1
|
Vanherle S, Loix M, Miron VE, Hendriks JJA, Bogie JFJ. Lipid metabolism, remodelling and intercellular transfer in the CNS. Nat Rev Neurosci 2025; 26:214-231. [PMID: 39972160 DOI: 10.1038/s41583-025-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Lipid metabolism encompasses the catabolism and anabolism of lipids, and is fundamental for the maintenance of cellular homeostasis, particularly within the lipid-rich CNS. Increasing evidence further underscores the importance of lipid remodelling and transfer within and between glial cells and neurons as key orchestrators of CNS lipid homeostasis. In this Review, we summarize and discuss the complex landscape of processes involved in lipid metabolism, remodelling and intercellular transfer in the CNS. Highlighted are key pathways, including those mediating lipid (and lipid droplet) biogenesis and breakdown, lipid oxidation and phospholipid metabolism, as well as cell-cell lipid transfer mediated via lipoproteins, extracellular vesicles and tunnelling nanotubes. We further explore how the dysregulation of these pathways contributes to the onset and progression of neurodegenerative diseases, and examine the homeostatic and pathogenic impacts of environment, diet and lifestyle on CNS lipid metabolism.
Collapse
Affiliation(s)
- Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Veronique E Miron
- Keenan Research Centre for Biomedical Science and Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
- University MS Centre, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
2
|
Yuan Y, Yin D, Yang X, Liu D, Shan H, Luo J, Li X, Yin Y. Plasma lipidomic analysis reveals disruption of ether phosphatidylcholine biosynthesis and facilitates early detection of hepatitis B-related hepatocellular carcinoma. Lipids Health Dis 2025; 24:69. [PMID: 39994676 PMCID: PMC11849150 DOI: 10.1186/s12944-025-02475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third deadliest malignant tumor worldwide. Most patients are initially diagnosed as HCC at advanced stages and are too late for radical treatment by surgery, resulting in poor prognosis. Over 50% of the HCC patients are caused by hepatitis B virus (HBV) infection. Therefore, effective early identification of HCC in the high-risk population with HBV infection is crucial for early intervention of HCC. METHODS We employed plasma lipidomics to identify critical lipid classes associated with tumorigenesis in the high-risk population with HBV infection. Potential regulatory mechanisms are validated at multi-omic levels. A machine learning algorithm is used for feature selection and diagnostic modelling, and performance of the models is evaluated by ROC curves. RESULTS We unveiled varied profiles of plasma lipid metabolites in a cohort of 57 HBV-related HCC subjects, 57 HBV-related liver cirrhosis (LC) subjects and 61 chronic hepatitis B (CHB) subjects with matched age, sex and HBV status. We identified a correlation of the ether phosphatidylcholine (PC) synthesis with hepatocarcinogenesis in patients with HBV-related liver diseases. The diagnostic models achieved an area under ROC curve (AUC) of 0.849 for discriminating HCC from CHB and an AUC of 0.829 for discriminating HCC from LC. CONCLUSIONS We illustrate the role of ether PC in hepatocarcinogenesis upon HBV infection and provide novel effective markers for early detection of HCC in a cohort with HBV infection.
Collapse
Affiliation(s)
- Yuyao Yuan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Donghao Yin
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xuemeng Yang
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Di Liu
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xiuhui Li
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
3
|
Shirokov A, Zlatogosrkaya D, Adushkina V, Vodovozova E, Kardashevskaya K, Sultanov R, Kasyanov S, Blokhina I, Terskov A, Tzoy M, Evsyukova A, Dubrovsky A, Tuzhilkin M, Elezarova I, Dmitrenko A, Manzhaeva M, Krupnova V, Semiachkina-Glushkovskaia A, Ilyukov E, Myagkov D, Tuktarov D, Popov S, Inozemzev T, Navolokin N, Fedosov I, Semyachkina-Glushkovskaya O. Plasmalogens Improve Lymphatic Clearance of Amyloid Beta from Mouse Brain and Cognitive Functions. Int J Mol Sci 2024; 25:12552. [PMID: 39684263 DOI: 10.3390/ijms252312552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Amyloid beta (Aβ) is a neuronal metabolic product that plays an important role in maintaining brain homeostasis. Normally, intensive brain Aβ formation is accompanied by its effective lymphatic removal. However, the excessive accumulation of brain Aβ is observed with age and during the development of Alzheimer's disease (AD) leading to cognitive impairment and memory deficits. There is emerging evidence that plasmalogens (Pls), as one of the key brain lipids, may be beneficial for AD and cognitive aging. Here, we studied the effects of Pls on cognitive functions and the lymphatic clearance of Aβ from the brain of AD mice and mice of different ages. The results showed that Pls effectively reduce brain Aβ levels and facilitate learning in aged but not old mice. In AD mice, Pls improve the lymphatic clearance of Aβ that is accompanied by an increase in general motor activity and an improvement of the emotional status and learning ability. Thus, these findings suggest that Pls could be a promising candidate for the alternative or concomitant therapy of AD and age-related brain diseases to enhance the lymphatic clearance of Aβ from the brain and cognitive functions.
Collapse
Affiliation(s)
- Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Daria Zlatogosrkaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Kristina Kardashevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Ruslan Sultanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, 690041 Vladivostok, Russia
| | - Sergey Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, 690041 Vladivostok, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Maria Tzoy
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Arina Evsyukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexander Dubrovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Matvey Tuzhilkin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Inna Elezarova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | | | - Egor Ilyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Dmitry Myagkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Dmitry Tuktarov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Sergey Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Tymophey Inozemzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Nikita Navolokin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia
| | - Ivan Fedosov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | | |
Collapse
|
4
|
Good CJ, Butrico CE, Colley ME, Emmerson LN, Gibson-Corley KN, Cassat JE, Spraggins JM, Caprioli RM. Uncovering lipid dynamics in Staphylococcus aureus osteomyelitis using multimodal imaging mass spectrometry. Cell Chem Biol 2024; 31:1852-1868.e5. [PMID: 39389064 PMCID: PMC11977171 DOI: 10.1016/j.chembiol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/20/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Osteomyelitis occurs when Staphylococcus aureus invades the bone microenvironment, resulting in a bone marrow abscess with a spatially defined architecture of cells and biomolecules. Imaging mass spectrometry and microscopy are tools that can be employed to interrogate the lipidome of S. aureus-infected murine femurs and reveal metabolic and signaling consequences of infection. Here, nearly 250 lipids were spatially mapped to healthy and infection-associated morphological features throughout the femur, establishing composition profiles for tissue types. Ether lipids and arachidonoyl lipids were altered between cells and tissue structures in abscesses, suggesting their roles in abscess formation and inflammatory signaling. Sterols, triglycerides, bis(monoacylglycero)phosphates, and gangliosides possessed ring-like distributions throughout the abscess, suggesting a hypothesized dysregulation of lipid metabolism in a population of cells that cannot be discerned with traditional microscopy. These data provide insight into the signaling function and metabolism of cells in the fibrotic border of abscesses, likely characteristic of lipid-laden macrophages.
Collapse
Affiliation(s)
- Christopher J Good
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Casey E Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Madeline E Colley
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Lauren N Emmerson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA; Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA.
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA; Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
5
|
Tromans J, Zhang B, Golding BT. Unlocking nature's antioxidants: a novel method for synthesising plasmalogens. Org Biomol Chem 2024; 22:7989-7995. [PMID: 39233652 DOI: 10.1039/d4ob01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Plasmalogens are glycerophospholipids distinguished by their O-(Z)-vinyl ether at the sn-1 position. These lipids are implicated in several disease states requiring analytical, diagnostic and therapeutic interventions, which demand synthetic availability for a variety of structural types. By deploying the new O-protecting group 1,4-dimethoxynaphthyl-2-methyl ('DIMON') and a new stereospecific method for accessing Z-vinyl ethers, a reproducible, versatile synthetic route to plasmalogens [plasmenyl phosphocholines] has been developed. A key intermediate is (S,Z)-1-((1,4-dimethoxynaphthalen-2-yl)methoxy)-3-(hexadec-1-en-1-yloxy)propan-2-ol, which in principle, permits plasmalogen synthesis 'à la carte' at scale. The methodology compares favourably with all previous synthetic routes by virtue of the very high configurational (>99% Z) and optical purity (>99% ee), including the ability to incorporate polyunsaturated fatty acyl chains (e.g. all Z docosahexaenoic acid) reliably at the sn-2 position.
Collapse
Affiliation(s)
- Jay Tromans
- School of Natural and Environmental Science - Chemistry, Newcastle University, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Bian Zhang
- BiBerChem Research Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK
| | - Bernard T Golding
- School of Natural and Environmental Science - Chemistry, Newcastle University, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
6
|
Listian SA, Mazur AC, Kol M, Ufelmann E, Eising S, Fröhlich F, Walter S, Holthuis JCM, Barisch C. Complex sphingolipid profiling and identification of an inositol-phosphorylceramide synthase in Dictyostelium discoideum. iScience 2024; 27:110609. [PMID: 39286488 PMCID: PMC11402645 DOI: 10.1016/j.isci.2024.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Dictyostelium discoideum is a professional phagocyte frequently used to study cellular processes underlying the recognition, engulfment, and infection course of microbial pathogens. Sphingolipids are abundant components of the plasma membrane that bind cholesterol, control membrane properties, participate in signal transmission, and serve as adhesion molecules in recognition processes relevant to immunity and infection. By combining lipidomics with a bioinformatics-based cloning strategy, we show here that D. discoideum produces phosphoinositol-containing sphingolipids with predominantly phytoceramide backbones. Cell-free expression of candidate inositol-phosphorylceramide (IPC) synthases from D. discoideum enabled identification of an enzyme that selectively catalyzes the transfer of phosphoinositol from phosphatidylinositol onto ceramide. The IPC synthase, DdIPCS1, shares multiple sequence motifs with yeast IPC and human sphingomyelin synthases and localizes to the Golgi apparatus as well as the contractile vacuole of D. discoideum. These findings open up important opportunities for exploring a role of sphingolipids in phagocytosis and infection across major evolutionary boundaries.
Collapse
Affiliation(s)
- Stevanus A Listian
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Anna-Carina Mazur
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel (FZB) - Leibniz Lung Center, Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Matthijs Kol
- Division of Molecular Cell Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Edwin Ufelmann
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Sebastian Eising
- Division of Molecular Membrane Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Division of Molecular Membrane Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Joost C M Holthuis
- Division of Molecular Cell Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Caroline Barisch
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel (FZB) - Leibniz Lung Center, Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Arroyo AB, Tyrkalska SD, Bastida-Martínez E, Monera-Girona AJ, Cantón-Sandoval J, Bernal-Carrión M, García-Moreno D, Elías-Arnanz M, Mulero V. Peds1 deficiency in zebrafish results in myeloid cell apoptosis and exacerbated inflammation. Cell Death Discov 2024; 10:388. [PMID: 39209813 PMCID: PMC11362147 DOI: 10.1038/s41420-024-02141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Plasmalogens are glycerophospholipids with a vinyl ether bond that confers unique properties. Recent identification of the gene encoding PEDS1, the desaturase generating the vinyl ether bond, enables evaluation of the role of plasmalogens in health and disease. Here, we report that Peds1-deficient zebrafish larvae display delayed development, increased basal inflammation, normal hematopoietic stem and progenitor cell emergence, and cell-autonomous myeloid cell apoptosis. In a sterile acute inflammation model, Peds1-deficient larvae exhibited impaired inflammation resolution and tissue regeneration, increased interleukin-1β and NF-κB expression, and elevated ROS levels at the wound site. Abnormal immune cell recruitment, neutrophil persistence, and fewer but predominantly pro-inflammatory macrophages were observed. Chronic skin inflammation worsened in Peds1-deficient larvae but was mitigated by exogenous plasmalogen, which also alleviated hyper-susceptibility to bacterial infection, as did pharmacological inhibition of caspase-3 and colony-stimulating factor 3-induced myelopoiesis. Overall, our results highlight an important role for plasmalogens in myeloid cell biology and inflammation.
Collapse
Affiliation(s)
- Ana B Arroyo
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Sylwia D Tyrkalska
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Antonio J Monera-Girona
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Joaquín Cantón-Sandoval
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Martín Bernal-Carrión
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain
| | - Diana García-Moreno
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
| | - Victoriano Mulero
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
8
|
Faria RL, Prado FM, Junqueira HC, Fabiano KC, Diniz LR, Baptista MS, Di Mascio P, Miyamoto S. Plasmalogen oxidation induces the generation of excited molecules and electrophilic lipid species. PNAS NEXUS 2024; 3:pgae216. [PMID: 38894877 PMCID: PMC11184980 DOI: 10.1093/pnasnexus/pgae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Plasmalogens are glycerophospholipids with a vinyl ether linkage at the sn-1 position of the glycerol backbone. Despite being suggested as antioxidants due to the high reactivity of their vinyl ether groups with reactive oxygen species, our study reveals the generation of subsequent reactive oxygen and electrophilic lipid species from oxidized plasmalogen intermediates. By conducting a comprehensive analysis of the oxidation products by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), we demonstrate that singlet molecular oxygen [O2 (1Δg)] reacts with the vinyl ether bond, producing hydroperoxyacetal as a major primary product (97%) together with minor quantities of dioxetane (3%). Furthermore, we show that these primary oxidized intermediates are capable of further generating reactive species including excited triplet carbonyls and O2 (1Δg) as well as electrophilic phospholipid and fatty aldehyde species as secondary reaction products. The generation of excited triplet carbonyls from dioxetane thermal decomposition was confirmed by light emission measurements in the visible region using dibromoanthracene as a triplet enhancer. Moreover, O2 (1Δg) generation from dioxetane and hydroperoxyacetal was evidenced by detection of near-infrared light emission at 1,270 nm and chemical trapping experiments. Additionally, we have thoroughly characterized alpha-beta unsaturated phospholipid and fatty aldehydes by LC-HRMS analysis using two probes that specifically react with aldehydes and alpha-beta unsaturated carbonyls. Overall, our findings demonstrate the generation of excited molecules and electrophilic lipid species from oxidized plasmalogen species unveiling the potential prooxidant nature of plasmalogen-oxidized products.
Collapse
Affiliation(s)
- Rodrigo L Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Helena C Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Karen C Fabiano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Larissa R Diniz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Mauricio S Baptista
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
9
|
Papin M, Fontaine D, Goupille C, Figiel S, Domingo I, Pinault M, Guimaraes C, Guyon N, Cartron PF, Emond P, Lefevre A, Gueguinou M, Crottès D, Jaffrès PA, Ouldamer L, Maheo K, Fromont G, Potier-Cartereau M, Bougnoux P, Chantôme A, Vandier C. Endogenous ether lipids differentially promote tumor aggressiveness by regulating the SK3 channel. J Lipid Res 2024; 65:100544. [PMID: 38642894 PMCID: PMC11127165 DOI: 10.1016/j.jlr.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024] Open
Abstract
SK3 channels are potassium channels found to promote tumor aggressiveness. We have previously demonstrated that SK3 is regulated by synthetic ether lipids, but the role of endogenous ether lipids is unknown. Here, we have studied the role of endogenous alkyl- and alkenyl-ether lipids on SK3 channels and on the biology of cancer cells. Experiments revealed that the suppression of alkylglycerone phosphate synthase or plasmanylethanolamine desaturase 1, which are key enzymes for alkyl- and alkenyl-ether-lipid synthesis, respectively, decreased SK3 expression by increasing micro RNA (miR)-499 and miR-208 expression, leading to a decrease in SK3-dependent calcium entry, cell migration, and matrix metalloproteinase 9-dependent cell adhesion and invasion. We identified several ether lipids that promoted SK3 expression and found a differential role of alkyl- and alkenyl-ether lipids on SK3 activity. The expressions of alkylglycerone phosphate synthase, SK3, and miR were associated in clinical samples emphasizing the clinical consistency of our observations. To our knowledge, this is the first report showing that ether lipids differentially control tumor aggressiveness by regulating an ion channel. This insight provides new possibilities for therapeutic interventions, offering clinicians an opportunity to manipulate ion channel dysfunction by adjusting the composition of ether lipids.
Collapse
Affiliation(s)
- Marion Papin
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Delphine Fontaine
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Caroline Goupille
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France; Department of Gynecology, CHRU Bretonneau, Tours, France
| | - Sandy Figiel
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Isabelle Domingo
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Michelle Pinault
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Cyrille Guimaraes
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Nina Guyon
- CRCINA-INSERM 1232, Equipe « Apoptose et Progression tumorale », Nantes, France
| | | | - Patrick Emond
- iBrain, UMR 1253, INSERM, Université de Tours, Tours, France; Nuclear medicine in vitro department, CHRU Bretonneau, Tours, France
| | - Antoine Lefevre
- iBrain, UMR 1253, INSERM, Université de Tours, Tours, France
| | - Maxime Gueguinou
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - David Crottès
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Paul-Alain Jaffrès
- Laboratoire Chimie Electrochimie Moléculaires et Chimie Analytique (CEMCA), UMR 6521, CNRS, University of Brest, Brest, France
| | - Lobna Ouldamer
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France; Department of Gynecology, CHRU Bretonneau, Tours, France
| | - Karine Maheo
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Gaëlle Fromont
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France; Department of Pathology, CHRU Bretonneau, Tours, France
| | - Marie Potier-Cartereau
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Philippe Bougnoux
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Aurélie Chantôme
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France
| | - Christophe Vandier
- Niche, Nutrition, Cancer & Oxidative metabolism (N2COx), UMR 1069, INSERM, University of Tours, Tours, France.
| |
Collapse
|
10
|
Oh S, Mai XL, Kim J, de Guzman ACV, Lee JY, Park S. Glycerol 3-phosphate dehydrogenases (1 and 2) in cancer and other diseases. Exp Mol Med 2024; 56:1066-1079. [PMID: 38689091 PMCID: PMC11148179 DOI: 10.1038/s12276-024-01222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 05/02/2024] Open
Abstract
The glycerol 3-phosphate shuttle (GPS) is composed of two different enzymes: cytosolic NAD+-linked glycerol 3-phosphate dehydrogenase 1 (GPD1) and mitochondrial FAD-linked glycerol 3-phosphate dehydrogenase 2 (GPD2). These two enzymes work together to act as an NADH shuttle for mitochondrial bioenergetics and function as an important bridge between glucose and lipid metabolism. Since these genes were discovered in the 1960s, their abnormal expression has been described in various metabolic diseases and tumors. Nevertheless, it took a long time until scientists could investigate the causal relationship of these enzymes in those pathophysiological conditions. To date, numerous studies have explored the involvement and mechanisms of GPD1 and GPD2 in cancer and other diseases, encompassing reports of controversial and non-conventional mechanisms. In this review, we summarize and update current knowledge regarding the functions and effects of GPS to provide an overview of how the enzymes influence disease conditions. The potential and challenges of developing therapeutic strategies targeting these enzymes are also discussed.
Collapse
Affiliation(s)
- Sehyun Oh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xuan Linh Mai
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Jiwoo Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Arvie Camille V de Guzman
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Ji Yun Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
| | - Sunghyouk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
11
|
Lee RG, Rudler DL, Raven SA, Peng L, Chopin A, Moh ESX, McCubbin T, Siira SJ, Fagan SV, DeBono NJ, Stentenbach M, Browne J, Rackham FF, Li J, Simpson KJ, Marcellin E, Packer NH, Reid GE, Padman BS, Rackham O, Filipovska A. Quantitative subcellular reconstruction reveals a lipid mediated inter-organelle biogenesis network. Nat Cell Biol 2024; 26:57-71. [PMID: 38129691 DOI: 10.1038/s41556-023-01297-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Abstract
The structures and functions of organelles in cells depend on each other but have not been systematically explored. We established stable knockout cell lines of peroxisomal, Golgi and endoplasmic reticulum genes identified in a whole-genome CRISPR knockout screen for inducers of mitochondrial biogenesis stress, showing that defects in peroxisome, Golgi and endoplasmic reticulum metabolism disrupt mitochondrial structure and function. Our quantitative total-organelle profiling approach for focussed ion beam scanning electron microscopy revealed in unprecedented detail that specific organelle dysfunctions precipitate multi-organelle biogenesis defects, impair mitochondrial morphology and reduce respiration. Multi-omics profiling showed a unified proteome response and global shifts in lipid and glycoprotein homeostasis that are elicited when organelle biogenesis is compromised, and that the resulting mitochondrial dysfunction can be rescued with precursors for ether-glycerophospholipid metabolic pathways. This work defines metabolic and morphological interactions between organelles and how their perturbation can cause disease.
Collapse
Affiliation(s)
- Richard G Lee
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Danielle L Rudler
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Samuel A Raven
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Liuyu Peng
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Anaëlle Chopin
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Queensland, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Samuel V Fagan
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Nicholas J DeBono
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Maike Stentenbach
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Jasmin Browne
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Filip F Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Ji Li
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Queensland, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin S Padman
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Aleksandra Filipovska
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia.
| |
Collapse
|
12
|
Farzi K, Issler T, Unruh C, Prenner EJ. Gadolinium Effects on Liposome Fluidity and Size Depend on the Headgroup and Side Chain Structure of Key Mammalian Brain Lipids. Molecules 2023; 29:135. [PMID: 38202718 PMCID: PMC10780055 DOI: 10.3390/molecules29010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The lanthanide metal gadolinium has been used in the healthcare industry as a paramagnetic contrast agent for years. Gadolinium deposition in brain tissue and kidneys has been reported following gadolinium-based contrast agent administration to patients undergoing MRI. This study demonstrates the detrimental effects of gadolinium exposure at the level of the cell membrane. Biophysical analysis using fluorescence spectroscopy and dynamic light scattering illustrates differential interactions of gadolinium ions with key classes of brain membrane lipids, including phosphatidylcholines and sphingomyelins, as well as brain polar extracts and biomimetic brain model membranes. Electrostatic attraction to negatively charged lipids like phosphatidylserine facilitates metal complexation but zwitterionic phosphatidylcholine and sphingomyelin interaction was also significant, leading to membrane rigidification and increases in liposome size. Effects were stronger for fully saturated over monounsaturated acyl chains. The metal targets key lipid classes of brain membranes and these biophysical changes could be very detrimental in biological membranes, suggesting that the potential negative impact of gadolinium contrast agents will require more scientific attention.
Collapse
Affiliation(s)
- Kianmehr Farzi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.F.)
| | - Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.F.)
| | - Colin Unruh
- Fuel Innovation, Calgary, AB T2G 3K6, Canada;
| | - Elmar J. Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.F.)
| |
Collapse
|
13
|
Good CJ, Butrico CE, Colley ME, Gibson-Corley KN, Cassat JE, Spraggins JM, Caprioli RM. In situ lipidomics of Staphylococcus aureus osteomyelitis using imaging mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569690. [PMID: 38077019 PMCID: PMC10705574 DOI: 10.1101/2023.12.01.569690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Osteomyelitis occurs when Staphylococcus aureus invades the bone microenvironment, resulting in a bone marrow abscess with a spatially defined architecture of cells and biomolecules. Imaging mass spectrometry and microscopy are invaluable tools that can be employed to interrogate the lipidome of S. aureus-infected murine femurs to reveal metabolic and signaling consequences of infection. Here, nearly 250 lipids were spatially mapped to healthy and infection-associated morphological features throughout the femur, establishing composition profiles for tissue types. Ether lipids and arachidonoyl lipids were significantly altered between cells and tissue structures in abscesses, suggesting their roles in abscess formation and inflammatory signaling. Sterols, triglycerides, bis(monoacylglycero)phosphates, and gangliosides possessed ring-like distributions throughout the abscess, indicating dysregulated lipid metabolism in a subpopulation of leukocytes that cannot be discerned with traditional microscopy. These data provide chemical insight into the signaling function and metabolism of cells in the fibrotic border of abscesses, likely characteristic of lipid-laden macrophages.
Collapse
Affiliation(s)
- Christopher J. Good
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Madeline E. Colley
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Katherine N. Gibson-Corley
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey M. Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Richard M. Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
14
|
Prasad SS, Taylor MC, Colombo V, Yeap HL, Pandey G, Lee SF, Taylor PW, Oakeshott JG. Patterns of Variation in the Usage of Fatty Acid Chains among Classes of Ester and Ether Neutral Lipids and Phospholipids in the Queensland Fruit Fly. INSECTS 2023; 14:873. [PMID: 37999072 PMCID: PMC10672513 DOI: 10.3390/insects14110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Modern lipidomics has the power and sensitivity to elucidate the role of insects' lipidomes in their adaptations to the environment at a mechanistic molecular level. However, few lipidomic studies have yet been conducted on insects beyond model species such as Drosophila melanogaster. Here, we present the lipidome of adult males of another higher dipteran frugivore, Bactrocera tryoni. We describe 421 lipids across 15 classes of ester neutral lipids and phospholipids and ether neutral lipids and phospholipids. Most of the lipids are specified in terms of the carbon and double bond contents of each constituent hydrocarbon chain, and more ether lipids are specified to this degree than in any previous insect lipidomic analyses. Class-specific profiles of chain length and (un)saturation are broadly similar to those reported in D. melanogaster, although we found fewer medium-length chains in ether lipids. The high level of chain specification in our dataset also revealed widespread non-random combinations of different chain types in several ester lipid classes, including deficits of combinations involving chains of the same carbon and double bond contents among four phospholipid classes and excesses of combinations of dissimilar chains in several classes. Large differences were also found in the length and double bond profiles of the acyl vs. alkyl or alkenyl chains of the ether lipids. Work on other organisms suggests some of the differences observed will be functionally consequential and mediated, at least in part, by differences in substrate specificity among enzymes in lipid synthesis and remodelling pathways. Interrogation of the B. tryoni genome showed it has comparable levels of diversity overall in these enzymes but with some gene gain/loss differences and considerable sequence divergence from D. melanogaster.
Collapse
Affiliation(s)
- Shirleen S. Prasad
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Matthew C. Taylor
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
| | - Valentina Colombo
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
| | - Heng Lin Yeap
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Gunjan Pandey
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| | - Siu Fai Lee
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - John G. Oakeshott
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| |
Collapse
|
15
|
Tromans J, Zhang B, Golding BT. 1,4-Dimethoxynaphthalene-2-methyl ('DIMON'), an oxidatively labile protecting group for synthesis of polyunsaturated lipids. Chem Commun (Camb) 2023; 59:13333-13335. [PMID: 37867450 DOI: 10.1039/d3cc04292h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
A new benzyl-type protecting group (1,4-dimethoxynaphthalene-2-methyl, 'DIMON') for hydroxyl functions can be selectively removed under oxidative conditions without damaging polyunsaturated fatty acyl groups. Its application is shown by the first synthesis of an ether (plasmanyl) phospholipid containing the docosa-(4Z,7Z,10Z,13Z,16Z,19Z)-hexaenoyl group.
Collapse
Affiliation(s)
- Jay Tromans
- School of Natural & Environmental Sciences - Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Bian Zhang
- BiBerChem Research Ltd, The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK
| | - Bernard T Golding
- School of Natural & Environmental Sciences - Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
16
|
Esposti MD. Eukaryotes inherited inositol lipids from bacteria: implications for the models of eukaryogenesis. FEBS Lett 2023; 597:2484-2496. [PMID: 37507225 DOI: 10.1002/1873-3468.14708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The merger of two very different microbes, an anaerobic archaeon and an aerobic bacterium, led to the birth of eukaryotic cells. Current models hypothesize that an archaeon engulfed bacteria through external protrusions that then fused together forming the membrane organelles of eukaryotic cells, including mitochondria. Images of cultivated Lokiarchaea sustain this concept, first proposed in the inside-out model which assumes that the membrane traffic system of archaea drove the merging with bacterial cells through membrane expansions containing inositol lipids, considered to have evolved first in archaea. This assumption has been evaluated here in detail. The data indicate that inositol lipids first emerged in bacteria, not in archaea. The implications of this finding for the models of eukaryogenesis are discussed.
Collapse
|
17
|
Gomes MAGB, Bauduin A, Le Roux C, Fouinneteau R, Berthe W, Berchel M, Couthon H, Jaffrès PA. Synthesis of ether lipids: natural compounds and analogues. Beilstein J Org Chem 2023; 19:1299-1369. [PMID: 37701305 PMCID: PMC10494250 DOI: 10.3762/bjoc.19.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Ether lipids are compounds present in many living organisms including humans that feature an ether bond linkage at the sn-1 position of the glycerol. This class of lipids features singular structural roles and biological functions. Alkyl ether lipids and alkenyl ether lipids (also identified as plasmalogens) correspond to the two sub-classes of naturally occurring ether lipids. In 1979 the discovery of the structure of the platelet-activating factor (PAF) that belongs to the alkyl ether class of lipids increased the interest in these bioactive lipids and further promoted the synthesis of non-natural ether lipids that was initiated in the late 60's with the development of edelfosine (an anticancer drug). More recently, ohmline, a glyco glycero ether lipid that modulates selectively SK3 ion channels and reduces in vivo the occurrence of bone metastases, and other glyco glycero ether also identified as GAEL (glycosylated antitumor ether lipids) that exhibit promising anticancer properties renew the interest in this class of compounds. Indeed, ether lipid represent a new and promising class of compounds featuring the capacity to modulate selectively the activity of some membrane proteins or, for other compounds, feature antiproliferative properties via an original mechanism of action. The increasing interest in studying ether lipids for fundamental and applied researches invited to review the methodologies developed to prepare ether lipids. In this review we focus on the synthetic method used for the preparation of alkyl ether lipids either naturally occurring ether lipids (e.g., PAF) or synthetic derivatives that were developed to study their biological properties. The synthesis of neutral or charged ether lipids are reported with the aim to assemble in this review the most frequently used methodologies to prepare this specific class of compounds.
Collapse
Affiliation(s)
| | - Alicia Bauduin
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Chloé Le Roux
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Romain Fouinneteau
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Wilfried Berthe
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Mathieu Berchel
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Hélène Couthon
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Paul-Alain Jaffrès
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| |
Collapse
|
18
|
Li L, Long J, Mise K, Poungavrin N, Lorenzi PL, Mahmud I, Tan L, Saha PK, Kanwar YS, Chang BH, Danesh FR. The transcription factor ChREBP links mitochondrial lipidomes to mitochondrial morphology and progression of diabetic kidney disease. J Biol Chem 2023; 299:105185. [PMID: 37611830 PMCID: PMC10506103 DOI: 10.1016/j.jbc.2023.105185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
A substantial body of evidence has established the contributions of both mitochondrial dynamics and lipid metabolism to the pathogenesis of diabetic kidney disease (DKD). However, the precise interplay between these two key metabolic regulators of DKD is not fully understood. Here, we uncover a link between mitochondrial dynamics and lipid metabolism by investigating the role of carbohydrate-response element-binding protein (ChREBP), a glucose-responsive transcription factor and a master regulator of lipogenesis, in kidney podocytes. We find that inducible podocyte-specific knockdown of ChREBP in diabetic db/db mice improves key biochemical and histological features of DKD in addition to significantly reducing mitochondrial fragmentation. Because of the critical role of ChREBP in lipid metabolism, we interrogated whether and how mitochondrial lipidomes play a role in ChREBP-mediated mitochondrial fission. Our findings suggest a key role for a family of ether phospholipids in ChREBP-induced mitochondrial remodeling. We find that overexpression of glyceronephosphate O-acyltransferase, a critical enzyme in the biosynthesis of plasmalogens, reverses the protective phenotype of ChREBP deficiency on mitochondrial fragmentation. Finally, our data also points to Gnpat as a direct transcriptional target of ChREBP. Taken together, our results uncover a distinct mitochondrial lipid signature as the link between ChREBP-induced mitochondrial dynamics and progression of DKD.
Collapse
Affiliation(s)
- Li Li
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianyin Long
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koki Mise
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naravat Poungavrin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pradip K Saha
- Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Diabetes Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yashpal S Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Benny H Chang
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad R Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
19
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
20
|
Horta Remedios M, Liang W, González LN, Li V, Da Ros VG, Cohen DJ, Zaremberg V. Ether lipids and a peroxisomal riddle in sperm. Front Cell Dev Biol 2023; 11:1166232. [PMID: 37397249 PMCID: PMC10309183 DOI: 10.3389/fcell.2023.1166232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Sperm are terminally differentiated cells that lack most of the membranous organelles, resulting in a high abundance of ether glycerolipids found across different species. Ether lipids include plasmalogens, platelet activating factor, GPI-anchors and seminolipid. These lipids play important roles in sperm function and performance, and thus are of special interest as potential fertility markers and therapeutic targets. In the present article, we first review the existing knowledge on the relevance of the different types of ether lipids for sperm production, maturation and function. To further understand ether-lipid metabolism in sperm, we then query available proteomic data from highly purified sperm, and produce a map of metabolic steps retained in these cells. Our analysis pinpoints the presence of a truncated ether lipid biosynthetic pathway that would be competent for the production of precursors through the initial peroxisomal core steps, but devoid of subsequent microsomal enzymes responsible for the final synthesis of all complex ether-lipids. Despite the widely accepted notion that sperm lack peroxisomes, the thorough analysis of published data conducted herein identifies nearly 70% of all known peroxisomal resident proteins as part of the sperm proteome. In view of this, we highlight open questions related to lipid metabolism and possible peroxisomal functions in sperm. We propose a repurposed role for the truncated peroxisomal ether-lipid pathway in detoxification of products from oxidative stress, which is known to critically influence sperm function. The likely presence of a peroxisomal-derived remnant compartment that could act as a sink for toxic fatty alcohols and fatty aldehydes generated by mitochondrial activity is discussed. With this perspective, our review provides a comprehensive metabolic map associated with ether-lipids and peroxisomal-related functions in sperm and offers new insights into potentially relevant antioxidant mechanisms that warrant further research.
Collapse
Affiliation(s)
| | - Weisheng Liang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lucas N. González
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Victoria Li
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vanina G. Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Débora J. Cohen
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Ren B, Liang X, Brouwers JF, Miron RC, Shen B, Gupta N. Synthesis vs. salvage of ester- and ether-linked phosphatidylethanolamine in the intracellular protozoan pathogen Toxoplasma gondii. Commun Biol 2023; 6:306. [PMID: 36949328 PMCID: PMC10033509 DOI: 10.1038/s42003-023-04664-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Toxoplasma gondii is a prevalent zoonotic pathogen infecting livestock as well as humans. The exceptional ability of this parasite to reproduce in several types of nucleated host cells necessitates a coordinated usage of endogenous and host-derived nutritional resources for membrane biogenesis. Phosphatidylethanolamine is the second most common glycerophospholipid in T. gondii, but how its requirement in the acutely-infectious fast-dividing tachyzoite stage is satisfied remains enigmatic. This work reveals that the parasite deploys de novo synthesis and salvage pathways to meet its demand for ester- and ether-linked PtdEtn. Auxin-mediated depletion of the phosphoethanolamine cytidylyltransferase (ECT) caused a lethal phenotype in tachyzoites due to impaired invasion and cell division, disclosing a vital role of the CDP-ethanolamine pathway during the lytic cycle. In accord, the inner membrane complex appeared disrupted concurrent with a decline in its length, parasite width and major phospholipids. Integrated lipidomics and isotope analyses of the TgECT mutant unveiled the endogenous synthesis of ester-PtdEtn, and salvage of ether-linked lipids from host cells. In brief, this study demonstrates how T. gondii operates various means to produce distinct forms of PtdEtn while featuring the therapeutic relevance of its de novo synthesis.
Collapse
Affiliation(s)
- Bingjian Ren
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Xiaohan Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jos F Brouwers
- Research Group for Analysis Techniques in the Life Sciences, School of Life Sciences and Technology, Avans University of Applied Sciences, Breda, The Netherlands
| | - Rosalba Cruz Miron
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India.
| |
Collapse
|
22
|
van Vlerken-Ysla L, Tyurina YY, Kagan VE, Gabrilovich DI. Functional states of myeloid cells in cancer. Cancer Cell 2023; 41:490-504. [PMID: 36868224 PMCID: PMC10023509 DOI: 10.1016/j.ccell.2023.02.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023]
Abstract
Myeloid cells, comprised of macrophages, dendritic cells, monocytes, and granulocytes, represent a major component of the tumor microenvironment (TME) and are critically involved in regulation of tumor progression and metastasis. In recent years, single-cell omics technologies have identified multiple phenotypically distinct subpopulations. In this review, we discuss recent data and concepts suggesting that the biology of myeloid cells is largely defined by a very limited number of functional states that transcend the narrowly defined cell populations. These functional states are primarily centered around classical and pathological states of activation, with the latter state commonly defined as myeloid-derived suppressor cells. We discuss the concept that lipid peroxidation of myeloid cells represents a major mechanism that governs their pathological state of activation in the TME. Lipid peroxidation is associated with ferroptosis mediating suppressive activity of these cells and thus could be considered an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | |
Collapse
|
23
|
Romero EL, Morilla MJ. Ether lipids from archaeas in nano-drug delivery and vaccination. Int J Pharm 2023; 634:122632. [PMID: 36690132 DOI: 10.1016/j.ijpharm.2023.122632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| | - Maria Jose Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
24
|
van Wouw SAE, van den Berg M, El Ouraoui M, Meurs A, Kingma J, Ottenhoff R, Loix M, Hoeksema MA, Prange K, Pasterkamp G, Hendriks JJA, Bogie JFJ, van Klinken JB, Vaz FM, Jongejan A, de Winther MPJ, Zelcer N. Sterol-regulated transmembrane protein TMEM86a couples LXR signaling to regulation of lysoplasmalogens in macrophages. J Lipid Res 2023; 64:100325. [PMID: 36592658 PMCID: PMC9926310 DOI: 10.1016/j.jlr.2022.100325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023] Open
Abstract
Lysoplasmalogens are a class of vinyl ether bioactive lipids that have a central role in plasmalogen metabolism and membrane fluidity. The liver X receptor (LXR) transcription factors are important determinants of cellular lipid homeostasis owing to their ability to regulate cholesterol and fatty acid metabolism. However, their role in governing the composition of lipid species such as lysoplasmalogens in cellular membranes is less well studied. Here, we mapped the lipidome of bone marrow-derived macrophages (BMDMs) following LXR activation. We found a marked reduction in the levels of lysoplasmalogen species in the absence of changes in the levels of plasmalogens themselves. Transcriptional profiling of LXR-activated macrophages identified the gene encoding transmembrane protein 86a (TMEM86a), an integral endoplasmic reticulum protein, as a previously uncharacterized sterol-regulated gene. We demonstrate that TMEM86a is a direct transcriptional target of LXR in macrophages and microglia and that it is highly expressed in TREM2+/lipid-associated macrophages in human atherosclerotic plaques, where its expression positively correlates with other LXR-regulated genes. We further show that both murine and human TMEM86a display active lysoplasmalogenase activity that can be abrogated by inactivating mutations in the predicted catalytic site. Consequently, we demonstrate that overexpression of Tmem86a in BMDM markedly reduces lysoplasmalogen abundance and membrane fluidity, while reciprocally, silencing of Tmem86a increases basal lysoplasmalogen levels and abrogates the LXR-dependent reduction of this lipid species. Collectively, our findings implicate TMEM86a as a sterol-regulated lysoplasmalogenase in macrophages that contributes to sterol-dependent membrane remodeling.
Collapse
Affiliation(s)
- Suzanne A E van Wouw
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Marlene van den Berg
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Maroua El Ouraoui
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Amber Meurs
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Jenina Kingma
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Marten A Hoeksema
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Koen Prange
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Gerard Pasterkamp
- Department of Experimental Cardiology, Utrecht UMC, Utrecht, the Netherlands
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jan B van Klinken
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Frederic M Vaz
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Bioinformatics Laboratory, of Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, Infection and Immunity, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Wang Y, Sun X, Qiu J, Zhou A, Xu P, Liu Y, Wu H. A UHPLC-Q-TOF-MS-based serum and urine metabolomics approach reveals the mechanism of Gualou-Xiebai herb pair intervention against atherosclerosis process in ApoE -/- mice. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123567. [PMID: 36529071 DOI: 10.1016/j.jchromb.2022.123567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/05/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Atherosclerosis (AS) is a metabolic disorder commonly correlated with a high-fat diet (HFD). There are many endogenous metabolic changes associated with AS development. Gualou-Xiebai (GLXB) is a traditional Chinese medicine herb pair that has been used to treat AS. However, the mechanism of GLXB herb pair on the process of AS is still essentially unknown. In this study, aortic histopathological examination and biochemical analyses were used to validate the anti-atherosclerotic effects of GLXB herb pair on ApoE-/- mice during the disease course of AS. The mechanism of GLXB herb pair were performed by metabolomics approach based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). As a result, GLXB herb pair has protective effects on AS lesion development and improves blood lipid levels in ApoE-/- mice. A total of 34, 39, and 49 metabolites were found to be profoundly altered in the 9-week, 14-week, and 19-week model groups compared with the corresponding control groups. Among them, 16, 18, and 18 metabolites showed a trend toward normal levels after pharmacological intervention. Metabolic pathway analysis found that GLXB herb pair mainly affects glycerophospholipid metabolism, pentose and glucuronate interconversions in 9 weeks; linoleic acid metabolism, cysteine and methionine metabolism, and arachidonic acid metabolism in 14 weeks; arachidonic acid metabolism and pentose and glucuronate interconversions in 19 weeks. The results demonstrated that GLXB herb pair mainly played a therapeutic role by regulating glycerophospholipid metabolism and pentose and glucuronate interconversions in the whole process of AS.
Collapse
Affiliation(s)
- Yuting Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xin Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingwen Qiu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Pengbo Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
26
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Sahonero-Canavesi DX, Siliakus MF, Abdala Asbun A, Koenen M, von Meijenfeldt FAB, Boeren S, Bale NJ, Engelman JC, Fiege K, Strack van Schijndel L, Sinninghe Damsté JS, Villanueva L. Disentangling the lipid divide: Identification of key enzymes for the biosynthesis of membrane-spanning and ether lipids in Bacteria. SCIENCE ADVANCES 2022; 8:eabq8652. [PMID: 36525503 DOI: 10.1126/sciadv.abq8652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacterial membranes are composed of fatty acids (FAs) ester-linked to glycerol-3-phosphate, while archaea have membranes made of isoprenoid chains ether-linked to glycerol-1-phosphate. Many archaeal species organize their membrane as a monolayer of membrane-spanning lipids (MSLs). Exceptions to this "lipid divide" are the production by some bacterial species of (ether-bound) MSLs, formed by tail-to-tail condensation of FAs resulting in the formation of (iso) diabolic acids (DAs), which are the likely precursors of paleoclimatological relevant branched glycerol dialkyl glycerol tetraether molecules. However, the enzymes responsible for their production are unknown. Here, we report the discovery of bacterial enzymes responsible for the condensation reaction of FAs and for ether bond formation and confirm that the building blocks of iso-DA are branched iso-FAs. Phylogenomic analyses of the key biosynthetic genes reveal a much wider diversity of potential MSL (ether)-producing bacteria than previously thought, with importantt implications for our understanding of the evolution of lipid membranes.
Collapse
Affiliation(s)
- Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Melvin F Siliakus
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Alejandro Abdala Asbun
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - F A Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Julia C Engelman
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Kerstin Fiege
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Lora Strack van Schijndel
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
- Utrecht University, Faculty of Geosciences, Department of Earth Sciences, PO Box 80.021, Utrecht 3508 TA, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Burg 1790 AB, Netherlands
- Utrecht University, Faculty of Geosciences, Department of Earth Sciences, PO Box 80.021, Utrecht 3508 TA, Netherlands
| |
Collapse
|
28
|
Nagasawa H, Miyazaki S, Kyogashima M. Simple separation of glycosphingolipids in the lower phase of a Folch's partition from crude lipid fractions using zirconium dioxide. Glycoconj J 2022; 39:789-795. [PMID: 36103104 DOI: 10.1007/s10719-022-10080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A simple method was developed for the separation of glycosphingolipids (GSLs) from lipid mixtures, including phospholipids and cholesterol, using zirconium dioxide (zirconia, ZrO2). Although this procedure does not incorporate a mild alkali treatment, which is commonly used for eliminating glycerophospholipids, it can be used to remove both alkali-resistant sphingomyelin and glycerophospholipids possessing ether bonds. Importantly, when GSLs were dissolved in organic solvent together with cholesterol (Chol) and phospholipids, and loaded onto ZrO2, Chol did not bind to the ZrO2 but both the GSLs and phospholipids did. When eluted with 5 mg/mL of 2,5-dihydroxybenzoic acid in methanol, GSLs but not phospholipids were recovered, leaving the phospholipids bound to the ZrO2 particles. This method is particularly applicable for GSLs such as triglycosylceramides, tetraglycosylceramides and some pentaglycosylceramides, sulfatide and GM3 located in the lower phase of a Folch's partition, where significant amounts of phospholipids, Chol and neutral lipids reside along with GSLs. This method was successfully used to easily isolate GSLs from biological materials for their subsequent analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with high resolution.
Collapse
Affiliation(s)
- Hideharu Nagasawa
- Division of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Inamachi, Saitama, 362-0806, Japan
| | - Shota Miyazaki
- GL Sciences Inc., 237-2 Sayamagahara, Saitama, 358-0032, Japan
| | - Mamoru Kyogashima
- Division of Microbiology and Molecular Cell Biology, Nihon Pharmaceutical University, 10281 Komuro, Inamachi, Saitama, 362-0806, Japan.
| |
Collapse
|
29
|
Vallés AS, Barrantes FJ. The synaptic lipidome in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184033. [PMID: 35964712 DOI: 10.1016/j.bbamem.2022.184033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Sofia Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), 8000 Bahía Blanca, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina.
| |
Collapse
|
30
|
Donà F, Özbalci C, Paquola A, Ferrentino F, Terry SJ, Storck EM, Wang G, Eggert US. Removal of Stomatin, a Membrane-Associated Cell Division Protein, Results in Specific Cellular Lipid Changes. J Am Chem Soc 2022; 144:18069-18074. [PMID: 36136763 PMCID: PMC9545149 DOI: 10.1021/jacs.2c07907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Lipids are key constituents
of all cells, which express thousands
of different lipid species. In most cases, it is not known why cells
synthesize such diverse lipidomes, nor what regulates their metabolism.
Although it is known that dividing cells specifically regulate their
lipid content and that the correct lipid complement is required for
successful division, it is unclear how lipids connect with the cell
division machinery. Here, we report that the membrane protein stomatin
is involved in the cytokinesis step of cell division. Although it
is not a lipid biosynthetic enzyme, depletion of stomatin causes cells
to change their lipidomes. These changes include specific lipid species,
like ether lipids, and lipid families like phosphatidylcholines. Addition
of exogenous phosphatidylcholines rescues stomatin-induced defects.
These data suggest that stomatin interfaces with lipid metabolism.
Stomatin has multiple contacts with the plasma membrane and we identify
which sites are required for its role in cell division, as well as
associated lipid shifts. We also show that stomatin’s mobility
on the plasma membrane changes during division, further supporting
the requirement for a highly regulated physical interaction between
membrane lipids and this newly identified cell division protein.
Collapse
Affiliation(s)
- Federico Donà
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K
| | - Cagakan Özbalci
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K
| | - Andrea Paquola
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K.,Department of Chemistry, King's College London, London SE1 1DB, U.K
| | - Federica Ferrentino
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K.,Department of Chemistry, King's College London, London SE1 1DB, U.K
| | - Stephen J Terry
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K
| | - Elisabeth M Storck
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K
| | - Gaoge Wang
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K
| | - Ulrike S Eggert
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, U.K.,Department of Chemistry, King's College London, London SE1 1DB, U.K
| |
Collapse
|
31
|
Perez MA, Clostio AJ, Houston IR, Ruiz J, Magtanong L, Dixon SJ, Watts JL. Ether lipid deficiency disrupts lipid homeostasis leading to ferroptosis sensitivity. PLoS Genet 2022; 18:e1010436. [PMID: 36178986 PMCID: PMC9555615 DOI: 10.1371/journal.pgen.1010436] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/12/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death associated with uncontrolled membrane lipid peroxidation and destruction. Previously, we showed that dietary dihomo-gamma-linolenic acid (DGLA; 20: 3(n-6)) triggers ferroptosis in the germ cells of the model organism, Caenorhabditis elegans. We also demonstrated that ether lipid-deficient mutant strains are sensitive to DGLA-induced ferroptosis, suggesting a protective role for ether lipids. The vinyl ether bond unique to plasmalogen lipids has been hypothesized to function as an antioxidant, but this has not been tested in animal models. In this study, we used C. elegans mutants to test the hypothesis that the vinyl ether bond in plasmalogens acts as an antioxidant to protect against germ cell ferroptosis as well as to protect from whole-body tert-butyl hydroperoxide (TBHP)-induced oxidative stress. We found no role for plasmalogens in either process. Instead, we demonstrate that ether lipid-deficiency disrupts lipid homeostasis in C. elegans, leading to altered ratios of saturated and monounsaturated fatty acid (MUFA) content in cellular membranes. We demonstrate that ferroptosis sensitivity in both wild type and ether-lipid deficient mutants can be rescued in several ways that change the relative abundance of saturated fats, MUFAs and specific polyunsaturated fatty acids (PUFAs). Specifically, we reduced ferroptosis sensitivity by (1) using mutant strains unable to synthesize DGLA, (2) using a strain carrying a gain-of-function mutation in the transcriptional mediator MDT-15, or (3) by dietary supplementation of MUFAs. Furthermore, our studies reveal important differences in how dietary lipids influence germ cell ferroptosis versus whole-body peroxide-induced oxidative stress. These studies highlight a potentially beneficial role for endogenous and dietary MUFAs in the prevention of ferroptosis.
Collapse
Affiliation(s)
- Marcos A. Perez
- School of Molecular Biosciences and Center for Reproductive Biology Washington State University, Pullman, Washington, United States of America
| | - Andrea J. Clostio
- School of Molecular Biosciences and Center for Reproductive Biology Washington State University, Pullman, Washington, United States of America
| | - Isabel R. Houston
- School of Molecular Biosciences and Center for Reproductive Biology Washington State University, Pullman, Washington, United States of America
| | - Jimena Ruiz
- School of Molecular Biosciences and Center for Reproductive Biology Washington State University, Pullman, Washington, United States of America
| | - Leslie Magtanong
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Scott J. Dixon
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jennifer L. Watts
- School of Molecular Biosciences and Center for Reproductive Biology Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
32
|
Hullin-Matsuda F, Colosetti P, Rabia M, Luquain-Costaz C, Delton I. Exosomal lipids from membrane organization to biomarkers: Focus on an endolysosomal-specific lipid. Biochimie 2022; 203:77-92. [DOI: 10.1016/j.biochi.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
|
33
|
Chen AC, Fang TJ, Ho HH, Chen JF, Kuo YW, Huang YY, Tsai SY, Wu SF, Lin HC, Yeh YT. A multi-strain probiotic blend reshaped obesity-related gut dysbiosis and improved lipid metabolism in obese children. Front Nutr 2022; 9:922993. [PMID: 35990345 PMCID: PMC9386160 DOI: 10.3389/fnut.2022.922993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Background and aims Obese children are more prone to becoming obese adults, and excess adiposity consequently increases the risk of many complications, such as metabolic syndromes, non-alcoholic fatty liver disease, cardiovascular disease, etc. This study aimed to evaluate the effects of multi-strain probiotics on the gut microbiota and weight control in obese children. Methods A double-blind, randomized, placebo-controlled trial was carried out on overweight and obese children. Subjects received 12 weeks of treatment with supplementary probiotics that contained three strains: Lactobacillus salivarius AP-32, L. rhamnosus bv-77, and Bifidobacterium animalis CP-9, plus diet and exercise guidance. A total of 82 children were enrolled, and 53 children completed the study. Results The supplementation of multi-strain probiotics resulted in a significant effect demonstrating high-density lipoprotein (HDL) and adiponectin elevation. At the same time, body mass index (BMI) and serum total cholesterol, low-density lipoprotein (LDL), leptin, and tumor necrosis factor-alpha (TNF-α) levels were reduced. Lactobacillus spp. and B. animalis were particularly increased in subjects who received probiotic supplements. The abundance of Lactobacillus spp. was inversely correlated with the ether lipid metabolism pathway, while that of B. animalis was positively correlated with serum adiponectin levels. Conclusion Our results show that obesity-related gut dysbiosis can be reshaped by the supplementation of a multi-strain probiotic to improve lipid metabolism. The regular administration of a multi-strain probiotic supplement may be helpful for weight control and health management in overweight and obese children.
Collapse
Affiliation(s)
- An-Chyi Chen
- Division of Pediatric Gastroenterology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - Tzu-Jung Fang
- College of Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Division of Geriatrics and Gerontology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Jui-Fen Chen
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yi-Wei Kuo
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yen-Yu Huang
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shin-Yu Tsai
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shu-Fen Wu
- Division of Pediatric Gastroenterology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - Hung-Chih Lin
- Division of Neonatology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Chinese Medicine, China Medical University, Taichung City, Taiwan.,Asia University Hospital, Asia University, Taichung City, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| |
Collapse
|
34
|
Dannenberger D, Eggert A, Kalbe C, Woitalla A, Schwudke D. Are n-3 PUFAs from Microalgae Incorporated into Membrane and Storage Lipids in Pig Muscle Tissues?-A Lipidomic Approach. ACS OMEGA 2022; 7:24785-24794. [PMID: 35874219 PMCID: PMC9301695 DOI: 10.1021/acsomega.2c02476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For the study of molecular mechanisms of to lipid transport and storage in relation to dietary effects, lipidomics has been rarely used in farm animal research. A feeding study with pigs (German Landrace sows) and supplementation of microalgae (Schizochytrium sp.) was conducted. The animals were allocated to the control group (n = 15) and the microalgae group (n = 16). Shotgun lipidomics was applied. This study enabled us to identify and quantify 336 lipid species from 15 different lipid classes in pig skeletal muscle tissues. The distribution of the lipid classes was significantly altered by microalgae supplementation, and ether lipids of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidic acid (PA) were significantly decreased. The total concentration of triacylglycerides (TAGs) was not affected. TAGs with high degree of unsaturation (TAG 56:7, TAG 56:6, TAG 54:6) were increased in the microalgae group, and major abundant species like TAG 52:2 and TAG 52:1 were not affected by the diet. Our results confirmed that dietary DHA and EPA are incorporated into storage and membrane lipids of pig muscles, which further led to systemic changes in the lipidome composition.
Collapse
Affiliation(s)
- Dirk Dannenberger
- Lipid
Metabolism and Muscular Adaptation Workgroup, Research Institute for Farm Animal Biology, Institute of Muscle Biology
and Growth, 18196 Dummerstorf, Germany
| | - Anja Eggert
- Institute
of Genetics and Biometry, Research Institute
for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Claudia Kalbe
- Lipid
Metabolism and Muscular Adaptation Workgroup, Research Institute for Farm Animal Biology, Institute of Muscle Biology
and Growth, 18196 Dummerstorf, Germany
| | - Anna Woitalla
- Division
of Bioanalytical Chemistry, Research Center
Borstel—Leibniz Lung Center, 23845 Borstel, Germany
| | - Dominik Schwudke
- Division
of Bioanalytical Chemistry, Research Center
Borstel—Leibniz Lung Center, 23845 Borstel, Germany
- German
Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany
- German
Center for Infection Research, Thematic Translational Unit Tuberculosis, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany
| |
Collapse
|
35
|
Untargeted lipidomic analysis of plasma from obese women submitted to combined physical exercise. Sci Rep 2022; 12:11541. [PMID: 35798803 PMCID: PMC9263166 DOI: 10.1038/s41598-022-15236-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022] Open
Abstract
This study aimed to determine the changes of lipidome in obese women undergoing combined physical exercise training. Fourteen adult women with obesity (mean BMI and age, 33 kg/m2 and 34 ± 5 years), were submitted to combined physical training (aerobic and strength exercises, alternately, 55 min at 75–90% of the maximum heart rate, 3 times a week) for 8 weeks. All participants were evaluated before and after the training intervention for lipidome, anthropometric measurements, muscle strength, and maximum oxygen consumption (VO2max). Untargeted liquid chromatography-mass spectrometry analyses allowed the identification of 1252 variables, of which 160 were significant (p < 0.05), and 61 were identified as molecular species of lipids. Volcano plot analysis revealed LPC(16:0p), LPC(18:0p), LPC(20:2), and arachidonic acid upregulated and PC(38:1p), PC(40:4), PC(40:4p) downregulated after combined physical exercise. From the results of the overall Principal component analysis (PCA), the major finding was SM(d18:1/20:0), arachidonic acid, and PC(40:6) species. Other changes included a reduction in waist circumference (Δ = − 2 cm) (p < 0.05), with no weight loss. In conclusion, 8-week of combined exercise training in obese women brought changes in different classes of lipids. This study provides further information to understand the effect of combined physical exercise on lipids related to obesity.
Collapse
|
36
|
Hancock-Cerutti W, Wu Z, Xu P, Yadavalli N, Leonzino M, Tharkeshwar AK, Ferguson SM, Shadel GS, De Camilli P. ER-lysosome lipid transfer protein VPS13C/PARK23 prevents aberrant mtDNA-dependent STING signaling. J Cell Biol 2022; 221:e202106046. [PMID: 35657605 PMCID: PMC9170524 DOI: 10.1083/jcb.202106046] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/03/2022] [Indexed: 02/03/2023] Open
Abstract
Mutations in VPS13C cause early-onset, autosomal recessive Parkinson's disease (PD). We have established that VPS13C encodes a lipid transfer protein localized to contact sites between the ER and late endosomes/lysosomes. In the current study, we demonstrate that depleting VPS13C in HeLa cells causes an accumulation of lysosomes with an altered lipid profile, including an accumulation of di-22:6-BMP, a biomarker of the PD-associated leucine-rich repeat kinase 2 (LRRK2) G2019S mutation. In addition, the DNA-sensing cGAS-STING pathway, which was recently implicated in PD pathogenesis, is activated in these cells. This activation results from a combination of elevated mitochondrial DNA in the cytosol and a defect in the degradation of activated STING, a lysosome-dependent process. These results suggest a link between ER-lysosome lipid transfer and innate immune activation in a model human cell line and place VPS13C in pathways relevant to PD pathogenesis.
Collapse
Affiliation(s)
- William Hancock-Cerutti
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT
- MD/PhD Program, Yale School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Zheng Wu
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Salk Institute for Biological Studies, La Jolla, CA
| | - Peng Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Narayana Yadavalli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Marianna Leonzino
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | | | - Shawn M. Ferguson
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | | | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
37
|
Padmanabhan S, Monera-Girona AJ, Pajares-Martínez E, Bastida-Martínez E, Del Rey Navalón I, Pérez-Castaño R, Galbis-Martínez ML, Fontes M, Elías-Arnanz M. Plasmalogens and Photooxidative Stress Signaling in Myxobacteria, and How it Unmasked CarF/TMEM189 as the Δ1'-Desaturase PEDS1 for Human Plasmalogen Biosynthesis. Front Cell Dev Biol 2022; 10:884689. [PMID: 35646900 PMCID: PMC9131029 DOI: 10.3389/fcell.2022.884689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Plasmalogens are glycerophospholipids with a hallmark sn-1 vinyl ether bond that endows them with unique physical-chemical properties. They have proposed biological roles in membrane organization, fluidity, signaling, and antioxidative functions, and abnormal plasmalogen levels correlate with various human pathologies, including cancer and Alzheimer’s disease. The presence of plasmalogens in animals and in anaerobic bacteria, but not in plants and fungi, is well-documented. However, their occurrence in the obligately aerobic myxobacteria, exceptional among aerobic bacteria, is often overlooked. Tellingly, discovery of the key desaturase indispensable for vinyl ether bond formation, and therefore fundamental in plasmalogen biogenesis, emerged from delving into how the soil myxobacterium Myxococcus xanthus responds to light. A recent pioneering study unmasked myxobacterial CarF and its human ortholog TMEM189 as the long-sought plasmanylethanolamine desaturase (PEDS1), thus opening a crucial door to study plasmalogen biogenesis, functions, and roles in disease. The findings demonstrated the broad evolutionary sweep of the enzyme and also firmly established a specific signaling role for plasmalogens in a photooxidative stress response. Here, we will recount our take on this fascinating story and its implications, and review the current state of knowledge on plasmalogens, their biosynthesis and functions in the aerobic myxobacteria.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio J Monera-Girona
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Elena Pajares-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Irene Del Rey Navalón
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María Luisa Galbis-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
38
|
Koch J, Watschinger K, Werner ER, Keller MA. Tricky Isomers—The Evolution of Analytical Strategies to Characterize Plasmalogens and Plasmanyl Ether Lipids. Front Cell Dev Biol 2022; 10:864716. [PMID: 35573699 PMCID: PMC9092451 DOI: 10.3389/fcell.2022.864716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Typically, glycerophospholipids are represented with two esterified fatty acids. However, by up to 20%, a significant proportion of this lipid class carries an ether-linked fatty alcohol side chain at the sn-1 position, generally referred to as ether lipids, which shape their specific physicochemical properties. Among those, plasmalogens represent a distinct subgroup characterized by an sn-1 vinyl-ether double bond. The total loss of ether lipids in severe peroxisomal defects such as rhizomelic chondrodysplasia punctata indicates their crucial contribution to diverse cellular functions. An aberrant ether lipid metabolism has also been reported in multifactorial conditions including Alzheimer’s disease. Understanding the underlying pathological implications is hampered by the still unclear exact functional spectrum of ether lipids, especially in regard to the differentiation between the individual contributions of plasmalogens (plasmenyl lipids) and their non-vinyl-ether lipid (plasmanyl) counterparts. A primary reason for this is that exact identification and quantification of plasmalogens and other ether lipids poses a challenging and usually labor-intensive task. Diverse analytical methods for the detection of plasmalogens have been developed. Liquid chromatography–tandem mass spectrometry is increasingly used to resolve complex lipid mixtures, and with optimized parameters and specialized fragmentation strategies, discrimination between ethers and plasmalogens is feasible. In this review, we recapitulate historic and current methodologies for the recognition and quantification of these important lipids and will discuss developments in this field that can contribute to the characterization of plasmalogens in high structural detail.
Collapse
Affiliation(s)
- Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A. Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Markus A. Keller,
| |
Collapse
|
39
|
Papin M, Guimaraes C, Pierre-Aue B, Fontaine D, Pardessus J, Couthon H, Fromont G, Mahéo K, Chantôme A, Vandier C, Pinault M. Development of a High-Performance Thin-Layer Chromatography Method for the Quantification of Alkyl Glycerolipids and Alkenyl Glycerolipids from Shark and Chimera Oils and Tissues. Mar Drugs 2022; 20:md20040270. [PMID: 35447943 PMCID: PMC9029064 DOI: 10.3390/md20040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Ether lipids are composed of alkyl lipids with an ether bond at the sn-1 position of a glycerol backbone and alkenyl lipids, which possess a vinyl ether bond at the sn-1 position of the glycerol. These ether glycerolipids are present either as polar glycerophospholipids or neutral glycerolipids. Before studying the biological role of molecular species of ether glycerolipids, there is a need to separate and quantify total alkyl and alkenyl glycerolipids from biological samples in order to determine any variation depending on tissue or physiopathological conditions. Here, we detail the development of the first high-performance thin-layer chromatography method for the quantification of total alkyl and alkenyl glycerolipids thanks to the separation of their corresponding alkyl and alkenyl glycerols. This method starts with a reduction of all lipids after extraction, resulting in the reduction of neutral and polar ether glycerolipids into alkyl and alkenyl glycerols, followed by an appropriate purification and, finally, the linearly ascending development of alkyl and alkenyl glycerols on high-performance thin-layer chromatography plates, staining, carbonization and densitometric analysis. Calibration curves were obtained with commercial alkyl and alkenyl glycerol standards, enabling the quantification of alkyl and alkenyl glycerols in samples and thus directly obtaining the quantity of alkyl and alkenyl lipids present in the samples. Interestingly, we found a differential quantity of these lipids in shark liver oil compared to chimera. We quantified alkyl and alkenyl glycerolipids in periprostatic adipose tissues from human prostate cancer and showed the feasibility of this method in other biological matrices (muscle, tumor).
Collapse
Affiliation(s)
- Marion Papin
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000 Tours, France; (M.P.); (C.G.); (B.P.-A.); (D.F.); (G.F.); (K.M.); (A.C.); (M.P.)
| | - Cyrille Guimaraes
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000 Tours, France; (M.P.); (C.G.); (B.P.-A.); (D.F.); (G.F.); (K.M.); (A.C.); (M.P.)
| | - Benoit Pierre-Aue
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000 Tours, France; (M.P.); (C.G.); (B.P.-A.); (D.F.); (G.F.); (K.M.); (A.C.); (M.P.)
| | - Delphine Fontaine
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000 Tours, France; (M.P.); (C.G.); (B.P.-A.); (D.F.); (G.F.); (K.M.); (A.C.); (M.P.)
| | - Jeoffrey Pardessus
- Centre d’Étude des Pathologies Respiratoires (CEPR)-U1100, University of Tours, INSERM, 37000 Tours, France;
| | - Hélène Couthon
- Laboratoire Chimie Electrochimie Moléculaires et Chimie Analytique (CEMCA) UMR 6521, University of Brest, CNRS, 29238 Brest, France;
| | - Gaëlle Fromont
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000 Tours, France; (M.P.); (C.G.); (B.P.-A.); (D.F.); (G.F.); (K.M.); (A.C.); (M.P.)
| | - Karine Mahéo
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000 Tours, France; (M.P.); (C.G.); (B.P.-A.); (D.F.); (G.F.); (K.M.); (A.C.); (M.P.)
| | - Aurélie Chantôme
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000 Tours, France; (M.P.); (C.G.); (B.P.-A.); (D.F.); (G.F.); (K.M.); (A.C.); (M.P.)
| | - Christophe Vandier
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000 Tours, France; (M.P.); (C.G.); (B.P.-A.); (D.F.); (G.F.); (K.M.); (A.C.); (M.P.)
- Correspondence: ; Tel.: +33-(0)2-4736-6024
| | - Michelle Pinault
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000 Tours, France; (M.P.); (C.G.); (B.P.-A.); (D.F.); (G.F.); (K.M.); (A.C.); (M.P.)
| |
Collapse
|
40
|
Blomme A, Peter C, Mui E, Rodriguez Blanco G, An N, Mason LM, Jamieson LE, McGregor GH, Lilla S, Ntala C, Patel R, Thiry M, Kung SHY, Leclercq M, Ford CA, Rushworth LK, McGarry DJ, Mason S, Repiscak P, Nixon C, Salji MJ, Markert E, MacKay GM, Kamphorst JJ, Graham D, Faulds K, Fazli L, Gleave ME, Avezov E, Edwards J, Yin H, Sumpton D, Blyth K, Close P, Murphy DJ, Zanivan S, Leung HY. THEM6-mediated reprogramming of lipid metabolism supports treatment resistance in prostate cancer. EMBO Mol Med 2022; 14:e14764. [PMID: 35014179 PMCID: PMC8899912 DOI: 10.15252/emmm.202114764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the clinical benefit of androgen-deprivation therapy (ADT), the majority of patients with advanced prostate cancer (PCa) ultimately develop lethal castration-resistant prostate cancer (CRPC). In this study, we identified thioesterase superfamily member 6 (THEM6) as a marker of ADT resistance in PCa. THEM6 deletion reduces in vivo tumour growth and restores castration sensitivity in orthograft models of CRPC. Mechanistically, we show that the ER membrane-associated protein THEM6 regulates intracellular levels of ether lipids and is essential to trigger the induction of the ER stress response (UPR). Consequently, THEM6 loss in CRPC cells significantly alters ER function, reducing de novo sterol biosynthesis and preventing lipid-mediated activation of ATF4. Finally, we demonstrate that high THEM6 expression is associated with poor survival and correlates with high levels of UPR activation in PCa patients. Altogether, our results highlight THEM6 as a novel driver of therapy resistance in PCa as well as a promising target for the treatment of CRPC.
Collapse
Affiliation(s)
| | | | - Ernest Mui
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Ning An
- Laboratory of Cancer SignalingGIGA‐InstituteUniversity of LiègeLiègeBelgium
| | | | - Lauren E Jamieson
- Centre for Molecular NanometrologyDepartment of Pure and Applied ChemistryTechnology and Innovation CentreUniversity of StrathclydeGlasgowUK
| | - Grace H McGregor
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Chara Ntala
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Marc Thiry
- GIGA‐NeurosciencesUnit of Cell and Tissue BiologyUniversity of LiègeLiègeBelgium
| | - Sonia H Y Kung
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Vancouver Prostate CentreVancouverBCCanada
| | - Marine Leclercq
- Laboratory of Cancer SignalingGIGA‐InstituteUniversity of LiègeLiègeBelgium
| | | | - Linda K Rushworth
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Susan Mason
- CRUK Beatson InstituteGarscube EstateGlasgowUK
| | | | - Colin Nixon
- CRUK Beatson InstituteGarscube EstateGlasgowUK
| | - Mark J Salji
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Elke Markert
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Jurre J Kamphorst
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Duncan Graham
- Centre for Molecular NanometrologyDepartment of Pure and Applied ChemistryTechnology and Innovation CentreUniversity of StrathclydeGlasgowUK
| | - Karen Faulds
- Centre for Molecular NanometrologyDepartment of Pure and Applied ChemistryTechnology and Innovation CentreUniversity of StrathclydeGlasgowUK
| | - Ladan Fazli
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Vancouver Prostate CentreVancouverBCCanada
| | - Martin E Gleave
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Vancouver Prostate CentreVancouverBCCanada
| | - Edward Avezov
- UK Dementia Research Institute at University of CambridgeDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Joanne Edwards
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Huabing Yin
- School of EngineeringUniversity of GlasgowGlasgowUK
| | | | - Karen Blyth
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Pierre Close
- Laboratory of Cancer SignalingGIGA‐InstituteUniversity of LiègeLiègeBelgium
| | - Daniel J Murphy
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Sara Zanivan
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Hing Y Leung
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| |
Collapse
|
41
|
Schooneveldt YL, Paul S, Calkin AC, Meikle PJ. Ether Lipids in Obesity: From Cells to Population Studies. Front Physiol 2022; 13:841278. [PMID: 35309067 PMCID: PMC8927733 DOI: 10.3389/fphys.2022.841278] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Ether lipids are a unique class of glycero- and glycerophospho-lipid that carry an ether or vinyl ether linked fatty alcohol at the sn-1 position of the glycerol backbone. These specialised lipids are important endogenous anti-oxidants with additional roles in regulating membrane fluidity and dynamics, intracellular signalling, immunomodulation and cholesterol metabolism. Lipidomic profiling of human population cohorts has identified new associations between reduced circulatory plasmalogen levels, an abundant and biologically active sub-class of ether lipids, with obesity and body-mass index. These findings align with the growing body of work exploring novel roles for ether lipids within adipose tissue. In this regard, ether lipids have now been linked to facilitating lipid droplet formation, regulating thermogenesis and mediating beiging of white adipose tissue in early life. This review will assess recent findings in both population studies and studies using cell and animal models to delineate the functional and protective roles of ether lipids in the setting of obesity. We will also discuss the therapeutic potential of ether lipid supplementation to attenuate diet-induced obesity.
Collapse
Affiliation(s)
- Yvette L. Schooneveldt
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Sudip Paul
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Anna C. Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Anna C. Calkin,
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Peter J. Meikle,
| |
Collapse
|
42
|
Need for more focus on lipid species in studies of biological and model membranes. Prog Lipid Res 2022; 86:101160. [DOI: 10.1016/j.plipres.2022.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/06/2022] [Indexed: 11/23/2022]
|
43
|
Gu J, Chen L, Sun R, Wang JL, Wang J, Lin Y, Lei S, Zhang Y, Lv D, Jiang F, Deng Y, Collman JP, Fu L. Plasmalogens Eliminate Aging-Associated Synaptic Defects and Microglia-Mediated Neuroinflammation in Mice. Front Mol Biosci 2022; 9:815320. [PMID: 35281262 PMCID: PMC8906368 DOI: 10.3389/fmolb.2022.815320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/02/2022] [Indexed: 12/31/2022] Open
Abstract
Neurodegeneration is a pathological condition in which nervous system or neuron losses its structure, function, or both leading to progressive neural degeneration. Growing evidence strongly suggests that reduction of plasmalogens (Pls), one of the key brain lipids, might be associated with multiple neurodegenerative diseases, including Alzheimer’s disease (AD). Plasmalogens are abundant members of ether-phospholipids. Approximately 1 in 5 phospholipids are plasmalogens in human tissue where they are particularly enriched in brain, heart and immune cells. In this study, we employed a scheme of 2-months Pls intragastric administration to aged female C57BL/6J mice, starting at the age of 16 months old. Noticeably, the aged Pls-fed mice exhibited a better cognitive performance, thicker and glossier body hair in appearance than that of aged control mice. The transmission electron microscopic (TEM) data showed that 2-months Pls supplementations surprisingly alleviate age-associated hippocampal synaptic loss and also promote synaptogenesis and synaptic vesicles formation in aged murine brain. Further RNA-sequencing, immunoblotting and immunofluorescence analyses confirmed that plasmalogens remarkably enhanced both the synaptic plasticity and neurogenesis in aged murine hippocampus. In addition, we have demonstrated that Pls treatment inhibited the age-related microglia activation and attenuated the neuroinflammation in the murine brain. These findings suggest for the first time that Pls administration might be a potential intervention strategy for halting neurodegeneration and promoting neuroregeneration.
Collapse
Affiliation(s)
- Jinxin Gu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lixue Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ran Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jie-Li Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Juntao Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yingjun Lin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shuwen Lei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Lv
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Faqin Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - James P. Collman
- Department of Chemistry, Stanford University, Stanford, CA, United States
| | - Lei Fu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
- *Correspondence: Lei Fu,
| |
Collapse
|
44
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
45
|
Vetrano IG, Dei Cas M, Nazzi V, Eoli M, Innocenti N, Saletti V, Potenza A, Carrozzini T, Pollaci G, Gorla G, Paroni R, Ghidoni R, Gatti L. The Lipid Asset Is Unbalanced in Peripheral Nerve Sheath Tumors. Int J Mol Sci 2021; 23:ijms23010061. [PMID: 35008487 PMCID: PMC8744637 DOI: 10.3390/ijms23010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve sheath tumors (PNSTs) include schwannomas, neurofibromas (NFs), and plexiform neurofibromas (PNFs), among others. While they are benign tumors, according to their biological behavior, some have the potential for malignant degeneration, mainly PNFs. The specific factors contributing to the more aggressive behavior of some PNSTs compared to others are not precisely known. Considering that lipid homeostasis plays a crucial role in fibrotic/inflammatory processes and in several cancers, we hypothesized that the lipid asset was also unbalanced in this group of nerve tumors. Through untargeted lipidomics, NFs presented a significant increase in ceramide, phosphatidylcholine, and Vitamin A ester. PNFs displayed a marked decrease in 34 out of 50 lipid class analyzed. An increased level of ether- and oxidized-triacylglycerols was observed; phosphatidylcholines were reduced. After sphingolipidomic analysis, we observed six sphingolipid classes. Ceramide and dihydroceramides were statistically increased in NFs. All the glycosylated species appeared reduced in NFs, but increased in PNFs. Our findings suggested that different subtypes of PNSTs presented a specific modulation in the lipidic profile. The untargeted and targeted lipidomic approaches, which were not applied until now, contribute to better clarifying bioactive lipid roles in PNS natural history to highlight disease molecular features and pathogenesis.
Collapse
Affiliation(s)
- Ignazio G. Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.N.); (N.I.)
- Correspondence:
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Vittoria Nazzi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.N.); (N.I.)
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Niccolò Innocenti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (V.N.); (N.I.)
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Antonella Potenza
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| | - Tatiana Carrozzini
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| | - Giuliana Pollaci
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| | - Gemma Gorla
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Riccardo Ghidoni
- Neurorehabilitation Department, IRCCS Istituti Clinici Scientifici Maugeri, 20138 Milan, Italy;
| | - Laura Gatti
- Neurobiology Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.P.); (T.C.); (G.P.); (G.G.); (L.G.)
| |
Collapse
|
46
|
Lima AR, Carvalho M, Aveiro SS, Melo T, Domingues MR, Macedo-Silva C, Coimbra N, Jerónimo C, Henrique R, Bastos MDL, Guedes de Pinho P, Pinto J. Comprehensive Metabolomics and Lipidomics Profiling of Prostate Cancer Tissue Reveals Metabolic Dysregulations Associated with Disease Development. J Proteome Res 2021; 21:727-739. [PMID: 34813334 DOI: 10.1021/acs.jproteome.1c00754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCa) is a global health problem that affects millions of men every year. In the past decade, metabolomics and related subareas, such as lipidomics, have demonstrated an enormous potential to identify novel mechanisms underlying PCa development and progression, providing a good basis for the development of new and more effective therapies and diagnostics. In this study, a multiplatform metabolomics and lipidomics approach, combining untargeted mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based techniques, was applied to PCa tissues to investigate dysregulations associated with PCa development, in a cohort of 40 patients submitted to radical prostatectomy for PCa. Results revealed significant alterations in the levels of 26 metabolites and 21 phospholipid species in PCa tissue compared with adjacent nonmalignant tissue, suggesting dysregulation in 13 metabolic pathways associated with PCa development. The most affected metabolic pathways were amino acid metabolism, nicotinate and nicotinamide metabolism, purine metabolism, and glycerophospholipid metabolism. A clear interconnection between metabolites and phospholipid species participating in these pathways was observed through correlation analysis. Overall, these dysregulations may reflect the reprogramming of metabolic responses to produce high levels of cellular building blocks required for rapid PCa cell proliferation.
Collapse
Affiliation(s)
- Ana Rita Lima
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,FP-I3ID, FP-ENAS, CEBIMED, University Fernando Pessoa, 4249-004 Porto, Portugal.,Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| | - Susana S Aveiro
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,GreenCoLab - Green Ocean Association, University of Algarve, 8005-139 Faro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina Macedo-Silva
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Nuno Coimbra
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal.,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal.,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
47
|
Perez-Valle A, Abad-García B, Fresnedo O, Barreda-Gómez G, Aspichueta P, Asumendi A, Astigarraga E, Fernández JA, Boyano MD, Ochoa B. A UHPLC-Mass Spectrometry View of Human Melanocytic Cells Uncovers Potential Lipid Biomarkers of Melanoma. Int J Mol Sci 2021; 22:12061. [PMID: 34769491 PMCID: PMC8585039 DOI: 10.3390/ijms222112061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer due to its ability to colonize distant sites and initiate metastasis. Although these processes largely depend on the lipid-based cell membrane scaffold, our understanding of the melanoma lipid phenotype lags behind most other aspects of this tumor cell. Here, we examined a panel of normal human epidermal and nevus melanocytes and primary and metastatic melanoma cell lines to determine whether distinctive cell-intrinsic lipidomes can discern non-neoplastic from neoplastic melanocytes and define their metastatic potential. Lipidome profiles were obtained by UHPLC-ESI mass-spectrometry, and differences in the signatures were analyzed by multivariate statistical analyses. Significant and highly specific changes in more than 30 lipid species were annotated in the initiation of melanoma, whereas less numerous changes were associated with melanoma progression and the non-malignant transformation of nevus melanocytes. Notably, the "malignancy lipid signature" features marked drops in pivotal membrane lipids, like sphingomyelins, and aberrant elevation of ether-type lipids and phosphatidylglycerol and phosphatidylinositol variants, suggesting a previously undefined remodeling of sphingolipid and glycerophospholipid metabolism. Besides broadening the molecular definition of this neoplasm, the different lipid profiles identified may help improve the clinical diagnosis/prognosis and facilitate therapeutic interventions for cutaneous melanoma.
Collapse
Affiliation(s)
- Arantza Perez-Valle
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.P.-V.); (A.A.)
| | - Beatriz Abad-García
- Central Analysis Service, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (O.F.); (P.A.)
| | - Gabriel Barreda-Gómez
- IMG Pharma Biotech S.L., Bizkaia Technological Park, 48160 Derio, Spain; (G.B.-G.); (E.A.)
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (O.F.); (P.A.)
- Biocruces-Bizkaia Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.P.-V.); (A.A.)
- Biocruces-Bizkaia Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Egoitz Astigarraga
- IMG Pharma Biotech S.L., Bizkaia Technological Park, 48160 Derio, Spain; (G.B.-G.); (E.A.)
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - María Dolores Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.P.-V.); (A.A.)
- Biocruces-Bizkaia Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (O.F.); (P.A.)
| |
Collapse
|
48
|
Characterizing the breast cancer lipidome and its interaction with the tissue microbiota. Commun Biol 2021; 4:1229. [PMID: 34707244 PMCID: PMC8551188 DOI: 10.1038/s42003-021-02710-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the most diagnosed cancer amongst women worldwide. We have previously shown that there is a breast microbiota which differs between women who have breast cancer and those who are disease-free. To better understand the local biochemical perturbations occurring with disease and the potential contribution of the breast microbiome, lipid profiling was performed on non-tumor breast tissue collected from 19 healthy women and 42 with breast cancer. Here we identified unique lipid signatures between the two groups with greater amounts of lysophosphatidylcholines and oxidized cholesteryl esters in the tissue from women with breast cancer and lower amounts of ceramides, diacylglycerols, phosphatidylcholines, and phosphatidylethanolamines. By integrating these lipid signatures with the breast bacterial profiles, we observed that Gammaproteobacteria and those from the class Bacillus, were negatively correlated with ceramides, lipids with antiproliferative properties. In the healthy tissues, diacylglyerols were positively associated with Acinetobacter, Lactococcus, Corynebacterium, Prevotella and Streptococcus. These bacterial groups were found to possess the genetic potential to synthesize these lipids. The cause-effect relationships of these observations and their contribution to disease patho-mechanisms warrants further investigation for a disease afflicting millions of women around the world.
Collapse
|
49
|
Lange M, Angelidou G, Ni Z, Criscuolo A, Schiller J, Blüher M, Fedorova M. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Rep Med 2021; 2:100407. [PMID: 34755127 PMCID: PMC8561168 DOI: 10.1016/j.xcrm.2021.100407] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023]
Abstract
Obesity, characterized by expansion and metabolic dysregulation of white adipose tissue (WAT), has reached pandemic proportions and acts as a primer for a wide range of metabolic disorders. Remodeling of WAT lipidome in obesity and associated comorbidities can explain disease etiology and provide valuable diagnostic and prognostic markers. To support understanding of WAT lipidome remodeling at the molecular level, we provide in-depth lipidomics profiling of human subcutaneous and visceral WAT of lean and obese individuals. We generate a human WAT reference lipidome by performing tissue-tailored preanalytical and analytical workflows, which allow accurate identification and semi-absolute quantification of 1,636 and 737 lipid molecular species, respectively. Deep lipidomic profiling allows identification of main lipid (sub)classes undergoing depot-/phenotype-specific remodeling. Previously unanticipated diversity of WAT ceramides is now uncovered. AdipoAtlas reference lipidome serves as a data-rich resource for the development of WAT-specific high-throughput methods and as a scaffold for systems medicine data integration.
Collapse
Affiliation(s)
- Mike Lange
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Georgia Angelidou
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Angela Criscuolo
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
- Thermo Fisher Scientific, Dreieich, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
50
|
Sperm Lipid Markers of Male Fertility in Mammals. Int J Mol Sci 2021; 22:ijms22168767. [PMID: 34445473 PMCID: PMC8395862 DOI: 10.3390/ijms22168767] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm plasma membrane lipids are essential for the function and integrity of mammalian spermatozoa. Various lipid types are involved in each key step within the fertilization process in their own yet coordinated way. The balance between lipid metabolism is tightly regulated to ensure physiological cellular processes, especially referring to crucial steps such as sperm motility, capacitation, acrosome reaction or fusion. At the same time, it has been shown that male reproductive function depends on the homeostasis of sperm lipids. Here, we review the effects of phospholipid, neutral lipid and glycolipid homeostasis on sperm fertilization function and male fertility in mammals.
Collapse
|