1
|
Zammit AR, Wang T, Yu L, Oveisgharan S, Petyuk VA, De Jager PL, Schneider JA, Bennett DA, Buchman AS. The temporal onset of associations of cortical proteins with cognitive resilience vary during late life. Neurobiol Dis 2025; 211:106927. [PMID: 40306440 DOI: 10.1016/j.nbd.2025.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Cortical proteins associated with cognitive resilience have been identified but their temporal onset in older adults is unknown. We present a multistage approach to first identify cortical proteins associated with cognitive resilience and then examine their associated temporal onset. METHODS We used data from a subset of 1088 decedents from two cohort-studies who had selected reaction monitoring proteomics from the dorsolateral prefrontal cortex, and at least 3 cognitive assessments. Cognition was assessed using a composite derived from 19 tests. We first used linear mixed-effects models to identify cortical proteins associated with cognitive resilience. We then used functional mixed-effects models to examine non-linear associations between proteins and cognitive resilience to identify their temporal onset. RESULTS Mean age at death was 90 years (SD = 6.4); 69 % were female. On average, cognition started to decline at around 15 years before death, with accelerated decline in the last 7 years. We identified 40 proteins associated with cognitive resilience, of which 17 proteins also showed non-linear associations. Non-linear associations indicated that higher levels of 10 proteins were associated with slower cognitive decline between 23 and 4 years before death. In contrast, higher levels of 7 proteins were associated with faster decline only within the last 7 years before death. CONCLUSIONS Cognitive resilience proteins are differentially related to late-life cognitive aging; the onset of proteins that maintain cognition may begin many years before the onset of proteins that hasten cognitive decline. The temporal onset of cognitive resilience proteins may be crucial for timing efficacious interventions.
Collapse
Affiliation(s)
- Andrea R Zammit
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Tianhao Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Shahram Oveisgharan
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Kazemi M, Esmaeili-Mahani S, Abbasnejad M, Sheibani V. Neurotrophic factor neuritin ameliorates streptozotocin-induced Alzheimer's disease-like impairment of memory, neuroinflammation, apoptotic factors and compensates hippocampal neuritin expression. Behav Brain Res 2025; 486:115542. [PMID: 40127821 DOI: 10.1016/j.bbr.2025.115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in the elderly, and is becoming one of the most expensive and deadly diseases. Deficiency of neurotrophic factors signaling is an important cause of this disease. Therefore, we investigated whether neuritin as a neurotrophic factor can have a neuroprotective effect against streptozotocin (STZ)-induced rat model of AD. The animals were bilaterally injected with intra hippocampal-STZ (3 mg/kg). Different concentrations of neuritin (0.5, 1, 1.5 µg/rat) were administrated 15 min before STZ injection. After 14 days, the rats were evaluated for cognitive performance using novel object recognition (NOR), open field and Morris water maze (MWM) tests and then sacrificed for biochemical analysis (by real-time PCR and western blot examinations). The results demonstrated that the STZ- induced learning and memory impairments were significantly prevented by 1.5 µg neuritin. Moreover, the increased levels of inflammatory factors (NF-κb, TNF-α and IL-1β) and apoptotic parameters (cytochrome c and caspase‑3) in STZ- treated rats were also significantly decreased by neuritin. In addition, hippocampal neuritin gene expression was downregulated by STZ injection, which was reversed by intra hippocampal neuritin injection. In conclusion, the present study suggests that neuritin prevents cognitive defects in AD rat model and its expression level is associated with cognitive resilience.
Collapse
Affiliation(s)
- Mandana Kazemi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Taddei RN, Duff KE. Synapse vulnerability and resilience across the clinical spectrum of dementias. Nat Rev Neurol 2025:10.1038/s41582-025-01094-7. [PMID: 40404832 DOI: 10.1038/s41582-025-01094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/24/2025]
Abstract
Preservation of synapses is crucial for healthy cognitive ageing, and synapse loss is one of the closest anatomical correlates of cognitive decline in Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia. In these conditions, some synapses seem particularly vulnerable to degeneration whereas others are resilient and remain preserved. Evidence has highlighted that vulnerability and resilience are intrinsically distinct phenomena linked to specific brain structural and/or functional signatures, yet the key features of vulnerable and resilient synapses in the dementias remain incompletely understood. Defining the characteristics of vulnerable and resilient synapses in each form of dementia could offer novel insight into the mechanisms of synapse preservation and of synapse loss that underlies cognitive decline, thereby facilitating the discovery of targeted biomarkers and disease-modifying therapies. In this Review, we consider the concepts of synapse vulnerability and resilience, and provide an overview of our current understanding of the associations between synaptic protein changes, neuropathology and cognitive decline. We also consider how understanding of the underlying mechanisms could identify novel strategies to mitigate the cognitive dysfunction associated with dementias.
Collapse
Affiliation(s)
- Raquel N Taddei
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- UK Dementia Research Institute at UCL, Institute of Neurology, University College London, London, UK.
| | - Karen E Duff
- UK Dementia Research Institute at UCL, Institute of Neurology, University College London, London, UK
| |
Collapse
|
4
|
Mei Z, Liu J, Bennett DA, Seyfried N, Wingo AP, Wingo TS. Unraveling sex differences in Alzheimer's disease and related endophenotypes with brain proteomes. Alzheimers Dement 2025; 21:e70206. [PMID: 40346727 PMCID: PMC12064417 DOI: 10.1002/alz.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION Sex differences exist in Alzheimer's disease (AD), but the underlying mechanisms remain unclear. METHODS We examined brain proteomes profiled from the dorsolateral prefrontal cortex of 770 donors (66.2% female). RESULTS Proteome-wide differential expression analysis in males and females jointly identified many significant proteins for AD dementia (n = 1228), amyloid beta (n = 1183), tangles (n = 1309), and global cognitive trajectory (n = 2325) at a false discovery rate of <0.05. Sex-stratified analyses also identified many proteins associated with AD or its endophenotypes. Finally, we found 10 proteins with significant sex-by-trait interactions, including one in AD clinical diagnosis (MARCKS), seven in cognitive trajectories (TOGARAM1, PLCD3, SLC22A5, MTFR1L, DCUN1D5, S100A12, and TRIM46), and two in cerebral pathologies (PANK4 and SOS1). DISCUSSION The 10 proteins with sex interaction in AD cover a range of functions likely relevant for AD pathogenesis, including estrogen response, inflammation, and mitochondrial biology, and their specific roles in AD ought to be studied. Future work should test their potential as sex-specific AD biomarkers. HIGHLIGHTS At the phenotypic level, we found sex differences in baseline cognitive performance, cognitive trajectories, and AD hallmark pathologies. Proteome-wide differential expression analyses identified many brain proteins associated with AD and its endophenotypes in either sex alone or when considered together. We found 10 brain proteins with significant sex interactions in AD and its endophenotypes, which could be investigated as potential sex-specific biomarkers of AD.
Collapse
Affiliation(s)
- Zhen Mei
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
| | - Jiaqi Liu
- Department of PsychiatryUniversity of California, DavisSacramentoCaliforniaUSA
| | - David A Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Nicholas Seyfried
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Aliza P. Wingo
- Department of PsychiatryUniversity of California, DavisSacramentoCaliforniaUSA
- Division of Mental HealthAtlanta VA Medical CenterDecaturGeorgiaUSA
| | - Thomas S. Wingo
- Department of NeurologyUniversity of California, DavisSacramentoCaliforniaUSA
- Alzheimer's Disease Research CenterUniversity of California, DavisSacramentoCaliforniaUSA
| |
Collapse
|
5
|
Zhang W, Lukacsovich D, Young JI, Gomez L, Schmidt MA, Martin ER, Kunkle BW, Chen XS, O'Shea DM, Galvin JE, Wang L. DNA methylation signature of a lifestyle-based resilience index for cognitive health. Alzheimers Res Ther 2025; 17:88. [PMID: 40264239 PMCID: PMC12016380 DOI: 10.1186/s13195-025-01733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/06/2025] [Indexed: 04/24/2025]
Abstract
Cognitive resilience (CR) contributes to the variability in risk for developing and progressing in Alzheimer's disease (AD) among individuals. Beyond genetics, recent studies highlight the critical role of lifestyle factors in enhancing CR and delaying cognitive decline. DNA methylation (DNAm), an epigenetic mechanism influenced by both genetic and environmental factors, including CR-related lifestyle factors, offers a promising pathway for understanding the biology of CR. We studied DNAm changes associated with the Resilience Index (RI), a composite measure of lifestyle factors, using blood samples from the Healthy Brain Initiative (HBI) cohort. After corrections for multiple comparisons, our analysis identified 19 CpGs and 24 differentially methylated regions significantly associated with the RI, adjusting for covariates age, sex, APOE ε4, and immune cell composition. The RI-associated methylation changes are significantly enriched in pathways related to lipid metabolism, synaptic plasticity, and neuroinflammation, and highlight the connection between cardiovascular health and cognitive function. By identifying RI-associated DNAm, our study provided an alternative approach to discovering future targets and treatment strategies for AD, complementary to the traditional approach of identifying disease-associated variants directly. Furthermore, we developed a Methylation-based Resilience Score (MRS) that successfully predicted future cognitive decline in an external dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI), even after accounting for age, sex, APOE ε4, years of education, baseline diagnosis, and baseline MMSE score. Our findings are particularly relevant for a better understanding of epigenetic architecture underlying cognitive resilience. Importantly, the significant association between baseline MRS and future cognitive decline demonstrated that DNAm could be a predictive marker for AD, laying the foundation for future studies on personalized AD prevention.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Juan I Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michael A Schmidt
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Eden R Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Brian W Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - X Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Deirdre M O'Shea
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33433, USA.
| | - James E Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33433, USA.
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Iturria-Medina Y, Poole VN, Zammit AR, Yu L, Tasaki S, Hong JH, Lopes KDP, Batalha C, Ridwan AR, Vialle RA, Sanchez-Rodriguez L, Geddes MR, Abadir P, Ortlund E, De Jager P, Menon V, Beeri MS, Buchman AS, Levin Y, Morgenstern D, Schneider JA, Daouk RK, Wyss-Coray T, Seyfried NT, Arfanakis K, Rosa-Neto P, Wang Y, Bennett DA. Translating the Post-Mortem Brain Multi-Omics Molecular Taxonomy of Alzheimer's Dementia to Living Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644323. [PMID: 40196602 PMCID: PMC11974700 DOI: 10.1101/2025.03.20.644323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Alzheimer's disease (AD) dementia is characterized by significant molecular and phenotypic heterogeneity, which confounds its mechanistic understanding, diagnosis, and effective treatment. In this study, we harness the most comprehensive dataset of paired ante-mortem blood omics, clinical, psychological, and post-mortem brain multi-omics data and neuroimaging to extensively characterize and translate the molecular taxonomy of AD dementia to living individuals. First, utilizing a comprehensive integration of eight complementary molecular layers from brain multi-omics data (N = 1,189), we identified three distinct molecular AD dementia subtypes exhibiting strong associations with cognitive decline, sex, psychological traits, brain morphology, and characterized by specific cellular and molecular drivers involving immune, vascular, and oligodendrocyte precursor cells. Next, in a significant translational effort, we developed predictive models to convert these advanced brain-derived molecular profiles (AD dementia pseudotimes and subtypes) into blood-, MRI- and psychological traits-based markers. The translation results underscore both the promise of these models and the opportunities for further enhancement. Our findings enhance the understanding of AD heterogeneity, underscore the value of multi-scale molecular approaches for elucidating causal mechanisms, and lay the groundwork for the development of novel therapies in living persons that target multi-level brain molecular subtypes of AD dementia.
Collapse
Affiliation(s)
- Yasser Iturria-Medina
- Neurology and Neurosurgery Department, Montreal Neurological Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Victoria N. Poole
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Andrea R. Zammit
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Shinya Tasaki
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Joon Hwan Hong
- Neurology and Neurosurgery Department, Montreal Neurological Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Katia de Paiva Lopes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Instituto de Assistência Médica ao Servidor Público Estadual, Sao Paulo, SP, Brazil
| | - Caio Batalha
- Instituto de Assistência Médica ao Servidor Público Estadual, Sao Paulo, SP, Brazil
| | - Abdur Raquib Ridwan
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Ricardo A. Vialle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Instituto de Assistência Médica ao Servidor Público Estadual, Sao Paulo, SP, Brazil
| | - Lazaro Sanchez-Rodriguez
- Neurology and Neurosurgery Department, Montreal Neurological Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Maiya Rachel Geddes
- Neurology and Neurosurgery Department, Montreal Neurological Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Peter Abadir
- Johns Hopkins University School of Medicine, Baltimore, USA
| | - Eric Ortlund
- Department of Biochemistry at Emory University School of Medicine, Atlanta, USA
| | - Philip De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michal Schnaider Beeri
- Kreiger Klein Alzheimer’s Research Center, Brain Health Institute, Rutgers Health, NJ, USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Yishai Levin
- Israel National Center for Personalized Medicine at Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- Israel National Center for Personalized Medicine at Weizmann Institute of Science, Rehovot, Israel
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute, Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Douglas Hospital Research Centre - Centre intégré universitaire de santé et services sociaux de l’Ouest-de-l’Île-de-Montréal, Verdun, Quebec, Canada
- The Peter O’Donnell Jr. Brain Institute (OBI), University of Texas Southwestern Medical Centre (UTSW). Dallas, TX, USA
| | - Yanling Wang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Instituto de Assistência Médica ao Servidor Público Estadual, Sao Paulo, SP, Brazil
| |
Collapse
|
7
|
Zhao J, Gu T, Gao C, Miao G, Palma-Gudiel H, Yu L, Yang J, Wang Y, Li Y, Lim J, Li R, Yao B, Wu H, Schneider JA, Seyfried N, Grodstein F, De Jager PL, Jin P, Bennett DA. Brain 5-hydroxymethylcytosine alterations are associated with Alzheimer's disease neuropathology. Nat Commun 2025; 16:2842. [PMID: 40121201 PMCID: PMC11929800 DOI: 10.1038/s41467-025-58159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
5-hydroxymethylcytosine, also known as the sixth DNA base of the genome, plays an important role in brain aging and neurological disorders such as Alzheimer's disease. However, little is known about its genome-wide distribution and its association with Alzheimer's disease pathology. Here, we report a genome-wide profiling of 5-hydroxymethylcytosine in 1079 autopsied brains (dorsolateral prefrontal cortex) of older individuals and assess its association with multiple measures of Alzheimer's disease pathologies, including pathological diagnosis of Alzheimer's disease, amyloid-β load, and PHFtau tangle density. Of 197,765 5-hydroxymethylcytosine regions detected, we identified 2821 differentially hydroxymethylated regions associated with Alzheimer's disease neuropathology after controlling for multiple testing and covariates. Many differentially hydroxymethylated regions are located within known Alzheimer's disease loci, such as RIN3, PLCG2, ITGA2B, and USP6NL. Integrative multi-omics analyses support a potential mechanistic role of 5-hydroxymethylcytosine alterations in Alzheimer's disease. Our study presents a large-scale genome-wide atlas of 5-hydroxymethylcytosine in Alzheimer's brain and offers insight into the mechanism underlying Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Jinying Zhao
- Health Informatics Institute, University of South Florida, Tampa, FL, USA.
| | - Tongjun Gu
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Cheng Gao
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Guanhong Miao
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Helena Palma-Gudiel
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jingyun Yang
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Junghwa Lim
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ronghua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Francine Grodstein
- Rush Alzheimer's Disease Center & Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - David A Bennett
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
8
|
Barzasi M, Spinola A, Costa A, Pavinato L, Brusco A, Marcello E, DiLuca M, Gardoni F. Arg209Lys and Gln508His missense variants in Rabphilin 3A cause pre- and post-synaptic dysfunctions at excitatory glutamatergic synapses. Sci Rep 2025; 15:8698. [PMID: 40082528 PMCID: PMC11906590 DOI: 10.1038/s41598-025-93403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
The synaptic protein Rabphilin 3A (Rph3A), encoded by the RPH3A gene, is a known binding partner of the NMDA receptor (NMDAR) complex, which is essential for synaptic plasticity and cognitive functions. A recent report demonstrated a causal association between missense variants in the RPH3A gene and neurodevelopmental disorders, manifesting as either drug-resistant epilepsy with intellectual disability or as autism spectrum disorder with learning disability. In this study, we used primary hippocampal neurons to analyse synaptic effects induced by the p.(Arg209Lys) and p.(Gln508His) RPH3A variants, located in the N-terminal disordered region and the C-terminal C2A domain of Rph3A, respectively. We found that both the mutants exert effects on pre- and post-synaptic events mediated by Rph3A, despite their different positions within the Rph3A amino acid sequence. Notably, in both cases, RPH3A variants reduced presynaptic glutamate release and led to decreased synaptic retention of NMDARs containing the GluN2A subunit, a primary binding partner of Rph3A. These changes were associated with a reduced frequency of calcium events at dendritic spines, indicating an overall significant dysregulation of glutamatergic synaptic transmission.
Collapse
Affiliation(s)
- Marta Barzasi
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Alessio Spinola
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, 20122, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche (CNR), Milan, 20133, Italy
| | - Lisa Pavinato
- Institute of Oncology Research (IOR), BIOS+, Bellinzona, 6500, Switzerland
- Università della Svizzera Italiana, Lugano, 6900, Switzerland
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin, 10126, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, 10126, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Monica DiLuca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", University of Milan, Milan, Italy.
| |
Collapse
|
9
|
Vialle RA, de Paiva Lopes K, Li Y, Ng B, Schneider JA, Buchman AS, Wang Y, Farfel JM, Barnes LL, Wingo AP, Wingo TS, Seyfried NT, De Jager PL, Gaiteri C, Tasaki S, Bennett DA. Structural variants linked to Alzheimer's disease and other common age-related clinical and neuropathologic traits. Genome Med 2025; 17:20. [PMID: 40038788 PMCID: PMC11881306 DOI: 10.1186/s13073-025-01444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disorder with substantial genetic influence. While genome-wide association studies (GWAS) have identified numerous risk loci for late-onset AD (LOAD), the functional mechanisms underlying most of these associations remain unresolved. Large genomic rearrangements, known as structural variants (SVs), represent a promising avenue for elucidating such mechanisms within some of these loci. METHODS By leveraging data from two ongoing cohort studies of aging and dementia, the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP), we performed genome-wide association analysis testing 20,205 common SVs from 1088 participants with whole genome sequencing (WGS) data. A range of Alzheimer's disease and other common age-related clinical and neuropathologic traits were examined. RESULTS First, we mapped SVs across 81 AD risk loci and discovered 22 SVs in linkage disequilibrium (LD) with GWAS lead variants and directly associated with the phenotypes tested. The strongest association was a deletion of an Alu element in the 3'UTR of the TMEM106B gene, in high LD with the respective AD GWAS locus and associated with multiple AD and AD-related disorders (ADRD) phenotypes, including tangles density, TDP-43, and cognitive resilience. The deletion of this element was also linked to lower TMEM106B protein abundance. We also found a 22-kb deletion associated with depression in ROS/MAP and bearing similar association patterns as GWAS SNPs at the IQCK locus. In addition, we leveraged our catalog of SV-GWAS to replicate and characterize independent findings in SV-based GWAS for AD and five other neurodegenerative diseases. Among these findings, we highlight the replication of genome-wide significant SVs for progressive supranuclear palsy (PSP), including markers for the 17q21.31 MAPT locus inversion and a 1483-bp deletion at the CYP2A13 locus, along with other suggestive associations, such as a 994-bp duplication in the LMNTD1 locus, suggestively linked to AD and a 3958-bp deletion at the DOCK5 locus linked to Lewy body disease (LBD) (P = 3.36 × 10-4). CONCLUSIONS While still limited in sample size, this study highlights the utility of including analysis of SVs for elucidating mechanisms underlying GWAS loci and provides a valuable resource for the characterization of the effects of SVs in neurodegenerative disease pathogenesis.
Collapse
Affiliation(s)
- Ricardo A Vialle
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA.
| | - Katia de Paiva Lopes
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Yan Li
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Bernard Ng
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Jose M Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis, Davis, CA, USA
- VA Northern California Health Care System, Davis, CA, USA
| | - Thomas S Wingo
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Nicholas T Seyfried
- Department of Neurology and Department of Biochemistry, Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison St, Chicago, IL, 60612, USA
| |
Collapse
|
10
|
Cao L, Ba Y, Chen F, Li D, Zhang S, Zhang H. The prognostic significance of epoxide hydrolases in colorectal cancer. Biochem Biophys Rep 2025; 41:101912. [PMID: 39850362 PMCID: PMC11754166 DOI: 10.1016/j.bbrep.2024.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant cancer. Epoxide hydrolases (EHs) are involved in the development of cancer by regulating epoxides, but their relationship with CRC is unclear. We used multiple datasets to confirm the expression of different EPHX family members in CRC tissues, and to explore their association with different clinicopathologic characteristics. The Kaplan-Meier method, correlation analysis and random forest algorithm were used to evaluate the prognostic value of EPHX family members for CRC. Finally, the cell experiment verified function of EPHX4 in CRC. The expressions of EPHX1 and EPHX2 were significantly decreased, while those of EPHX3 and EPHX4 were significantly increased in CRC. The expressions of EPHX family members were correlated with some clinicopathologic features and overall survival. The expressions of the EPHX family were positively associated with CD274, CTLA4, HAVCR2, and TIGIT. EPHX2 and EPHX4 were diagnostic and predictive biomarkers for CRC. EPHX4 promoted the malignant phenotype of CRC cells. Our study firstly elucidated the prognostic significance of EPHX family members in CRC and identified novel diagnostic and prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Lichao Cao
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Dandan Li
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Shenrui Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, 518071, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, 201401, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, 518110, China
| |
Collapse
|
11
|
Taddei RN, E Duff K. Synapse vulnerability and resilience underlying Alzheimer's disease. EBioMedicine 2025; 112:105557. [PMID: 39891995 PMCID: PMC11833146 DOI: 10.1016/j.ebiom.2025.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 02/03/2025] Open
Abstract
Synapse preservation is key for healthy cognitive ageing, and synapse loss represents a critical anatomical basis of cognitive dysfunction in Alzheimer's disease (AD), predicting dementia onset, severity, and progression. Synapse loss is viewed as a primary pathologic event, preceding neuronal loss and brain atrophy in AD. Synapses may, therefore, represent one of the earliest and clinically most meaningful targets of the neuropathologic processes driving AD dementia. The synapse loss in AD is highly selective and targets particularly vulnerable synapses while leaving others, termed resilient, largely unaffected. Yet, the anatomic and molecular hallmarks of the vulnerable and resilient synapse populations and their association with AD neuropathologic changes (e.g. amyloid-β plaques and tau tangles) and memory dysfunction remain poorly understood. Characterising the selectively vulnerable and resilient synapses in AD may be key to understanding the mechanisms of cognitive preservation versus loss and enable the development of robust biomarkers and disease-modifying therapies for dementia.
Collapse
Affiliation(s)
- Raquel N Taddei
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, USA; UK Dementia Research Institute at UCL, Institute of Neurology, University College London, UK.
| | - Karen E Duff
- UK Dementia Research Institute at UCL, Institute of Neurology, University College London, UK
| |
Collapse
|
12
|
de Vries LE, Bahnerth A, Swaab DF, Verhaagen J, Carulli D. Resilience to Alzheimer's disease associates with alterations in perineuronal nets. Alzheimers Dement 2025; 21:e14504. [PMID: 39737731 PMCID: PMC11848190 DOI: 10.1002/alz.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Some individuals show intact cognition despite the presence of neuropathological hallmarks of Alzheimer's disease (AD). The plasticity of parvalbumin (PV)-containing interneurons might contribute to resilience. Perineuronal nets (PNNs), that is, extracellular matrix structures around neurons, modulate PV neuron function. We hypothesize that PNNs play a role in resilience to AD. METHODS PNN amount and morphology were determined in immunolabelled sections of the frontal cortex of control, AD and resilient subjects. Expression levels of genes related to PNNs and microglia signatures were evaluated by bulk RNA sequencing. RESULTS The expression of the PNN-component aggrecan around PV neurons is decreased in resilient and AD subjects, whereas PNN-sugar chains are reduced only in resilient subjects. In AD, fewer presynaptic terminals on PV neurons are detected and genes related to PNN degradation are upregulated. DISCUSSION These data show distinct PNN changes in individuals resilient to AD, which may contribute to preserved cognition despite the neuropathology. HIGHLIGHTS Aggrecan levels are decreased in the frontal cortex of AD and resilient subjects. In resilient subjects, WFA+ PNNs are reduced around neuronal somata. In AD patients, PV neurons show disrupted WFA peridendritic staining and synaptic loss. Expression levels of PNN-degrading enzymes are higher in AD. Excitatory neurons bearing a PNN show low amounts of ptau.
Collapse
Affiliation(s)
- Luuk E. de Vries
- Department of NeuroregenerationNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Anouck Bahnerth
- Department of NeuroregenerationNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Dick F. Swaab
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Joost Verhaagen
- Department of NeuroregenerationNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Daniela Carulli
- Department of NeuroregenerationNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| |
Collapse
|
13
|
Castanho I, Yeganeh PN, Boix CA, Morgan SL, Mathys H, Prokopenko D, White B, Soto LM, Pegoraro G, Shah S, Ploumakis A, Kalavros N, Bennett DA, Lange C, Kim DY, Bertram L, Tsai LH, Kellis M, Tanzi RE, Hide W. Molecular hallmarks of excitatory and inhibitory neuronal resilience and resistance to Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632801. [PMID: 39868232 PMCID: PMC11761133 DOI: 10.1101/2025.01.13.632801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals. Methods We analyzed data from the Religious Order Study and the Rush Memory and Aging Project (ROSMAP), including bulk (n=631) and multi-regional single nucleus (n=48) RNA sequencing. Subjects were categorized into AD, resilient, and control based on β-amyloid and tau pathology, and cognitive status. We identified and prioritized protected cell populations using whole genome sequencing-derived genetic variants, transcriptomic profiling, and cellular composition distribution. Results Transcriptomic results, supported by GWAS-derived polygenic risk scores, place cognitive resilience as an intermediate state in the AD continuum. Tissue-level analysis revealed 43 genes enriched in nucleic acid metabolism and signaling that were differentially expressed between AD and resilience. Only GFAP (upregulated) and KLF4 (downregulated) showed differential expression in resilience compared to controls. Cellular resilience involved reorganization of protein folding and degradation pathways, with downregulation of Hsp90 and selective upregulation of Hsp40, Hsp70, and Hsp110 families in excitatory neurons. Excitatory neuronal subpopulations in the entorhinal cortex (ATP8B1+ and MEF2Chigh) exhibited unique resilience signaling through neurotrophin (modulated by LINGO1) and angiopoietin (ANGPT2/TEK) pathways. We identified MEF2C, ATP8B1, and RELN as key markers of resilient excitatory neuronal populations, characterized by selective vulnerability in AD. Protective rare variant enrichment highlighted vulnerable populations, including somatostatin (SST) inhibitory interneurons, validated through immunofluorescence showing co-expression of rare variant associated RBFOX1 and KIF26B in SST+ neurons in the dorsolateral prefrontal cortex. The maintenance of excitatory-inhibitory balance emerges as a key characteristic of resilience. Conclusions We identified molecular and cellular hallmarks of cognitive resilience, an intermediate state in the AD continuum. Resilience mechanisms include preservation of neuronal function, maintenance of excitatory/inhibitory balance, and activation of protective signaling pathways. Specific excitatory neuronal populations appear to play a central role in mediating cognitive resilience, while a subset of vulnerable SST interneurons likely provide compensation against AD-associated dysregulation. This study offers a framework to leverage natural protective mechanisms to mitigate neurodegeneration and preserve cognition in AD.
Collapse
Affiliation(s)
- Isabel Castanho
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Pourya Naderi Yeganeh
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Carles A. Boix
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah L. Morgan
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Hansruedi Mathys
- University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Dmitry Prokopenko
- Harvard Medical School, Boston, MA, USA
- Genetics and Aging Research Unit, The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Bartholomew White
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Larisa M. Soto
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Giulia Pegoraro
- Harvard Medical School, Boston, MA, USA
- Medical School, University of Exeter, Exeter EX2 5DW, UK
| | | | - Athanasios Ploumakis
- Harvard Medical School, Boston, MA, USA
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nikolas Kalavros
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
| | - Christoph Lange
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, 02115, Boston, MA, USA
| | - Doo Yeon Kim
- Harvard Medical School, Boston, MA, USA
- Genetics and Aging Research Unit, The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Li-Huei Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rudolph E. Tanzi
- Harvard Medical School, Boston, MA, USA
- Genetics and Aging Research Unit, The Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Winston Hide
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
14
|
Wu XR, Yang L, Wu BS, Liu WS, Deng YT, Kang JJ, Dong Q, Sahakian BJ, Feng JF, Cheng W, Yu JT. Exome sequencing identifies genes for socioeconomic status in 350,770 individuals. Proc Natl Acad Sci U S A 2025; 122:e2414018122. [PMID: 39772748 PMCID: PMC11745334 DOI: 10.1073/pnas.2414018122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Socioeconomic status (SES) is a critical factor in determining health outcomes and is influenced by genetic and environmental factors. However, our understanding of the genetic structure of SES remains incomplete. Here, we conducted a large-scale exome study of SES markers (household income, occupational status, educational attainment, and social deprivation) in 350,770 individuals. For rare coding variants, we identified 56 significant associations by gene-based collapsing tests, unveiling 7 additional SES-associated genes (NRN1, CCDC36, RHOB, EP400, NCAM1, TPTEP2-CSNK1E, and LINC02881). Exome-wide single common variant analysis revealed nine lead single-nucleotide polymorphisms (SNPs) associated with household income and 34 lead SNPs associated with EduYears, replicating previous GWAS findings. The gene-environment correlations had a substantial impact on the genetic associations with SES, as indicated by the significantly increased P values in several associations after controlling for geographic regions. Furthermore, we observed the pleiotropic effects of SES-associated genetic factors on a wide range of health outcomes, such as cognitive function, psychosocial status, and diabetes. This study highlights the contribution of coding variants to SES and their associations with health phenotypes.
Collapse
Affiliation(s)
- Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| | - Barbara J. Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, CambridgeCB2 0SZ, United Kingdom
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
- Department of Computer Science, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai200040, China
| |
Collapse
|
15
|
Ryu T, Kim K, Asiimwe N, Na CH. Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways. Proteomics 2025:e202400298. [PMID: 39791267 DOI: 10.1002/pmic.202400298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, but the pathogenesis mechanism is still elusive. Advances in proteomics have uncovered key molecular mechanisms underlying AD, revealing a complex network of dysregulated pathways, including amyloid metabolism, tau pathology, apolipoprotein E (APOE), protein degradation, neuroinflammation, RNA splicing, metabolic dysregulation, and cognitive resilience. This review examines recent proteomic findings from AD brain tissues and biological fluids, highlighting potential biomarkers and therapeutic targets. By examining the proteomic landscape of them, we aim to deepen our understanding of the disease and support developing precision medicine strategies for more effective interventions.
Collapse
Affiliation(s)
- Taekyung Ryu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyungdo Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Asiimwe
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Almodóvar-Payá C, París-Gómez I, Latorre-Guardia M, Guardiola-Ripoll M, Catalán R, Arias B, Penadés R, Fatjó-Vilas M. NRN1 genetic variability and methylation changes as biomarkers for cognitive remediation therapy response in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111175. [PMID: 39426559 DOI: 10.1016/j.pnpbp.2024.111175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Cognitive remediation therapy (CRT) demonstrates potential in enhancing cognitive function in schizophrenia (SZ), though the identification of molecular biomarkers remains challenging. The Neuritin-1 gene (NRN1) emerges as a promising candidate gene due to its association with SZ, cognitive performance and response to neurotherapeutic treatments. We aimed to investigate whether NRN1 genetic variability and methylation changes following CRT are related to cognitive improvements. Twenty-five SZ patients were randomly assigned to CRT or treatment-as-usual (TAU) groups, with cognitive function and NRN1 methylation assessed pre- and post-intervention using the MATRICS Consensus Cognitive Battery and EpiTYPER. Besides, eleven NRN1 polymorphisms were genotyped. Methylation changes (Δm = post - pre) were analyzed via sparse Partial Least Square Discriminant Analysis (sPLS-DA) to identify latent components (LCs) distinguishing CRT from TAU. To further explore methylation patterns of these LCs, CpG units were grouped into two subsets, yielding Δm means for those with increased and decreased methylation. Cognitive changes (Δcog = post - pre) were used to identify CRT improvers (CRT-I, Δcog ≥ 1), and the association between methylation changes and cognitive improvements post-therapy was also tested. We identified two LCs that differentiated CRT from TAU with a classification error rate of 0.28. The main component, LC1, included 25 CpG units. The subsets of CpG units with increased and decreased post-therapy methylation differed significantly between the two treatment arms, suggesting that differences were not merely data-driven but reflected meaningful biological variation. Additionally, CpG units linked to therapy were also associated with cognitive improvement, with LC1 and the subset of CpG units showing increased methylation post-therapy distinguishing CRT-I from the rest of the patients across multiple cognitive domains. Furthermore, the effect of LC1 on speed processing improvement after CRT was enhanced by considering the NRN1-rs9405890 polymorphism. Notably, these CpG units, particularly those with increased methylation after CRT, overlapped with key gene regulatory elements. Our model, integrating genetics and epigenetics, boosts the understanding of CRT response variability and highlights this multi-level approach as a promising strategy for identifying potential NRN1-related biomarkers of CRT effects, though further studies with larger samples are needed.
Collapse
Affiliation(s)
- Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | - Mariona Latorre-Guardia
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | | | - Rosa Catalán
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Departament de Medicina, Campus Clínic, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Barcelona Clinic Schizophrenia Unit (BCSU), Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bárbara Arias
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Rafael Penadés
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit (BCSU), Hospital Clínic, Barcelona, Spain; Departament de Psicologia Clínica i Psicobiologia, Facultat de Psicologia, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
17
|
Grodstein F, Lemos B, Yang J, de Paiva Lopes K, Vialle RA, Seyfried N, Wang Y, Shireby G, Hannon E, Thomas A, Brookes K, Mill J, De Jager PL, Bennett DA. Genetic architecture of epigenetic cortical clock age in brain tissue from older individuals: alterations in CD46 and other loci. Epigenetics 2024; 19:2392050. [PMID: 39169872 PMCID: PMC11346548 DOI: 10.1080/15592294.2024.2392050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
The cortical epigenetic clock was developed in brain tissue as a biomarker of brain aging. As one way to identify mechanisms underlying aging, we conducted a GWAS of cortical age. We leveraged postmortem cortex tissue and genotyping array data from 694 participants of the Rush Memory and Aging Project and Religious Orders Study (ROSMAP; 11000,000 SNPs), and meta-analysed ROSMAP with 522 participants of Brains for Dementia Research (5,000,000 overlapping SNPs). We confirmed results using eQTL (cortical bulk and single nucleus gene expression), cortical protein levels (ROSMAP), and phenome-wide association studies (clinical/neuropathologic phenotypes, ROSMAP). In the meta-analysis, the strongest association was rs4244620 (p = 1.29 × 10-7), which also exhibited FDR-significant cis-eQTL effects for CD46 in bulk and single nucleus (microglia, astrocyte, oligodendrocyte, neuron) cortical gene expression. Additionally, rs4244620 was nominally associated with lower cognition, faster slopes of cognitive decline, and greater Parkinsonian signs (n ~ 1700 ROSMAP with SNP/phenotypic data; all p ≤ 0.04). In ROSMAP alone, the top SNP was rs4721030 (p = 8.64 × 10-8) annotated to TMEM106B and THSD7A. Further, in ROSMAP (n = 849), TMEM106B and THSD7A protein levels in cortex were related to many phenotypes, including greater AD pathology and lower cognition (all p ≤ 0.0007). Overall, we identified converging evidence of CD46 and possibly TMEM106B/THSD7A for potential roles in cortical epigenetic clock age.
Collapse
Affiliation(s)
- Francine Grodstein
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Bernardo Lemos
- Coit Center for Longevity and Neurotherapeutics, Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Katia de Paiva Lopes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ricardo A. Vialle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas Seyfried
- Department of Biochemistry, and Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, USA
| | - Yanling Wang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Gemma Shireby
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Alan Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Keeley Brookes
- Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
18
|
Seifar F, Fox EJ, Shantaraman A, Liu Y, Dammer EB, Modeste E, Duong DM, Yin L, Trautwig AN, Guo Q, Xu K, Ping L, Reddy JS, Allen M, Quicksall Z, Heath L, Scanlan J, Wang E, Wang M, Linden AV, Poehlman W, Chen X, Baheti S, Ho C, Nguyen T, Yepez G, Mitchell AO, Oatman SR, Wang X, Carrasquillo MM, Runnels A, Beach T, Serrano GE, Dickson DW, Lee EB, Golde TE, Prokop S, Barnes LL, Zhang B, Haroutunian V, Gearing M, Lah JJ, De Jager P, Bennett DA, Greenwood A, Ertekin‐Taner N, Levey AI, Wingo A, Wingo T, Seyfried NT. Large-scale deep proteomic analysis in Alzheimer's disease brain regions across race and ethnicity. Alzheimers Dement 2024; 20:8878-8897. [PMID: 39535480 PMCID: PMC11667503 DOI: 10.1002/alz.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within non-Hispanic White (NHW) populations. Here we provide an extensive survey of the proteomic landscape of AD across diverse racial/ethnic groups. METHODS Two cortical regions, from multiple centers, were harmonized by uniform neuropathological diagnosis. Among 998 unique donors, 273 donors self-identified as African American, 229 as Latino American, and 434 as NHW. RESULTS While amyloid precursor protein and the microtubule-associated protein tau demonstrated higher abundance in AD brains, no significant race-related differences were observed. Further proteome-wide and focused analyses (specific amyloid beta [Aβ] species and the tau domains) supported the absence of racial differences in these AD pathologies within the brain proteome. DISCUSSION Our findings indicate that the racial differences in AD risk and clinical presentation are not underpinned by dramatically divergent patterns in the brain proteome, suggesting that other determinants account for these clinical disparities. HIGHLIGHTS We present a large-scale proteome (∼10,000 proteins) of DLPFC (998) and STG (244) across AD cases. About 50% of samples were from racially and ethnically diverse brain donors. Key AD proteins (amyloid and tau) correlated with CERAD and Braak stages. No significant race-related differences in amyloid and tau protein levels were observed in AD brains. AD-associated protein changes showed a strong correlation between the brain proteomes of African American and White individuals. This dataset advances understanding of ethnoracial-specific AD pathways and potential therapies.
Collapse
|
19
|
Zhang W, Lukacsovich D, Young JI, Gomez L, Schmidt MA, Martin ER, Kunkle BW, Chen X, O’Shea DM, Galvin JE, Wang L. DNA Methylation Signature of a Lifestyle-based Resilience Index for Cognitive Health. RESEARCH SQUARE 2024:rs.3.rs-5423573. [PMID: 39649166 PMCID: PMC11623774 DOI: 10.21203/rs.3.rs-5423573/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Cognitive resilience (CR) contributes to the variability in risk for developing and progressing in Alzheimer's disease (AD) among individuals. Beyond genetics, recent studies highlight the critical role of lifestyle factors in enhancing CR and delaying cognitive decline. DNA methylation (DNAm), an epigenetic mechanism influenced by both genetic and environmental factors, including CR-related lifestyle factors, offers a promising pathway for understanding the biology of CR. We studied DNAm changes associated with the Resilience Index (RI), a composite measure of lifestyle factors, using blood samples from the Healthy Brain Initiative (HBI) cohort. After corrections for multiple comparisons, our analysis identified 19 CpGs and 24 differentially methylated regions significantly associated with the RI, adjusting for covariates age, sex, APOE ε4, and immune cell composition. The RI-associated methylation changes are significantly enriched in pathways related to lipid metabolism, synaptic plasticity, and neuroinflammation, and highlight the connection between cardiovascular health and cognitive function. By identifying RI-associated DNAm, our study provided an alternative approach to discovering future targets and treatment strategies for AD, complementary to the traditional approach of identifying disease-associated variants directly. Furthermore, we developed a Methylation-based Resilience Score (MRS) that successfully predicted future cognitive decline in an external dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI), even after accounting for age, sex, APOE ε4, years of education, baseline diagnosis, and baseline MMSE score. Our findings are particularly relevant for a better understanding of epigenetic architecture underlying cognitive resilience. Importantly, the significant association between baseline MRS and future cognitive decline demonstrated that DNAm could be a predictive marker for AD, laying the foundation for future studies on personalized AD prevention.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I. Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Schmidt
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R. Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brian W. Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33433, USA
| | - Deirdre M. O’Shea
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33433, USA
| | - James E. Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33433, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
20
|
Ng B, Tasaki S, Greathouse KM, Walker CK, Zhang A, Covitz S, Cieslak M, Weber AJ, Adamson AB, Andrade JP, Poovey EH, Curtis KA, Muhammad HM, Seidlitz J, Satterthwaite T, Bennett DA, Seyfried NT, Vogel J, Gaiteri C, Herskowitz JH. Integration across biophysical scales identifies molecular and cellular correlates of person-to-person variability in human brain connectivity. Nat Neurosci 2024; 27:2240-2252. [PMID: 39482360 PMCID: PMC11537986 DOI: 10.1038/s41593-024-01788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
Brain connectivity arises from interactions across biophysical scales, ranging from molecular to cellular to anatomical to network level. To date, there has been little progress toward integrated analysis across these scales. To bridge this gap, from a unique cohort of 98 individuals, we collected antemortem neuroimaging and genetic data, as well as postmortem dendritic spine morphometric, proteomic and gene expression data from the superior frontal and inferior temporal gyri. Through the integration of the molecular and dendritic spine morphology data, we identified hundreds of proteins that explain interindividual differences in functional connectivity and structural covariation. These proteins are enriched for synaptic structures and functions, energy metabolism and RNA processing. By integrating data at the genetic, molecular, subcellular and tissue levels, we link specific biochemical changes at synapses to connectivity between brain regions. These results demonstrate the feasibility of integrating data from vastly different biophysical scales to provide a more comprehensive understanding of brain connectivity.
Collapse
Affiliation(s)
- Bernard Ng
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Kelsey M Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney K Walker
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ada Zhang
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sydney Covitz
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Matt Cieslak
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Audrey J Weber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashley B Adamson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia P Andrade
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily H Poovey
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kendall A Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hamad M Muhammad
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jakob Seidlitz
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ted Satterthwaite
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob Vogel
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Clinical Science, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
21
|
Dissecting human brain connectivity across biophysical scales. Nat Neurosci 2024; 27:2054-2055. [PMID: 39487338 DOI: 10.1038/s41593-024-01789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
|
22
|
Tasaki S, Avey DR, Kearns NA, Iatrou A, Yu C, De Tissera S, Vyas H, Xu J, Flood DJ, Rothamel K, Wingo AP, Wingo TS, Seyfried NT, De Jager PL, Yeo G, Gaiteri C, Bennett DA, Wang Y. The YTHDF Proteins Shape the Brain Gene Signatures of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619425. [PMID: 39484606 PMCID: PMC11527030 DOI: 10.1101/2024.10.23.619425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The gene signatures of Alzheimer's Disease (AD) brains reflect an output of a complex interplay of genetic, epigenetic, epi-transcriptomic, and post-transcriptional regulations. To identify the most significant factor that shapes the AD brain signature, we developed a machine learning model (DEcode-tree) to integrate cellular and molecular factors explaining differential gene expression in AD. Our model indicates that YTHDF proteins, the canonical readers of N6-methyladenosine RNA modification (m6A), are the most influential predictors of the AD brain signature. We then show that protein modules containing YTHDFs are downregulated in human AD brains, and knocking out YTHDFs in iPSC-derived neural cells recapitulates the AD brain gene signature in vitro . Furthermore, eCLIP-seq analysis revealed that YTHDF proteins influence AD signatures through both m6A-dependent and independent pathways. These results indicate the central role of YTHDF proteins in shaping the gene signature of AD brains.
Collapse
|
23
|
Fröhlich AS, Gerstner N, Gagliardi M, Ködel M, Yusupov N, Matosin N, Czamara D, Sauer S, Roeh S, Murek V, Chatzinakos C, Daskalakis NP, Knauer-Arloth J, Ziller MJ, Binder EB. Single-nucleus transcriptomic profiling of human orbitofrontal cortex reveals convergent effects of aging and psychiatric disease. Nat Neurosci 2024; 27:2021-2032. [PMID: 39227716 PMCID: PMC11452345 DOI: 10.1038/s41593-024-01742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Aging is a complex biological process and represents the largest risk factor for neurodegenerative disorders. The risk for neurodegenerative disorders is also increased in individuals with psychiatric disorders. Here, we characterized age-related transcriptomic changes in the brain by profiling ~800,000 nuclei from the orbitofrontal cortex from 87 individuals with and without psychiatric diagnoses and replicated findings in an independent cohort with 32 individuals. Aging affects all cell types, with LAMP5+LHX6+ interneurons, a cell-type abundant in primates, by far the most affected. Disrupted synaptic transmission emerged as a convergently affected pathway in aged tissue. Age-related transcriptomic changes overlapped with changes observed in Alzheimer's disease across multiple cell types. We find evidence for accelerated transcriptomic aging in individuals with psychiatric disorders and demonstrate a converging signature of aging and psychopathology across multiple cell types. Our findings shed light on cell-type-specific effects and biological pathways underlying age-related changes and their convergence with effects driven by psychiatric diagnosis.
Collapse
Affiliation(s)
- Anna S Fröhlich
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
- International Max Planck Research School for Translational Psychiatry, Munich, Germany.
| | - Nathalie Gerstner
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Miriam Gagliardi
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Maik Ködel
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natan Yusupov
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Darina Czamara
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Susann Sauer
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simone Roeh
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Murek
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Chris Chatzinakos
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Nikolaos P Daskalakis
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Janine Knauer-Arloth
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael J Ziller
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth B Binder
- Department of Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
24
|
Goettemoeller AM, Banks E, Kumar P, Olah VJ, McCann KE, South K, Ramelow CC, Eaton A, Duong DM, Seyfried NT, Weinshenker D, Rangaraju S, Rowan MJM. Entorhinal cortex vulnerability to human APP expression promotes hyperexcitability and tau pathology. Nat Commun 2024; 15:7918. [PMID: 39256379 PMCID: PMC11387477 DOI: 10.1038/s41467-024-52297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Preventative treatment for Alzheimer's Disease (AD) is dire, yet mechanisms underlying early regional vulnerability remain unknown. In AD, one of the earliest pathophysiological correlates to cognitive decline is hyperexcitability, which is observed first in the entorhinal cortex. Why hyperexcitability preferentially emerges in specific regions in AD is unclear. Using regional, cell-type-specific proteomics and electrophysiology in wild-type mice, we uncovered a unique susceptibility of the entorhinal cortex to human amyloid precursor protein (hAPP). Entorhinal hyperexcitability resulted from selective vulnerability of parvalbumin (PV) interneurons, with respect to surrounding excitatory neurons. This effect was partially replicated with an APP chimera containing a humanized amyloid-beta sequence. EC hyperexcitability could be ameliorated by co-expression of human Tau with hAPP at the expense of increased pathological tau species, or by enhancing PV interneuron excitability in vivo. This study suggests early interventions targeting inhibitory neurons may protect vulnerable regions from the effects of APP/amyloid and tau pathology.
Collapse
Affiliation(s)
- Annie M Goettemoeller
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Emmie Banks
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Prateek Kumar
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Viktor J Olah
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Katharine E McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly South
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Christina C Ramelow
- GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Eaton
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Duc M Duong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Matthew J M Rowan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
25
|
Kitani A, Matsui Y. Predicting Alzheimer's Cognitive Resilience Score: A Comparative Study of Machine Learning Models Using RNA-seq Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.25.609610. [PMID: 39253457 PMCID: PMC11383294 DOI: 10.1101/2024.08.25.609610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) is an important research topic. While amyloid plaques and neurofibrillary tangles are hallmark pathological features of AD, cognitive resilience (CR) is a phenomenon where cognitive function remains preserved despite the presence of these pathological features. This study aimed to construct and compare predictive machine learning models for CR scores using RNA-seq data from the Religious Orders Study and Memory and Aging Project (ROSMAP) and Mount Sinai Brain Bank (MSBB) cohorts. We evaluated support vector regression (SVR), random forest, XGBoost, linear, and transformer-based models. The SVR model exhibited the best performance, with contributing genes identified using Shapley additive explanations (SHAP) scores, providing insights into biological pathways associated with CR. Finally, we developed a tool called the resilience gene analyzer (REGA), which visualizes SHAP scores to interpret the contributions of individual genes to CR. REGA is available at https://igcore.cloud/GerOmics/REsilienceGeneAnalyzer/.
Collapse
Affiliation(s)
- Akihiro Kitani
- Biomedical and Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Matsui
- Biomedical and Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, 461-8673 Nagoya, Aichi, Japan
| |
Collapse
|
26
|
Levites Y, Dammer EB, Ran Y, Tsering W, Duong D, Abreha M, Gadhavi J, Lolo K, Trejo-Lopez J, Phillips J, Iturbe A, Erquizi A, Moore BD, Ryu D, Natu A, Dillon K, Torrellas J, Moran C, Ladd T, Afroz F, Islam T, Jagirdar J, Funk CC, Robinson M, Rangaraju S, Borchelt DR, Ertekin-Taner N, Kelly JW, Heppner FL, Johnson ECB, McFarland K, Levey AI, Prokop S, Seyfried NT, Golde TE. Integrative proteomics identifies a conserved Aβ amyloid responsome, novel plaque proteins, and pathology modifiers in Alzheimer's disease. Cell Rep Med 2024; 5:101669. [PMID: 39127040 PMCID: PMC11384960 DOI: 10.1016/j.xcrm.2024.101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/15/2024] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that develops over decades. AD brain proteomics reveals vast alterations in protein levels and numerous altered biologic pathways. Here, we compare AD brain proteome and network changes with the brain proteomes of amyloid β (Aβ)-depositing mice to identify conserved and divergent protein networks with the conserved networks identifying an Aβ amyloid responsome. Proteins in the most conserved network (M42) accumulate in plaques, cerebrovascular amyloid (CAA), and/or dystrophic neuronal processes, and overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), increases the accumulation of Aβ in plaques and CAA. M42 proteins bind amyloid fibrils in vitro, and MDK and PTN co-accumulate with cardiac transthyretin amyloid. M42 proteins appear intimately linked to amyloid deposition and can regulate amyloid deposition, suggesting that they are pathology modifiers and thus putative therapeutic targets. We posit that amyloid-scaffolded accumulation of numerous M42+ proteins is a central mechanism mediating downstream pathophysiology in AD.
Collapse
Affiliation(s)
- Yona Levites
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong Ran
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Wangchen Tsering
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Duc Duong
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Measho Abreha
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshna Gadhavi
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kiara Lolo
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Jorge Trejo-Lopez
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Jennifer Phillips
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Andrea Iturbe
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aya Erquizi
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brenda D Moore
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Danny Ryu
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Aditya Natu
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kristy Dillon
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jose Torrellas
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Corey Moran
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas Ladd
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Farhana Afroz
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Tariful Islam
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Jaishree Jagirdar
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - David R Borchelt
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nilüfer Ertekin-Taner
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL, USA; Mayo Clinic, Department of Neurology, Jacksonville, FL, USA
| | - Jeffrey W Kelly
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 110117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 110117 Berlin, Germany; Cluster of Excellence, NeuroCure, Charitéplatz, 110117 Berlin, Germany
| | - Erik C B Johnson
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Karen McFarland
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan Prokop
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Nicholas T Seyfried
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA.
| | - Todd E Golde
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
27
|
Vialle RA, de Paiva Lopes K, Li Y, Ng B, Schneider JA, Buchman AS, Wang Y, Farfel JM, Barnes LL, Wingo AP, Wingo TS, Seyfried NT, De Jager PL, Gaiteri C, Tasaki S, Bennett DA. Structural variants linked to Alzheimer's Disease and other common age-related clinical and neuropathologic traits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.12.24311887. [PMID: 39185527 PMCID: PMC11343262 DOI: 10.1101/2024.08.12.24311887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Advances have led to a greater understanding of the genetics of Alzheimer's Disease (AD). However, the gap between the predicted and observed genetic heritability estimates when using single nucleotide polymorphisms (SNPs) and small indel data remains. Large genomic rearrangements, known as structural variants (SVs), have the potential to account for this missing genetic heritability. By leveraging data from two ongoing cohort studies of aging and dementia, the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP), we performed genome-wide association analysis testing around 20,000 common SVs from 1,088 participants with whole genome sequencing (WGS) data. A range of Alzheimer's Disease and Related Disorders (AD/ADRD) clinical and pathologic traits were examined. Given the limited sample size, no genome-wide significant association was found, but we mapped SVs across 81 AD risk loci and discovered 22 SVs in linkage disequilibrium (LD) with GWAS lead variants and directly associated with AD/ADRD phenotypes (nominal P < 0.05). The strongest association was a deletion of an Alu element in the 3'UTR of the TMEM106B gene. This SV was in high LD with the respective AD GWAS locus and was associated with multiple AD/ADRD phenotypes, including tangle density, TDP-43, and cognitive resilience. The deletion of this element was also linked to lower TMEM106B protein abundance. We also found a 22 kb deletion associated with depression in ROSMAP and bearing similar association patterns as AD GWAS SNPs at the IQCK locus. In addition, genome-wide scans allowed the identification of 7 SVs, with no LD with SNPs and nominally associated with AD/ADRD traits. This result suggests potentially new ADRD risk loci not discoverable using SNP data. Among these findings, we highlight a 5.6 kb duplication of coding regions of the gene C1orf186 at chromosome 1 associated with indices of cognitive impairment, decline, and resilience. While further replication in independent datasets is needed to validate these findings, our results support the potential roles of common structural variations in the pathogenesis of AD/ADRD.
Collapse
Affiliation(s)
- Ricardo A Vialle
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Katia de Paiva Lopes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Yan Li
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Bernard Ng
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jose M Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis CA, USA
- VA Northern California Health Care System, McClellan Park, CA, USA
| | - Thomas S Wingo
- Department of Neurology, University of California, Davis, CA, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Department of Neurology and Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Philip L De Jager
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
28
|
Shantaraman A, Dammer EB, Ugochukwu O, Duong DM, Yin L, Carter EK, Gearing M, Chen-Plotkin A, Lee EB, Trojanowski JQ, Bennett DA, Lah JJ, Levey AI, Seyfried NT, Higginbotham L. Network proteomics of the Lewy body dementia brain reveals presynaptic signatures distinct from Alzheimer's disease. Mol Neurodegener 2024; 19:60. [PMID: 39107789 PMCID: PMC11302177 DOI: 10.1186/s13024-024-00749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.
Collapse
Affiliation(s)
- Anantharaman Shantaraman
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Obiadada Ugochukwu
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - E Kathleen Carter
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Marla Gearing
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - James J Lah
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Lenora Higginbotham
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
29
|
Ghatak S, Diedrich JK, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork NJ, Yates JR, Lipton SA. Single-Cell Patch-Clamp/Proteomics of Human Alzheimer's Disease iPSC-Derived Excitatory Neurons Versus Isogenic Wild-Type Controls Suggests Novel Causation and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400545. [PMID: 38773714 PMCID: PMC11304297 DOI: 10.1002/advs.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
School of Biological SciencesNational Institute of Science Education and Research (NISER)‐Bhubaneswar, an OCC of Homi Bhabha National InstituteJataniOdisha752050India
| | - Jolene K. Diedrich
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Maria Talantova
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Nivedita Bhadra
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - Henry Scott
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Meetal Sharma
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Matthew Albertolle
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
Drug Metabolism and Pharmacokinetics DepartmentTakeda Development Center AmericasSan DiegoCA92121USA
| | - Nicholas J. Schork
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - John R. Yates
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Stuart A. Lipton
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Department of NeurosciencesSchool of MedicineUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
30
|
Goettemoeller AM, Banks E, Kumar P, Olah VJ, McCann KE, South K, Ramelow CC, Eaton A, Duong DM, Seyfried NT, Weinshenker D, Rangaraju S, Rowan MJ. Entorhinal cortex vulnerability to human APP expression promotes hyperexcitability and tau pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565629. [PMID: 39005389 PMCID: PMC11244896 DOI: 10.1101/2023.11.06.565629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Preventative treatment for Alzheimer's Disease is of dire importance, and yet, cellular mechanisms underlying early regional vulnerability in Alzheimer's Disease remain unknown. In human patients with Alzheimer's Disease, one of the earliest observed pathophysiological correlates to cognitive decline is hyperexcitability. In mouse models, early hyperexcitability has been shown in the entorhinal cortex, the first cortical region impacted by Alzheimer's Disease. The origin of hyperexcitability in early-stage disease and why it preferentially emerges in specific regions is unclear. Using cortical-region and cell-type-specific proteomics coupled with ex vivo and in vivo electrophysiology, we uncovered differential susceptibility to human-specific amyloid precursor protein (hAPP) in a model of sporadic Alzheimer's. Unexpectedly, our findings reveal that early entorhinal hyperexcitability may result from intrinsic vulnerability of parvalbumin (PV) interneurons, rather than the suspected layer II excitatory neurons. This vulnerability of entorhinal PV interneurons is specific to hAPP, as it could not be recapitulated with increased murine APP expression. However, partial replication of the findings could be seen after introduction of a murine APP chimera containing a humanized amyloid-beta sequence. Surprisingly, neurons in the Somatosensory Cortex showed no such vulnerability to adult-onset hAPP expression. hAPP-induced hyperexcitability in entorhinal cortex could be ameliorated by enhancing PV interneuron excitability in vivo. Co-expression of human Tau with hAPP decreased circuit hyperexcitability, but at the expense of increased pathological tau species. This study suggests early disease interventions targeting non-excitatory cell types may protect regions with early vulnerability to pathological symptoms of Alzheimer's Disease and downstream cognitive decline.
Collapse
|
31
|
Trumpff C, Monzel AS, Sandi C, Menon V, Klein HU, Fujita M, Lee A, Petyuk VA, Hurst C, Duong DM, Seyfried NT, Wingo AP, Wingo TS, Wang Y, Thambisetty M, Ferrucci L, Bennett DA, De Jager PL, Picard M. Psychosocial experiences are associated with human brain mitochondrial biology. Proc Natl Acad Sci U S A 2024; 121:e2317673121. [PMID: 38889126 PMCID: PMC11228499 DOI: 10.1073/pnas.2317673121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
Psychosocial experiences affect brain health and aging trajectories, but the molecular pathways underlying these associations remain unclear. Normal brain function relies on energy transformation by mitochondria oxidative phosphorylation (OxPhos). Two main lines of evidence position mitochondria both as targets and drivers of psychosocial experiences. On the one hand, chronic stress exposure and mood states may alter multiple aspects of mitochondrial biology; on the other hand, functional variations in mitochondrial OxPhos capacity may alter social behavior, stress reactivity, and mood. But are psychosocial exposures and subjective experiences linked to mitochondrial biology in the human brain? By combining longitudinal antemortem assessments of psychosocial factors with postmortem brain (dorsolateral prefrontal cortex) proteomics in older adults, we find that higher well-being is linked to greater abundance of the mitochondrial OxPhos machinery, whereas higher negative mood is linked to lower OxPhos protein content. Combined, positive and negative psychosocial factors explained 18 to 25% of the variance in the abundance of OxPhos complex I, the primary biochemical entry point that energizes brain mitochondria. Moreover, interrogating mitochondrial psychobiological associations in specific neuronal and nonneuronal brain cells with single-nucleus RNA sequencing (RNA-seq) revealed strong cell-type-specific associations for positive psychosocial experiences and mitochondria in glia but opposite associations in neurons. As a result, these "mind-mitochondria" associations were masked in bulk RNA-seq, highlighting the likely underestimation of true psychobiological effect sizes in bulk brain tissues. Thus, self-reported psychosocial experiences are linked to human brain mitochondrial phenotypes.
Collapse
Affiliation(s)
- Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Hans-Ulrich Klein
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Masashi Fujita
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Annie Lee
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Cheyenne Hurst
- Department of Biochemistry, Emory University, Atlanta, GA 30329
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, GA 30329
| | | | - Aliza P Wingo
- Department of Neurology and Human Genetics, School of Medicine, Emory University, Atlanta, GA 30329
| | - Thomas S Wingo
- Department of Neurology and Human Genetics, School of Medicine, Emory University, Atlanta, GA 30329
| | - Yanling Wang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Philip L De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, NY 10032
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY 10032
| |
Collapse
|
32
|
Shen N, Gao G, Lu X, Jin J, Lin L, Qian M, Qin Y. Comprehensive analysis of the immune implication of EPHX4 gene in laryngeal squamous cell carcinoma. Braz J Otorhinolaryngol 2024; 90:101411. [PMID: 38663041 PMCID: PMC11058101 DOI: 10.1016/j.bjorl.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVES The role of Epoxide Hydrolase-4 (EPHX4), a member of epoxide hydrolase family, has not been investigated in cancer. The purpose of this article is to explore the application value of EPHX4 in laryngeal cancer and its relationship with immune infiltration. METHODS We observed that EPHX4 expression and its survival assays in laryngeal cancer specimens based on The Cancer Genome Atlas (TCGA) cohorts. We also analyzed the correlation between immune cell infiltration levels and EPHX4 gene copy number in laryngeal cancer. Finally, we conducted in vitro assay to evaluate the functions of EPHX4 in laryngeal cancer cell line. RESULTS EPHX4 is highly expressed in laryngeal cancer specimens and has a poor prognosis. EPHX4 related immune cell analysis showed that it participated in NK Natural killer cell mediated cytotoxicity. Finally, Cell experiments indicate that EPHX4 could promote laryngeal cancer cell line proliferation, colony formation and invasion. CONCLUSIONS Our research results suggest that EPHX4 may be a potential immunotherapy target for laryngeal cancer. The nominated immune signature is a helpful and promising prognostic indicator in laryngeal cancer. LEVELS OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Nimei Shen
- The Second Affiliated Hospital of Nantong University, Jiangsu, China
| | - Gang Gao
- The Second Affiliated Hospital of Nantong University, Jiangsu, China
| | - Xinhong Lu
- The Second Affiliated Hospital of Nantong University, Jiangsu, China
| | - Jiaxin Jin
- The Second Affiliated Hospital of Nantong University, Jiangsu, China
| | - Liwei Lin
- The Second Affiliated Hospital of Nantong University, Jiangsu, China
| | - Maohua Qian
- The Second Affiliated Hospital of Nantong University, Jiangsu, China
| | - Yang Qin
- The Second Affiliated Hospital of Nantong University, Jiangsu, China.
| |
Collapse
|
33
|
Yusri K, Kumar S, Fong S, Gruber J, Sorrentino V. Towards Healthy Longevity: Comprehensive Insights from Molecular Targets and Biomarkers to Biological Clocks. Int J Mol Sci 2024; 25:6793. [PMID: 38928497 PMCID: PMC11203944 DOI: 10.3390/ijms25126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.
Collapse
Affiliation(s)
- Khalishah Yusri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sanjay Kumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sheng Fong
- Department of Geriatric Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Clinical and Translational Sciences PhD Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Vincenzo Sorrentino
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Neuroscience Cellular & Molecular Mechanisms, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
34
|
Knight HM, Demirbugen Öz M, PerezGrovas-Saltijeral A. Dysregulation of RNA modification systems in clinical populations with neurocognitive disorders. Neural Regen Res 2024; 19:1256-1261. [PMID: 37905873 PMCID: PMC11467953 DOI: 10.4103/1673-5374.385858] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms. Methylation of N6 adenosine (m6A) and C5 cytosine (m5C) bases occur on mRNAs, tRNA, mt-tRNA, and rRNA species as well as non-coding RNAs. With emerging knowledge of RNA binding proteins that act as writer, reader, and eraser effector proteins, comes a new understanding of physiological processes controlled by these systems. Such processes when spatiotemporally disrupted within cellular nanodomains in highly specialized tissues such as the brain, give rise to different forms of disease. In this review, we discuss accumulating evidence that changes in the m6A and m5C methylation systems contribute to neurocognitive disorders. Early studies first identified mutations within FMR1 to cause intellectual disability Fragile X syndromes several years before FMR1 was identified as an m6A RNA reader protein. Subsequently, familial mutations within the m6A writer gene METTL5, m5C writer genes NSUN2, NSUN3, NSUN5, and NSUN6, as well as THOC2 and THOC6 that form a protein complex with the m5C reader protein ALYREF, were recognized to cause intellectual development disorders. Similarly, differences in expression of the m5C writer and reader effector proteins, NSUN6, NSUN7, and ALYREF in brain tissue are indicated in individuals with Alzheimer's disease, individuals with a high neuropathological load or have suffered traumatic brain injury. Likewise, an abundance of m6A reader and anti-reader proteins are reported to change across brain regions in Lewy bodies diseases, Alzheimer's disease, and individuals with high cognitive reserve. m6A-modified RNAs are also reported significantly more abundant in dementia with Lewy bodies brain tissue but significantly reduced in Parkinson's disease tissue, whilst modified RNAs are misplaced within diseased cells, particularly where synapses are located. In parahippocampal brain tissue, m6A modification is enriched in transcripts associated with psychiatric disorders including conditions with clear cognitive deficits. These findings indicate a diverse set of molecular mechanisms are influenced by RNA methylation systems that can cause neuronal and synaptic dysfunction underlying neurocognitive disorders. Targeting these RNA modification systems brings new prospects for neural regenerative therapies.
Collapse
Affiliation(s)
- Helen M. Knight
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Merve Demirbugen Öz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | |
Collapse
|
35
|
Oveisgharan S, Yu L, de Paiva Lopes K, Petyuk VA, Tasaki S, Vialle R, Menon V, Wang Y, De Jager PL, Schneider JA, Bennett DA. G-protein coupled estrogen receptor 1, amyloid-β, and tau tangles in older adults. Commun Biol 2024; 7:569. [PMID: 38750228 PMCID: PMC11096330 DOI: 10.1038/s42003-024-06272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Accumulation of amyloid-β (Aβ) and tau tangles are hallmarks of Alzheimer's disease. Aβ is extracellular while tau tangles are typically intracellular, and it is unknown how these two proteinopathies are connected. Here, we use data of 1206 elders and test that RNA expression levels of GPER1, a transmembrane protein, modify the association of Aβ with tau tangles. GPER1 RNA expression is related to more tau tangles (p = 0.001). Moreover, GPER1 expression modifies the association of immunohistochemistry-derived Aβ load with tau tangles (p = 0.044). Similarly, GPER1 expression modifies the association between Aβ proteoforms and tau tangles: total Aβ protein (p = 0.030) and Aβ38 peptide (p = 0.002). Using single nuclei RNA-seq indicates that GPER1 RNA expression in astrocytes modifies the relation of Aβ load with tau tangles (p = 0.002), but not GPER1 in excitatory neurons or endothelial cells. We conclude that GPER1 may be a link between Aβ and tau tangles driven mainly by astrocytic GPER1 expression.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Katia de Paiva Lopes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ricardo Vialle
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Vilas Menon
- Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
36
|
Poole VN, Ridwan AR, Arfanakis K, Dawe RJ, Seyfried NT, De Jager PL, Schneider JA, Leurgans SE, Yu L, Bennett DA. Associations of brain morphology with cortical proteins of cognitive resilience. Neurobiol Aging 2024; 137:1-7. [PMID: 38394722 PMCID: PMC10949968 DOI: 10.1016/j.neurobiolaging.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
In a recent proteome-wide study, we identified several candidate proteins for drug discovery whose cortical abundance was associated with cognitive resilience to late-life brain pathologies. This study examines the extent to which these proteins are associated with the brain structures of cognitive resilience in decedents from the Religious Orders Study and Memory and Aging Project. Six proteins were associated with brain morphometric characteristics related to higher resilience (i.e., larger anterior and medial temporal lobe volumes), and five were associated with morphometric characteristics related to lower resilience (i.e., enlarged ventricles). Two synaptic proteins, RPH3A and CPLX1, remained inversely associated with the lower resilience signature, after further controlling for 10 neuropathologic indices. These findings suggest preserved brain structure in periventricular regions as a potential mechanism by which RPH3A and CPLX1 are associated with cognitive resilience. Further work is needed to elucidate other mechanisms by which targeting these proteins can circumvent the effects of pathology on individuals at risk for cognitive decline.
Collapse
Affiliation(s)
- Victoria N Poole
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Abdur R Ridwan
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Robert J Dawe
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | | | - Philip L De Jager
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA; Cell Circuits Program, Broad Institute, Cambridge, MA, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Family and Preventive Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
37
|
Buchman AS, Yu L, Klein HU, Zammit AR, Oveisgharan S, Nag S, Tickotsky N, Levy H, Seyfried N, Morgenstern D, Levin Y, Schnaider Beeri M, Bennett DA. Glycoproteome-Wide Discovery of Cortical Glycoproteins That May Provide Cognitive Resilience in Older Adults. Neurology 2024; 102:e209223. [PMID: 38502899 PMCID: PMC11770689 DOI: 10.1212/wnl.0000000000209223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/05/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Molecular omics studies have identified proteins related to cognitive resilience but unrelated to Alzheimer disease and Alzheimer disease-related dementia (AD/ADRD) pathologies. Posttranslational modifications of proteins with glycans can modify protein function. In this study, we identified glycopeptiforms associated with cognitive resilience. METHODS We studied brains from adults with annual cognitive testing with postmortem indices of 10 AD/ADRD pathologies and proteome-wide data from dorsal lateral prefrontal cortex (DLPFC). We quantified 11, 012 glycopeptiforms from DLPFC using liquid chromatography with tandem mass spectrometry. We used linear mixed-effects models to identify glycopeptiforms associated with cognitive decline correcting for multiple comparisons (p < 5 × 10-6). Then, we regressed out the effect of AD/ADRD pathologies to identify glycopeptiforms that may provide cognitive resilience. RESULTS We studied 366 brains, average age at death 89 years, and 70% female with no cognitive impairment = 152, mild cognitive impairment = 93, and AD = 121 cognitive status at death. In models adjusting for age, sex and education, 11 glycopeptiforms were associated with cognitive decline. In further modeling, 8 of these glycopeptiforms remained associated with cognitive decline after adjusting for AD/ADRD pathologies: NPTX2a (Est., 0.030, SE, 0.005, p = 1 × 10-4); NPTX2b (Est.,0.019, SE, 0.005, p = 2 × 10-4) NECTIN1(Est., 0.029, SE, 0.009, p = 9 × 10-4), NPTX2c (Est., 0.015, SE, 0.004, p = 9 × 10-4), HSPB1 (Est., -0.021, SE, 0.006, p = 2 × 10-4), PLTP (Est., -0.027, SE, 0.009, p = 4.2 × 10-3), NAGK (Est., -0.027, SE, 0.008, p = 1.4 × 10-3), and VAT1 (Est., -0.020, SE, 0.006, p = 1.1 × 10-3). Higher levels of 4 resilience glycopeptiforms derived through glycosylation were associated with slower decline and higher levels of 4 derived through glycation were related to faster decline. Together, these 8 glycopeptiforms accounted for an additional 6% of cognitive decline over the 33% accounted for the 10 brain pathologies and demographics. All 8 resilience glycopeptiforms remained associated with cognitive decline after adjustments for the expression level of their corresponding protein. Exploratory gene ontology suggested that molecular mechanisms of glycopeptiforms associated with cognitive decline may involve metabolic pathways including pyruvate and NADH pathways and highlighted the importance of molecular mechanisms involved in glucose metabolism. DISCUSSION Glycopeptiforms in aging brains may provide cognitive resilience. Targeting these glycopeptiforms may lead to therapies that maintain cognition through resilience.
Collapse
Affiliation(s)
- Aron S Buchman
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Hans-Ulrich Klein
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Andrea R Zammit
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Shahram Oveisgharan
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Sukriti Nag
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Nili Tickotsky
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Hila Levy
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Nicholas Seyfried
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - David Morgenstern
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Yishai Levin
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Michal Schnaider Beeri
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| |
Collapse
|
38
|
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer's Disease: current definitions and cellular and molecular mechanisms. Mol Neurodegener 2024; 19:33. [PMID: 38589893 PMCID: PMC11003087 DOI: 10.1186/s13024-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Kumar P, Goettemoeller AM, Espinosa-Garcia C, Tobin BR, Tfaily A, Nelson RS, Natu A, Dammer EB, Santiago JV, Malepati S, Cheng L, Xiao H, Duong DD, Seyfried NT, Wood LB, Rowan MJM, Rangaraju S. Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer's pathology. Nat Commun 2024; 15:2823. [PMID: 38561349 PMCID: PMC10985119 DOI: 10.1038/s41467-024-47028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Dysfunction in fast-spiking parvalbumin interneurons (PV-INs) may represent an early pathophysiological perturbation in Alzheimer's Disease (AD). Defining early proteomic alterations in PV-INs can provide key biological and translationally-relevant insights. We used cell-type-specific in-vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state PV-IN proteomes. PV-IN proteomic signatures include high metabolic and translational activity, with over-representation of AD-risk and cognitive resilience-related proteins. In bulk proteomes, PV-IN proteins were associated with cognitive decline in humans, and with progressive neuropathology in humans and the 5xFAD mouse model of Aβ pathology. PV-IN CIBOP in early stages of Aβ pathology revealed signatures of increased mitochondria and metabolism, synaptic and cytoskeletal disruption and decreased mTOR signaling, not apparent in whole-brain proteomes. Furthermore, we demonstrated pre-synaptic defects in PV-to-excitatory neurotransmission, validating our proteomic findings. Overall, in this study we present native-state proteomes of PV-INs, revealing molecular insights into their unique roles in cognitive resiliency and AD pathogenesis.
Collapse
Affiliation(s)
- Prateek Kumar
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Annie M Goettemoeller
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, USA
| | - Claudia Espinosa-Garcia
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Brendan R Tobin
- Georgia W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Ali Tfaily
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ruth S Nelson
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Aditya Natu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Juliet V Santiago
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, USA
| | - Sneha Malepati
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lihong Cheng
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
| | - Hailian Xiao
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
| | - Duc D Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Levi B Wood
- Georgia W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30322, USA
- School of Chemical and Biological Engineering, GeoInsrgia titute of Technology, Atlanta, GA, 30322, USA
| | - Matthew J M Rowan
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, USA.
- 3 Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
40
|
Morgan GR, Carlyle BC. Interrogation of the human cortical peptidome uncovers cell-type specific signatures of cognitive resilience against Alzheimer's disease. Sci Rep 2024; 14:7161. [PMID: 38531951 DOI: 10.1038/s41598-024-57104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Alzheimer's disease (AD) is characterised by age-related cognitive decline. Brain accumulation of amyloid-β plaques and tau tangles is required for a neuropathological AD diagnosis, yet up to one-third of AD-pathology positive community-dwelling elderly adults experience no symptoms of cognitive decline during life. Conversely, some exhibit chronic cognitive impairment in absence of measurable neuropathology, prompting interest into cognitive resilience-retained cognition despite significant neuropathology-and cognitive frailty-impaired cognition despite low neuropathology. Synapse loss is widespread within the AD-dementia, but not AD-resilient, brain. Recent evidence points towards critical roles for synaptic proteins, such as neurosecretory VGF, in cognitive resilience. However, VGF and related proteins often signal as peptide derivatives. Here, nontryptic peptidomic mass spectrometry was performed on 102 post-mortem cortical samples from individuals across cognitive and neuropathological spectra. Neuropeptide signalling proteoforms derived from VGF, somatostatin (SST) and protachykinin-1 (TAC1) showed higher abundance in AD-resilient than AD-dementia brain, whereas signalling proteoforms of cholecystokinin (CCK) and chromogranin (CHG) A/B and multiple cytoskeletal molecules were enriched in frail vs control brain. Integrating our data with publicly available single nuclear RNA sequencing (snRNA-seq) showed enrichment of cognition-related genes in defined cell-types with established links to cognitive resilience, including SST interneurons and excitatory intratelencephalic cells.
Collapse
Affiliation(s)
- G R Morgan
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3QU, UK
| | - B C Carlyle
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
41
|
Shantaraman A, Dammer EB, Ugochukwu O, Duong DM, Yin L, Carter EK, Gearing M, Chen-Plotkin A, Lee EB, Trojanowski JQ, Bennett DA, Lah JJ, Levey AI, Seyfried NT, Higginbotham L. Network Proteomics of the Lewy Body Dementia Brain Reveals Presynaptic Signatures Distinct from Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576728. [PMID: 38328211 PMCID: PMC10849701 DOI: 10.1101/2024.01.23.576728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Lewy body dementia (LBD), a class of disorders comprising Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), features substantial clinical and pathological overlap with Alzheimer's disease (AD). The identification of biomarkers unique to LBD pathophysiology could meaningfully advance its diagnosis, monitoring, and treatment. Using quantitative mass spectrometry (MS), we measured over 9,000 proteins across 138 dorsolateral prefrontal cortex (DLPFC) tissues from a University of Pennsylvania autopsy collection comprising control, Parkinson's disease (PD), PDD, and DLB diagnoses. We then analyzed co-expression network protein alterations in those with LBD, validated these disease signatures in two independent LBD datasets, and compared these findings to those observed in network analyses of AD cases. The LBD network revealed numerous groups or "modules" of co-expressed proteins significantly altered in PDD and DLB, representing synaptic, metabolic, and inflammatory pathophysiology. A comparison of validated LBD signatures to those of AD identified distinct differences between the two diseases. Notably, synuclein-associated presynaptic modules were elevated in LBD but decreased in AD relative to controls. We also found that glial-associated matrisome signatures consistently elevated in AD were more variably altered in LBD, ultimately stratifying those LBD cases with low versus high burdens of concurrent beta-amyloid deposition. In conclusion, unbiased network proteomic analysis revealed diverse pathophysiological changes in the LBD frontal cortex distinct from alterations in AD. These results highlight the LBD brain network proteome as a promising source of biomarkers that could enhance clinical recognition and management.
Collapse
Affiliation(s)
- Anantharaman Shantaraman
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B. Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Obiadada Ugochukwu
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M. Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - E. Kathleen Carter
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Marla Gearing
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - James J. Lah
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I. Levey
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lenora Higginbotham
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
42
|
Zammit AR, Bennett DA, Buchman AS. From theory to practice: translating the concept of cognitive resilience to novel therapeutic targets that maintain cognition in aging adults. Front Aging Neurosci 2024; 15:1303912. [PMID: 38283067 PMCID: PMC10811007 DOI: 10.3389/fnagi.2023.1303912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024] Open
Abstract
While the concept of cognitive resilience is well-established it has not been defined in a way that can be measured. This has been an impediment to studying its underlying biology and to developing instruments for its clinical assessment. This perspective highlights recent work that has quantified the expression of cortical proteins associated with cognitive resilience, thus facilitating studies of its complex underlying biology and the full range of its clinical effects in aging adults. These initial studies provide empirical support for the conceptualization of resilience as a continuum. Like other conventional risk factors, some individuals manifest higher-than-average cognitive resilience and other individuals manifest lower-than-average cognitive resilience. These novel approaches for advancing studies of cognitive resilience can be generalized to other aging phenotypes and can set the stage for the development of clinical tools that might have the potential to measure other mechanisms of resilience in aging adults. These advances also have the potential to catalyze a complementary therapeutic approach that focuses on augmenting resilience via lifestyle changes or therapies targeting its underlying molecular mechanisms to maintain cognition and brain health even in the presence of untreatable stressors like brain pathologies that accumulate in aging adults.
Collapse
Affiliation(s)
- Andrea R. Zammit
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
43
|
Zammit AR, Klein HU, Yu L, Levey AI, Seyfried NT, Wingo AP, Wingo TS, Schneider JA, Bennett DA, Buchman AS. Proteome-wide Analyses Identified Cortical Proteins Associated With Resilience for Varied Cognitive Abilities. Neurology 2024; 102:e207816. [PMID: 38165375 PMCID: PMC10834136 DOI: 10.1212/wnl.0000000000207816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Prior work suggests that cognitive resilience may contribute to the heterogeneity of cognitive decline. This study examined whether distinct cortical proteins provide resilience for different cognitive abilities. METHODS Participants were from the Religious Orders Study or the Rush Memory and Aging Project who had undergone annual assessments of 5 cognitive abilities and postmortem assessment of 9 Alzheimer disease and related dementia (ADRD) pathologies. Proteome-wide examination of the dorsolateral prefrontal cortex using tandem mass tag and liquid chromatography-mass spectrometry yielded 8,425 high-abundance proteins. We applied linear mixed-effect models to quantify residual cognitive change (cognitive resilience) of 5 cognitive abilities by regressing out cognitive decline related to age, sex, education, and indices of ADRD pathologies. Then we added terms for each of the individual proteins to identify cognitive resilience proteins associated with the different cognitive abilities. RESULTS We included 604 decedents (69% female; mean age at death = 89 years) with proteomic data. A total of 47 cortical proteins that provide cognitive resilience were identified: 22 were associated with specific cognitive abilities, and 25 were common to at least 2 cognitive abilities. NRN1 was the only protein that was associated with more than 2 cognitive abilities (semantic memory: estimate = 0.020, SE = 0.004, p = 2.2 × 10-6; episodic memory: estimate = 0.029, SE = 0.004, p = 5.8 × 10-1; and working memory: estimate = 0.021, SE = 0.004, p = 1.2 × 10-7). Exploratory gene ontology analysis suggested that among top molecular pathways, mitochondrial translation was a molecular mechanism providing resilience in episodic memory, while nuclear-transcribed messenger RNA catabolic processes provided resilience in working memory. DISCUSSION This study identified cortical proteins associated with various cognitive abilities. Differential associations across abilities may reflect distinct underlying biological pathways. These data provide potential high-value targets for further mechanistic and drug discovery studies to develop targeted treatments to prevent loss of cognition.
Collapse
Affiliation(s)
- Andrea R Zammit
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Hans-Ulrich Klein
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Allan I Levey
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Nicholas T Seyfried
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Aliza P Wingo
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Thomas S Wingo
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| | - Aron S Buchman
- From the Rush Alzheimer's Disease Center (A.R.Z., L.Y., J.A.S., D.A.B., A.S.B.), and Departments of Psychiatry and Behavioral Sciences (A.R.Z.), Neurological Sciences (L.Y., J.A.S., D.A.B., A.S.B.), and Pathology (J.A.S.), Rush University Medical Center, Chicago, IL; Department of Neurology (H.-U.K.), Columbia University Medical Center, New York, NY; Departments of Neurology (A.I.L., N.T.S., T.S.W.) Psychiatry (A.P.W.), and Human Genetics (T.S.W.), and the Goizueta Alzheimer's Disease Center (T.S.W.), Emory University School of Medicine, Atlanta, GA; Department of Biochemistry (N.T.S.), Emory University, Atlanta, GA; and Division of Mental Health (A.P.W.), Atlanta VA Medical Center, Decatur, GA
| |
Collapse
|
44
|
Halder A, Drummond E. Strategies for translating proteomics discoveries into drug discovery for dementia. Neural Regen Res 2024; 19:132-139. [PMID: 37488854 PMCID: PMC10479849 DOI: 10.4103/1673-5374.373681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 07/26/2023] Open
Abstract
Tauopathies, diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of frontotemporal dementia, make up the vast majority of dementia cases. Although there have been recent developments in tauopathy biomarkers and disease-modifying treatments, ongoing progress is required to ensure these are effective, economical, and accessible for the globally ageing population. As such, continued identification of new potential drug targets and biomarkers is critical. "Big data" studies, such as proteomics, can generate information on thousands of possible new targets for dementia diagnostics and therapeutics, but currently remain underutilized due to the lack of a clear process by which targets are selected for future drug development. In this review, we discuss current tauopathy biomarkers and therapeutics, and highlight areas in need of improvement, particularly when addressing the needs of frail, comorbid and cognitively impaired populations. We highlight biomarkers which have been developed from proteomic data, and outline possible future directions in this field. We propose new criteria by which potential targets in proteomics studies can be objectively ranked as favorable for drug development, and demonstrate its application to our group's recent tau interactome dataset as an example.
Collapse
Affiliation(s)
- Aditi Halder
- School of Medical Sciences and Brain & Mind Center, University of Sydney, NSW, Sydney, Australia
- Department of Aged Care, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Eleanor Drummond
- School of Medical Sciences and Brain & Mind Center, University of Sydney, NSW, Sydney, Australia
| |
Collapse
|
45
|
Lopes KDP, Yu L, Shen X, Qiu Y, Tasaki S, Iatrou A, Beeri MS, Seyfried NT, Menon V, Wang Y, Schneider JA, Cantor H, Bennett DA. Associations of cortical SPP1 and ITGAX with cognition and common neuropathologies in older adults. Alzheimers Dement 2024; 20:525-537. [PMID: 37727065 PMCID: PMC10841499 DOI: 10.1002/alz.13474] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION The secreted phosphoprotein 1 (SPP1) gene expressed by CD11c+ cells is known to be associated with microglia activation and neuroinflammatory diseases. As most studies rely on mouse models, we investigated these genes and proteins in the cortical brain tissue of older adults and their role in Alzheimer's disease (AD) and related disorders. METHODS We leveraged protein measurements, single-nuclei, and RNASeq data from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP) of over 1200 samples for association analysis. RESULTS Expression of SPP1 and its encoded protein osteopontin were associated with faster cognitive decline and greater odds of common neuropathologies. At single-cell resolution, integrin subunit alpha X (ITGAX) was highly expressed in microglia, where specific subpopulations were associated with AD and cerebral amyloid angiopathy. DISCUSSION The study provides evidence of SPP1 and ITGAX association with cognitive decline and common neuropathologies identifying a microglial subset associated with disease.
Collapse
Affiliation(s)
- Katia de Paiva Lopes
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Lei Yu
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Xianli Shen
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Yiguo Qiu
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
- Chongqing International Institute for ImmunologyChongqingChina
| | - Shinya Tasaki
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Artemis Iatrou
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| | - Michal Schnaider Beeri
- Joseph Sagol Neuroscience Center, Sheba Medical CenterRamat GanIsrael
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- The Herbert and Jackeline Krieger Klein Alzheimer's Research CenterRutgers Biomedical and Health Sciences, Rutgers UniversityNew JerseyUSA
| | - Nicholas T. Seyfried
- Goizueta Alzheimer's Disease Research Center, Department of Neurology and Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Vilas Menon
- Center for Translational and Computational NeuroimmunologyDepartment of Neurology & Taub Institute for Research on Alzheimer's disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Yanling Wang
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Julie A. Schneider
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
| | - Harvey Cantor
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
46
|
Levites Y, Dammer EB, Ran Y, Tsering W, Duong D, Abreha M, Gadhavi J, Lolo K, Trejo-Lopez J, Phillips JL, Iturbe A, Erqiuzi A, Moore BD, Ryu D, Natu A, Dillon KD, Torrellas J, Moran C, Ladd TB, Afroz KF, Islam T, Jagirdar J, Funk CC, Robinson M, Borchelt DR, Ertekin-Taner N, Kelly JW, Heppner FL, Johnson EC, McFarland K, Levey AL, Prokop S, Seyfried NT, Golde TE. Aβ Amyloid Scaffolds the Accumulation of Matrisome and Additional Proteins in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.568318. [PMID: 38076912 PMCID: PMC10705437 DOI: 10.1101/2023.11.29.568318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
We report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof. Overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), in CRND8 mice brains leads to increased accumulation of A β ; in plaques and in CAA; further, recombinant MDK and PTN enhance A β ; aggregation into amyloid. Multiple M42 proteins, annotated as heparan sulfate binding proteins, bind to fibrillar A β 42 and a non-human amyloid fibril in vitro. Supporting this binding data, MDK and PTN co-accumulate with transthyretin (TTR) amyloid in the heart and islet amyloid polypeptide (IAPP) amyloid in the pancreas. Our findings establish several critical insights. Proteomic changes in modules observed in human AD brains define an A β ; amyloid responsome that is well conserved from mouse model to human. Further, distinct amyloid structures may serve as scaffolds, facilitating the co-accumulation of proteins with signaling functions. We hypothesize that this co-accumulation may contribute to downstream pathological sequalae. Overall, this contextualized understanding of proteomic changes and their interplay with amyloid deposition provides valuable insights into the complexity of AD pathogenesis and potential biomarkers and therapeutic targets.
Collapse
|
47
|
Oh HSH, Rutledge J, Nachun D, Pálovics R, Abiose O, Moran-Losada P, Channappa D, Urey DY, Kim K, Sung YJ, Wang L, Timsina J, Western D, Liu M, Kohlfeld P, Budde J, Wilson EN, Guen Y, Maurer TM, Haney M, Yang AC, He Z, Greicius MD, Andreasson KI, Sathyan S, Weiss EF, Milman S, Barzilai N, Cruchaga C, Wagner AD, Mormino E, Lehallier B, Henderson VW, Longo FM, Montgomery SB, Wyss-Coray T. Organ aging signatures in the plasma proteome track health and disease. Nature 2023; 624:164-172. [PMID: 38057571 PMCID: PMC10700136 DOI: 10.1038/s41586-023-06802-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Animal studies show aging varies between individuals as well as between organs within an individual1-4, but whether this is true in humans and its effect on age-related diseases is unknown. We utilized levels of human blood plasma proteins originating from specific organs to measure organ-specific aging differences in living individuals. Using machine learning models, we analysed aging in 11 major organs and estimated organ age reproducibly in five independent cohorts encompassing 5,676 adults across the human lifespan. We discovered nearly 20% of the population show strongly accelerated age in one organ and 1.7% are multi-organ agers. Accelerated organ aging confers 20-50% higher mortality risk, and organ-specific diseases relate to faster aging of those organs. We find individuals with accelerated heart aging have a 250% increased heart failure risk and accelerated brain and vascular aging predict Alzheimer's disease (AD) progression independently from and as strongly as plasma pTau-181 (ref. 5), the current best blood-based biomarker for AD. Our models link vascular calcification, extracellular matrix alterations and synaptic protein shedding to early cognitive decline. We introduce a simple and interpretable method to study organ aging using plasma proteomics data, predicting diseases and aging effects.
Collapse
Affiliation(s)
- Hamilton Se-Hwee Oh
- Graduate Program in Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jarod Rutledge
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Graduate Program in Genetics, Stanford University, Stanford, CA, USA
| | - Daniel Nachun
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Róbert Pálovics
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Olamide Abiose
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia Moran-Losada
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Divya Channappa
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Deniz Yagmur Urey
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University School of Engineering, Stanford, CA, USA
| | - Kate Kim
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dan Western
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Pat Kohlfeld
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John Budde
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Edward N Wilson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yann Guen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Taylor M Maurer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Haney
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew C Yang
- Departments of Neurology and Anatomy, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin I Andreasson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Sanish Sathyan
- Departments of Medicine and Genetics, Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Erica F Weiss
- Department of Neurology, Montefiore Medical Center, New York, NY, USA
| | - Sofiya Milman
- Departments of Medicine and Genetics, Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Nir Barzilai
- Departments of Medicine and Genetics, Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony D Wagner
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Victor W Henderson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Frank M Longo
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
48
|
Goettemoeller AM, Banks E, McCann KE, Kumar P, South K, Olah VJ, Ramelow CC, Duong DM, Seyfried NT, Rangaraju S, Weinshenker D, Rowan MJM. Entorhinal cortex vulnerability to human APP expression promotes hyperexcitability and tau pathology. RESEARCH SQUARE 2023:rs.3.rs-3370607. [PMID: 37987015 PMCID: PMC10659529 DOI: 10.21203/rs.3.rs-3370607/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Preventative treatment for Alzheimer's Disease is of dire importance, and yet, cellular mechanisms underlying early regional vulnerability in Alzheimer's Disease remain unknown. In human patients with Alzheimer's Disease, one of the earliest observed pathophysiological correlates to cognitive decline is hyperexcitability1. In mouse models, early hyperexcitability has been shown in the entorhinal cortex, the first cortical region impacted by Alzheimer's Disease2-4. The origin of hyperexcitability in early-stage disease and why it preferentially emerges in specific regions is unclear. Using cortical-region and cell-type- specific proteomics and patch-clamp electrophysiology, we uncovered differential susceptibility to human-specific amyloid precursor protein (hAPP) in a model of sporadic Alzheimer's. Unexpectedly, our findings reveal that early entorhinal hyperexcitability may result from intrinsic vulnerability of parvalbumin interneurons, rather than the suspected layer II excitatory neurons. This vulnerability of entorhinal PV interneurons is specific to hAPP, as it could not be recapitulated with increased murine APP expression. Furthermore, the Somatosensory Cortex showed no such vulnerability to adult-onset hAPP expression, likely resulting from PV-interneuron variability between the two regions based on physiological and proteomic evaluations. Interestingly, entorhinal hAPP-induced hyperexcitability was quelled by co-expression of human Tau at the expense of increased pathological tau species. This study suggests early disease interventions targeting non-excitatory cell types may protect regions with early vulnerability to pathological symptoms of Alzheimer's Disease and downstream cognitive decline.
Collapse
Affiliation(s)
- Annie M Goettemoeller
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322
- GDBBS Graduate Program, Laney Graduate School, Emory University
| | - Emmie Banks
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322
- GDBBS Graduate Program, Laney Graduate School, Emory University
| | | | - Prateek Kumar
- Department of Neurology, Emory University School of Medicine
| | - Kelly South
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322
- GDBBS Graduate Program, Laney Graduate School, Emory University
| | - Viktor J Olah
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322
| | - Christina C Ramelow
- Department of Neurology, Emory University School of Medicine
- GDBBS Graduate Program, Laney Graduate School, Emory University
| | - Duc M Duong
- Department of Neurology, Emory University School of Medicine
- Department of Biochemistry, Emory University
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine
- Department of Biochemistry, Emory University
- Center for Neurodegenerative Disease, Emory University School of Medicine
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine
- GDBBS Graduate Program, Laney Graduate School, Emory University
| | | | - Matthew JM Rowan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322
- Center for Neurodegenerative Disease, Emory University School of Medicine
| |
Collapse
|
49
|
Hurst CD, Dunn AR, Dammer EB, Duong DM, Shapley SM, Seyfried NT, Kaczorowski CC, Johnson ECB. Genetic background influences the 5XFAD Alzheimer's disease mouse model brain proteome. Front Aging Neurosci 2023; 15:1239116. [PMID: 37901791 PMCID: PMC10602695 DOI: 10.3389/fnagi.2023.1239116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
There is an urgent need to improve the translational validity of Alzheimer's disease (AD) mouse models. Introducing genetic background diversity in AD mouse models has been proposed as a way to increase validity and enable the discovery of previously uncharacterized genetic contributions to AD susceptibility or resilience. However, the extent to which genetic background influences the mouse brain proteome and its perturbation in AD mouse models is unknown. In this study, we crossed the 5XFAD AD mouse model on a C57BL/6J (B6) inbred background with the DBA/2J (D2) inbred background and analyzed the effects of genetic background variation on the brain proteome in F1 progeny. Both genetic background and 5XFAD transgene insertion strongly affected protein variance in the hippocampus and cortex (n = 3,368 proteins). Protein co-expression network analysis identified 16 modules of highly co-expressed proteins common across the hippocampus and cortex in 5XFAD and non-transgenic mice. Among the modules strongly influenced by genetic background were those related to small molecule metabolism and ion transport. Modules strongly influenced by the 5XFAD transgene were related to lysosome/stress responses and neuronal synapse/signaling. The modules with the strongest relationship to human disease-neuronal synapse/signaling and lysosome/stress response-were not significantly influenced by genetic background. However, other modules in 5XFAD that were related to human disease, such as GABA synaptic signaling and mitochondrial membrane modules, were influenced by genetic background. Most disease-related modules were more strongly correlated with AD genotype in the hippocampus compared with the cortex. Our findings suggest that the genetic diversity introduced by crossing B6 and D2 inbred backgrounds influences proteomic changes related to disease in the 5XFAD model, and that proteomic analysis of other genetic backgrounds in transgenic and knock-in AD mouse models is warranted to capture the full range of molecular heterogeneity in genetically diverse models of AD.
Collapse
Affiliation(s)
- Cheyenne D. Hurst
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Amy R. Dunn
- Department of Mammalian Genetics, The Jackson Laboratory, Bar Harbor, ME, United States
| | - Eric B. Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Duc M. Duong
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Sarah M. Shapley
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Nicholas T. Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Catherine C. Kaczorowski
- Department of Mammalian Genetics, The Jackson Laboratory, Bar Harbor, ME, United States
- Department of Neurology, The University of Michigan, Ann Arbor, MI, United States
| | - Erik C. B. Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
50
|
Wang H, Dou S, Wang C, Gao W, Cheng B, Yan F. Identification and Experimental Validation of Parkinson's Disease with Major Depressive Disorder Common Genes. Mol Neurobiol 2023; 60:6092-6108. [PMID: 37418066 DOI: 10.1007/s12035-023-03451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease that affects about 10 million people worldwide. Non-motor and motor symptoms usually accompany PD. Major depressive disorder (MDD) is one of the non-motor manifestations of PD it remains unrecognized and undertreated effectively. MDD in PD has complicated pathophysiologies and remains unclear. The study aimed to explore the candidate genes and molecular mechanisms of PD with MDD. PD (GSE6613) and MDD (GSE98793) gene expression profiles were downloaded from Gene Expression Omnibus (GEO). Above all, the data of the two datasets were standardized separately, and differentially expressed genes (DEGs) were obtained by using the Limma package of R. Take the intersection of the two differential genes and remove the genes with inconsistent expression trends. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were investigated to explore the function of the common DEGs. Additionally, the construction of the protein-protein interaction (PPI) network was to search the hub genes, and then the least absolute shrinkage and selection operator (LASSO) regression was used to further identify the key genes. GSE99039 for PD and GSE201332 for MDD were performed to validate the hub genes by the violin plot and receiver operating characteristic (ROC) curve. Last but not least, immune cell dysregulation in PD was investigated by immune cell infiltration. As a result, a total of 45 common genes with the same trend. Functional analysis revealed that they were enriched in neutrophil degranulation, secretory granule membrane, and leukocyte activation. LASSO was performed on 8 candidate hub genes after CytoHubba filtered 14 node genes. Finally, AQP9, SPI1, and RPH3A were validated by GSE99039 and GSE201332. Additionally, the three genes were also detected by the qPCR in vivo model and all increased compared to the control. The co-occurrence of PD and MDD can be attributed to AQP9, SPI1, and RPH3A genes. Neutrophils and monocyte infiltration play important roles in the development of PD and MDD. Novel insights may be gained from the findings for the study of mechanisms.
Collapse
Affiliation(s)
- Huiqing Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Shanshan Dou
- College of Basic Medicine, Jining Medical University, Jining, 272067, People's Republic of China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, 272067, China
| | - Wenming Gao
- College of Basic Medicine, Jining Medical University, Jining, 272067, People's Republic of China
| | - Baohua Cheng
- College of Basic Medicine, Jining Medical University, Jining, 272067, People's Republic of China.
- Neurobiology Institute, Jining Medical University, Jining, 272067, China.
| | - Fuling Yan
- Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, People's Republic of China.
| |
Collapse
|