were measured via Wilcoxon signed-rank tests. Overall response rate (ORR) was defined as the proportion of patients with partial or complete response (PR/CR) per 2014 Lugano classification. RESULTS We identified 23 patients with HIV-cHL who received a median of 6 cycles of PD-1 blockade: 1 as 1st-line, 6 as 2nd-line, and 16 as ≥3rd-line therapy. Seventeen (74%) patients received monotherapy, 5 (22%) received nivolumab plus brentuximab vedotin, and 1 received nivolumab plus ifosfamide, carboplatin, and etoposide. The median baseline CD4+ T-cell count was 155 cells/µL, which increased to 310 cells/µL at end-of-treatment (P = .009). Three patients had grade 3 imAEs; none required treatment discontinuation. The ORR was 83% with median duration of response of 19.7 months. The median progression-free survival was 21.2 months and did not differ between patients with <200 versus ≥200 CD4+ cells/µL (P = .95). CONCLUSION Our findings support the use of PD-1 blockade in HIV-cHL for the same indications as the general population with cHL.
Collapse
Affiliation(s)
- Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | | | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Elio Adib
- Brigham and Women's Hospital, Department of Radiation Oncology, Boston, MA
| | | | | | - Claire E Drolen
- University of California Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | | | - Tarek Haykal
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC; Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | | | - Mingjia Li
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Arjun Mittra
- Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Chul Kim
- Medstar Georgetown University Hospital, Washington, DC
| | - Alexandra Drakaki
- University of California Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | - Michael Morse
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC
| | | | - Ankit Mangla
- University Hospital Seidman Cancer Center, Cleveland, OH
| | | | | | | | | | | | - Sarvari V Yellapragada
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine & Michael E. DeBakey VA Medical Center, Houston, TX
| | | | | | | | | |
Collapse
|
14
|
Kennedy LB, Salama AKS. Multiple Options: How to Choose Therapy in Frontline Metastatic Melanoma. Curr Oncol Rep 2024; 26:915-923. [PMID: 38837107 DOI: 10.1007/s11912-024-01547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Given the rapid development of multiple targeted and immune therapies for patients with advanced melanoma, it can be challenging to select a therapy based on currently available data. This review aims to provide an overview of frontline options for metastatic melanoma, with practical guidance for selecting a treatment regimen. RECENT FINDINGS Recently reported data from randomized trials suggests that the majority of patients with unresectable melanoma should receive a PD-1 checkpoint inhibitor as part of their first line therapy, irrespective of BRAF mutation status. Additional data also suggests that combination immunotherapies result in improved outcomes compared to single agent, albeit at the cost of increased toxicity, though to date no biomarker exists to help guide treatment selection. As the number therapeutic options continue to grow for patients with advanced melanoma, there is likely to be a continued focus on combination strategies. Defining the optimal treatment approach in order to maximize efficacy while minimizing toxicity remains an area of active investigation.
Collapse
Affiliation(s)
- Lucy Boyce Kennedy
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, 44195, USA
| | - April K S Salama
- Division of Medical Oncology, Duke University Hospital, Durham, NC, 27710, USA.
| |
Collapse
|
15
|
Liu X, Lu Y, Zhou W, Peng T, Zhou J, Bi H, Xia F, Chen X. Chinese Multidisciplinary Expert Consensus on Immune Checkpoint Inhibitor-Based Combination Therapy for Hepatocellular Carcinoma (2023 Edition). Liver Cancer 2024; 13:355-375. [PMID: 39114757 PMCID: PMC11305662 DOI: 10.1159/000535496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/10/2023] [Indexed: 08/10/2024] Open
Abstract
Background Immune checkpoint inhibitor (ICI)-based combination therapy modalities for hepatocellular carcinoma (HCC) have achieved significant efficacy in clinical research and practice and have become the mainstay for the treatment of unresectable HCC. Summary To better help clinicians use combination immunotherapy drugs and regimens rationally, effectively, and safely, the editorial board facilitated a discussion with multidisciplinary experts in the field, adopted the "Delphi" consensus formation method, and finally revised and completed the "Chinese Multidisciplinary Expert Consensus on the Immune Checkpoint Inhibitors (ICIs)-Based Combination Therapy for Hepatocellular Carcinoma (2023 Edition)" on the basis of the 2021 edition. Key Messages This consensus primarily focuses on the principles and methods of clinical practice of combination therapy based on ICIs, aiming to summarize the recommendations for clinical application based on the latest research and expert experience and provide application guidance for clinicians.
Collapse
Affiliation(s)
- Xiufeng Liu
- Department of Medical Oncology of PLA Cancer Center, Jinling Hospital, Nanjing, China
| | - Yinying Lu
- Comprehensive Liver Cancer Center, 5th Medical Center of PLA General Hospital, Beijing, China
| | - Weiping Zhou
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tao Peng
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery and Liver Transplantation, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huaqiang Bi
- Department of Hepatobiliary Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Feng Xia
- Department of Hepatobiliary Surgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Xiaoping Chen
- Department of Hepatobiliary Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Xiao X, Fu H, Qin H, Xu L, Gu J, Zhang Z, Ya H, Jiang K, Jian Z, Li S. Case report: Complete response after transcatheter arterial chemoembolization combined with donafenib plus tislelizumab therapy for hepatocellular carcinoma with main trunk portal vein tumor thrombus in a patient coinfected with HIV and HBV. Front Immunol 2024; 15:1422801. [PMID: 39076997 PMCID: PMC11284106 DOI: 10.3389/fimmu.2024.1422801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Background Coinfection with the human immunodeficiency virus (HIV) and the hepatitis B virus (HBV) occurs in 5-67% of patients with HIV. HIV weakens the human immune system and leads to various tumors. Patients with unresectable hepatocellular carcinoma (HCC) and HIV experience poor treatment efficacy and have a short survival period. Approximately 70% of cases of HCC are diagnosed at advanced stages due to the subtle onset of the disease. As a result, most cases are not suits for curative therapy. Transcatheter arterial chemoembolization (TACE) is the first-line treatment for intermediate-stage HCC and is commonly used to treat unresectable HCC in China. Recent advancements in systemic treatments have significantly enhanced the effectiveness of unresectable HCC treatment. Several previous study showed that combination treatment combination therapy can enhance the efficacy. Notably, studies proposed that TACE combined targeted drugs with immune checkpoint inhibitors results in a high objective response rate and overall survival. However, the novelty of this study lies in its report of a complete response using a triple combination in patients with HIV and HCC with main trunk portal vein tumor thrombus. Case presentation A 57-year-old woman was diagnosed with HCC with a main trunk portal vein tumor thrombus combined with HIV infection, cirrhosis, and chronic viral hepatitis. She underwent TACE and was administered donafenib and tislelizumab. This triple therapy treatment regimen resulted in a clinical complete response according to the modified Response Evaluation Criteria in Solid Tumors (mRECIST) based on contrast-enhanced computed tomography. Conclusion We first used TACE combined with donafenib and tislelizumab for HCC patients with main trunk portal vein tumor thrombus and HIV-HBV coinfection and achieved complete response.
Collapse
Affiliation(s)
- Xuhua Xiao
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Haixiao Fu
- Department of pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Huixia Qin
- Interventional Center, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Longkuan Xu
- Department of pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Jing Gu
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhan Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Houxiang Ya
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Kaiwen Jiang
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhiyuan Jian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shuqun Li
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
17
|
Yuen CA, Bao S, Pekmezci M, Mo F, Kong XT. Pembrolizumab in an HIV-infected patient with glioblastoma. Immunotherapy 2024; 16:803-811. [PMID: 38889068 PMCID: PMC11457652 DOI: 10.1080/1750743x.2024.2362566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Persons living with human immunodeficiency virus (PLWH) carry increased risk for developing malignancies, including glioblastoma. Despite extensive investigations, both human immunodeficiency virus (HIV) and glioblastoma are incurable. Treatment for a patient with combined glioblastoma and HIV remains an unexplored need. Preliminary evidence suggests that immunotherapy may be effective for the simultaneous treatment of both HIV and cancer by reversing HIV latency and T cell exhaustion. We present a case of glioblastoma in a PLWH who was treated with pembrolizumab. Treatment was well tolerated and safe with a mixed response. Our patient did not develop any opportunistic infections, immune-related adverse events, or worsening of his immunodeficiency. To our knowledge, this is the first reported case of a PLWH and glioblastoma treated with immunotherapy.
Collapse
Affiliation(s)
- Carlen A Yuen
- Department of Neurology, Neuro-Oncology Division, University of California, Irvine, CA 92868, USA
| | - Silin Bao
- Department of Internal Medicine, Neurosciences Division, Community Regional Medical Center, Fresno, CA 93721, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Fan Mo
- Department of Internal Medicine, Neurosciences Division, Community Regional Medical Center, Fresno, CA 93721, USA
| | - Xiao-Tang Kong
- Department of Neurology, Neuro-Oncology Division, University of California, Irvine, CA 92868, USA
| |
Collapse
|
18
|
Shah NJ, Della Pia A, Wu T, Williams A, Weber M, Sinclaire B, Gourna Paleoudis E, Alaoui A, Lev-Ari S, Adams S, Kaufman J, Parikh SB, Tonti E, Muller E, Serzan M, Cheruku D, Lee A, Sridhar A, Hee B(TP, Ahn J, Pecora A, Ip A, Atkins MB. Clinical Outcomes of Immune Checkpoint Inhibitors in Unique Cohorts Underrepresented in Clinical Trials. Cancers (Basel) 2024; 16:2223. [PMID: 38927928 PMCID: PMC11202168 DOI: 10.3390/cancers16122223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Regulatory approval of immune checkpoint inhibitors (ICIs) was based on results of large, randomized clinical trials, resulting in limited outcomes data in patient cohorts typically underrepresented in such trials. The objective of this study was to evaluate the efficacy and safety of ICIs in these unique patient cohorts. This is a multicenter, retrospective analysis of real-world data at six academic and community clinics in the United States from 1 January 2011 to 1 April 2018. Patients were included if they had received at least one cycle of ICI treatment. Unique patient cohorts included age > 75 years, non-White race, positive smoking history, ECOG performance status (PS) ≥ 2, BMI ≥ 30 kg/m2, autoimmune diseases (AIDs), chronic viral infections (CVI), extensive prior lines of therapy (LOTs), or >three metastatic sites. Immune-related adverse events (irAEs), overall survival (OS), and time to treatment failure were evaluated in the entire cohort and in NSCLC patients treated with PD-(L)1 monotherapy. Outcomes and their association with unique patient cohorts were compared on univariate analysis and multivariate analysis to those without a particular characteristic in the entire NSCLC PD-(L)1 monotherapy cohorts. In total, 1453 patients were included: 56.5%-smokers, 30.4%-non-White, 22.8%-elderly, 20.8%-ECOG PS ≥ 2, 15.7%-history of AIDs, and 4.7%-history of CVI. The common ICIs were nivolumab (37.1%) and pembrolizumab (22.2%). Black patients, compared to White patients, experienced fewer irAEs (OR 0.54, p < 0.001). An ECOG PS of ≥2 (HR = 2.01, p < 0.001) and an increased number of previous LOTs were associated with poor OS (the median OS of 26.2 vs. 16.2 vs. 9.6 months for one vs. two vs. three prior LOTs, p < 0.001). The above results were confirmed in anti-PD-(L)1 monotherapy non-small cell lung cancer patients (n = 384). Overall, ICIs were safe and efficacious in these typically underrepresented patient cohorts. We noted ECOG PS ≥ 2 and an increased prior LOTs were associated with poor ICI efficacy, and Black patients, compared to White patients, experienced fewer irAEs.
Collapse
Affiliation(s)
- Neil J. Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Alexandra Della Pia
- John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Tianmin Wu
- Department of Biostatistics, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Aquino Williams
- Hackensack Meridian Health Mountainside Medical Center, Montclair, NJ 07042, USA
| | - Melinda Weber
- John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Brittany Sinclaire
- John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | | | - Adil Alaoui
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20007, USA
| | - Shaked Lev-Ari
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20007, USA
| | - Shari Adams
- John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Jordan Kaufman
- John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Sahil B. Parikh
- John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Emily Tonti
- John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Eric Muller
- John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Michael Serzan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Divya Cheruku
- Hackensack Meridian Health Mountainside Medical Center, Montclair, NJ 07042, USA
| | - Albert Lee
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | | | | | - Jaeil Ahn
- Department of Biostatistics, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Andrew Pecora
- John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ 07601, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Andrew Ip
- John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ 07601, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Michael B. Atkins
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20007, USA
| |
Collapse
|
19
|
Lovane L, Tulsidás S, Carrilho C, Karlsson C. PD-L1 expression in squamous cervical carcinomas of Mozambican women living with or without HIV. Sci Rep 2024; 14:12974. [PMID: 38839923 PMCID: PMC11153591 DOI: 10.1038/s41598-024-63595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
Programmed death-ligand 1 (PD-L1) is overexpressed in squamous cervical cancer (SCC) and can be used for targeted immunotherapy. The highest mortality rates of SCC are reported in sub-Saharan Africa, where Human immunodeficiency virus (HIV) prevalence is high. In Mozambique most SCC patients present at advanced stages. Thus, there is a need to introduce new treatment options. However, immunocompromised patients were frequently excluded in previous clinical trials. Our aim was to determine if PD-L1 expression in SCC is as prevalent among women living with HIV (WLWH) as among other patients. 575 SCC from Maputo Central Hospital were included. HIV status was available in 266 (46%) cases PD-L1 expression was scored through tumour proportion score (TPS) and combined positive score (CPS). PD-L1 was positive in 20.1% of the cases (n = 110), TPS (score ≥ 25%) and in 26.3% (n = 144), CPS (score ≥ 1). Stratifying according to the HIV status, WLWH were TPS positive in 16.7%, compared to 20.9%, p = 0.43, and concerning CPS 21.1% versus 28.7%, p = 0.19, respectively. PD-L1 status was not influenced by stage, Ki-67 or p16, CD8 expression influenced only CPS status. Our data indicates that the documented effect of PD-L1 therapy on SCC should be confirmed in randomized clinical trials in an HIV endemic milieu.
Collapse
Affiliation(s)
- Lucília Lovane
- Pathology Department, Maputo Central Hospital, Maputo, Mozambique.
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique.
| | - Satish Tulsidás
- Medical Oncology Service, Maputo Central Hospital, Maputo, Mozambique
| | - Carla Carrilho
- Pathology Department, Maputo Central Hospital, Maputo, Mozambique
- Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Christina Karlsson
- School of Health Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
20
|
Suk-Ouichai C, Coghill AE, Schabath MB, Sanchez JA, Chahoud J, Necchi A, Giuliano AR, Spiess PE. A clinical overview of people living with HIV and genitourinary cancer care. Nat Rev Urol 2024; 21:373-383. [PMID: 38238527 DOI: 10.1038/s41585-023-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 06/10/2024]
Abstract
The number of people living with HIV infection has been increasing globally. Administration of antiretroviral therapy is effective in controlling the infection for most patients and, as a consequence, people living with HIV (PLWH) now often have a long life expectancy. However, their risk of developing cancer - most notably virus-related cancers - has been increasing. To date, few studies have assessed the risk of genitourinary cancers in PLWH, and robust scientific data on their treatment-related outcomes are lacking. Previous studies have noted that PLWH are at a reduced risk of prostate cancer; however, low adoption and/or availability of prostate cancer screening among these patients might be confounding the validity of this finding. In genitourinary cancers, advanced stage at diagnosis and reduced cancer-specific mortality have been reported in PLWH. These data likely reflect, at least in part, the inequity of health care access for PLWH. Notably, systemic chemotherapy and/or radiotherapy could decrease total CD4+ cell counts, which could, therefore, increase the risk of morbidity and mortality from cancer treatments in PLWH. Immune checkpoint inhibitors have become the therapeutic backbone for many advanced malignancies in the general population; however, most studies validating their efficacy have excluded PLWH owing to concerns of severe adverse effects from immune checkpoint inhibitors themselves and/or related to their immunosuppressed status. To our knowledge, no genitourinary cancer survivorship programme exists that specifically caters to the needs of PLWH. By including PLWH in ongoing cancer trials, we can gain invaluable insights that will help to improve cancer care specifically for PLWH.
Collapse
Affiliation(s)
- Chalairat Suk-Ouichai
- Division of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anna E Coghill
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Julian A Sanchez
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Andrea Necchi
- Department of Medical Oncology, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna R Giuliano
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.
| |
Collapse
|
21
|
Rajdev L, Wang CCJ, Joshi H, Lensing S, Lee J, Ramos JC, Baiocchi R, Ratner L, Rubinstein PG, Ambinder R, Henry D, Streicher H, Little RF, Chiao E, Dittmer DP, Einstein MH, Cesarman E, Mitsuyasu R, Sparano JA. Assessment of the safety of nivolumab in people living with HIV with advanced cancer on antiretroviral therapy: the AIDS Malignancy Consortium 095 Study. Cancer 2024; 130:985-994. [PMID: 37962072 PMCID: PMC10922055 DOI: 10.1002/cncr.35110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Although immunotherapy has emerged as a therapeutic strategy for many cancers, there are limited studies establishing the safety and efficacy in people living with HIV (PLWH) and cancer. METHODS PLWH and solid tumors or Kaposi sarcoma (KS) receiving antiretroviral therapy and a suppressed HIV viral load received nivolumab at 3 mg/kg every 2 weeks, in two dose deescalation cohorts stratified by CD4 count (stratum 1: CD4 count > 200/µL and stratum 2: CD4 count 100-199/µL). An expansion cohort of 24 participants with a CD4 count > 200/µL was then enrolled. RESULTS A total of 36 PLWH received nivolumab, including 15 with KS and 21 with a variety of other solid tumors. None of the first 12 participants had dose-limiting toxicity in both CD4 strata, and five patients (14%) overall had grade 3 or higher immune related adverse events. Objective partial response occurred in nine PLWH and cancer (25%), including in six of 15 with KS (40%; 95% CI, 16.3-64.7). The median duration of response was 9.0 months overall and 12.5 months in KS. Responses were observed regardless of PDL1 expression. There were no significant changes in CD4 count or HIV viral load. CONCLUSIONS Nivolumab has a safety profile in PLWH similar to HIV-negative subjects with cancer, and also efficacy in KS. Plasma HIV remained suppressed and CD4 counts remained stable during treatment and antiretroviral therapy, indicating no adverse impact on immune function. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02408861.
Collapse
Affiliation(s)
- Lakshmi Rajdev
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Himanshu Joshi
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Jeannette Lee
- University of Arkansas for Medical Sciences, Little Rock, AK
| | | | - Robert Baiocchi
- Ohio State University James Comprehensive Cancer Center, Columbus OH
| | | | - Paul G. Rubinstein
- Stroger Hospital of Cook County (Cook County Hospital), Ruth M. Rothstein Core Center, Division of Hematology/Oncology, University of Illinois, Chicago, IL
| | | | | | - Howard Streicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD
| | - Richard F. Little
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD
| | | | | | | | | | - Ronald Mitsuyasu
- University of California Los Angeles Care Center, Los Angeles, CA
| | - Joseph A. Sparano
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
22
|
Cali Daylan AE, Maia CM, Attarian S, Guo X, Ginsberg M, Castellucci E, Gucalp R, Haigentz M, Halmos B, Cheng H. HIV Associated Lung Cancer: Unique Clinicopathologic Features and Immune Biomarkers Impacting Lung Cancer Screening and Management. Clin Lung Cancer 2024; 25:159-167. [PMID: 38158315 PMCID: PMC10922688 DOI: 10.1016/j.cllc.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES Lung cancer contributes significantly to morbidity and mortality in people with HIV (PWH). We study the clinicopathologic characteristics and immune microenvironment in HIV associated lung cancer. MATERIAL AND METHODS Clinicopathological characteristics including immunotherapy outcomes were collected for 174 PWH diagnosed with lung cancer. Immunohistochemical staining for PD-L1, CD4, and CD8 was performed. RESULTS At diagnosis, patients with HIV associated lung cancer were significantly younger (56.9 vs. 69 years, P < .0001) and more frequently had advanced disease (70% vs. 53%, P = .01). The majority were African American (60% vs. 42%, P < .0001) and were smoking at the time of diagnosis or smoked in the past (98% vs. 86%, P = .0001). Only 10% of HIV associated lung cancer was diagnosed through the screening program. The median CD4+ lymphocyte count was 334 cells/µL, 31% had a CD4 ≤200 cells/µL and 63% of the cohort was virally suppressed. HIV associated non-small-cell lung cancer(NSCLC) was characterized by limited PD-L1 expression compared to the HIV negative cohort, 64% vs. 31% had TPS <1%, and 20% vs. 34% had TPS≥50%, respectively (P = .04). Higher CD8+ TILs were detected in PD-L1-high tumors (P < .0001). 50% of patients achieved disease control in the metastatic setting with the use of immunotherapy, and there were no new safety signals in 19 PWH treated with immunotherapy. CONCLUSION Lung cancer in PWH demonstrates unique features highlighting the need for a specialized screening program. Despite low PD-L1 expression, immunotherapy is well tolerated with reasonable disease control. Altered immune system in lung cancer pathogenesis in PWH should be further investigated.
Collapse
Affiliation(s)
- Ayse Ece Cali Daylan
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Catarina Martins Maia
- Department of Internal Medicine, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, NY
| | - Shirin Attarian
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Xiaoling Guo
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx NY
| | - Mindy Ginsberg
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx NY
| | - Enrico Castellucci
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Rasim Gucalp
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Missak Haigentz
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Balazs Halmos
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Haiying Cheng
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
23
|
Castro DV, Prajapati SR, Feng MI, Chan EH, Lee KO, Paul T, Sehgal I, Patel J, Li X, Zengin ZB, Ebrahimi H, Govindarajan A, Meza L, Mercier BD, Chawla NS, Dizman N, Philip EJ, Hsu J, Bergerot CD, Chehrazi-Raffle A, Rock A, Liu S, Tripathi A, Dorff TB, Pal SK. Assessment of eligibility criteria in renal cell carcinoma trials evaluating systemic therapy. BJU Int 2024; 133:297-304. [PMID: 37548533 DOI: 10.1111/bju.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
OBJECTIVES To characterise the restrictiveness of eligibility criteria in contemporary renal cell carcinoma (RCC) trials, using recommendations from the American Society of Clinical Oncology (ASCO)-Friends of Cancer Research (FCR) initiative. METHODS vPhase I-III trials assessing systemic therapies in patients with RCC starting between 30 June 2012 and 30 June 2022 were identified. Eligibility criteria regarding brain metastases, prior or concurrent malignancies, hepatitis B virus (HBV) or hepatitis C virus (HCV) infection, and human immunodeficiency virus (HIV) infection were identified and stratified into three groups: exclusion, conditional inclusion, and not reported. Descriptive statistics were used to determine the frequency of eligibility criteria. Fisher's exact test or chi-square test were used to calculate their associations with certain trial characteristics. RESULTS A total of 423 RCC trials were initially identified of which 112 (26.5%) had sufficient accessible information. Exclusion of patients with HIV infection, HBV/HCV infection, brain metastases, and prior or concurrent malignancies were reported in 74.1%, 53.6%, 33.0%, and 8.0% of trials, respectively. In the context of HIV and HBV/HCV infection, patients were largely excluded from trials evaluating immunotherapy (94.4% and 77.8%, respectively). In addition, brain metastases were excluded in trials assessing targeted therapy (36.4%), combined therapy (33.3%), and immunotherapy (22.2%). Exclusion of patients with prior or concurrent malignancies was less frequently reported, accounting for 9.1%, 8.3%, and 5.6% targeted therapy, combined therapy and immunotherapy trials, respectively. CONCLUSION A substantial proportion of RCC trials utilise restrictive eligibility criteria, excluding patients with fairly prevalent comorbidities. Implementing the ASCO-FCR recommendations will ensure resulting data are more inclusive and aligned with patient populations in the real-world.
Collapse
Affiliation(s)
- Daniela V Castro
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sweta R Prajapati
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Matthew I Feng
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Elyse H Chan
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Kyle O Lee
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Trishita Paul
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ishaan Sehgal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jalen Patel
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Xiaochen Li
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zeynep B Zengin
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Hedyeh Ebrahimi
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ameish Govindarajan
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Luis Meza
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Benjamin D Mercier
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Neal S Chawla
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Nazli Dizman
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Errol J Philip
- University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - JoAnn Hsu
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Cristiane D Bergerot
- Centro de Câncer de Brasília (CETTRO), Instituto Unity de Ensino e Pesquisa, Brasília, Brazil
| | - Alex Chehrazi-Raffle
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Adam Rock
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sandy Liu
- Department of Medical Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, CA, USA
| | - Abhishek Tripathi
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Tanya B Dorff
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sumanta K Pal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
24
|
Abstract
Immune-related adverse events (irAEs) are toxicities that arise after the administration of monoclonal antibodies targeting immune checkpoints (immune checkpoint inhibitors [ICIs]) in patients with cancer. They can occur at any time after initiation of ICI treatment, with a broad clinical phenotype that can be organ-specific or systemic. Although most irAEs manifest as mild to moderate signs and symptoms, severe forms of irAEs can lead to irreversible organ failure and have acute life-threatening presentations. Treatment should be tailored to the specific organ involved and the severity. Glucocorticoids are the first-line treatment for most irAEs, with immunosuppressants and biologics mainly used as second-line treatments.
Collapse
Affiliation(s)
- Manuel Ramos-Casals
- Department of Autoimmune Diseases, ICMiD, Hospital Clínic, and Department of Medicine, University of Barcelona, Barcelona, Spain (M.R.)
| | - Antoni Sisó-Almirall
- Department of Medicine, University of Barcelona; Primary Healthcare Transversal Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); and Primary Care Centre Les Corts, Consorci d'Atenció Primària de Salut Barcelona Esquerra (CAPSBE), Barcelona, Spain (A.S.)
| |
Collapse
|
25
|
Kosche C, Chio MTW, Arron ST. Skin cancer and HIV. Clin Dermatol 2023:S0738-081X(23)00258-4. [PMID: 38142792 DOI: 10.1016/j.clindermatol.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The risk of skin cancer in persons living with HIV (PLWH) is an evolving subject area shaped by the use of antiretroviral therapy. Keratinocyte carcinomas, including basal cell carcinoma and squamous cell carcinoma, have a high incidence in the general population as well as in PLWH. PLWH may have a higher risk of squamous cell carcinoma when compared to the general population. In addition, Merkel cell carcinoma and sebaceous carcinoma exhibit higher incidence rates in PLWH. Data on melanoma risk are varied. Risks of skin cancer may be influenced by vigilant surveillance, photosensitivity, and immune status. Screening for skin cancer is generally recommended, although national guidelines vary in specific recommendations. Treatments range from topical therapies to surgeries to immune checkpoint inhibitors, with Mohs micrographic surgery playing an important role. Data on immune checkpoint inhibitors suggest safe and efficacious use in PLWH, although larger trials are warranted. The dynamic interplay among HIV, antiretroviral use and immunosuppression, and the risk and treatment of skin cancer underscores the importance of rigorous research studies and screening and treatment guidelines specific to this population.
Collapse
Affiliation(s)
- Cory Kosche
- Department of Dermatology, University of California Medical School, San Francisco, California, USA
| | | | | |
Collapse
|
26
|
Kamat AM, Apolo AB, Babjuk M, Bivalacqua TJ, Black PC, Buckley R, Campbell MT, Compérat E, Efstathiou JA, Grivas P, Gupta S, Kurtz NJ, Lamm D, Lerner SP, Li R, McConkey DJ, Palou Redorta J, Powles T, Psutka SP, Shore N, Steinberg GD, Sylvester R, Witjes JA, Galsky MD. Definitions, End Points, and Clinical Trial Designs for Bladder Cancer: Recommendations From the Society for Immunotherapy of Cancer and the International Bladder Cancer Group. J Clin Oncol 2023; 41:5437-5447. [PMID: 37793077 DOI: 10.1200/jco.23.00307] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 10/06/2023] Open
Abstract
PURPOSE There is a significant unmet need for new and efficacious therapies in urothelial cancer (UC). To provide recommendations on appropriate clinical trial designs across disease settings in UC, the Society for Immunotherapy of Cancer (SITC) and the International Bladder Cancer Group (IBCG) convened a multidisciplinary, international consensus panel. METHODS Through open communication and scientific debate in small- and whole-group settings, surveying, and responses to clinical questionnaires, the consensus panel developed recommendations on optimal definitions of the disease state, end points, trial design, evaluations, sample size calculations, and pathology considerations for definitive studies in low- and intermediate-risk nonmuscle-invasive bladder cancer (NMIBC), high-risk NMIBC, muscle-invasive bladder cancer in the neoadjuvant and adjuvant settings, and metastatic UC. The expert panel also solicited input on the recommendations through presentations and public discussion during an open session at the 2021 Bladder Cancer Advocacy Network (BCAN) Think Tank (held virtually). RESULTS The consensus panel developed a set of stage-specific bladder cancer clinical trial design recommendations, which are summarized in the table that accompanies this text. CONCLUSION These recommendations developed by the SITC-IBCG Bladder Cancer Clinical Trial Design consensus panel will encourage uniformity among studies and facilitate drug development in this disease.
Collapse
Affiliation(s)
- Ashish M Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrea B Apolo
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Marek Babjuk
- Department of Urology, Teaching Hospital Motol, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Trinity J Bivalacqua
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C Black
- Division of Urology, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Roger Buckley
- Department of Urology, North York General Hospital, Toronto, Ontario, Canada
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eva Compérat
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Petros Grivas
- Department of Medicine, Division of Oncology, University of Washington; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Shilpa Gupta
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | - Neil J Kurtz
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | - Donald Lamm
- Patient Advocate, Bladder Cancer Advocacy Network (BCAN), Bethesda, MD
| | | | - Roger Li
- Scott Department of Urology, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - David J McConkey
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center, Tampa, FL
| | - Joan Palou Redorta
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD
| | - Thomas Powles
- Department of Urology, Fundació Puigvert, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Neal Shore
- Department of Urology, University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | | | | |
Collapse
|
27
|
Benito JM, Restrepo C, García-Foncillas J, Rallón N. Immune checkpoint inhibitors as potential therapy for reverting T-cell exhaustion and reverting HIV latency in people living with HIV. Front Immunol 2023; 14:1270881. [PMID: 38130714 PMCID: PMC10733458 DOI: 10.3389/fimmu.2023.1270881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
The immune system of people living with HIV (PLWH) is persistently exposed to antigens leading to systemic inflammation despite combination antiretroviral treatment (cART). This inflammatory milieu promotes T-cell activation and exhaustion. Furthermore, it produces diminished effector functions including loss of cytokine production, cytotoxicity, and proliferation, leading to disease progression. Exhausted T cells show overexpression of immune checkpoint molecules (ICs) on the cell surface, including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), and lymphocyte activation gene-3 (LAG-3). The ICs also play a crucial role in T-cell exhaustion by reducing the immune response to cancer antigens. Immunotherapy based on immune checkpoint inhibitors (ICIs) has changed the management of a diversity of cancers. Additionally, the interest in exploring this approach in the setting of HIV infection has increased, including AIDS-defining cancers and non-AIDS-defining cancers in PLWH. To date, research on this topic suggests that ICI-based therapies in PLWH could be a safe and effective approach. In this review, we provide an overview of the current literature on the potential role of ICI-based immunotherapy not only in cancer remission in PLWH but also as a therapeutic intervention to restore immune response against HIV, revert HIV latency, and attain a functional cure for HIV infection.
Collapse
Affiliation(s)
- José M. Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | - Jesús García-Foncillas
- Department of Oncology and Cancer Institute, Fundacion Jimenez Diaz University Hospital, Autonomous University, Madrid, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
28
|
Ebrahimi H, Castro DV, Feng MI, Prajapati SR, Lee KO, Chan EH, Paul T, Sehgal I, Patel J, Li X, Zengin ZB, Meza L, Mercier BD, Hsu J, Govindarajan A, Chawla N, Dizman N, Bergerot CD, Rock A, Liu S, Tripathi A, Dorff T, Pal SK, Chehrazi-Raffle A. Examining Exclusion Criteria in Advanced Prostate Cancer Clinical Trials: An Assessment of recommendations From the American Society Of Clinical Oncology and Friends of Cancer Research. Clin Genitourin Cancer 2023; 21:e467-e473. [PMID: 37301665 DOI: 10.1016/j.clgc.2023.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE Eligibility criteria illustrate the characteristics of the study population and promote the safety of participants. However, overreliance on restrictive eligibility criteria may limit the generalizability of outcomes. As a result, the American Society of Clinical Oncology (ASCO) and Friends of Cancer Research (Friends) issued statements to curtail these challenges. In this study, we aimed to assess restrictiveness in eligibility criteria across advanced prostate cancer clinical trials. MATERIALS AND METHODS We identified all phase I, II, and III advanced prostate cancer clinical trials between June 30, 2012, and June 30, 2022, through Clinicaltrials.gov. We evaluated whether a clinical trial excluded, conditionally included, or did not report 4 common criteria: brain metastases, prior or concurrent malignancies, HIV infection, and hepatitis B virus (HBV)/hepatitis C virus (HCV) infection. Performance status (PS) criteria were recorded based on the Eastern Cooperative Oncology Group (ECOG) scale. RESULTS Out of 699 clinical trials within our search strategy, 265 (37.9%) trials possessed all the required data and were included in our analysis. The most common excluded condition of our interest was brain metastases (60.8%), followed by HIV positivity (46.4%), HBV/HCV positivity (46.0%), and concurrent malignancies (15.5%). Additionally, 50.9% of clinical trials only included patients with ECOG PS 0 to 1. HIV and HBV/HCV infection were exclusion criteria of 22 (80.8%) and 19 (73.1%) immunotherapy trials, respectively. CONCLUSION Patients with brain metastases, prior or concurrent malignancies, HIV infection, HBV/HCV infection, or low-functioning PS were overly restricted from participating in advanced prostate clinical trials. Advocating for broader criteria may ameliorate generalizability.
Collapse
Affiliation(s)
- Hedyeh Ebrahimi
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Daniela V Castro
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Matthew I Feng
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sweta R Prajapati
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Kyle O Lee
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Elyse H Chan
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Trishita Paul
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Ishaan Sehgal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Jalen Patel
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Xiaochan Li
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Zeynep B Zengin
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Luis Meza
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Benjamin D Mercier
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - JoAnn Hsu
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Ameish Govindarajan
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Neal Chawla
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Nazli Dizman
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA; Department of Internal Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT
| | - Cristiane D Bergerot
- Centro de Câncer de Brasília (CETTRO), Instituto Unity de Ensino e Pesquisa, Brasília, Brazil
| | - Adam Rock
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sandy Liu
- Department of Medical Oncology, City of Hope Orange County Medical Center, Irvine, CA
| | - Abhishek Tripathi
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Tanya Dorff
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sumanta K Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Alexander Chehrazi-Raffle
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
29
|
Zhu X, Liu X, Wan Z, Hui J, Tao R, Peng X, Su J, Huang Y, Zhu B. Safety and efficacy of PD-1 inhibitors in HIV-infected patients with severe comorbidities: a prospective observational cohort study. Chin Med J (Engl) 2023; 136:2750-2752. [PMID: 37882105 PMCID: PMC10685422 DOI: 10.1097/cm9.0000000000002883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | | | - Biao Zhu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
30
|
Pavlick AC, Ariyan CE, Buchbinder EI, Davar D, Gibney GT, Hamid O, Hieken TJ, Izar B, Johnson DB, Kulkarni RP, Luke JJ, Mitchell TC, Mooradian MJ, Rubin KM, Salama AK, Shirai K, Taube JM, Tawbi HA, Tolley JK, Valdueza C, Weiss SA, Wong MK, Sullivan RJ. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of melanoma, version 3.0. J Immunother Cancer 2023; 11:e006947. [PMID: 37852736 PMCID: PMC10603365 DOI: 10.1136/jitc-2023-006947] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 10/20/2023] Open
Abstract
Since the first approval for immune checkpoint inhibitors (ICIs) for the treatment of cutaneous melanoma more than a decade ago, immunotherapy has completely transformed the treatment landscape of this chemotherapy-resistant disease. Combination regimens including ICIs directed against programmed cell death protein 1 (PD-1) with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) agents or, more recently, anti-lymphocyte-activation gene 3 (LAG-3) agents, have gained regulatory approvals for the treatment of metastatic cutaneous melanoma, with long-term follow-up data suggesting the possibility of cure for some patients with advanced disease. In the resectable setting, adjuvant ICIs prolong recurrence-free survival, and neoadjuvant strategies are an active area of investigation. Other immunotherapy strategies, such as oncolytic virotherapy for injectable cutaneous melanoma and bispecific T-cell engager therapy for HLA-A*02:01 genotype-positive uveal melanoma, are also available to patients. Despite the remarkable efficacy of these regimens for many patients with cutaneous melanoma, traditional immunotherapy biomarkers (ie, programmed death-ligand 1 expression, tumor mutational burden, T-cell infiltrate and/or microsatellite stability) have failed to reliably predict response. Furthermore, ICIs are associated with unique toxicity profiles, particularly for the highly active combination of anti-PD-1 plus anti-CTLA-4 agents. The Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop this clinical practice guideline on immunotherapy for the treatment of melanoma, including rare subtypes of the disease (eg, uveal, mucosal), with the goal of improving patient care by providing guidance to the oncology community. Drawing from published data and clinical experience, the Expert Panel developed evidence- and consensus-based recommendations for healthcare professionals using immunotherapy to treat melanoma, with topics including therapy selection in the advanced and perioperative settings, intratumoral immunotherapy, when to use immunotherapy for patients with BRAFV600-mutated disease, management of patients with brain metastases, evaluation of treatment response, special patient populations, patient education, quality of life, and survivorship, among others.
Collapse
Affiliation(s)
| | - Charlotte E Ariyan
- Department of Surgery Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Diwakar Davar
- Hillman Cancer Center, University of Pittsburg Medical Center, Pittsburgh, Pennsylvania, USA
| | - Geoffrey T Gibney
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California, USA
| | - Tina J Hieken
- Department of Surgery and Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center, New York, New York, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rajan P Kulkarni
- Departments of Dermatology, Oncological Sciences, Biomedical Engineering, and Center for Cancer Early Detection Advanced Research, Knight Cancer Institute, OHSU, Portland, Oregon, USA
- Operative Care Division, VA Portland Health Care System (VAPORHCS), Portland, Oregon, USA
| | - Jason J Luke
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Tara C Mitchell
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Meghan J Mooradian
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Krista M Rubin
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - April Ks Salama
- Department of Medicine, Division of Medical Oncology, Duke University, Durham, Carolina, USA
| | - Keisuke Shirai
- Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Janis M Taube
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - J Keith Tolley
- Patient Advocate, Melanoma Research Alliance, Washington, DC, USA
| | - Caressa Valdueza
- Cutaneous Oncology Program, Weill Cornell Medicine, New York, New York, USA
| | - Sarah A Weiss
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Michael K Wong
- Patient Advocate, Melanoma Research Alliance, Washington, DC, USA
| | - Ryan J Sullivan
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Xiong Y, Mo P, Yan Y, Wang S, Zhuang K, Ma Z, Chen X, Deng L, Xiong Y, Deng D, Zhang Y. The safety and efficacy of PD-1 inhibitors in patients with advanced cancers and HIV/AIDS in China. Front Oncol 2023; 13:1248790. [PMID: 37799470 PMCID: PMC10547588 DOI: 10.3389/fonc.2023.1248790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Purpose-Immunotherapy has revolutionized cancer therapy, becoming the standard of care for various malignancy treatments. Human immunodeficiency virus (HIV) patients, however, are an underserved group with limited access to clinical trials and cancer therapy. This study was to evaluate the safety and efficacy of programmed cell death 1 (PD - 1) inhibitors in patients with advanced cancer and HIV/acquired immunodeficiency syndrome (AIDS). Methods and Materials-We performed a prospective, open-label, nonrandomized, phase 1 single center study. Patients with advanced cancer and HIV/AIDS received the treatment of PD - 1 inhibitors (camrelizumab, 200 mg, administered intravenously every 3 weeks), along with combination antiretroviral therapy (cART) for HIV. Results-Sixteen participants (12 men and 4 women; median age, 46.5 (29 - 78) years) were enrolled; 1 had non - Hodgkin lymphoma (NHL), and 15 had non - AIDS - defining cancers. Safety was observed over 130 cycles of treatment with camrelizumab. Most treatment-emergent adverse events at least possibly attributed to camrelizumab were grade 1 or 2, including reactive cutaneous capillary endothelial proliferation (RCCEP) (9 participants), hearing loss (1 participant), hypophysitis (1 participant). 3 participants experienced hemorrhage due to poor performance status. HIV was controlled in all participants. Best tumor responses included 3 complete response, 5 partial response, 2 stable disease, and 6 progressive disease. The 2 years progression-free survival (PFS) was 67.0% (95% CI: -0.05, 0.00) and overall survival (OS) was 55.3% (95% CI: -0.05, 0.01) for the 16 patients who had received camrelizumab. Conclusions-This study demonstrates that camrelizumab treatment in patients with advanced cancers and HIV/AIDS was feasible and the clinical outcomes were acceptable.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pingzheng Mo
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Centre of AIDS Prevention and Cure, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yajun Yan
- Centre of AIDS Prevention and Cure, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shan Wang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Zhuang
- ABSL-III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan, Hubei, China
| | - Zhiyong Ma
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoping Chen
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liping Deng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong Xiong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Di Deng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongxi Zhang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Centre of AIDS Prevention and Cure, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Cina ML, Venegas J, Young A. Stocking the toolbox-Using preclinical models to understand the development and treatment of immune checkpoint inhibitor-induced immune-related adverse events. Immunol Rev 2023; 318:110-137. [PMID: 37565407 PMCID: PMC10529261 DOI: 10.1111/imr.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
Cancer patients treated with immune checkpoint inhibitors (ICIs) are susceptible to a broad and variable array of immune-related adverse events (irAEs). With increasing clinical use of ICIs, defining the mechanism for irAE development is more critical than ever. However, it currently remains challenging to predict when these irAEs occur and which organ may be affected, and for many of the more severe irAEs, inaccessibility to the tissue site hampers mechanistic insight. This lack of understanding of irAE development in the clinical setting emphasizes the need for greater use of preclinical models that allow for improved prediction of biomarkers for ICI-initiated irAEs or that validate treatment options that inhibit irAEs without hampering the anti-tumor immune response. Here, we discuss the utility of preclinical models, ranging from exploring databases to in vivo animal models, focusing on where they are most useful and where they could be improved.
Collapse
Affiliation(s)
- Morgan L Cina
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jessica Venegas
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Arabella Young
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
33
|
El Zarif T, Nassar AH, Adib E, Fitzgerald BG, Huang J, Mouhieddine TH, Rubinstein PG, Nonato T, McKay RR, Li M, Mittra A, Owen DH, Baiocchi RA, Lorentsen M, Dittus C, Dizman N, Falohun A, Abdel-Wahab N, Diab A, Bankapur A, Reed A, Kim C, Arora A, Shah NJ, El-Am E, Kozaily E, Abdallah W, Al-Hader A, Abu Ghazal B, Saeed A, Drolen C, Lechner MG, Drakaki A, Baena J, Nebhan CA, Haykal T, Morse MA, Cortellini A, Pinato DJ, Dalla Pria A, Hall E, Bakalov V, Bahary N, Rajkumar A, Mangla A, Shah V, Singh P, Aboubakar Nana F, Lopetegui-Lia N, Dima D, Dobbs RW, Funchain P, Saleem R, Woodford R, Long GV, Menzies AM, Genova C, Barletta G, Puri S, Florou V, Idossa D, Saponara M, Queirolo P, Lamberti G, Addeo A, Bersanelli M, Freeman D, Xie W, Reid EG, Chiao EY, Sharon E, Johnson DB, Ramaswami R, Bower M, Emu B, Marron TU, Choueiri TK, Baden LR, Lurain K, Sonpavde GP, Naqash AR. Safety and Activity of Immune Checkpoint Inhibitors in People Living With HIV and Cancer: A Real-World Report From the Cancer Therapy Using Checkpoint Inhibitors in People Living With HIV-International (CATCH-IT) Consortium. J Clin Oncol 2023; 41:3712-3723. [PMID: 37192435 PMCID: PMC10351941 DOI: 10.1200/jco.22.02459] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 05/18/2023] Open
Abstract
PURPOSE Compared with people living without HIV (PWOH), people living with HIV (PWH) and cancer have traditionally been excluded from immune checkpoint inhibitor (ICI) trials. Furthermore, there is a paucity of real-world data on the use of ICIs in PWH and cancer. METHODS This retrospective study included PWH treated with anti-PD-1- or anti-PD-L1-based therapies for advanced cancers. Kaplan-Meier method was used to estimate overall survival (OS) and progression-free survival (PFS). Objective response rates (ORRs) were measured per RECIST 1.1 or other tumor-specific criteria, whenever feasible. Restricted mean survival time (RMST) was used to compare OS and PFS between matched PWH and PWOH with metastatic NSCLC (mNSCLC). RESULTS Among 390 PWH, median age was 58 years, 85% (n = 331) were males, 36% (n = 138) were Black; 70% (n = 274) received anti-PD-1/anti-PD-L1 monotherapy. Most common cancers were NSCLC (28%, n = 111), hepatocellular carcinoma ([HCC]; 11%, n = 44), and head and neck squamous cell carcinoma (HNSCC; 10%, n = 39). Seventy percent (152/216) had CD4+ T cell counts ≥200 cells/µL, and 94% (179/190) had HIV viral load <400 copies/mL. Twenty percent (79/390) had any grade immune-related adverse events (irAEs) and 7.7% (30/390) had grade ≥3 irAEs. ORRs were 69% (nonmelanoma skin cancer), 31% (NSCLC), 16% (HCC), and 11% (HNSCC). In the matched mNSCLC cohort (61 PWH v 110 PWOH), 20% (12/61) PWH and 22% (24/110) PWOH had irAEs. Adjusted 42-month RMST difference was -0.06 months (95% CI, -5.49 to 5.37; P = .98) for PFS and 2.23 months (95% CI, -4.02 to 8.48; P = .48) for OS. CONCLUSION Among PWH, ICIs demonstrated differential activity across cancer types with no excess toxicity. Safety and activity of ICIs were similar between matched cohorts of PWH and PWOH with mNSCLC.
Collapse
Affiliation(s)
| | | | - Elio Adib
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
| | | | | | | | - Paul G. Rubinstein
- Division of Hematology/Oncology, Ruth M. Rothstein CORE Center, Cook County Health and Hospital Systems (Cook County Hospital), University of Illinois Chicago Cancer Center, Chicago, IL
| | - Taylor Nonato
- Moores Cancer Center, The University of California San Diego, La Jolla, CA
| | - Rana R. McKay
- Moores Cancer Center, The University of California San Diego, La Jolla, CA
| | - Mingjia Li
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Arjun Mittra
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Dwight H. Owen
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Robert A. Baiocchi
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Michael Lorentsen
- Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Christopher Dittus
- Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nazli Dizman
- Yale University School of Medicine, New Haven, CT
| | | | - Noha Abdel-Wahab
- University of Texas MD Anderson Cancer Center, Houston, TX
- Assiut University Faculty of Medicine, Assiut University Hospitals, Assiut, Egypt
| | - Adi Diab
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anand Bankapur
- Department of Surgery, Division of Urology, Cook County Health, Chicago, IL
| | - Alexandra Reed
- Department of Surgery, Division of Urology, Cook County Health, Chicago, IL
| | - Chul Kim
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Aakriti Arora
- Medstar/Georgetown-Washington Hospital Center, Washington, DC
| | - Neil J. Shah
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Edward El-Am
- Indiana University School of Medicine, Indiana Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN
| | - Elie Kozaily
- Indiana University School of Medicine, Indiana Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN
| | - Wassim Abdallah
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA
| | - Ahmad Al-Hader
- Indiana University School of Medicine, Indiana Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN
| | | | - Anwaar Saeed
- Kansas University Cancer Center, Kansas City, KS
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA
| | - Claire Drolen
- University of California Los Angeles, Los Angeles, CA
| | | | | | - Javier Baena
- 12 de Octubre University Hospital, Madrid, Spain
| | - Caroline A. Nebhan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tarek Haykal
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC
| | - Michael A. Morse
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC
| | - Alessio Cortellini
- Department of Surgery and Cancer, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - David J. Pinato
- Department of Surgery and Cancer, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
- Department of Translational Medicine, Università Del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Alessia Dalla Pria
- Department of Surgery and Cancer, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Evan Hall
- University of Washington, Seattle, WA
| | | | | | | | - Ankit Mangla
- Seidman Cancer Center, University Hospitals, Cleveland, OH
| | | | | | | | | | - Danai Dima
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Ryan W. Dobbs
- Division of Hematology/Oncology, Ruth M. Rothstein CORE Center, Cook County Health and Hospital Systems (Cook County Hospital), University of Illinois Chicago Cancer Center, Chicago, IL
| | - Pauline Funchain
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Rabia Saleem
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK
| | - Rachel Woodford
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, Faculty of Medicine & Health, Charles Perkins Centre, The University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | | | - Carlo Genova
- UO Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Interna e Specialità Mediche (DiMI), Università degli Studi di Genova, Genova, Italy
| | - Giulia Barletta
- UO Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Sonam Puri
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Vaia Florou
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Dame Idossa
- University of California San Francisco, San Francisco, CA
| | - Maristella Saponara
- Division of Melanoma and Sarcoma Medical Treatment, IEO European Institute of Oncology IRCCS Milan, Milan, Italy
| | - Paola Queirolo
- Division of Melanoma and Sarcoma Medical Treatment, IEO European Institute of Oncology IRCCS Milan, Milan, Italy
| | - Giuseppe Lamberti
- Department of Experimental, Diagnostic and Specialty Medicine, Università di Bologna, Bologna, Italy
| | - Alfredo Addeo
- Swiss Cancer Center Leman, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | | | | | | | - Erin G. Reid
- Moores Cancer Center, The University of California San Diego, La Jolla, CA
| | | | - Elad Sharon
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Douglas B. Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark Bower
- Department of Surgery and Cancer, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Brinda Emu
- Yale University School of Medicine, New Haven, CT
| | - Thomas U. Marron
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | |
Collapse
|
34
|
Lurain K. Treating Cancer in People With HIV. J Clin Oncol 2023; 41:3682-3688. [PMID: 37267514 PMCID: PMC10351946 DOI: 10.1200/jco.23.00737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 06/04/2023] Open
Abstract
The Oncology Grand Rounds series is designed to place original reports published in the Journal into clinical context. A case presentation is followed by a description of diagnostic and management challenges, a review of the relevant literature, and a summary of the authors' suggested management approaches. The goal of this series is to help readers better understand how to apply the results of key studies, including those published in Journal of Clinical Oncology, to patients seen in their own clinical practice.People with HIV (PWH) have an increased lifetime risk of developing certain cancers, even when HIV is well-controlled with antiretroviral therapy. Despite the tremendous advancements in HIV and cancer care over the past several decades, PWH have lower cancer-related survival compared with the general population. Treating HIV-associated cancers requires a multidisciplinary team to manage concurrent opportunistic infections, potential drug-drug interactions, and the co-occurrence of more than one cancer in the same patient. Many factors may lead PWH to receive inappropriate dose adjustments, exclusion from emerging therapies and clinical trials, or no cancer therapy at all. In general, PWH should receive the same standard, full-dose cancer therapy used in the general population unless there are data for specific cancer regimens in PWH. Agents targeting PD-1 and PD-L1 have US Food and Drug Administration (FDA)-approved indications in many HIV-associated cancers, including Hodgkin lymphoma, cervical cancer, head and neck cancer, hepatocellular carcinoma, and non-small-cell lung cancer; however, PWH were excluded from all clinical trials that led to FDA approval of these agents. Several prospective studies and an international retrospective study of PWH with advanced cancer have shown anti-PD-(L)-1 agents to be safe and effective across expected cancer types and CD4+ T-cell counts, supporting their use in PWH for FDA-approved indications. Learning from the experience in anti-PD-(L)-1 agents, future cancer clinical trials should include and seek to actively enroll PWH, so that they have equal and timely access to emerging cancer therapies.
Collapse
Affiliation(s)
- Kathryn Lurain
- HIV & AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
35
|
Pizzutilo EG, Romanò R, Roazzi L, Agostara AG, Oresti S, Zeppellini A, Giannetta L, Cerea G, Signorelli D, Siena S, Sartore-Bianchi A. Immune Checkpoint Inhibitors and the Exposome: Host-Extrinsic Factors Determine Response, Survival, and Toxicity. Cancer Res 2023; 83:2283-2296. [PMID: 37205627 PMCID: PMC10345966 DOI: 10.1158/0008-5472.can-23-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Cancer immunotherapy, largely represented by immune checkpoint inhibitors (ICI), has led to substantial changes in preclinical cancer research and clinical oncology practice over the past decade. However, the efficacy and toxicity profiles of ICIs remain highly variable among patients, with only a fraction achieving a significant benefit. New combination therapeutic strategies are being investigated, and the search for novel predictive biomarkers is ongoing, mainly focusing on tumor- and host-intrinsic components. Less attention has been directed to all the external, potentially modifiable factors that compose the exposome, including diet and lifestyle, infections, vaccinations, and concomitant medications, that could affect the immune system response and its activity against cancer cells. We hereby provide a review of the available clinical evidence elucidating the impact of host-extrinsic factors on ICI response and toxicity.
Collapse
Affiliation(s)
- Elio Gregory Pizzutilo
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Rebecca Romanò
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Laura Roazzi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Alberto G. Agostara
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Sara Oresti
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Annalisa Zeppellini
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Giannetta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Diego Signorelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| |
Collapse
|
36
|
Pan Y, Tan J, Li J, Li T, Li J, Cao Y, Yang L, Lin X, Li M, Liang X. Immune checkpoint inhibitors in cancer patients with COVID-19. Open Life Sci 2023; 18:20220641. [PMID: 37426624 PMCID: PMC10329272 DOI: 10.1515/biol-2022-0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are widely used to treat a variety of cancers and common infectious diseases with high efficacy. During the coronavirus disease 2019 (COVID-19) pandemic, studies suggested that COVID-19 patients may benefit from ICI immunotherapy. However, clinical studies on the safety and efficacy of ICI in COVID-19 patients are still being conducted. Currently, it is not clear whether cancer patients undergoing ICI immunotherapy should adjust their treatment strategy after infection with SARS-CoV-2 and whether ICI can reduce the viral load of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, reports of patients with different types of tumors infected with SARS-CoV-2 under ICI immunotherapy were classified and sorted, including lung cancer, melanoma, squamous cell carcinoma of the head and neck, and hematologic malignances. The safety and efficacy of ICI in antitumor and anti-SARS-CoV-2 therapies were compared and further discussed to provide more reference materials for the application of ICI treatment. In a word, COVID-19 has changed the ICI treatment strategy for cancer patients indeed, and ICI treatment may be a "double-edged sword" for cancer patients complicated with COVID-19.
Collapse
Affiliation(s)
- Yun Pan
- Department of Infectious Disease, First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jiaxiong Tan
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinzhong Li
- Department of Infectious Disease, First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Taoyuan Li
- Department of Infectious Disease, First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jieying Li
- Department of Infectious Disease, First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yang Cao
- Department of Infectious Disease, First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Liu Yang
- Department of Infectious Disease, First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xunge Lin
- Department of Infectious Disease, First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Minran Li
- Department of Infectious Disease, First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xujing Liang
- Department of Infectious Disease, First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong, China
| |
Collapse
|
37
|
Disis ML, Adams SF, Bajpai J, Butler MO, Curiel T, Dodt SA, Doherty L, Emens LA, Friedman CF, Gatti-Mays M, Geller MA, Jazaeri A, John VS, Kurnit KC, Liao JB, Mahdi H, Mills A, Zsiros E, Odunsi K. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gynecologic cancer. J Immunother Cancer 2023; 11:e006624. [PMID: 37295818 PMCID: PMC10277149 DOI: 10.1136/jitc-2022-006624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Advanced gynecologic cancers have historically lacked effective treatment options. Recently, immune checkpoint inhibitors (ICIs) have been approved by the US Food and Drug Administration for the treatment of cervical cancer and endometrial cancer, offering durable responses for some patients. In addition, many immunotherapy strategies are under investigation for the treatment of earlier stages of disease or in other gynecologic cancers, such as ovarian cancer and rare gynecologic tumors. While the integration of ICIs into the standard of care has improved outcomes for patients, their use requires a nuanced understanding of biomarker testing, treatment selection, patient selection, response evaluation and surveillance, and patient quality of life considerations, among other topics. To address this need for guidance, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline. The Expert Panel drew on the published literature as well as their own clinical experience to develop evidence- and consensus-based recommendations to provide guidance to cancer care professionals treating patients with gynecologic cancer.
Collapse
Affiliation(s)
- Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Sarah F Adams
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Jyoti Bajpai
- Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Marcus O Butler
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Tyler Curiel
- Dartmouth-Hitchcock's Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | - Laura Doherty
- Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA
| | - Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology & Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amir Jazaeri
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veena S John
- Department of Medical Oncology & Hematology, Northwell Health Cancer Institute, Lake Success, New York, USA
| | - Katherine C Kurnit
- University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - John B Liao
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Haider Mahdi
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anne Mills
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kunle Odunsi
- The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
38
|
Arenas VR, Rugeles MT, Perdomo-Celis F, Taborda N. Recent advances in CD8 + T cell-based immune therapies for HIV cure. Heliyon 2023; 9:e17481. [PMID: 37441388 PMCID: PMC10333625 DOI: 10.1016/j.heliyon.2023.e17481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Achieving a cure for HIV infection is a global priority. There is substantial evidence supporting a central role for CD8+ T cells in the natural control of HIV, suggesting the rationale that these cells may be exploited to achieve remission or cure of this infection. In this work, we review the major challenges for achieving an HIV cure, the models of HIV remission, and the mechanisms of HIV control mediated by CD8+ T cells. In addition, we discuss strategies based on this cell population that could be used in the search for an HIV cure. Finally, we analyze the current challenges and perspectives to translate this basic knowledge toward scalable HIV cure strategies.
Collapse
Affiliation(s)
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | - Natalia Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| |
Collapse
|
39
|
Wu L, Su J, Yang J, Gu L, Zhang R, Liu L, Lu H, Chen J. Use of programmed cell death protein 1 (PD-1) inhibitor therapy in HIV-infected patients with advanced cancer: a single-center study from China. Infect Agent Cancer 2023; 18:35. [PMID: 37254144 DOI: 10.1186/s13027-023-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Anti-PD-1 antibodies have been approved for treating several cancer. However, data regarding the safety and efficacy of these agents in HIV-infected patients with cancer is lacking, because these patients are frequently omitted from clinical trials. OBJECTIVES The primary aim of our research is to assess the safety, activity, and long-term outcomes of PD-1 inhibitors in the treatment of HIV-infected patients with advanced cancer. METHOD We retrospectively analyzed data from HIV-infected patients with advanced cancers who were treated with PD-1 inhibitors at Shanghai Public Health Clinical Center, Shanghai, China. RESULTS Fifteen HIV-infected patients (all are men; asian; median age, 44) with cancer who were treated with chemotherapy and/or combined the other oncology treatments [along with combined antiretroviral therapy (cART)] prior to Sintilimab (12 out of 15) or Nivolumab (1 out of 11) or Camrelizumab (2 out of 11) injection were identified. Eight patients responded to treatment (disease control rate 53.3%), with 1 got partial response (PR) and 7 were stable. Most treatment-emergent adverse events (TEAEs) were grade 1 or 2 including anemia, leukopenia, hyperglycemia, granulocytopenia, and thrombocytopenia. Eight patients (53.3%) experienced treatment-related AEs (TRAEs) with grades 3/4including myelosuppression, infection, and neurological disorders. CD4+ T cell count and plasma HIV RNA remained stable throughout the treatment. CONCLUSIONS When used in HIV-infected patients with advanced malignancies, PD-1 inhibitors tend to have favorable efficacy, manageable side effects, and no deteriorated impacts on plasma HIV-RNA and CD4+ T cell count.
Collapse
Affiliation(s)
- Luling Wu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Su
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Junyang Yang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ling Gu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Shenzhen, China.
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Wu M, Zheng X, Zhang Y, Song J, Zhao J. Camrelizumab for cancers in patients living with HIV: one-single center experience. AIDS Res Ther 2023; 20:23. [PMID: 37062823 PMCID: PMC10108516 DOI: 10.1186/s12981-023-00518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
OBJECTIVES The primary objective was to evaluate the safety of the anti-PD-1 antibody camrelizumab in people living with HIV (PLWH); the secondary objective was to evaluate tumor response. METHODS From May 8, 2018, to December 10, 2021, twenty-four patients with HIV and advanced cancer as well as a CD4+ T-cell count greater than or equal to 100 cells/µL were treated with camrelizumab in daily practice. We describe the demographic characteristics, safety, and clinical course of these 24 PLWH with cancer treated with camrelizumab. Safety was assessed using the current Common Terminology Criteria for Adverse Events (CTCAE). The tumor response was assessed according to the Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST 1.1). RESULTS The median number of cycles was 8 (4-26). Only two grade 3 adverse reactions were reported (no toxic deaths or immune-related deaths). Among the 24 patients, 2 (8%) complete responses and 6 (25%) partial responses were observed. 7 patients (29%) were at stable tumor status and others progressed. CONCLUSIONS Data from the present study strongly support the use of camrelizumab (monoclonal antibodies targeting the PD-1 pathway) in this population, as it appears to be a feasible approach with no deleterious effects on PLWH and tolerability and acceptable efficacy. In addition, these findings further support the inclusion of PLWH with cancer in clinical trials evaluating the safety and efficacy of ICIs on cancer.
Collapse
Affiliation(s)
- Menghua Wu
- Department of Urology, Capital Medical University, Beijing Youan Hospital, Beijing, China
- Department of Urology, Capital Medical University, Beijing Friendship Hospital, Beijing, China
| | - Xin Zheng
- Department of Urology, Capital Medical University, Beijing Youan Hospital, Beijing, China
| | - Yu Zhang
- Department of Urology, Capital Medical University, Beijing Youan Hospital, Beijing, China
| | - Jian Song
- Department of Urology, Capital Medical University, Beijing Friendship Hospital, Beijing, China
| | - Jimao Zhao
- Department of Urology, Capital Medical University, Beijing Friendship Hospital, Beijing, China.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW As people living with human immunodeficiency virus (HIV, PLWH) age, aging-related comorbidities have come into focus as major challenges to their overall health. In this review, an in-depth overview of the two most commonly encountered chronic lung diseases in PLWH, chronic obstructive pulmonary disease (COPD) and lung cancer, is provided. RECENT FINDINGS The risk for both COPD and lung cancer remains significantly higher in PLWH compared to the HIV-uninfected population, although fortunately rates of lung cancer appear to be declining over the last two decades. Outcomes for PLWH with these conditions, though, continue to be poor with worse survival rates in comparison to the general population. PLWH still face major barriers in accessing care for these conditions, including a higher likelihood of being underdiagnosed with COPD and a lower likelihood of being referred for lung cancer screening or treatment. A lack of evidence for optimal treatment strategies for both COPD and lung cancer still hampers the care of PLWH with these conditions. SUMMARY COPD and lung cancer represent substantial burdens of disease in PLWH. Improved access to standard-of-care screening and treatment and greater investigation into therapeutic responses specifically in this population are recommended.
Collapse
Affiliation(s)
- Janice M Leung
- Division of Respiratory Medicine, Department of Medicine
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Henson CE, Morton DJ, Mayadev JS, Wong SJ, Zamarin D. Cancer trials as opportunities to serve and learn from individuals with human immunodeficiency virus. Cancer 2023; 129:664-667. [PMID: 36576320 PMCID: PMC10427029 DOI: 10.1002/cncr.34598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Christina E. Henson
- Department of Radiation Oncology, Stephenson Cancer Center and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Daniel J. Morton
- Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jyoti S. Mayadev
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, San Diego, California, USA
| | - Stuart J. Wong
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
43
|
Inno A, Lattuada E, Foti G, Gori S. Chemo-immunotherapy for metastatic non-squamous NSCLC in a patient with HIV infection: A case report. Front Oncol 2023; 13:1053497. [PMID: 36816973 PMCID: PMC9932884 DOI: 10.3389/fonc.2023.1053497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Activity and safety data of chemo-immunotherapy for patients with metastatic NSCLC and known HIV infection are still limited, since HIV-positive patients were generally excluded from clinical trials. Here we report the case of a metastatic NSCLC patient with HIV infection and undetectable viral load treated with first-line chemo-immunotherapy (pembrolizumab, carboplatin and pemetrexed), achieving a meaningful and durable objective response, with no treatment-related adverse events and no HIV-related complications. This report suggests that NSCLC patients with virologically controlled HIV infection can be safely treated with chemo-immunotherapy and should not be excluded from this treatment based on their viral infection only.
Collapse
Affiliation(s)
- Alessandro Inno
- Unità Operativa di Oncologia Medica, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy,*Correspondence: Alessandro Inno,
| | - Emanuela Lattuada
- Unità Operativa di Malattie Infettive e Tropicali, AOUI Verona, Verona, Italy
| | - Giovanni Foti
- Unità Operativa di Radiologia, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Stefania Gori
- Unità Operativa di Oncologia Medica, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| |
Collapse
|
44
|
Castelo-Branco L, Morgan G, Prelaj A, Scheffler M, Canhão H, Van Meerbeeck JP, Awada A. Challenges and knowledge gaps with immune checkpoint inhibitors monotherapy in the management of patients with non-small-cell lung cancer: a survey of oncologist perceptions. ESMO Open 2023; 8:100764. [PMID: 36640544 PMCID: PMC10024152 DOI: 10.1016/j.esmoop.2022.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/13/2022] [Accepted: 12/05/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Immune checkpoint-inhibitors (ICIs) are changing outcomes in different cancer settings, notably for patients with non-small-cell lung cancer (NSCLC). There are, however, still important gaps of evidence for clinical practice when using these novel treatments. In this study, we assessed physicians' opinion and experience on challenges for clinical practice with ICIs monotherapy in NSCLC. METHODS A survey was conducted on experienced physicians treating patients with NSCLC with ICIs. Two rounds of pilot tests were carried out for validation among a group of experts. Topics under analysis were in relation to treatment of elderly populations, performance status, brain metastases, use of steroids or antibiotics, the effects of gut microbiome, autoimmune diseases, human immunodeficiency virus infection, solid organ transplants, use of anti-programmed cell death protein 1 versus anti-programmed death-ligand 1 drugs, atypical tumour responses, predictors of response, duration of treatment and a final open question on additional relevant challenges. RESULTS Two hundred and twenty-one answers were collected, including 106 (48%) valid answers from experts for final analysis (physicians who have treated at least 20 patients with NSCLC with ICIs). The vast majority agreed that the selected topics in this study are important challenges ahead and more evidence is needed. Moreover, predictors of response, treating brain metastasis, shorter duration of treatment, the effects of gut microbiome and concomitant use of steroids were voted the most important topics to be further addressed in prospective clinical research. CONCLUSIONS This survey contributed to understanding which are the main challenges for clinical practice with ICIs monotherapy in NSCLC. It can also contribute to guide further clinical research, considering the opinions and experience of those who regularly treat NSCLC patients with ICIs.
Collapse
Affiliation(s)
- L Castelo-Branco
- NOVA National School of Public Health, NOVA University, Lisbon, Portugal.
| | - G Morgan
- Skåne University Hospital, Division of Medical and Radiation Oncology, Lund, Sweden
| | - A Prelaj
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - M Scheffler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany
| | - H Canhão
- EPIDOC Unit, Comprehensive Health Research Center (CHRC), NOVA Medical School, NOVA University, Lisbon; Centro Hospitalar Universitario Lisboa Central, Lisbon, Portugal
| | | | - A Awada
- Oncology Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
45
|
The Current Treatment Landscape of Cutaneous Squamous Cell Carcinoma. Am J Clin Dermatol 2023; 24:25-40. [PMID: 36512176 DOI: 10.1007/s40257-022-00742-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
Non-melanoma skin cancers (NMSCs) are the most common form of skin cancer worldwide. The global incidence of cutaneous squamous cell carcinoma (CSCC) is rising, with an estimated 2.4 million cases diagnosed in 2019. Chronic exposure to ultraviolet (UV) radiation is a major risk factor for developing CSCC. Most early-stage CSCCs are treated successfully with surgery or radiotherapy; however, locally advanced or metastatic disease can be associated with significant morbidity or mortality. Recently, the treatment paradigm for advanced CSCC has been revolutionised by the introduction of immunotherapy, which can achieve a response rate of approximately 50% with durable cancer control, and significant improvement in quality of life. With the regulatory approval of programmed death-1 (PD-1)-targeting drugs since 2018, immunotherapy is now recognised as the standard of care for first-line systemic therapy in advanced or metastatic CSCC.
Collapse
|
46
|
Wang LL, Lin SK, Stull CM, Shin TM, Higgins HW, Giordano CN, McMurray SL, Etzkorn JR, Miller CJ, Walker JL. Cutaneous Oncology in the Immunosuppressed. Dermatol Clin 2023; 41:141-162. [DOI: 10.1016/j.det.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Corey S, Smith BR, Cortese ICM. Promise and Challenges of Checkpoint Inhibitor Therapy for Progressive Multifocal Leukoencephalopathy in HIV. Curr HIV/AIDS Rep 2022; 19:580-591. [PMID: 36181625 PMCID: PMC9759507 DOI: 10.1007/s11904-022-00626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Progressive multifocal leukoencephalopathy (PML) is a severe opportunistic infection that remains an important cause of morbidity and mortality in people living with HIV (PLWH). Immune checkpoint molecules are negative regulators of the immune response that have been targeted as a strategy to bolster anti-viral immunity in PML, with varied outcomes reported. While initiation and optimization of antiretroviral therapy remains the standard of care in HIV-related PML, the specific opportunities and risks for checkpoint blockade in these cases should be explored. RECENT FINDINGS As of April 15, 2022, only 5 of the 53 total published cases of PML treated with checkpoint blockade had underlying HIV infection; four of these had a favorable outcome. The risk of promoting immune reconstitution inflammatory syndrome is a major concern and underscores the importance of patient selection and monitoring. Checkpoint blockade warrants further exploration as a potentially promising option for treatment escalation in HIV-related PML.
Collapse
Affiliation(s)
- Sydney Corey
- Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, 5C103, Bethesda, MD, 20892-1684, USA
| | - Bryan R Smith
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Irene C M Cortese
- Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, 5C103, Bethesda, MD, 20892-1684, USA.
| |
Collapse
|
48
|
Tsiakos K, Gavrielatou N, Vathiotis IA, Chatzis L, Chatzis S, Poulakou G, Kotteas E, Syrigos NK. Programmed Cell Death Protein 1 Axis Inhibition in Viral Infections: Clinical Data and Therapeutic Opportunities. Vaccines (Basel) 2022; 10:vaccines10101673. [PMID: 36298538 PMCID: PMC9611078 DOI: 10.3390/vaccines10101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
A vital function of the immune system is the modulation of an evolving immune response. It is responsible for guarding against a wide variety of pathogens as well as the establishment of memory responses to some future hostile encounters. Simultaneously, it maintains self-tolerance and minimizes collateral tissue damage at sites of inflammation. In recent years, the regulation of T-cell responses to foreign or self-protein antigens and maintenance of balance between T-cell subsets have been linked to a distinct class of cell surface and extracellular components, the immune checkpoint molecules. The fact that both cancer and viral infections exploit similar, if not the same, immune checkpoint molecules to escape the host immune response highlights the need to study the impact of immune checkpoint blockade on viral infections. More importantly, the process through which immune checkpoint blockade completely changed the way we approach cancer could be the key to decipher the potential role of immunotherapy in the therapeutic algorithm of viral infections. This review focuses on the effect of programmed cell death protein 1/programmed death-ligand 1 blockade on the outcome of viral infections in cancer patients as well as the potential benefit from the incorporation of immune checkpoint inhibitors (ICIs) in treatment of viral infections.
Collapse
Affiliation(s)
- Konstantinos Tsiakos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Correspondence:
| | - Niki Gavrielatou
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Ioannis A. Vathiotis
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Loukas Chatzis
- Pathophysiology Department, Athens School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Stamatios Chatzis
- Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Hippokration” Hospital, 115 27 Athens, Greece
| | - Garyfallia Poulakou
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Elias Kotteas
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Nikolaos K. Syrigos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
49
|
Rasmussen TA, Zerbato JM, Rhodes A, Tumpach C, Dantanarayana A, McMahon JH, Lau JS, Chang JJ, Gubser C, Brown W, Hoh R, Krone M, Pascoe R, Chiu CY, Bramhall M, Lee HJ, Haque A, Fromentin R, Chomont N, Milush J, Van der Sluis RM, Palmer S, Deeks SG, Cameron PU, Evans V, Lewin SR. Memory CD4 + T cells that co-express PD1 and CTLA4 have reduced response to activating stimuli facilitating HIV latency. Cell Rep Med 2022; 3:100766. [PMID: 36198308 PMCID: PMC9589005 DOI: 10.1016/j.xcrm.2022.100766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/03/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022]
Abstract
Programmed cell death 1 (PD1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) suppress CD4+ T cell activation and may promote latent HIV infection. By performing leukapheresis (n = 21) and lymph node biopsies (n = 8) in people with HIV on antiretroviral therapy (ART) and sorting memory CD4+ T cells into subsets based on PD1/CTLA4 expression, we investigate the role of PD1 and CTLA 4 in HIV persistence. We show that double-positive (PD1+CTLA4+) cells in blood contain more HIV DNA compared with double-negative (PD1−CTLA4−) cells but still have a lower proportion of cells producing multiply spliced HIV RNA after stimulation as well as reduced upregulation of T cell activation and proliferation markers. Transcriptomics analyses identify differential expression of key genes regulating T cell activation and proliferation with MAF, KLRB1, and TIGIT being upregulated in double-positive compared with double-negative cells, whereas FOS is downregulated. We conclude that, in addition to being enriched for HIV DNA, double-positive cells are characterized by negative signaling and a reduced capacity to respond to stimulation, favoring HIV latency. CD4+ T cells co-expressing PD1 and CTLA4 (double positive [DP]) are enriched for HIV DNA DP cells contain virus that is more resistant to stimulation DP cells display differential expression of genes regulating T cell activation These features favor persistence of HIV latency in cells co-expressing PD1 and CTLA4
Collapse
Affiliation(s)
- Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jennifer M. Zerbato
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Ashanti Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Department of Infectious Diseases, Monash Medical Centre, Melbourne, VIC, Australia
| | - Jillian S.Y. Lau
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Department of Infectious Diseases, Monash Medical Centre, Melbourne, VIC, Australia,Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - J. Judy Chang
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Celine Gubser
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Wendy Brown
- Monash University Department of Surgery, Alfred Health, Melbourne, VIC, Australia
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Pascoe
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Chris Y. Chiu
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Michael Bramhall
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rèmi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Jeffrey Milush
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Renee M. Van der Sluis
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Aarhus Institute of Advanced Studies and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul U. Cameron
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Vanessa Evans
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,School of Medicine and Dentistry, Griffith University, Sunshine Coast, QLD, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia,Corresponding author
| |
Collapse
|
50
|
Demes M, Pession U, Jeroch J, Schulze F, Eichler K, Martin D, Wild P, Waidmann O. Site of analysis matters - Ongoing complete response to Nivolumab in a patient with HIV/HPV related metastatic anal cancer and MLH1 mutation. Oncotarget 2022; 13:1034-1042. [PMID: 36128324 PMCID: PMC9477220 DOI: 10.18632/oncotarget.28274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/05/2022] [Indexed: 01/16/2023] Open
Abstract
Anal cancer is a rare disease with increasing incidence. In patients with locally recurrent or metastatic disease which cannot be treated with chemoradiotherapy or salvage surgery systemic first-line chemotherapy with carboplatin and paclitaxel is standard of care. For patients who progress after first-line therapy and are still eligible for second-line therapy Programmed cell death protein 1 (PD-1) antibodies are potential therapeutic options. However, prediction of response to immunotherapy is still challenging including anal cancer. We report here to our knowledge the first anal cancer case with microsatellite instability (MSI) due to MLH1 mutation and a deep and ongoing response to Nivolumab treatment. Namely, thorough analysis of the primary tumor as well as metastatic sites by next generation sequencing (NGS) revealed that MSI was formally only found in the metastatic sites but not in the primary tumor. Concomitantly, tumor mutational burden (TMB) was higher in the metastatic site than in the primary tumor. Therefore, we conclude that all anal cancer patients should be tested for MSI and whenever possible molecular analysis should be performed rather from metastatic sites than from the primary tumor.
Collapse
Affiliation(s)
- Melanie Demes
- Dr. Senckenbergisches Institut für Pathologie, Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
| | - Ursula Pession
- Universitäres Centrum für Tumorerkrankungen (UCT), Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
| | - Jan Jeroch
- Dr. Senckenbergisches Institut für Pathologie, Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
| | - Falko Schulze
- Dr. Senckenbergisches Institut für Pathologie, Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
| | - Katrin Eichler
- Universitäres Centrum für Tumorerkrankungen (UCT), Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
| | - Daniel Martin
- Universitäres Centrum für Tumorerkrankungen (UCT), Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
- Klinik für Strahlentherapie und Onkologie, Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
| | - Peter Wild
- Dr. Senckenbergisches Institut für Pathologie, Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
| | - Oliver Waidmann
- Universitäres Centrum für Tumorerkrankungen (UCT), Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
- Medizinische Klinik 1, Schwerpunkte Gastroenterologie und Hepatologie, Universitätsklinikum Frankfurt, Frankfurt 60590, Germany
- Centrum für Hämatologie und Onkologie, Frankfurt 60389, Germany
| |
Collapse
|