1
|
P. N. N, Mehla S, Begum A, Chaturvedi HK, Ojha R, Hartinger C, Plebanski M, Bhargava SK. Smart Nanozymes for Cancer Therapy: The Next Frontier in Oncology. Adv Healthc Mater 2023; 12:e2300768. [PMID: 37392379 PMCID: PMC11481082 DOI: 10.1002/adhm.202300768] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Indexed: 07/03/2023]
Abstract
Nanomaterials that mimic the catalytic activity of natural enzymes in the complex biological environment of the human body are called nanozymes. Recently, nanozyme systems have been reported with diagnostic, imaging, and/or therapeutic capabilities. Smart nanozymes strategically exploit the tumor microenvironment (TME) by the in situ generation of reactive species or by the modulation of the TME itself to result in effective cancer therapy. This topical review focuses on such smart nanozymes for cancer diagnosis, and therapy modalities with enhanced therapeutic effects. The dominant factors that guide the rational design and synthesis of nanozymes for cancer therapy include an understanding of the dynamic TME, structure-activity relationships, surface chemistry for imparting selectivity, and site-specific therapy, and stimulus-responsive modulation of nanozyme activity. This article presents a comprehensive analysis of the subject including the diverse catalytic mechanisms of different types of nanozyme systems, an overview of the TME, cancer diagnosis, and synergistic cancer therapies. The strategic application of nanozymes in cancer treatment can well be a game changer in future oncology. Moreover, recent developments may pave the way for the deployment of nanozyme therapy into other complex healthcare challenges, such as genetic diseases, immune disorders, and ageing.
Collapse
Affiliation(s)
- Navya P. N.
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Sunil Mehla
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Amrin Begum
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | | | - Ruchika Ojha
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Christian Hartinger
- School of Chemical SciencesThe University of AucklandAuckland 1142Private Bag92019New Zealand
| | - Magdalena Plebanski
- Cancer, Ageing and Vaccines Research GroupSchool of Health and Biomedical SciencesSTEM CollegeRMIT UniversityMelbourne3000Australia
| | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial ChemistrySchool of ScienceSTEM CollegeRMIT UniversityMelbourne3000Australia
| |
Collapse
|
2
|
Behzadifar S, Barras A, Plaisance V, Pawlowski V, Szunerits S, Abderrahmani A, Boukherroub R. Polymer-Based Nanostructures for Pancreatic Beta-Cell Imaging and Non-Invasive Treatment of Diabetes. Pharmaceutics 2023; 15:pharmaceutics15041215. [PMID: 37111699 PMCID: PMC10143373 DOI: 10.3390/pharmaceutics15041215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes poses major economic, social, and public health challenges in all countries worldwide. Besides cardiovascular disease and microangiopathy, diabetes is a leading cause of foot ulcers and lower limb amputations. With the continued rise of diabetes prevalence, it is expected that the future burden of diabetes complications, early mortality, and disabilities will increase. The diabetes epidemic is partly caused by the current lack of clinical imaging diagnostic tools, the timely monitoring of insulin secretion and insulin-expressing cell mass (beta (β)-cells), and the lack of patients' adherence to treatment, because some drugs are not tolerated or invasively administrated. In addition to this, there is a lack of efficient topical treatment capable of stopping the progression of disabilities, in particular for treating foot ulcers. In this context, polymer-based nanostructures garnered significant interest due to their tunable physicochemical characteristics, rich diversity, and biocompatibility. This review article emphasizes the last advances and discusses the prospects in the use of polymeric materials as nanocarriers for β-cell imaging and non-invasive drug delivery of insulin and antidiabetic drugs in the management of blood glucose and foot ulcers.
Collapse
Affiliation(s)
- Shakila Behzadifar
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| |
Collapse
|
3
|
Wu R, Zhu Y, Cai X, Wu S, Xu L, Yu T. Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. MICROMACHINES 2022; 13:1473. [PMID: 36144096 PMCID: PMC9503943 DOI: 10.3390/mi13091473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Recently, robots have assisted and contributed to the biomedical field. Scaling down the size of robots to micro/nanoscale can increase the accuracy of targeted medications and decrease the danger of invasive operations in human surgery. Inspired by the motion pattern and collective behaviors of the tiny biological motors in nature, various kinds of sophisticated and programmable microrobots are fabricated with the ability for cargo delivery, bio-imaging, precise operation, etc. In this review, four types of propulsion-magnetically, acoustically, chemically/optically and hybrid driven-and their corresponding features have been outlined and categorized. In particular, the locomotion of these micro/nanorobots, as well as the requirement of biocompatibility, transportation efficiency, and controllable motion for applications in the complex human body environment should be considered. We discuss applications of different propulsion mechanisms in the biomedical field, list their individual benefits, and suggest their potential growth paths.
Collapse
|
4
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112925. [PMID: 34937992 PMCID: PMC8691754 DOI: 10.1016/j.sna.2021.112925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Shin Low S, Nong Lim C, Yew M, Siong Chai W, Low LE, Manickam S, Ti Tey B, Show PL. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. ULTRASONICS SONOCHEMISTRY 2021; 80:105805. [PMID: 34706321 PMCID: PMC8555278 DOI: 10.1016/j.ultsonch.2021.105805] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 05/04/2023]
Abstract
Recent advances in ultrasound (US) have shown its great potential in biomedical applications as diagnostic and therapeutic tools. The coupling of US-assisted drug delivery systems with nanobiomaterials possessing tailor-made functions has been shown to remove the limitations of conventional drug delivery systems. The low-frequency US has significantly enhanced the targeted drug delivery effect and efficacy, reducing limitations posed by conventional treatments such as a limited therapeutic window. The acoustic cavitation effect induced by the US-mediated microbubbles (MBs) has been reported to replace drugs in certain acute diseases such as ischemic stroke. This review briefly discusses the US principles, with particular attention to the recent advancements in drug delivery applications. Furthermore, US-assisted drug delivery coupled with nanobiomaterials to treat different diseases (cancer, neurodegenerative disease, diabetes, thrombosis, and COVID-19) are discussed in detail. Finally, this review covers the future perspectives and challenges on the applications of US-mediated nanobiomaterials.
Collapse
Affiliation(s)
- Sze Shin Low
- Continental-NTU Corporate Lab, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Chang Nong Lim
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, No. 1, Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Malaysia
| | - Maxine Yew
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang, China
| | - Wai Siong Chai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, Guangdong, China
| | - Liang Ee Low
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Beng Ti Tey
- Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Kamat S, Kumari M, Jayabaskaran C. Nano-engineered tools in the diagnosis, therapeutics, prevention, and mitigation of SARS-CoV-2. J Control Release 2021; 338:813-836. [PMID: 34478750 PMCID: PMC8406542 DOI: 10.1016/j.jconrel.2021.08.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 01/07/2023]
Abstract
The recent outbreak of SARS-CoV-2 has forever altered mankind resulting in the COVID-19 pandemic. This respiratory virus further manifests into vital organ damage, resulting in severe post COVID-19 complications. Nanotechnology has been moonlighting in the scientific community to combat several severe diseases. This review highlights the triune of the nano-toolbox in the areas of diagnostics, therapeutics, prevention, and mitigation of SARS-CoV-2. Nanogold test kits have already been on the frontline of rapid detection. Breath tests, magnetic nanoparticle-based nucleic acid detectors, and the use of Raman Spectroscopy present myriads of possibilities in developing point of care biosensors, which will ensure sensitive, affordable, and accessiblemass surveillance. Most of the therapeutics are trying to focus on blocking the viral entry into the cell and fighting with cytokine storm, using nano-enabled drug delivery platforms. Nanobodies and mRNA nanotechnology with lipid nanoparticles (LNPs) as vaccines against S and N protein have regained importance. All the vaccines coming with promising phase 3 clinical trials have used nano-delivery systems for delivery of vaccine-cargo, which are currently administered widely in many countries. The use of chemically diverse metal, carbon and polymeric nanoparticles, nanocages and nanobubbles demonstrate opportunities to develop anti-viral nanomedicine. In order to prevent and mitigate the viral spread, high-performance charged nanofiber filters, spray coating of nanomaterials on surfaces, novel materials for PPE kits and facemasks have been developed that accomplish over 90% capture of airborne SARS-CoV-2. Nano polymer-based disinfectants are being tested to make smart-transport for human activities. Despite the promises of this toolbox, challenges in terms of reproducibility, specificity, efficacy and emergence of new SARS-CoV-2 variants are yet to overcome.
Collapse
Affiliation(s)
- Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
8
|
Zhang J, Xu J, Lim J, Nolan JK, Lee H, Lee CH. Wearable Glucose Monitoring and Implantable Drug Delivery Systems for Diabetes Management. Adv Healthc Mater 2021; 10:e2100194. [PMID: 33930258 DOI: 10.1002/adhm.202100194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Indexed: 12/11/2022]
Abstract
The global cost of diabetes care exceeds $1 trillion each year with more than $327 billion being spent in the United States alone. Despite some of the advances in diabetes care including continuous glucose monitoring systems and insulin pumps, the technology associated with managing diabetes has largely remained unchanged over the past several decades. With the rise of wearable electronics and novel functional materials, the field is well-poised for the next generation of closed-loop diabetes care. Wearable glucose sensors implanted within diverse platforms including skin or on-tooth tattoos, skin-mounted patches, eyeglasses, contact lenses, fabrics, mouthguards, and pacifiers have enabled noninvasive, unobtrusive, and real-time analysis of glucose excursions in ambulatory care settings. These wearable glucose sensors can be integrated with implantable drug delivery systems, including an insulin pump, glucose responsive insulin release implant, and islets transplantation, to form self-regulating closed-loop systems. This review article encompasses the emerging trends and latest innovations of wearable glucose monitoring and implantable insulin delivery technologies for diabetes management with a focus on their advanced materials and construction. Perspectives on the current unmet challenges of these strategies are also discussed to motivate future technological development toward improved patient care in diabetes management.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jian Xu
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jongcheon Lim
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - James K. Nolan
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
- School of Mechanical Engineering School of Materials Engineering Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
9
|
Kamali M, Dewil R, Appels L, Aminabhavi TM. Nanostructured materials via green sonochemical routes - Sustainability aspects. CHEMOSPHERE 2021; 276:130146. [PMID: 33740648 DOI: 10.1016/j.chemosphere.2021.130146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The production of environmentally friendly nanostructured materials with well-defined properties is a major challenge. Characteristics of the nanomaterials such as dimensionality, size and morphology strongly affect their performance in various applications. Additionally, sustainability considerations require an acceptable level of efficiency while being economically feasible and environmentally benign. The use of ultrasonic irradiation (UI) is a green and powerful technology, which can be applied for the synthesis of a variety of nanostructured materials. This review critically discusses the progress made in the fabrication of environmentally benign engineered nanomaterials with various dimensionalities (i.e., zero, one, two, or three dimensions) assisted by UI. The evolution and current status in this area are further illustrated using a scientometric approach. Application of UI for the synthesis of nanostructured materials has been also assessed according to the main sustainability pillars including the performance and environmental compatibility, as well as the relevant economic and social considerations. The outlook as well as recommendations for future research has been also provided and discussed towards the promotion of sustainable nanomaterials synthesis and application in various fields.
Collapse
Affiliation(s)
- Mohammadreza Kamali
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium.
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, SETs' College of Pharmacy, Dharwad, 580002, India.
| |
Collapse
|
10
|
Li C, Wan L, Luo J, Jiang M, Wang K. Advances in Subcutaneous Delivery Systems of Biomacromolecular Agents for Diabetes Treatment. Int J Nanomedicine 2021; 16:1261-1280. [PMID: 33628020 PMCID: PMC7898203 DOI: 10.2147/ijn.s283416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/09/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus is a major threat to human health. Both its incidence and prevalence have been rising steadily over the past few decades. Biomacromolecular agents such as insulin and glucagon-like peptide 1 receptor agonists are commonly used hypoglycemic drugs that play important roles in the treatment of diabetes. However, their traditional frequent administration may cause numerous side effects, such as pain, infection or local tissue necrosis. To address these issues, many novel subcutaneous delivery systems have been developed in recent years. In this review, we survey recent developments in subcutaneous delivery systems of biomacromolecular hypoglycemic drugs, including sustained-release delivery systems and stimuli-responsive delivery systems, and summarize the advantages and limitations of these systems. Future opportunities and challenges are discussed as well.
Collapse
Affiliation(s)
- Chen Li
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Long Wan
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Jie Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Mingyan Jiang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Keke Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| |
Collapse
|
11
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Abstract
Insulin therapy has advanced remarkably over the past few decades. Ultra-rapid-acting and ultra-long-acting insulin analogs are now commercially available. Many additional insulin formulations are in development. This review outlines recent advances in insulin therapy and novel therapies in development.
Collapse
Affiliation(s)
- Leah M. Wilson
- Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Jessica R. Castle
- Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon, USA
- Address correspondence to: Jessica R. Castle, MD, Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L607, Portland, OR 97239-3098, USA
| |
Collapse
|
13
|
Hu S, Primavera R, Razavi M, Avadhani A, Wang J, Thakor AS. Hybrid Polydimethylsiloxane Bioscaffold-Intravascular Catheter for Cellular Therapies. ACS APPLIED BIO MATERIALS 2020; 3:6626-6632. [DOI: 10.1021/acsabm.0c00725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sophia Hu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Anirudh Avadhani
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Jing Wang
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
14
|
Ciancia S, Cafarelli A, Zahoranova A, Menciassi A, Ricotti L. Pulsatile Drug Delivery System Triggered by Acoustic Radiation Force. Front Bioeng Biotechnol 2020; 8:317. [PMID: 32411680 PMCID: PMC7202567 DOI: 10.3389/fbioe.2020.00317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Since biological systems exhibit a circadian rhythm (24-hour cycle), they are susceptible to the timing of drug administration. Indeed, several disorders require a therapy that synchronizes with the onset of symptoms. A targeted therapy with spatially and temporally precise controlled drug release can guarantee a considerable gain in terms of efficacy and safety of the treatment compared to traditional pharmacological methods, especially for chronotherapeutic disorders. This paper presents a proof of concept of an innovative pulsatile drug delivery system remotely triggered by the acoustic radiation force of ultrasound. The device consists of a case, in which a drug-loaded gel can be embedded, and a sliding top that can be moved on demand by the application of an acoustic stimulus, thus enabling drug release. Results demonstrate for the first time that ultrasound acoustic radiation force (up to 0.1 N) can be used for an efficient pulsatile drug delivery (up to 20 μg of drug released for each shot).
Collapse
Affiliation(s)
- Sabrina Ciancia
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Departments of Excellence, Robotics & AI, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Andrea Cafarelli
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Departments of Excellence, Robotics & AI, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Anna Zahoranova
- Department for Biomaterials Research, Polymer Institute SAS, Bratislava, Slovakia
| | - Arianna Menciassi
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Departments of Excellence, Robotics & AI, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Departments of Excellence, Robotics & AI, Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
15
|
Primavera R, Kevadiya BD, Swaminathan G, Wilson RJ, De Pascale A, Decuzzi P, Thakor AS. Emerging Nano- and Micro-Technologies Used in the Treatment of Type-1 Diabetes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E789. [PMID: 32325974 PMCID: PMC7221526 DOI: 10.3390/nano10040789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Type-1 diabetes is characterized by high blood glucose levels due to a failure of insulin secretion from beta cells within pancreatic islets. Current treatment strategies consist of multiple, daily injections of insulin or transplantation of either the whole pancreas or isolated pancreatic islets. While there are different forms of insulin with tunable pharmacokinetics (fast, intermediate, and long-acting), improper dosing continues to be a major limitation often leading to complications resulting from hyper- or hypo-glycemia. Glucose-responsive insulin delivery systems, consisting of a glucose sensor connected to an insulin infusion pump, have improved dosing but they still suffer from inaccurate feedback, biofouling and poor patient compliance. Islet transplantation is a promising strategy but requires multiple donors per patient and post-transplantation islet survival is impaired by inflammation and suboptimal revascularization. This review discusses how nano- and micro-technologies, as well as tissue engineering approaches, can overcome many of these challenges and help contribute to an artificial pancreas-like system.
Collapse
Affiliation(s)
- Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Bhavesh D Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Ganesh Swaminathan
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Rudilyn Joyce Wilson
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Angelo De Pascale
- Unit of Endocrinology, Department of Internal Medicine & Medical Specialist (DIMI), University of Genoa, 16163 Genoa, Italy;
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| |
Collapse
|
16
|
Morakul S, Otsuka Y, Ohnuma K, Tagaya M, Motozuka S, Miyashita Y, Mutoh Y. Enhancement effect on antibacterial property of gray titania coating by plasma-sprayed hydroxyapatite-amino acid complexes during irradiation with visible light. Heliyon 2019; 5:e02207. [PMID: 31517079 PMCID: PMC6728275 DOI: 10.1016/j.heliyon.2019.e02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to reveal the mechanism of enhancement of antibacterial properties of gray titania by plasma-sprayed hydroxyapatite (HAp)-amino acid fluorescent complexes under irradiation with visible light. Although visible-light-sensitive photocatalysts are applied safely to oral cavities, their efficacy is not high because of the low energy of irradiating light. This study proposed a composite coating containing HAp and gray titania. HAp itself functioned as bacteria catchers and gray titania released antibacterial radicals by visible-light irradiation. HAp-amino acid fluorescent complexes were formed on the surface of the composite coating in order to increase light intensity to gray titania by fluorescence, based on an idea bioinspired by deep-sea fluorescent coral reefs. A cytotoxicity assay on murine osteoblastlike cells revealed that biocompatibility of the HAp-amino acid fluorescent complexes was identical with the that of HAp. Antibacterial assays involving Escherichia coli showed that the three types of HAp-amino acid fluorescent complexes and irradiation with three types of light-emitting diodes (blue, green, and red) significantly decreased colony-forming units. Furthermore, kelvin probe force microscopy revealed that the HAp-amino acid fluorescent complexes preserved the surface potentials even after irradiation with visible light, whereas those of HAp were significantly decreased by the irradiation. Such a preservative effect of the HAp-amino acid fluorescent complexes maintained the bacterial-adhesion performance of HAp and consequently enhanced the antibacterial action of gray titania.
Collapse
Affiliation(s)
- Sarita Morakul
- Graduate School of Materials Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Yuichi Otsuka
- Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Motohiro Tagaya
- Department of Materials Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Satoshi Motozuka
- Department of Mechanical Engineering, Gihu National College of Technology, 2236-2 Kamimakuwa, Motosu, Gifu, Japan
| | - Yukio Miyashita
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Yoshiharu Mutoh
- Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| |
Collapse
|
17
|
VandenBerg MA, Webber MJ. Biologically Inspired and Chemically Derived Methods for Glucose-Responsive Insulin Therapy. Adv Healthc Mater 2019; 8:e1801466. [PMID: 30605265 DOI: 10.1002/adhm.201801466] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The controlled delivery of therapeutics in a manner responsive to physiological indicators has promise in realizing new therapeutic approaches to combat disease. This approach is especially relevant in the context of diabetes. Natural fluctuations in blood glucose seen in the healthy state, complete with peaks and troughs, are poorly regulated as a result of detrimental production or ineffective signaling of the insulin hormone. While several manifestations of diabetes are treated with regularly administered exogenous insulin, the present standard of care results in suboptimal glycemic management that poorly recreates natural hormone control, leading to long-term instability and a significantly increased risk for secondary health complications. New synthetic technologies that make insulin available only when needed, and at the exact dose required, have been explored under the broad vision of realizing a "fully synthetic pancreas." Yet, many challenges remain to realizing a technology that is appropriately responsive, safe, and well integrated into a manageable routine. Herein, many of the approaches explored thus far to sense physiological blood glucose and elicit response through the release of therapeutic insulin are summarized. The approaches point to a new, autonomous approach to managing diabetes with biomimetic therapy.
Collapse
Affiliation(s)
- Michael A. VandenBerg
- Department of Chemical & Biomolecular EngineeringUniversity of Notre Dame 205 McCourtney Hall Notre Dame IN 46556 USA
| | - Matthew J. Webber
- Department of Chemical & Biomolecular EngineeringUniversity of Notre Dame 205 McCourtney Hall Notre Dame IN 46556 USA
| |
Collapse
|
18
|
Zhang Y, Yu J, Kahkoska AR, Wang J, Buse JB, Gu Z. Advances in transdermal insulin delivery. Adv Drug Deliv Rev 2019; 139:51-70. [PMID: 30528729 PMCID: PMC6556146 DOI: 10.1016/j.addr.2018.12.006] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/06/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Insulin therapy is necessary to regulate blood glucose levels for people with type 1 diabetes and commonly used in advanced type 2 diabetes. Although subcutaneous insulin administration via hypodermic injection or pump-mediated infusion is the standard route of insulin delivery, it may be associated with pain, needle phobia, and decreased adherence, as well as the risk of infection. Therefore, transdermal insulin delivery has been widely investigated as an attractive alternative to subcutaneous approaches for diabetes management in recent years. Transdermal systems designed to prevent insulin degradation and offer controlled, sustained release of insulin may be desirable for patients and lead to increased adherence and glycemic outcomes. A challenge for transdermal insulin delivery is the inefficient passive insulin absorption through the skin due to the large molecular weight of the protein drug. In this review, we focus on the different transdermal insulin delivery techniques and their respective advantages and limitations, including chemical enhancers-promoted, electrically enhanced, mechanical force-triggered, and microneedle-assisted methods.
Collapse
Affiliation(s)
- Yuqi Zhang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Anna R Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; California NanoSystems Institute, Jonsson Comprehensive Cancer Center, Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Lin YJ, Mi FL, Lin PY, Miao YB, Huang T, Chen KH, Chen CT, Chang Y, Sung HW. Strategies for improving diabetic therapy via alternative administration routes that involve stimuli-responsive insulin-delivering systems. Adv Drug Deliv Rev 2019; 139:71-82. [PMID: 30529306 DOI: 10.1016/j.addr.2018.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/06/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
The encapsulation of insulin in micro- or nanodelivery systems may eliminate the need for frequent subcutaneous injections, improving the quality of life of diabetic patients. Formulations for oral, intranasal, pulmonary, subcutaneous, and transdermal administration have been developed. The use of stimuli-responsive polymeric carriers that can release the encapsulated drug in response to changes of the environmental stimuli or external activation enables the design of less invasive or non-invasive systems for smart insulin delivery from depots in the body. This article will look at strategies for the development of responsive delivery systems and the future meeting of the demands of new modes of insulin delivery.
Collapse
|
20
|
Enrico C. Nanotechnology-Based Drug Delivery of Natural Compounds and Phytochemicals for the Treatment of Cancer and Other Diseases. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64185-4.00003-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Deng Y, Jia F, Chen S, Shen Z, Jin Q, Fu G, Ji J. Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation. Biomaterials 2018; 187:55-65. [PMID: 30292942 DOI: 10.1016/j.biomaterials.2018.09.043] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
A glutathione (GSH)-sensitive supramolecular nitric oxide (NO) nanogenerator is developed as an all-rounder for enhanced photodynamic therapy (PDT). By integrating GSH-sensitive NO prodrug into the system via LEGO-like host-guest interaction, the nanocarrier could not only deplete intracellular GSH, but also relieve hypoxia at tumor sites through NO mediated blood vessel relaxation. Furthermore, reactive nitrogen species (RNS) with enhanced biocidal activity could be produced by the reaction between NO and reactive oxygen species (ROS), generated from α-cyclodextrin (α-CD) conjugated S-nitrosothiol and light-activated chlorin e6 (Ce6) respectively. Due to multiple combined effects between NO and PDT, the NO acts as the loaded gunpowder inside a 'grenade', 'explosively' amplifying the therapeutic effects that the light responsive 'fuse' Ce6 could exert. The present work may well serve as an inspiration for future creative approaches of photodynamic cancer therapy.
Collapse
Affiliation(s)
- Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| | - Shengyu Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, PR China
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, PR China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China.
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China.
| |
Collapse
|
22
|
Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1041-1060. [DOI: 10.1016/j.msec.2017.12.036] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 01/06/2023]
|
23
|
Cai P, Hu B, Leow WR, Wang X, Loh XJ, Wu YL, Chen X. Biomechano-Interactive Materials and Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800572. [PMID: 29882230 DOI: 10.1002/adma.201800572] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/19/2018] [Indexed: 06/08/2023]
Abstract
The reciprocal mechanical interaction of engineered materials with biointerfaces have long been observed and exploited in biomedical applications. It contributes to the rise of biomechano-responsive materials and biomechano-stimulatory materials, constituting the biomechano-interactive interfaces. Here, endogenous and exogenous biomechanical stimuli available for mechanoresponsive interfaces are briefed and their mechanistic responses, including deformation and volume change, mechanomanipulation of physical and chemical bonds, dissociation of assemblies, and coupling with thermoresponsiveness are summarized. The mechanostimulatory materials, however, are capable of delivering mechanical cues, including stiffness, viscoelasticity, geometrical constraints, and mechanical loads, to modulate physiological and pathological behaviors of living tissues through the adaptive cellular mechanotransduction. The biomechano-interactive materials and interfaces are widely implemented in such fields as mechanotriggered therapeutics and diagnosis, adaptive biophysical sensors, biointegrated soft actuators, and mechanorobust tissue engineering, which have offered unprecedented opportunities for precision and personalized medicine. Pending challenges are also addressed to shed a light on future advances with respect to translational implementations.
Collapse
Affiliation(s)
- Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Benhui Hu
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wan Ru Leow
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaoyuan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
24
|
Mohanty K, Mahajan S, Pinton G, Muller M, Jing Y. Observation of Self-Bending and Focused Ultrasound Beams in the Megahertz Range. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1460-1467. [PMID: 29993715 DOI: 10.1109/tuffc.2018.2841341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-bending (or self-accelerating) and nondiffracting acoustic beams, such as Airy beams, have the potential to focus around obstacles that are directly in the beam path. Here, we demonstrate the self-bending and focusing properties of Airy beams in the ultrasound domain using finite difference time-domain simulations at 5.2 MHz. The phase profiles of self-bending Airy beams are determined from the Airy function. This beam is then transmitted experimentally using a linear array transducer connected to a 128 channel Vantage Verasonics operating at 5.2 MHz. The performance of self-bending beams is compared to conventional focused ultrasound beams in the presence of a strong scattering obstacle (steel rod). The ability of self-bending Airy beams to bypass obstacles is characterized in terms of their relative energy retention at peak intensity, that was found experimentally to be 50.5% for traditional focused beams whereas 71.5% for Airy beams, proving that self-bending beams performed better than conventional beams in terms of relative energy retention with no significant change in the focal profiles. However, it is observed that, in absolute terms, self-bending beams focus less energy than traditional focused beams.
Collapse
|
25
|
Morey M, Pandit A. Responsive triggering systems for delivery in chronic wound healing. Adv Drug Deliv Rev 2018; 129:169-193. [PMID: 29501700 DOI: 10.1016/j.addr.2018.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/27/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Abstract
Non-communicable diseases including cancer, cardiovascular disease, diabetes, and neuropathy are chronic in nature. Treatment of these diseases with traditional delivery systems is limited due to lack of site-specificity, non-spatiotemporal release and insufficient doses. Numerous responsive delivery systems which respond to both physiological and external stimuli have been reported in the literature. However, effective strategies incorporating a multifactorial approach are required to control these complex wounds. This can be achieved by fabricating spatiotemporal release systems, multimodal systems or dual/multi-stimuli responsive delivery systems loaded with one or more bioactive components. Critically, these next generation stimuli responsive delivery systems that are at present not feasible are required to treat chronic wounds. This review provides a critical assessment of recent developments in the field of responsive delivery systems, highlighting their limitations and providing a perspective on how these challenges can be overcome.
Collapse
Affiliation(s)
- Mangesh Morey
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
26
|
Sahoo JK, VandenBerg MA, Webber MJ. Injectable network biomaterials via molecular or colloidal self-assembly. Adv Drug Deliv Rev 2018; 127:185-207. [PMID: 29128515 DOI: 10.1016/j.addr.2017.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/16/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Self-assembly is a powerful tool to create functional materials. A specific application for which self-assembled materials are ideally suited is in creating injectable biomaterials. Contrasting with traditional biomaterials that are implanted through surgical means, injecting biomaterials through the skin offers numerous advantages, expanding the scope and impact for biomaterials in medicine. In particular, self-assembled biomaterials prepared from molecular or colloidal interactions have been frequently explored. The strategies to create these materials are varied, taking advantage of engineered oligopeptides, proteins, and nanoparticles as well as affinity-mediated crosslinking of synthetic precursors. Self-assembled materials typically facilitate injectability through two different mechanisms: i) in situ self-assembly, whereby materials would be administered in a monomeric or oligomeric form and self-assemble in response to some physiologic stimulus, or ii) self-assembled materials that, by virtue of their dynamic, non-covalent interactions, shear-thin to facilitate flow within a syringe and subsequently self-heal into its reassembled material form at the injection site. Indeed, many classes of materials are capable of being injected using a combination of these two mechanisms. Particular utility has been noted for self-assembled biomaterials in the context of tissue engineering, regenerative medicine, drug delivery, and immunoengineering. Given the controlled and multifunctional nature of many self-assembled materials demonstrated to date, we project a future where injectable self-assembled biomaterials afford improved practice in advancing healthcare.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Michael A VandenBerg
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA; Warren Family Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA; Center for Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
27
|
Effect of Ultrasound-Enhanced Transdermal Drug Delivery Efficiency of Nanoparticles and Brucine. BIOMED RESEARCH INTERNATIONAL 2018; 2017:3273816. [PMID: 29349071 PMCID: PMC5733966 DOI: 10.1155/2017/3273816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/04/2017] [Indexed: 12/30/2022]
Abstract
Brucine is the active component in traditional Chinese medicine “Ma-Qian-Zi” (Strychnos nux-vomica Linn), with capabilities of analgesic, anti-inflammatory, anti-tumor and so on. It is crucial how to break through the impact of cuticle skin which reduces the penetration of drugs to improve drug transmission rate. The aim of this study is to improve the local drug concentration by using ultrasound. We used fresh porcine skin to study the effects of ultrasound on the transdermal absorption of brucine under the influence of various acoustic parameters, including frequency, amplitude and irradiation time. The transdermal conditions of yellow-green fluorescent nanoparticles and brucine in skin samples were observed by laser confocal microscopy and ultraviolet spectrophotometry. The results show that under ultrasonic conditions, the permeability of the skin to the fluorescent label and brucine (e.g., the depth and concentration of penetration) is increased compared to its passive diffusion permeability. The best ultrasound penetration can make the penetration depth of more than 110 microns, fluorescent nanoparticles and brucine concentration increased to 2-3 times. This work will provide supportive data on how the brucine is better used for transdermal drug delivery (TDD).
Collapse
|
28
|
Ding HM, Ma YQ. Computational approaches to cell-nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity. NANOSCALE HORIZONS 2018; 3:6-27. [PMID: 32254106 DOI: 10.1039/c7nh00138j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Owing to their unique properties, nanomaterials have been widely used in biomedicine since they have obvious inherent advantages over traditional ones. However, nanomaterials may also cause dysfunction in proteins, genes and cells, resulting in cytotoxic and genotoxic responses. Recently, more and more attention has been paid to these potential toxicities of nanomaterials, especially to the risks of nanomaterials to human health and safety. Therefore, when using nanomaterials for biomedical applications, it is of great importance to keep the balance between therapeutic efficiency and cytotoxicity (i.e., increase the therapeutic efficiency as well as decrease the potential toxicity). This requires a deeper understanding of the interactions between various types of nanomaterials and biological systems at the nano/bio interface. In this review, from the point of view of theoretical researchers, we will present the current status regarding the physical mechanism of cytotoxicity caused by nanomaterials, mainly based on recent simulation results. In addition, the strategies for minimizing the nanotoxicity naturally and artificially will also be discussed in detail. Furthermore, we should notice that toxicity is not always bad for clinical use since causing the death of specific cells is the main way of treating disease. Enhancing the targeting ability of nanomaterials to diseased cells and minimizing their side effects on normal cells will always be hugely challenging issues in nanomedicine. By combining the latest computational studies with some experimental verifications, we will provide special insights into recent advances regarding these problems, especially for the design of novel environment-responsive nanomaterials.
Collapse
Affiliation(s)
- Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | | |
Collapse
|
29
|
Manaspon C, Hernandez C, Nittayacharn P, Jeganathan S, Nasongkla N, Exner AA. Increasing Distribution of Drugs Released from In Situ Forming PLGA Implants Using Therapeutic Ultrasound. Ann Biomed Eng 2017; 45:2879-2887. [PMID: 28929267 PMCID: PMC5693652 DOI: 10.1007/s10439-017-1926-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
One of the challenges in developing sustained-release local drug delivery systems is the limited treatment volume that can be achieved. In this work, we examine the effectiveness of using low frequency, high intensity ultrasound to promote the spatial penetration of drug molecules away from the implant/injection site boundary upon release from injectable, phase inverting poly(lactic acid-co-glycolic acid) (PLGA) implants. Fluorescein-loaded PLGA solutions were injected into poly(acrylamide) phantoms, and the constructs were treated daily for 14 days with ultrasound at 2.2 W/cm2 for 10 min. The 2D distribution of fluorescein within the phantoms was quantified using fluorescence imaging. Implants receiving ultrasound irradiation showed a 1.7-5.6 fold increase (p < 0.05) in fluorescence intensity and penetration distance, with the maximum increase observed 5 days post-implantation. However, this evidence was not seen when the same experiment was also carried out in phosphate buffer saline (pH 7.4). Results suggest an active role of ultrasound in local molecular transport in the phantom. An increase of fluorescein release and penetration depth in phantoms can be accomplished through brief application of ultrasound. This simple technique offers an opportunity to eventually enhance the therapeutic efficacy and broaden the application of local drug delivery systems.
Collapse
Affiliation(s)
- Chawan Manaspon
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Christopher Hernandez
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Pinunta Nittayacharn
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Selva Jeganathan
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Norased Nasongkla
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, 73170, Thailand
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
30
|
Fathi M, Sahandi Zangabad P, Majidi S, Barar J, Erfan-Niya H, Omidi Y. Stimuli-responsive chitosan-based nanocarriers for cancer therapy. ACTA ACUST UNITED AC 2017; 7:269-277. [PMID: 29435435 PMCID: PMC5801539 DOI: 10.15171/bi.2017.32] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/02/2017] [Accepted: 11/12/2017] [Indexed: 01/14/2023]
Abstract
Introduction: Stimuli-responsive nanocarriers offer unique advantages over the traditional drug delivery systems (DDSs) in terms of targeted drug delivery and on-demand release of cargo drug molecules. Of these, chitosan (CS)-based DDSs offer several advantages such as high compatibility with biological settings. Methods: In this study, we surveyed the literature in terms of the stimuli-responsive nanocarriers and discussed the most recent advancements in terms of CS-based nanosystems and their applications in cancer therapy and diagnosis. Results: These advanced DDSs are able to release the entrapped drugs in response to a specific endogenous stimulus (e.g., pH, glutathione concentration or certain enzymes) or exogenous stimulus (e.g., temperature, light, ultrasound, and magnetic field) at the desired time and target site. Dual-responsive nanocarriers by the combination of different stimuli have also been developed as efficient and improved DDSs. Among the stimuli-responsive nanocarriers, CS-based DDSs offer several advantages, including biocompatibility and biodegradability, antibacterial activity, ease of modification and functionalization, and non-immunogenicity. They are as one of the most ideal smart multifunction DDSs. Conclusion: The CS-based stimuli-responsive multifunctional nanosystems (NSs) offer unique potential for the targeted delivery of anticancer agents and provide great potential for on-demand and controlled-release of anticancer agents in response to diverse external/internal stimuli.
Collapse
Affiliation(s)
- Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Majidi
- Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Erfan-Niya
- Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Wu JZ, Williams GR, Li HY, Wang DX, Li SD, Zhu LM. Insulin-loaded PLGA microspheres for glucose-responsive release. Drug Deliv 2017; 24:1513-1525. [PMID: 28975813 PMCID: PMC8241149 DOI: 10.1080/10717544.2017.1381200] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022] Open
Abstract
Porous poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared, loaded with insulin, and then coated in poly(vinyl alcohol) (PVA) and a novel boronic acid-containing copolymer [poly(acrylamide phenyl boronic acid-co-N-vinylcaprolactam); p(AAPBA-co-NVCL)]. Multilayer microspheres were generated using a layer-by-layer approach depositing alternating coats of PVA and p(AAPBA-co-NVCL) on the PLGA surface, with the optimal system found to be that with eight alternating layers of each coating. The resultant material comprised spherical particles with a porous PLGA core and the pores covered in the coating layers. Insulin could successfully be loaded into the particles, with loading capacity and encapsulation efficiencies reaching 2.83 ± 0.15 and 82.6 ± 5.1% respectively, and was found to be present in the amorphous form. The insulin-loaded microspheres could regulate drug release in response to a changing concentration of glucose. In vitro and in vivo toxicology tests demonstrated that they are safe and have high biocompatibility. Using the multilayer microspheres to treat diabetic mice, we found they can effectively control blood sugar levels over at least 18 days, retaining their glucose-sensitive properties during this time. Therefore, the novel multilayer microspheres developed in this work have significant potential as smart drug-delivery systems for the treatment of diabetes.
Collapse
Affiliation(s)
- Jun-Zi Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| | | | - He-Yu Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Dong-Xiu Wang
- Central Laboratory, Environmental Monitoring Center of Kunming, Kunming, P.R. China
| | - Shu-De Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, P.R. China
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| |
Collapse
|
32
|
Yang J, Cao Z. Glucose-responsive insulin release: Analysis of mechanisms, formulations, and evaluation criteria. J Control Release 2017; 263:231-239. [PMID: 28159517 PMCID: PMC5630063 DOI: 10.1016/j.jconrel.2017.01.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/18/2017] [Accepted: 01/29/2017] [Indexed: 01/14/2023]
Abstract
Diabetes mellitus has become one of the biggest medical challenges affecting millions of people globally. Alternative treatments for diabetes are currently being intensively investigated to improve the treatment efficacy and life qualities for diabetic patients. Glucose-responsive insulin release (GRIR) systems have exhibited tremendous potential to improve the normal glycemic control and to reduce the incidence of hyperglycemia and hypoglycemia, which further reduces potential complications in diabetic patients. In a given GRIR drug formulation, accuracy, response time, and reversibility of the GRIR functions are three key features enabling potential seamless control of blood glucose level. Nevertheless, there is significant challenge preventing current GRIR formulations from achieving them. This review article analyzes the most updated literature and provides insights on the impact of GRIR mechanisms, and formulations on these key features, and the relevant in vitro and in vivo evaluation methods to test these functions.
Collapse
Affiliation(s)
- Jianhai Yang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, United States; Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
33
|
Zhuang J, Fang RH, Zhang L. Preparation of particulate polymeric therapeutics for medical applications. SMALL METHODS 2017; 1:1700147. [PMID: 30310860 PMCID: PMC6176868 DOI: 10.1002/smtd.201700147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Particulate therapeutics fabricated from polymeric materials have become increasingly popular over the past several decades. Generally, polymeric systems are easy to synthesize and have tunable parameters, giving them significant potential for wide use in the clinic. They come in many different forms, including as nanoparticles, microparticles, and colloidal gels. In this review, we discuss the current preparation methods for each type of platform, as well as some representative applications. To achieve enhanced performance, lipid coatings and other surface modification techniques for introducing additional functionality are also mentioned. We hope that, by outlining the various methods and techniques for their preparation, it will be possible to provide insights into the utility of these polymeric platforms and further encourage their development for biomedical applications.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
34
|
Gao M, Liang C, Song X, Chen Q, Jin Q, Wang C, Liu Z. Erythrocyte-Membrane-Enveloped Perfluorocarbon as Nanoscale Artificial Red Blood Cells to Relieve Tumor Hypoxia and Enhance Cancer Radiotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701429. [PMID: 28722140 DOI: 10.1002/adma.201701429] [Citation(s) in RCA: 429] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/07/2017] [Indexed: 05/19/2023]
Abstract
Hypoxia, a common feature within many types of solid tumors, is known to be closely associated with limited efficacy for cancer therapies, including radiotherapy (RT) in which oxygen is essential to promote radiation-induced cell damage. Here, an artificial nanoscale red-blood-cell system is designed by encapsulating perfluorocarbon (PFC), a commonly used artificial blood substitute, within biocompatible poly(d,l-lactide-co-glycolide) (PLGA), obtaining PFC@PLGA nanoparticles, which are further coated with a red-blood-cell membrane (RBCM). The developed PFC@PLGA-RBCM nanoparticles with the PFC core show rather efficient loading of oxygen, as well as greatly prolonged blood circulation time owing to the coating of RBCM. With significantly improved extravascular diffusion within the tumor mass, owing to their much smaller nanoscale sizes compared to native RBCs with micrometer sizes, PFC@PLGA-RBCM nanoparticles are able to effectively deliver oxygen into tumors after intravenous injection, leading to greatly relieved tumor hypoxia and thus remarkably enhanced treatment efficacy during RT. This work thus presents a unique type of nanoscale RBC mimic for efficient oxygen delivery into solid tumors, favorable for cancer treatment by RT, and potentially other types of therapy as well.
Collapse
Affiliation(s)
- Min Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chao Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Xuejiao Song
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qiutong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), The Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
35
|
El-Sherbiny I, Khalil I, Ali I, Yacoub M. Updates on smart polymeric carrier systems for protein delivery. Drug Dev Ind Pharm 2017; 43:1567-1583. [DOI: 10.1080/03639045.2017.1338723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ibrahim El-Sherbiny
- Center for Materials Science, University of Science and Technology (UST), Zewail City of Science and Technology, Cairo, Egypt
| | - Islam Khalil
- Center for Materials Science, University of Science and Technology (UST), Zewail City of Science and Technology, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Misr University of Science and Technology (MUST), Cairo, Egypt
| | - Isra Ali
- Center for Materials Science, University of Science and Technology (UST), Zewail City of Science and Technology, Cairo, Egypt
| | - Magdi Yacoub
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
36
|
P.V. J, Nair SV, Kamalasanan K. Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes. Colloids Surf B Biointerfaces 2017; 153:123-131. [DOI: 10.1016/j.colsurfb.2017.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/01/2017] [Accepted: 02/13/2017] [Indexed: 02/07/2023]
|
37
|
Dang M, Koh AJ, Danciu T, McCauley LK, Ma PX. Preprogrammed Long-Term Systemic Pulsatile Delivery of Parathyroid Hormone to Strengthen Bone. Adv Healthc Mater 2017; 6:10.1002/adhm.201600901. [PMID: 27930873 PMCID: PMC5299037 DOI: 10.1002/adhm.201600901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/01/2016] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone (PTH) is the only US Food and Drug Administration (FDA)-approved anabolic agent for the treatment of osteoporosis. The anabolic action of PTH depends on the mode of PTH administration. Pulsatile administration promotes bone formation, however continuous PTH exposure results in bone resorption. In addition, the therapeutic effect of PTH is optimal when the dose and duration fit the therapeutic window. Current PTH treatment requires daily injection, which is neither a convenient nor a favorable choice of patients. Here, an implantable and biodegradable device capable of long-term pulsatile delivery of PTH is developed as a patient-friendly alternative. The advanced materials and fabrication techniques developed in this work enable us to preprogram a pulsatile delivery device to systemically deliver 21 daily pulses of PTH that build bone in vivo. In addition, the device is biodegradable and absorbable in vivo so that no retraction procedure is needed. Therefore, this implantable and biodegradable pulsatile device holds promise to promote bone growth and treat various conditions of bone loss without the burden of daily injections or secondary surgeries.
Collapse
Affiliation(s)
- Ming Dang
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy J. Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Theodora Danciu
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Affiliation(s)
- Yuqi Zhang
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jicheng Yu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hunter N. Bomba
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Department
of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhen Gu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics,
UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
39
|
Yu J, Zhang Y, Bomba H, Gu Z. Stimuli-Responsive Delivery of Therapeutics for Diabetes Treatment. Bioeng Transl Med 2016; 1:323-337. [PMID: 29147685 PMCID: PMC5685194 DOI: 10.1002/btm2.10036] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic therapeutics, including insulin and glucagon-like peptide 1 (GLP-1), are essential for diabetic patients to regulate blood glucose levels. However, conventional treatments that are based on subcutaneous injections are often associated with poor glucose control and a lack of patient compliance. In this review, we focus on the different stimuli-responsive systems to deliver therapeutics for diabetes treatment to improve patient comfort and prevent complications. Specifically, the pH-responsive systems for oral drug delivery are introduced first. Then, the closed-loop glucose-responsive systems are summarized based on different glucose-responsive moieties, including glucose oxidase (GOx), glucose binding protein (GBP), and phenylboronic acid (PBA). Finally, the on-demand delivery systems activated by external remote triggers are also discussed. We conclude by discussing advantages and limitations of current strategies, as well as future opportunities and challenges in this area.
Collapse
Affiliation(s)
- Jicheng Yu
- Joint Dept. of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599
| | - Yuqi Zhang
- Joint Dept. of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599
| | - Hunter Bomba
- Joint Dept. of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695
| | - Zhen Gu
- Joint Dept. of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599
- Dept. of MedicineUniversity of North Carolina at Chapel HillChapel HillNC27599
| |
Collapse
|
40
|
Dong Y, Wang W, Veiseh O, Appel EA, Xue K, Webber MJ, Tang BC, Yang XW, Weir GC, Langer R, Anderson DG. Injectable and Glucose-Responsive Hydrogels Based on Boronic Acid-Glucose Complexation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8743-7. [PMID: 27455412 PMCID: PMC5242094 DOI: 10.1021/acs.langmuir.5b04755] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Injectable hydrogels have been widely used for a number of biomedical applications. Here, we report a new strategy to form an injectable and glucose-responsive hydrogel using the boronic acid-glucose complexation. The ratio of boronic acid and glucose functional groups is critical for hydrogel formation. In our system, polymers with 10-60% boronic acid, with the balance being glucose-modified, are favorable to form hydrogels. These hydrogels are shear-thinning and self-healing, recovering from shear-induced flow to a gel state within seconds. More importantly, these polymers displayed glucose-responsive release of an encapsulated model drug. The hydrogel reported here is an injectable and glucose-responsive hydrogel constructed from the complexation of boronic acid and glucose within a single component polymeric material.
Collapse
Affiliation(s)
- Yizhou Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Weiheng Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid Veiseh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Eric A. Appel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kun Xue
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew J. Webber
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Benjamin C. Tang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xi-Wen Yang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gordon C. Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, United States
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Anesthesiology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Corresponding Author:
| |
Collapse
|
41
|
Abstract
A primary envisioned use for nanoparticles (NPs) in a cellular context is for controlled drug delivery where the full benefit of NP attributes (small size, large drug cargo loading capacity) can improve the pharmacokinetics of the drug cargo. This requires the ability to controllably manipulate the release of the drug cargo from the NP vehicle or ‘controlled actuation’. In this review, we highlight new developments in this field from 2013 to 2015. The number and breadth of reports are a testament to the significant advancements made in this field over this time period. We conclude with a perspective of how we envision this field to continue to develop in the years to come.
Collapse
|
42
|
Jin Z, Choi Y, Ko SY, Park JO, Park S. Experimental and simulation studies on focused ultrasound triggered drug delivery. Biotechnol Appl Biochem 2016; 64:134-142. [PMID: 26517977 DOI: 10.1002/bab.1453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/25/2015] [Indexed: 12/16/2022]
Abstract
To improve drug delivery efficiency in cancer therapy, many researchers have recently concentrated on drug delivery systems that use anticancer drug loaded micro- or nanoparticles. In addition, induction methods, such as ultrasound, magnetic field, and infrared light, have been considered as active induction methods for drug delivery. Among these, focused ultrasound has been regarded as a promising candidate for the active induction method of drug delivery system because it can penetrate a deep site in soft tissue, and its energy can be focused on the targeted lesion. In this research, we employed focused ultrasound as an active induction method. For an anticancer drug loaded microparticles, we fabricated poly-lactic-co-glycolic acid docetaxel (PLGA-DTX) nanoparticle encapsulated alginate microbeads using the single-emulsion technique and the aeration method. To select the appropriate operating parameter for the focused ultrasound, we measured the pressure and temperature induced by the focused ultrasound at the focal area using a needle-type hydrophone and a digital thermal detector, respectively. Additionally, we conducted a simulation of focused ultrasound using COMSOL Multiphysics 4.3a. The experimental measurement results were compared with the simulation results. In addition, the drug release rates of the PLGA-DTX-encapsulated alginate microbeads induced by the focused ultrasound were tested. Through these experiments, we determined that the appropriate focused ultrasound parameter was peak pressure of 1 MPa, 10 cycle/burst, and burst period of 20 μSec. Finally, we performed the cell cytotoxicity and drug uptake test with focused ultrasound induction and found that the antitumor effect and drug uptake efficiency were significantly enhanced by the focused ultrasound induction. Thus, we confirmed that focused ultrasound can be an effective induction method for an anticancer drug delivery system.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Korea
| | - Yongjin Choi
- Robot Research Initiative, Chonnam National University, Gwangju, Korea
| | - Seong Young Ko
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Korea.,Robot Research Initiative, Chonnam National University, Gwangju, Korea
| | - Jong-Oh Park
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Korea.,Robot Research Initiative, Chonnam National University, Gwangju, Korea
| | - Sukho Park
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Korea.,Robot Research Initiative, Chonnam National University, Gwangju, Korea
| |
Collapse
|
43
|
Ordeig O, Chin SY, Kim S, Chitnis PV, Sia SK. An implantable compound-releasing capsule triggered on demand by ultrasound. Sci Rep 2016; 6:22803. [PMID: 26965207 PMCID: PMC4786798 DOI: 10.1038/srep22803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/19/2016] [Indexed: 12/27/2022] Open
Abstract
Implantable devices have a large potential to improve human health, but they are often made of biofouling materials that necessitate special coatings, rely on electrical connections for external communication, and require a continuous power source. This paper demonstrates an alternative platform, which we call iTAG (implantable thermally actuated gel), where an implanted capsule can be wirelessly controlled by ultrasound to trigger the release of compounds. We constructed a millimeter-sized capsule containing a co-polymer gel (NiPAAm-co-AAm) that contracts above body temperature (i.e. at 45 °C) to release compounds through an opening. This gel-containing capsule is biocompatible and free of toxic electronic or battery components. An ultrasound hardware, with a focused ultrasound (FUS) transducer and a co-axial A-mode imaging transducer, was used to image the capsule (to monitor in real time its position, temperature, and effectiveness of dose delivery), as well as to trigger a rapid local rise in temperature, contraction of gel, and release of compounds in vitro and in vivo. The combination of this gel-based capsule and compact ultrasound hardware can serve as a platform for triggering local release of compounds, including potentially in deep tissue, to achieve tailored personalized therapy.
Collapse
Affiliation(s)
- Olga Ordeig
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Sau Yin Chin
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Sohyun Kim
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, United States
| | - Parag V. Chitnis
- Department of Bioengineering, George Mason University, 4400 University Drive, Fairfax, VA 22032, United States
- F. L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY 10038, United States
| | - Samuel K. Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, United States
| |
Collapse
|
44
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 953] [Impact Index Per Article: 105.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
Yang F, Li M, Liu Y, Wang T, Feng Z, Cui H, Gu N. Glucose and magnetic-responsive approach toward in situ nitric oxide bubbles controlled generation for hyperglycemia theranostics. J Control Release 2016; 228:87-95. [PMID: 26951926 DOI: 10.1016/j.jconrel.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 01/01/2023]
Abstract
Stimuli-responsive devices that deliver drugs or imaging contrast agents in spatial-, temporal- and dosage-controlled fashions have emerged as the most promising and valuable platform for targeted and controlled drug delivery. However, implementing high performance of these functions in one single delivery carrier remains extremely challenging. Herein, we have developed a sequential strategy for developing glucose and magnetic-responsive microvesicle delivery system, which regulates the glucose levels and spatiotemporally controls the generation of nitric oxide gas free bubbles. It is observed that such injectable microvesicles loaded with enzyme and magnetic nanoparticles can firstly regulate hyperglycemic level based on the enzymatic reactions between glucose oxidase and glucose. In a sequential manner, concomitant magnetic field stimuli enhance the shell permeability while prompts the reaction between H2O2 and l-arginine to generate the gasotransmitters nitric oxide, which can be imaged by ultrasound and further delivered for diabetic nephropathy therapy. Therefore, magnetic microvesicles with glucose oxidase may be designed as a novel theranostic approach for restoring glucose homeostasis and spatiotemporally control NO release for maintaining good overall diabetic health.
Collapse
Affiliation(s)
- Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Mingxi Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yang Liu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tuantuan Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhenqiang Feng
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Huating Cui
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
46
|
Affiliation(s)
- Wujin Sun
- a Joint Department of Biomedical Engineering , University of North Carolina at Chapel Hill and North Carolina State University , Raleigh , NC , USA.,b Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - Zhen Gu
- a Joint Department of Biomedical Engineering , University of North Carolina at Chapel Hill and North Carolina State University , Raleigh , NC , USA.,b Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,c Department of Medicine , University of North Carolina School of Medicine , Chapel Hill , NC , USA
| |
Collapse
|
47
|
Gilroy CA, Luginbuhl KM, Chilkoti A. Controlled release of biologics for the treatment of type 2 diabetes. J Control Release 2015; 240:151-164. [PMID: 26655062 DOI: 10.1016/j.jconrel.2015.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes is a rapidly growing disease that poses a significant burden to the United States healthcare system. Despite the many available treatments for the disease, close to half of diagnosed type 2 diabetes cases are not properly managed, largely due to inadequate patient adherence to prescribed treatment regimens. Methods for improving delivery - and thereby easing administration - of type 2 drugs have the potential to greatly improve patient health. This review focuses on two peptide drugs - insulin and glucagon-like peptide 1 (GLP-1) - for treatment of type 2 diabetes. Peptide drugs offer the benefits of high potency and specificity but pose a significant delivery challenge due to their inherent instability and short half-life. The development of insulin and GLP-1 analogs highlights the broad spectrum of drug delivery strategies that have been used to solve these problems. Numerous structural modifications and formulations have been introduced to optimize absorption, residence time, stability, route of delivery and frequency of administration. Continual improvements in delivery methods for insulin and GLP-1 receptor agonists are paving the way towards better patient compliance and improved disease management, and thereby enhanced patient quality of life.
Collapse
Affiliation(s)
- Caslin A Gilroy
- Department of Biomedical Engineering, 136 Hudson Hall, Box 90281, Duke University, Durham, NC 27708, USA
| | - Kelli M Luginbuhl
- Department of Biomedical Engineering, 136 Hudson Hall, Box 90281, Duke University, Durham, NC 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, 136 Hudson Hall, Box 90281, Duke University, Durham, NC 27708, USA
| |
Collapse
|
48
|
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 2015; 10:6055-74. [PMID: 26451111 PMCID: PMC4592057 DOI: 10.2147/ijn.s92162] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Rebekah Watkins
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Program in Nanoscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chenming Zhang
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richey M Davis
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
49
|
Di J, Kim J, Hu Q, Jiang X, Gu Z. Spatiotemporal drug delivery using laser-generated-focused ultrasound system. J Control Release 2015; 220:592-9. [PMID: 26299506 DOI: 10.1016/j.jconrel.2015.08.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/08/2015] [Accepted: 08/16/2015] [Indexed: 12/20/2022]
Abstract
Laser-generated-focused ultrasound (LGFU) holds promise for the high-precision ultrasound therapy owing to its tight focal spot, broad frequency band, and stable excitation with minimal ultrasound-induced heating. We here report the development of the LGFU as a stimulus for promoted drug release from microgels integrated with drug-loaded polymeric nanoparticles. The pulsed waves of ultrasound, generated by a carbon black/polydimethylsiloxane (PDMS)-photoacoustic lens, were introduced to trigger the drug release from alginate microgels encapsulated with drug-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles. We demonstrated the antibacterial capability of this drug delivery system against Escherichia coli by the disk diffusion method, and antitumor efficacy toward the HeLa cell-derived tumor spheroids in vitro. This novel LGFU-responsive drug delivery system provides a simple and remote approach to precisely control the release of therapeutics in a spatiotemporal manner and potentially suppress detrimental effects to the surrounding tissue, such as thermal ablation.
Collapse
Affiliation(s)
- Jin Di
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinwook Kim
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
50
|
Samanta D, Meiser JL, Zare RN. Polypyrrole nanoparticles for tunable, pH-sensitive and sustained drug release. NANOSCALE 2015; 7:9497-504. [PMID: 25931037 DOI: 10.1039/c5nr02196k] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report the development of a generalized pH-sensitive drug delivery system that can release any charged drug preferentially at the pH range of interest. Our system is based on polypyrrole nanoparticles (PPy NPs), synthesized via a simple one-step microemulsion technique. These nanoparticles are highly monodisperse, stable in solution over the period of a month, and have good drug loading capacity (∼15 wt%). We show that PPy NPs can be tuned to release drugs at both acidic and basic pH by varying the pH, the charge of the drug, as well as by adding small amounts of charged amphiphiles. Moreover, these NPs may be delivered locally by immobilizing them in a hydrogel. Our studies show encapsulation within a calcium alginate hydrogel results in sustained release of the incorporated drug for more than 21 days. Such a nanoparticle-hydrogel composite drug delivery system is promising for treatment of long-lasting conditions such as cancer and chronic pain which require controlled, localized, and sustained drug release.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|