1
|
Li Z, Miao X, Li J, Lee J, Li X, Ahn HJ, Wu A, Zhao W, Yun J, Lee SW. Tear-Based Battery Embedded with Prussian Blue Analogues and Silver Nanoparticles for Smart Contact Lenses. ACS NANO 2025. [PMID: 40371918 DOI: 10.1021/acsnano.5c05610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Smart contact lenses coupled with electronic components have vast potential for healthcare applications, as such advanced technology enables continuous and noninvasive monitoring of vital signs and disease diagnosis. However, stringent safety and nontoxicity requirements for ocular devices restrict the applications of flexible batteries fabricated by conventional methods. Here, we design a safe and flexible tear-based aqueous battery composed of Prussian blue analogues and silver nanoparticle films for cathode and anode, respectively. The battery exhibited satisfying cyclic electrochemical performance, with a discharge capacity of 195.37 μAh in a tear-like solution with interferences at 34.5 °C within the voltage ranges from 0.2 to 1.0 V. The power and voltage were sufficient to enable a temperature sensor. In addition, the rate capability, mechanical stability, and biocompatibility of the battery have been demonstrated as well.
Collapse
Affiliation(s)
- Zongkang Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xinwen Miao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Jia Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Junghyun Lee
- Singapore Center for 3D Printing, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoya Li
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hee-Jae Ahn
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore
| | - Angyin Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wenting Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Jeonghun Yun
- Major of Safety Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Seok Woo Lee
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
2
|
Gan X, Yao G, Li C, Mu Y, Xie M, Zhou C, Li P, Dong Q, Chen K, Zhao K, Gao M, Pan T, Lu F, Yao D, Xu P, Lin Y. Closed-eye intraocular pressure and eye movement monitoring via a stretchable bimodal contact lens. MICROSYSTEMS & NANOENGINEERING 2025; 11:83. [PMID: 40355436 PMCID: PMC12069572 DOI: 10.1038/s41378-025-00946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025]
Abstract
Chronic ophthalmic diseases are multivariate, time-varying, and degenerative. Smart contact lenses have emerged as a scalable platform for noninvasive ocular signal detection and disease diagnosis. However, real-time monitoring and decoupling of multiple ocular parameters, particularly when the eyes are closed, remain challenging in clinical medicine. In this work, we propose a stretchable bimodal contact lens (BCL) amalgamating self-decoupled electromagnetic capacitive intraocular pressure (CIOP) and magnetic eye movement (MEM) monitoring components. The sandwich-integrated BCL can be intimately attached to the eyeball, enabling closed-eye, wireless, and precise signal acquisition without interference. During the eye open and closed, the serpentine-geometry CIOP unit was validated on a rabbit model, achieving supered resolution (1 mmHg) and sensitivity (≥0.22 MHz mmHg-1) for reversible hypo- to hyper-IOP fluctuations. Ex vivo and in vivo MEM monitoring, based on composition-optimized magnetic interlayer film, demonstrated exceptional accuracy (≥97.25%) with eyes open and closed, surpassing existing methods. The collected CIOP and MEM data could be wirelessly aggregated and transmitted to portable devices via integrated acquisition modules within frame glasses for real-time eye healthcare. Emerging noninvasive and bimodal modalities reconcile the trade-off between minimal discomfort, eye status, and reliable measurement, spurring the widespread adoption of the integrated monitoring system for continuous ocular health monitoring.
Collapse
Affiliation(s)
- Xingyi Gan
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China
| | - Guang Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, Guangdong, China.
| | - Cunbo Li
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China
| | - Yufeng Mu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China
| | - Maowen Xie
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China
| | - Chenzheng Zhou
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China
| | - Peisi Li
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China
| | - Qiwei Dong
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China
| | - Ke Chen
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China
| | - Kangning Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, Hubei, China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China
| | - Fang Lu
- Medico-Engineering Cooperation on Applied Medicine Research Center, Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China
| | - Dezhong Yao
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China
| | - Peng Xu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China.
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China.
- Medico-Engineering Cooperation on Applied Medicine Research Center, Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Coskun A, Savas IN, Can O, Lippi G. From population-based to personalized laboratory medicine: continuous monitoring of individual laboratory data with wearable biosensors. Crit Rev Clin Lab Sci 2025; 62:198-227. [PMID: 39893518 DOI: 10.1080/10408363.2025.2453152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/28/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Monitoring individuals' laboratory data is essential for assessing their health status, evaluating the effectiveness of treatments, predicting disease prognosis and detecting subclinical conditions. Currently, monitoring is performed intermittently, measuring serum, plasma, whole blood, urine and occasionally other body fluids at predefined time intervals. The ideal monitoring approach entails continuous measurement of concentration and activity of biomolecules in all body fluids, including solid tissues. This can be achieved through the use of biosensors strategically placed at various locations on the human body where measurements are required for monitoring. High-tech wearable biosensors provide an ideal, noninvasive, and esthetically pleasing solution for monitoring individuals' laboratory data. However, despite significant advances in wearable biosensor technology, the measurement capacities and the number of different analytes that are continuously monitored in patients are not yet at the desired level. In this review, we conducted a literature search and examined: (i) an overview of the background of monitoring for personalized laboratory medicine, (ii) the body fluids and analytes used for monitoring individuals, (iii) the different types of biosensors and methods used for measuring the concentration and activity of biomolecules, and (iv) the statistical algorithms used for personalized data analysis and interpretation in monitoring and evaluation.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Nur Savas
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Fardoost A, Karimi K, Singh J, Patel H, Javanmard M. Enhancing glaucoma care with smart contact lenses: An overview of recent developments. Biomed Microdevices 2025; 27:18. [PMID: 40257617 PMCID: PMC12011977 DOI: 10.1007/s10544-025-00740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 04/22/2025]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, affecting millions of individuals due to its progressive damage to the optic nerve, often caused by elevated intraocular pressure (IOP). Conventional methods of IOP monitoring, such as tonometry, provide sporadic and often inaccurate readings due to fluctuations throughout the day, leaving significant gaps in diagnosis and treatment. This review explores the transformative potential of smart contact lenses equipped with continuous IOP monitoring and therapeutic capabilities. These lenses integrate advanced materials such as graphene, nanogels, and magnetic oxide nanosheets alongside sophisticated biosensing and wireless communication systems. By offering continuous, real-time data, these lenses can detect subtle IOP fluctuations and provide immediate feedback to patients and clinicians. Moreover, drug-eluting capabilities embedded in these lenses present a groundbreaking approach to glaucoma therapy by improving medication adherence and providing controlled drug release directly to the eye. Beyond IOP management, these innovations also pave the way for monitoring biochemical markers and other ocular diseases. Challenges such as biocompatibility, long-term wearability, and affordability remain, but the integration of cutting-edge technologies in smart contact lenses signifies a paradigm shift in glaucoma care. These developments hold immense promise for advancing personalized medicine, improving patient outcomes, and mitigating the global burden of blindness.
Collapse
Affiliation(s)
- Ali Fardoost
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA
| | - Koosha Karimi
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA
| | - Jaydeep Singh
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA
| | - Heneil Patel
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA
| | - Mehdi Javanmard
- Department of Electrical Engineering, Rutgers University, 08854, Piscataway, NJ, USA.
| |
Collapse
|
5
|
Munaweera R, Quinn A, Morrow L, Morris RA, O'Mara ML. PolyConstruct: Adapting Biomolecular Simulation Pipelines for Polymers with PolyBuild, PolyConf, and PolyTop. J Chem Inf Model 2025. [PMID: 40097192 DOI: 10.1021/acs.jcim.4c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Molecular dynamics simulations are invaluable tools that provide both a molecular understanding and a means for the rational design of polymers. A key bottleneck in current polymer molecular dynamics simulations is the lack of a comprehensive and generalizable method that streamlines the preparation of simulations for novel polymer architectures and chemistries. Here, we present PolyConstruct, a generalizable computational framework that leverages the GROMACS biomolecular simulation package for force field agnostic atomistic simulations of biocompatible and stimuli-responsive polymers. PolyConstruct contains three workflows, PolyBuild, PolyTop, and PolyConf, for generating chemically accurate topology parameters from monomer parameters and structural coordinates for complex polymer architectures and chemistries. We highlight the utility and robustness of PolyBuild, PolyTop, and PolyConf with examples of linear, branched, star, and dendritic polymers.
Collapse
Affiliation(s)
- Rangika Munaweera
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4067, Australia
| | - Ada Quinn
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4067, Australia
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Luna Morrow
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4067, Australia
| | - Richard A Morris
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Megan L O'Mara
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4067, Australia
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
6
|
Wang K, Liu W, Wu J, Li H, Peng H, Zhang J, Ding K, Wang X, Hou C, Zhang H, Luo Y. Smart Wearable Sensor Fuels Noninvasive Body Fluid Analysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13279-13301. [PMID: 39969947 DOI: 10.1021/acsami.4c22054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The advancements in wearable sensor technology have revolutionized noninvasive body fluid monitoring, offering new possibilities for continuous and real-time health assessment. By analyzing body fluids such as sweat, saliva, tears, and interstitial fluid, these technologies provide painless diagnostic alternatives for detecting biomarkers such as glucose, electrolytes, and metabolites. These sensors play a crucial role in early disease detection, chronic condition management, and personalized healthcare. Recent innovations in flexible electronics, microfluidic systems, and biosensing materials have significantly improved the accuracy, reliability, and integration of sensors into everyday textiles. Moreover, the convergence of artificial intelligence and big data analytics has enhanced the precision and personalization of health monitoring systems, transforming wearable sensors into powerful tools for health holographic inspection. Despite significant progress, challenges remain, including improving sensor stability in dynamic environments, achieving real-time data transmission, and covering a broader range of biomarkers. Future research directions focus on enhancing material sustainability through green synthesis, optimizing sampling techniques, and leveraging machine learning to further improve sensor performance. This Review highlights the transformative potential of wearable sensors in medical applications, aiming to bridge gaps in healthcare accessibility and elevate the standards of patient care through noninvasive continuous monitoring technologies.
Collapse
Affiliation(s)
- Kang Wang
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Wenjing Liu
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Jingzhi Wu
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Heng Li
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Hai Peng
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing University Cancer Hospital, Chongqing 400030, P. R. China
| | - Ke Ding
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Xiaoxing Wang
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan 650050, P.R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hong Zhang
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Yang Luo
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan 650050, P.R. China
| |
Collapse
|
7
|
Wang Y, Wu X, Liu Y, Zhang J, Wang L, Luo X. A wearable platform for biochemical sweat analysis using photonic crystal hydrogel. Anal Chim Acta 2025; 1338:343590. [PMID: 39832860 DOI: 10.1016/j.aca.2024.343590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Wearable systems for health monitoring are highly desired in personal diagnostics and precision medicine while challenges remain in constructing such wearable systems with reliability and high performance. Herein, we report a wearable platform for non-invasive monitoring biomarkers in sweat. The device is composed of a butterfly-shaped like microfluidic platform in which responsive photonic crystal hydrogels are embedded in each butterfly wing as sensors. Sweat lactate concentration and pH can be obtained via the color variation of the sensor with naked eyes. Accurate quantitative analysis of the two target analytes can be obtained via the image analysis on a mobile phone by integrating the linear range response to analytes within the physiological range. Moreover, the sensor exhibits good reproducibility, excellent selectivity and long-term stability. On-body trials have been conducted by attaching the device on volunteers' body, and the obtained results are consistent with those analyzed through standardized methods, demonstrating its potentiality in real-time and continuous monitoring sweat biomarkers. This non-invasive wearable sensor provides a new strategy for personal health monitoring and sports performance assessment.
Collapse
Affiliation(s)
- Yingli Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yun Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Jincheng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
8
|
Park T, Leem JW, Kim YL, Lee CH. Photonic Nanomaterials for Wearable Health Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418705. [PMID: 39901482 DOI: 10.1002/adma.202418705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Indexed: 02/05/2025]
Abstract
This review underscores the transformative potential of photonic nanomaterials in wearable health technologies, driven by increasing demands for personalized health monitoring. Their unique optical and physical properties enable rapid, precise, and sensitive real-time monitoring, outperforming conventional electrical-based sensors. Integrated into ultra-thin, flexible, and stretchable formats, these materials enhance compatibility with the human body, enabling prolonged wear, improved efficiency, and reduced power consumption. A comprehensive exploration is provided of the integration of photonic nanomaterials into wearable devices, addressing material selection, light-matter interaction principles, and device assembly strategies. The review highlights critical elements such as device form factors, sensing modalities, and power and data communication, with representative examples in skin patches and contact lenses. These devices enable precise monitoring and management of biomarkers of diseases or biological responses. Furthermore, advancements in materials and integration approaches have paved the way for continuum of care systems combining multifunctional sensors with therapeutic drug delivery mechanisms. To overcome existing barriers, this review outlines strategies of material design, device engineering, system integration, and machine learning to inspire innovation and accelerate the adoption of photonic nanomaterials for next-generation of wearable health, showcasing their versatility and transformative potential for digital health applications.
Collapse
Affiliation(s)
- Taewoong Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Regenstrief Center for Healthcare Engineering, Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Mechanical Engineering, School of Materials Engineering, Elmore Family School of Electrical and Computer Engineering, Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
9
|
Li X, Li H, Wang Z, Wang X, Zhang J, Bin F, Chen W, Li H, Huo D, Xiao D. Fish Fin-Derived Non-Invasive Flexible Bioinspired Contact Lens for Continuous Ophthalmic Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412630. [PMID: 39686625 PMCID: PMC11809385 DOI: 10.1002/advs.202412630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Efficient drug delivery is crucial for glaucoma patients. Flexible biomedical devices that enable sustained ocular drug delivery and can regulate the drug release rate according to physiological conditions are highly desirable for glaucoma treatments, addressing both low drug bioavailability and poor patient compliance from manual drug administration, and improving treatment outcomes. Inspired by the structure and reciprocating motion of fish dorsal fins, a drug-eluting contact lens based on deformable microstructures for non-invasive ocular surface drug delivery is developed. Liquid drugs are stored within the interstices of the deformable microstructural units, allowing for continuous drug release through diffusion upon contact with the ocular surface. Finite element analysis is utilized to study the intraocular drug transport dynamics of glaucoma and optimize the overall layout of the device. Microstructural units undergo deformation under loading, altering the interstitial spaces and modulating the drug release rate. This device can adaptively adjust its drug release rate based on changes in intraocular pressure (IOP) and can be proactively regulated in response to cyclic eye loads, accommodating elevated IOP caused by varying body postures and activities. As a flexible, non-invasive, highly dynamic, and adaptive drug delivery platform, it holds significant potential for future biomedical applications.
Collapse
Affiliation(s)
- Xu Li
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Hui Li
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Zihao Wang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Xianda Wang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Jinlong Zhang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Fengjiao Bin
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| | - Wei Chen
- Beijing University of TechnologyBeijing100124China
| | - Hongyang Li
- Beijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | | | - Dengbao Xiao
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
10
|
Sandaruwan HHPB, Manatunga DC, N Liyanage R, Costha NP, Dassanayake RS, Wijesinghe RE, Zhou Y, Liu Y. Next-generation methods for precise pH detection in ocular chemical burns: a review of recent analytical advancements. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:408-431. [PMID: 39564777 DOI: 10.1039/d4ay01178c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Ocular burns due to accidental chemical spillage pose an immediate threat, representing over 20% of emergency ocular traumas. Early detection of the ocular pH is imperative in managing ocular chemical burns. Alkaline chemical burns are more detrimental than acidic chemical burns. Current practices utilize litmus, nitrazine strips, bromothymol blue, fluorescent dyes, and micro-combination glass probes to detect ocular pH. However, these methods have inherent drawbacks, leading to inaccurate pH measurements, less sensitivity, photodegradation, limited pH range, and longer response time. Hence, there is a tremendous necessity for developing relatively simple, accurate, precise ocular pH detection methods. The current review aims to provide comprehensive coverage of the conventional practices of ocular pH measurement during accidental chemical burns, highlighting their strengths and weaknesses. Besides, it delves into cutting-edge technologies, including pH-sensing contact lenses, microfluidic contact lenses, fluorescent scleral contact lenses, fiber optic pH technology, and pH-sensitive thin films. The study meticulously examines the reported work since 2000. The collected data have also helped propose future directions, and the research gap needs to be filled to provide a more rapid, sensitive, and accurate measurement of ocular pH in eye clinics. For the first time, this review consolidates current techniques and recent advancements in ocular pH detection, offering a strategic overview to propel ophthalmic-related research forward and enhance ocular burn management during a chemical spillage.
Collapse
Affiliation(s)
- H H P Benuwan Sandaruwan
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
| | - Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Renuka N Liyanage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10200, Sri Lanka
| | | | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
| | - Ruchire Eranga Wijesinghe
- Center for Excellence in Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe, 10115, Sri Lanka
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, 10115, Sri Lanka
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
11
|
Zhang F, Xu W, Deng Z, Huang J. A bibliometric and visualization analysis of electrochemical biosensors for early diagnosis of eye diseases. Front Med (Lausanne) 2025; 11:1487981. [PMID: 39867928 PMCID: PMC11757256 DOI: 10.3389/fmed.2024.1487981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Electrochemical biosensors can provide an economical, accurate and rapid method for early screening of disease biomarkers in clinical medicine due to their high sensitivity, selectivity, portability, low cost and easy manufacturing, and multiplexing capability. Tear, a fluid naturally secreted by the human body, is not only easily accessible but also contains a great deal of biological information. However, no bibliometric studies focus on applying electrochemical sensors in tear/eye diseases. Therefore, we utilized VOSviewer and CiteSpace, to perform a detailed bibliometric analysis of 114 papers in the field of research on the application of tear in electrochemical biosensors screened from Web of Science with the combination of Scimago Graphica and Microsoft Excel for visualization to show the current research hotspots and future trends. The results show that the research in this field started in 2008 and experienced an emerging period in recent years. Researchers from China and the United States mainly contributed to the thriving research areas, with 41 and 29 articles published, respectively. Joseph Wang from the University of California San Diego is the most influential author in the field, and Biosensors & Bioelectronics is the journal with the most published research and the most cited journal. The highest appearance keywords were "biosensor" and "tear glucose," while the most recent booming keywords "diagnosis" and "in-vivo" were. In conclusion, this study elucidates current trends, hotspots, and emerging frontiers, and provides future biomarkers of ocular and systemic diseases by electrochemical sensors in tear with new ideas and opinions.
Collapse
Affiliation(s)
- Fushen Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Weiye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zejun Deng
- School of Materials Science and Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
12
|
Hu Z, He X, Teng L, Zeng X, Zhu S, Dong Y, Zeng Z, Zheng Q, Sun X. Adhesion Mechanism, Applications, and Challenges of Ocular Tissue Adhesives. Int J Mol Sci 2025; 26:486. [PMID: 39859199 PMCID: PMC11765468 DOI: 10.3390/ijms26020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Corneal injury is prevalent in ophthalmology, with mild cases impacting vision and severe cases potentially resulting in permanent blindness. In clinical practice, standard treatments for corneal injury involve transplantation surgery combined with pharmacological therapy. However, surgical sutures exhibit several limitations, which can be overcome using tissue adhesives. With recent advances in biomedical materials, the use of ophthalmic tissue adhesives has expanded beyond wound closure, including tissue filling and drug delivery. Furthermore, the use of tissue adhesives has demonstrated promising outcomes in drug delivery, ophthalmic disease diagnosis, and biological scaffolds. This study briefly introduces common adhesion mechanisms and their applications in ophthalmology, aiming to increase interest in tissue adhesives and clinical ophthalmic treatment.
Collapse
Affiliation(s)
- Zuquan Hu
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
| | - Xinyuan He
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
| | - Lijing Teng
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Xiangyu Zeng
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Simian Zhu
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Yu Dong
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
| | - Qiang Zheng
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| | - Xiaomin Sun
- Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China; (Z.H.); (X.H.); (L.T.); (X.Z.); (S.Z.); (Y.D.); (Z.Z.)
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang 550001, China
- Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guiyang 550001, China
- Engineering Research Center of Intelligent Materials and Advanced Medical Devices, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China
| |
Collapse
|
13
|
He W, Lee SSY, Diaz Torres S, Han X, Gharahkhani P, Hunter M, Balartnasingam C, Craig JE, Hewitt AW, Mackey DA, MacGregor S. Predictive Power of Polygenic Risk Scores for Intraocular Pressure or Vertical Cup-Disc Ratio. JAMA Ophthalmol 2025; 143:15-22. [PMID: 39570582 PMCID: PMC11583020 DOI: 10.1001/jamaophthalmol.2024.4856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/23/2024] [Indexed: 11/22/2024]
Abstract
Importance Early detection of glaucoma is essential to timely monitoring and treatment, and primary open-angle glaucoma risk can be assessed by measuring intraocular pressure (IOP) or optic nerve head vertical cup-disc ratio (VCDR). Polygenic risk scores (PRSs) could provide a link between genetic effects estimated from genome-wide association studies (GWASs) and clinical applications to provide estimates of an individual's genetic risk by combining many identified variants into a score. Objective To construct IOP and VCDR PRSs with clinically relevant predictive power. Design, Setting, and Participants This genetic association study evaluated the PRSs for 6959 of 51 338 individuals in the Canadian Longitudinal Study on Aging (CLSA; 2010 to 2015 with data from 11 centers in Canada) and 4960 of 5107 individuals the community-based Busselton Healthy Aging Study (BHAS; 2010 to 2015 in Busselton, Western Australia) with an artificial intelligence grading approach used to obtain precise VCDR estimates for the CLSA dataset. Data for approximately 500 000 individuals in UK Biobank from 2006 to 2010 were used to validate the power of the PRS. Data were analyzed from June to November 2023. Main Outcomes and Measures IOP and VCDR PRSs and phenotypic variance (R2) explained by each PRS. Results Participants in CLSA were aged 45 to 85 years; those in BHAS, 46 to 64 years; and those in UK Biobank, 40 to 69 years. The VCDR PRS explained 22.0% (95% CI, 20.1-23.9) and 19.7% (95% CI, 16.3-23.3) of the phenotypic variance in VCDR in CLSA and BHAS, respectively, while the IOP PRS explained 12.9% (95% CI, 11.3-14.6) and 9.6% (95% CI, 8.1-11.2) of phenotypic variance in CLSA and BHAS IOP measurements. The VCDR PRS variance explained 5.2% (95% CI, 3.6-7.1), 12.1% (95% CI, 7.5-17.5), and 14.3% (95% CI, 9.3-19.9), and the IOP PRS variance explained 2.3% (95% CI, 1.5-3.3), 3.2% (95% CI, 1.3-5.8), and 7.5% (95% CI, 6.2-8.9) (P < .001) across African, East Asian, and South Asian populations, respectively. Conclusions and Relevance VCDR and IOP PRSs derived using a large recently published multitrait GWAS exhibited validity across independent cohorts. The findings suggest that an IOP PRS has the potential to identify individuals who may benefit from more intensive IOP-lowering treatments, which could be crucial in managing glaucoma risk more effectively. Individuals with a high VCDR PRS may be at risk of developing glaucoma even if their IOP measures fall within the normal range, suggesting that these PRSs could help in early detection and intervention, particularly among those who might otherwise be considered at low risk based on IOP alone.
Collapse
Affiliation(s)
- Weixiong He
- Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Samantha Sze-Yee Lee
- The University of Western Australia, Centre for Ophthalmology and Visual Science, Perth, Western Australia, Australia
| | - Santiago Diaz Torres
- Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Xikun Han
- Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge
| | - Puya Gharahkhani
- Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Hunter
- Busselton Population Medical Research Institute Busselton Health Study Centre, School of Population and Global Health, Population and Public Health, The University of Western Australia, Perth, Western Australia, Australia
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Chandrakumar Balartnasingam
- Lions Eye Institute, The University of Western Australia, Perth, Western Australia, Australia
- Sir Charles Gairdner Hospital, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Jamie E. Craig
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - David A. Mackey
- The University of Western Australia, Centre for Ophthalmology and Visual Science, Perth, Western Australia, Australia
| | - Stuart MacGregor
- Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Park SH, Pak JJ. LIG-Based High-Sensitivity Multiplexed Sensing System for Simultaneous Monitoring of Metabolites and Electrolytes. SENSORS (BASEL, SWITZERLAND) 2024; 24:6945. [PMID: 39517842 PMCID: PMC11548767 DOI: 10.3390/s24216945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
With improvements in medical environments and the widespread use of smartphones, interest in wearable biosensors for continuous body monitoring is growing. We developed a wearable multiplexed bio-sensing system that non-invasively monitors body fluids and integrates with a smartphone application. The system includes sensors, readout circuits, and a microcontroller unit (MCU) for signal processing and wireless communication. Potentiometric and amperometric measurement methods were used, with calibration capabilities added to ensure accurate readings of analyte concentrations and temperature. Laser-induced graphene (LIG)-based sensors for glucose, lactate, Na+, K+, and temperature were developed for fast, cost-effective production. The LIG electrode's 3D porous structure provided an active surface area 16 times larger than its apparent area, resulting in enhanced sensor performance. The glucose and lactate sensors exhibited high sensitivity (168.15 and 872.08 μAmM-1cm-2, respectively) and low detection limits (0.191 and 0.167 μM, respectively). The Na+ and K+ sensors demonstrated sensitivities of 65.26 and 62.19 mVdec-1, respectively, in a concentration range of 0.01-100 mM. Temperature sensors showed an average rate of resistance change per °C of 0.25%/°C, within a temperature range of 20-40 °C, providing accurate body temperature monitoring.
Collapse
Affiliation(s)
| | - James Jungho Pak
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
15
|
Kim TY, De R, Choi I, Kim H, Hahn SK. Multifunctional nanomaterials for smart wearable diabetic healthcare devices. Biomaterials 2024; 310:122630. [PMID: 38815456 DOI: 10.1016/j.biomaterials.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
Wearable diabetic healthcare devices have attracted great attention for real-time continuous glucose monitoring (CGM) using biofluids such as tears, sweat, saliva, and interstitial fluid via noninvasive ways. In response to the escalating global demand for CGM, these devices enable proactive management and intervention of diabetic patients with incorporated drug delivery systems (DDSs). In this context, multifunctional nanomaterials can trigger the development of innovative sensing and management platforms to facilitate real-time selective glucose monitoring with remarkable sensitivity, on-demand drug delivery, and wireless power and data transmission. The seamless integration into wearable devices ensures patient's compliance. This comprehensive review evaluates the multifaceted roles of these materials in wearable diabetic healthcare devices, comparing their glucose sensing capabilities with conventionally available glucometers and CGM devices, and finally outlines the merits, limitations, and prospects of these devices. This review would serve as a valuable resource, elucidating the intricate functions of nanomaterials for the successful development of advanced wearable devices in diabetes management.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Ranjit De
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Inhoo Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
16
|
Song C, Guo J, Wang Y, Xiang H, Yang Y. Electrochemical Glucose Sensors: Classification, Catalyst Innovation, and Sampling Mode Evolution. Biotechnol J 2024; 19:e202400349. [PMID: 39385538 DOI: 10.1002/biot.202400349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Glucose sensors are essential tools for monitoring blood glucose concentration in diabetic patients. In recent years, with the increasing number of individuals suffering from diabetes, blood glucose monitoring has become extremely necessary, which expedites the iteration and upgrade of glucose sensors greatly. Currently, two main types of glucose sensors are available for blood glucose testing: enzyme-based glucose sensor (EBGS) and enzyme-free glucose sensor (EFGS). For EBGS, several progresses have been made to comprehensively improve detection performance, ranging from enhancing enzyme activity, thermostability, and electron transfer properties, to introducing new materials with superior properties. For EFGS, more and more new metallic materials and their oxides are being applied to further optimize its blood glucose monitoring. Here the latest progress of electrochemical glucose sensors, their manufacturing methods, electrode materials, electrochemical parameters, and applications were summarized, the development glucose sensors with various noninvasive sampling modes were also compared.
Collapse
Affiliation(s)
- Chenyang Song
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Jian Guo
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Yuhan Wang
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| | - Hongying Xiang
- Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yufeng Yang
- School of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, China
| |
Collapse
|
17
|
Zhang Y, Zheng XT, Zhang X, Pan J, Thean AVY. Hybrid Integration of Wearable Devices for Physiological Monitoring. Chem Rev 2024; 124:10386-10434. [PMID: 39189683 DOI: 10.1021/acs.chemrev.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
18
|
Mariello M, Eş I, Proctor CM. Soft and Flexible Bioelectronic Micro-Systems for Electronically Controlled Drug Delivery. Adv Healthc Mater 2024; 13:e2302969. [PMID: 37924224 DOI: 10.1002/adhm.202302969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The concept of targeted and controlled drug delivery, which directs treatment to precise anatomical sites, offers benefits such as fewer side effects, reduced toxicity, optimized dosages, and quicker responses. However, challenges remain to engineer dependable systems and materials that can modulate host tissue interactions and overcome biological barriers. To stay aligned with advancements in healthcare and precision medicine, novel approaches and materials are imperative to improve effectiveness, biocompatibility, and tissue compliance. Electronically controlled drug delivery (ECDD) has recently emerged as a promising approach to calibrated drug delivery with spatial and temporal precision. This article covers recent breakthroughs in soft, flexible, and adaptable bioelectronic micro-systems designed for ECDD. It overviews the most widely reported operational modes, materials engineering strategies, electronic interfaces, and characterization techniques associated with ECDD systems. Further, it delves into the pivotal applications of ECDD in wearable, ingestible, and implantable medical devices. Finally, the discourse extends to future prospects and challenges for ECDD.
Collapse
Affiliation(s)
- Massimo Mariello
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
19
|
Han F, Li J, Xiao P, Yang Y, Liu H, Wei Z, He Y, Xu F. Wearable smart contact lenses: A critical comparison of three physiological signals outputs for health monitoring. Biosens Bioelectron 2024; 257:116284. [PMID: 38657379 DOI: 10.1016/j.bios.2024.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Smart contact lenses (SCLs) have been considered as novel wearable devices for out-of-hospital and self-monitoring applications. They are capable of non-invasively and continuously monitoring physiological signals in the eyes, including vital biophysical (e.g., intraocular of pressure, temperature, and electrophysiological signal) and biochemical signals (e.g., pH, glucose, protein, nitrite, lactic acid, and ions). Recent progress mainly focuses on the rational design of wearable SCLs for physiological signal monitoring, while also facilitating the treatment of various ocular diseases. It covers contact lens materials, fabrication technologies, and integration methods. We also highlight and discuss a critical comparison of SCLs with electrical, microfluidic, and optical signal outputs in health monitoring. Their advantages and disadvantages could help researchers to make decisions when developing SCLs with desired properties for physiological signal monitoring. These unique capabilities make SCLs promising diagnostic and therapeutic tools. Despite the extensive research in SCLs, new technologies are still in their early stages of development and there are a few challenges to be addressed before these SCLs technologies can be successfully commercialized particularly in the form of rigorous clinical trials.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Juju Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Pingping Xiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yanshen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
20
|
Park C, Kim J, Kang J, Lee B, Lee H, Park C, Yoon J, Song C, Kim H, Yeo WH, Cho SJ. Coatable strain sensors for nonplanar surfaces. NANOSCALE 2024; 16:14143-14154. [PMID: 39011622 DOI: 10.1039/d4nr01324g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Rapidly fabricating flexible and stretchable sensors on nonplanar surfaces is crucial for wearable device applications. We employed a novel fabrication method, incorporating molds and gels into electroless plating, to enable direct printing of sensors on a wide array of surfaces, from those with up to 100 μm profile heights to hydrogels with a Young's modulus of 100 kPa. This coatable strain (CS) sensor offers several potential advantages. Firstly, it is designed to circumvent the typical limitations of limited flexibility, plastic deformation, and low repeatability found in viscoelastic polymers by being directly coated onto the surface without requiring a substrate. Secondly, it potentially increases the effective contact area and signal-to-noise ratio by eliminating voids between the sensor and the surface. Finally, the CS sensor can obtain any desired patterning at room temperature in a matter of minutes, significantly reducing energy and time consumption. In this study, we demonstrated the versatility of the CS sensor by applying it to a range of substrates, showcasing its adaptability to diverse materials, surface roughness levels, and Young's modulus values. Our primary focus was on plant growth monitoring, a challenging application that showcased the sensor's efficacy on surfaces like needles, hairy leaves, and fruits. These applications, traditionally difficult for conventional polymer-based sensors, serve to illustrate the CS sensor's potential in a range of complex environmental contexts. The successful deployment of the CS sensor in these settings suggests its broader applicability in various scientific and technological fields, potentially contributing to significant developments in the area of wearable devices and beyond.
Collapse
Affiliation(s)
- Chan Park
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Jungmin Kim
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Jeongbeam Kang
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Byeongjun Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Haran Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Cheoljeong Park
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Jongwon Yoon
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Chiwon Song
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering and Wearable Intelligent Systems and Healthcare Center, Georgia Institute of Technology, GA, 30332, Atlanta, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering and Wearable Intelligent Systems and Healthcare Center, Georgia Institute of Technology, GA, 30332, Atlanta, USA
| | - Seong J Cho
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| |
Collapse
|
21
|
Zhou Y, Li L, Tong J, Chen X, Deng W, Chen Z, Xiao X, Yin Y, Zhou Q, Gao Y, Hu X, Wang Y. Advanced nanomaterials for electrochemical sensors: application in wearable tear glucose sensing technology. J Mater Chem B 2024; 12:6774-6804. [PMID: 38920094 DOI: 10.1039/d4tb00790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In the last few decades, tear-based biosensors for continuous glucose monitoring (CGM) have provided new avenues for the diagnosis of diabetes. The tear CGMs constructed from nanomaterials have been extensively demonstrated by various research activities in this field and are gradually witnessing their most prosperous period. A timely and comprehensive review of the development of tear CGMs in a compartmentalized manner from a nanomaterials perspective would greatly broaden this area of research. However, to our knowledge, there is a lack of specialized reviews and comprehensive cohesive reports in this area. First, this paper describes the principles and development of electrochemical glucose sensors. Then, a comprehensive summary of various advanced nanomaterials recently reported for potential applications and construction strategies in tear CGMs is presented in a compartmentalized manner, focusing on sensing properties. Finally, the challenges, strategies, and perspectives used to design tear CGM materials are emphasized, providing valuable insights and guidance for the construction of tear CGMs from nanomaterials in the future.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiale Tong
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xiaoli Chen
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yong Yin
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yongli Gao
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
22
|
Anbuselvam B, Gunasekaran BM, Srinivasan S, Ezhilan M, Rajagopal V, Nesakumar N. Wearable biosensors in cardiovascular disease. Clin Chim Acta 2024; 561:119766. [PMID: 38857672 DOI: 10.1016/j.cca.2024.119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
This review provides a comprehensive overview of the latest advancements in wearable biosensors, emphasizing their applications in cardiovascular disease monitoring. Initially, the key sensing signals and biomarkers crucial for cardiovascular health, such as electrocardiogram, phonocardiography, pulse wave velocity, blood pressure, and specific biomarkers, are highlighted. Following this, advanced sensing techniques for cardiovascular disease monitoring are examined, including wearable electrophysiology devices, optical fibers, electrochemical sensors, and implantable cardiac devices. The review also delves into hydrogel-based wearable electrochemical biosensors, which detect biomarkers in sweat, interstitial fluids, saliva, and tears. Further attention is given to flexible electronics-based biosensors, including resistive, capacitive, and piezoelectric force sensors, as well as resistive and pyroelectric temperature sensors, flexible biochemical sensors, and sensor arrays. Moreover, the discussion extends to polymer-based wearable sensors, focusing on innovations in contact lens, textile-type, patch-type, and tattoo-type sensors. Finally, the review addresses the challenges associated with recent wearable biosensing technologies and explores future perspectives, highlighting potential groundbreaking avenues for transforming wearable sensing devices into advanced diagnostic tools with multifunctional capabilities for cardiovascular disease monitoring and other healthcare applications.
Collapse
Affiliation(s)
- Bhavadharani Anbuselvam
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Soorya Srinivasan
- Department of Mechanical Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Madeshwari Ezhilan
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Vel Nagar, Avadi, Chennai 600062, Tamil Nadu, India.
| | - Venkatachalam Rajagopal
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
23
|
Duan Z, Yuan M, Liu Z, Pei W, Jiang K, Li L, Shen G. An Ultrasensitive Ti 3C 2T x MXene-based Soft Contact Lens for Continuous and Nondestructive Intraocular Pressure Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309785. [PMID: 38377279 DOI: 10.1002/smll.202309785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Wearable soft contact lens sensors for continuous and nondestructive intraocular pressure (IOP) monitoring are highly desired as glaucoma and postoperative myopia patients grow, especially as the eyestrain crowd increases. Herein, a smart closed-loop system is presented that combines a Ti3C2Tx MXene-based soft contact lens (MX-CLS) sensor, wireless data transmission units, display, and warning components to realize continuous and nondestructive IOP monitoring/real-time display. The fabricated MX-CLS device exhibits an extremely high sensitivity of 7.483 mV mmHg-1, good linearity on silicone eyeballs, excellent stability under long-term pressure-release measurement, sufficient transparency with 67.8% transmittance under visible illumination, and superior biocompatibility with no discomfort when putting the MX-CLS sensor onto the Rabbit eyes. After integrating with the wireless module, users can realize real-time monitoring and warning of IOP via smartphones, the demonstrated MX-CLS device together with the IOP monitoring/display system opens up promising platforms for Ti3C2Tx materials as the base for multifunctional contact lens-based sensors and continuous and nondestructive IOP measurement system.
Collapse
Affiliation(s)
- Zhongyi Duan
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Miao Yuan
- State Key Laboratory of Integrated Optoelectronics Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Zhiduo Liu
- School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Kai Jiang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA & Key Laboratory of Digital Hepatobiliary Surgery, Beijing, 100853, P. R. China
| | - La Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
24
|
Li X, Chen W, Li H, Shen B, He J, Gao H, Bin F, Li H, Xiao D. Temperature Self-Compensating Intelligent Wireless Measuring Contact Lens for Quantitative Intraocular Pressure Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22522-22531. [PMID: 38651323 DOI: 10.1021/acsami.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Flexible bioelectronic devices that can perform real-time and accurate intraocular pressure (IOP) monitoring in both clinical and home settings hold significant implications for the diagnosis and treatment of glaucoma, yet they face challenges due to the open physiological environment of the ocular. Herein, we develop an intelligent wireless measuring contact lens (WMCL) incorporating a dual inductor-capacitor-resistor (LCR) resonant system to achieve temperature self-compensation for quantitative IOP monitoring in different application environments. The WMCL utilizes a compact circuitry design, which enables the integration of low-frequency and high-frequency resonators within a single layer of a sensing circuit without causing visual impairment. Mechanically guided microscale 3D encapsulation strategy combined with flexible circuit printing techniques achieves the surface-adaptive fabrication of the WMCL. The specific design of frequency separation imparts distinct temperature response characteristics to the dual resonators, and the linear combination of the dual resonators can eliminate the impact of temperature variations on measurement accuracy. The WMCL demonstrates outstanding sensitivity and linearity in monitoring the IOP of porcine eyes in vitro while maintaining satisfactory measurement accuracy even with internal temperature variations exceeding 10 °C. Overcoming the impact of temperature variations on IOP monitoring from the system level, the WMCL showcases immense potential as the next generation of all-weather IOP monitoring devices.
Collapse
Affiliation(s)
- Xu Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Chen
- Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing University of Technology, Beijing 100124, China
| | - Hongyang Li
- Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Biwen Shen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangang He
- Avic Chengdu Aircraft Design & Research Institute, Chengdu 610041, China
| | - Huanlin Gao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Fengjiao Bin
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Dengbao Xiao
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
25
|
M A, George SD. A surface-engineered contact lens for tear fluid biomolecule sensing. LAB ON A CHIP 2024; 24:2327-2334. [PMID: 38563256 DOI: 10.1039/d4lc00176a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The eyes provide rich physiological information and offer diagnostic potential as a sensing site, and probing tear constituents via the wearable contact lens could be explored for healthcare monitoring. Herein, we propose a novel adhesive contrast contact lens platform that can split tear film by natural means of tear secretion and blinking. The adhesive contrast is realized by selective grafting of a lubricant onto a polydimethylsiloxane (PDMS)-based contact lens, leading to high pinning zones on a non-adhesive background. The difference in contact angle hysteresis facilitates the liquid splitting. Further, the method offers control over the droplet volume by controlling the zone dimension. The adhesive contrast contact lens is coupled with fluorescent spectroscopic as well as colorimetric techniques to realize its potential as a diagnostic platform. The adhesive contrast contact lens is exploited to detect the level of lactoferrin in tear by sensitizing split droplets with Tb3+ ions. The adhesive contrast contact lens integrated with a fluorescence spectrometer was able to detect the lactoferrin level up to a concentration of 0.25 mg mL-1. Additionally, a colorimetric detection based on the fluorescence of the lactoferrin-terbium complex is demonstrated for the measurement of lactoferrin, with a limit of detection in the physiological range up to 0.5 mg mL-1.
Collapse
Affiliation(s)
- Aravind M
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India - 576104.
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, India - 576104.
- Centre for Applied Nanosciences (CAN), Manipal Academy of Higher Education, Manipal, India - 576104
| |
Collapse
|
26
|
Huang X, Yao C, Huang S, Zheng S, Liu Z, Liu J, Wang J, Chen HJ, Xie X. Technological Advances of Wearable Device for Continuous Monitoring of In Vivo Glucose. ACS Sens 2024; 9:1065-1088. [PMID: 38427378 DOI: 10.1021/acssensors.3c01947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Managing diabetes is a chronic challenge today, requiring monitoring and timely insulin injections to maintain stable blood glucose levels. Traditional clinical testing relies on fingertip or venous blood collection, which has facilitated the emergence of continuous glucose monitoring (CGM) technology to address data limitations. Continuous glucose monitoring technology is recognized for tracking long-term blood glucose fluctuations, and its development, particularly in wearable devices, has given rise to compact and portable continuous glucose monitoring devices, which facilitates the measurement of blood glucose and adjustment of medication. This review introduces the development of wearable CGM-based technologies, including noninvasive methods using body fluids and invasive methods using implantable electrodes. The advantages and disadvantages of these approaches are discussed as well as the use of microneedle arrays in minimally invasive CGM. Microneedle arrays allow for painless transdermal puncture and are expected to facilitate the development of wearable CGM devices. Finally, we discuss the challenges and opportunities and look forward to the biomedical applications and future directions of wearable CGM-based technologies in biological research.
Collapse
Affiliation(s)
- Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shantao Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
27
|
Liu X, Ye Y, Ge Y, Qu J, Liedberg B, Zhang Q, Wang Y. Smart Contact Lenses for Healthcare Monitoring and Therapy. ACS NANO 2024; 18:6817-6844. [PMID: 38407063 DOI: 10.1021/acsnano.3c12072] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The eye contains a wealth of physiological information and offers a suitable environment for noninvasive monitoring of diseases via smart contact lens sensors. Although extensive research efforts recently have been undertaken to develop smart contact lens sensors, they are still in an early stage of being utilized as an intelligent wearable sensing platform for monitoring various biophysical/chemical conditions. In this review, we provide a general introduction to smart contact lenses that have been developed for disease monitoring and therapy. First, different disease biomarkers available from the ocular environment are summarized, including both physical and chemical biomarkers, followed by the commonly used materials, manufacturing processes, and characteristics of contact lenses. Smart contact lenses for eye-drug delivery with advancing technologies to achieve more efficient treatments are then introduced as well as the latest developments for disease diagnosis. Finally, sensor communication technologies and smart contact lenses for antimicrobial and other emerging bioapplications are also discussed as well as the challenges and prospects of the future development of smart contact lenses.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Ying Ye
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Yuancai Ge
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Bo Liedberg
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qingwen Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yi Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
28
|
Wang J, Chu J, Song J, Li Z. The application of impantable sensors in the musculoskeletal system: a review. Front Bioeng Biotechnol 2024; 12:1270237. [PMID: 38328442 PMCID: PMC10847584 DOI: 10.3389/fbioe.2024.1270237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
As the population ages and the incidence of traumatic events rises, there is a growing trend toward the implantation of devices to replace damaged or degenerated tissues in the body. In orthopedic applications, some implants are equipped with sensors to measure internal data and monitor the status of the implant. In recent years, several multi-functional implants have been developed that the clinician can externally control using a smart device. Experts anticipate that these versatile implants could pave the way for the next-generation of technological advancements. This paper provides an introduction to implantable sensors and is structured into three parts. The first section categorizes existing implantable sensors based on their working principles and provides detailed illustrations with examples. The second section introduces the most common materials used in implantable sensors, divided into rigid and flexible materials according to their properties. The third section is the focal point of this article, with implantable orthopedic sensors being classified as joint, spine, or fracture, based on different practical scenarios. The aim of this review is to introduce various implantable orthopedic sensors, compare their different characteristics, and outline the future direction of their development and application.
Collapse
Affiliation(s)
- Jinzuo Wang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning, China
| | - Jian Chu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jinhui Song
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Zhonghai Li
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning, China
| |
Collapse
|
29
|
Tan Y, De La Toba E, Rubakhin SS, Labriola LT, Canfield C, Pan D, Sweedler JV. NanoLC-timsTOF-Assisted Analysis of Glycated Albumin in Diabetes-Affected Plasma and Tears. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:106-113. [PMID: 38016044 PMCID: PMC10843563 DOI: 10.1021/jasms.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Glycation is a spontaneous and nonenzymatic glycosylation. Glycated albumin (GA), which serves as an important biomarker in plasma in the diagnosis and characterization of diabetes, can be passively filtered from the plasma to tears. Tears are important targets for research in clinical diagnostics due to the ability to collect this biofluid noninvasively and repeatably. Therefore, the analysis of GA in tear film provides information for monitoring diabetes progression independent of blood pathologies. Due to the limited volume (1-5 μL) of natural tear film, we developed a small volume assay using a nano liquid chromatography-trapped ion mobility spectrometry-time-of-flight MS (nanoLC-timsTOF) platform for the analysis of glycated albumin in human plasma and tear films affected by diabetes. The peptides containing lysine 525, which is the main glycation site in GA, were relatively quantified and represented as the GA level. The results of the measurements showed that GA levels were significantly higher in diabetes-affected plasma and tears compared to controls with a p-value < 0.01. A strong correlation of glycated albumin levels was observed for the plasma and tear film in diabetes samples (Pearson coefficient 0.92 with a p-value 0.0012). Moreover, the number of GA glycation sites was significantly higher in diabetes-affected plasma and tear comparatively to controls. Among all the glycation sites in plasma albumin, the GA level quantified by lysine 136/137 had a strong correlation with more commonly used lysine 525, suggesting that lysine 136 /137 is an alternative diabetes biomarker in plasma. Overall, our findings demonstrate GA in tears as a biomarker for monitoring diabetes progression, highlighting new possibilities for quick and noninvasive diabetes detection and monitoring.
Collapse
Affiliation(s)
- Yanqi Tan
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Eduardo De La Toba
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | | | - Dipanjan Pan
- Department of Nuclear Engineering and Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Chato L, Regentova E. Survey of Transfer Learning Approaches in the Machine Learning of Digital Health Sensing Data. J Pers Med 2023; 13:1703. [PMID: 38138930 PMCID: PMC10744730 DOI: 10.3390/jpm13121703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Machine learning and digital health sensing data have led to numerous research achievements aimed at improving digital health technology. However, using machine learning in digital health poses challenges related to data availability, such as incomplete, unstructured, and fragmented data, as well as issues related to data privacy, security, and data format standardization. Furthermore, there is a risk of bias and discrimination in machine learning models. Thus, developing an accurate prediction model from scratch can be an expensive and complicated task that often requires extensive experiments and complex computations. Transfer learning methods have emerged as a feasible solution to address these issues by transferring knowledge from a previously trained task to develop high-performance prediction models for a new task. This survey paper provides a comprehensive study of the effectiveness of transfer learning for digital health applications to enhance the accuracy and efficiency of diagnoses and prognoses, as well as to improve healthcare services. The first part of this survey paper presents and discusses the most common digital health sensing technologies as valuable data resources for machine learning applications, including transfer learning. The second part discusses the meaning of transfer learning, clarifying the categories and types of knowledge transfer. It also explains transfer learning methods and strategies, and their role in addressing the challenges in developing accurate machine learning models, specifically on digital health sensing data. These methods include feature extraction, fine-tuning, domain adaptation, multitask learning, federated learning, and few-/single-/zero-shot learning. This survey paper highlights the key features of each transfer learning method and strategy, and discusses the limitations and challenges of using transfer learning for digital health applications. Overall, this paper is a comprehensive survey of transfer learning methods on digital health sensing data which aims to inspire researchers to gain knowledge of transfer learning approaches and their applications in digital health, enhance the current transfer learning approaches in digital health, develop new transfer learning strategies to overcome the current limitations, and apply them to a variety of digital health technologies.
Collapse
Affiliation(s)
- Lina Chato
- Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, NV 89154, USA;
| | | |
Collapse
|
32
|
Garland NT, Kaveti R, Bandodkar AJ. Biofluid-Activated Biofuel Cells, Batteries, and Supercapacitors: A Comprehensive Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303197. [PMID: 37358398 DOI: 10.1002/adma.202303197] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Recent developments in wearable and implanted devices have resulted in numerous, unprecedented capabilities that generate increasingly detailed information about a user's health or provide targeted therapy. However, options for powering such systems remain limited to conventional batteries which are large and have toxic components and as such are not suitable for close integration with the human body. This work provides an in-depth overview of biofluid-activated electrochemical energy devices, an emerging class of energy sources judiciously designed for biomedical applications. These unconventional energy devices are composed of biocompatible materials that harness the inherent chemistries of various biofluids to produce useable electrical energy. This work covers examples of such biofluid-activated energy devices in the form of biofuel cells, batteries, and supercapacitors. Advances in materials, design engineering, and biotechnology that form the basis for high-performance, biofluid-activated energy devices are discussed. Innovations in hybrid manufacturing and heterogeneous integration of device components to maximize power output are also included. Finally, key challenges and future scopes of this nascent field are provided.
Collapse
Affiliation(s)
- Nate T Garland
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Rajaram Kaveti
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
33
|
Kazemi N, Abdolrazzaghi M, Light PE, Musilek P. In-human testing of a non-invasive continuous low-energy microwave glucose sensor with advanced machine learning capabilities. Biosens Bioelectron 2023; 241:115668. [PMID: 37774465 DOI: 10.1016/j.bios.2023.115668] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/08/2023] [Accepted: 09/03/2023] [Indexed: 10/01/2023]
Abstract
Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R2 ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.
Collapse
Affiliation(s)
- Nazli Kazemi
- Electrical and Computer Engineering, University of Alberta, 116 St., Edmonton, T6G 2R3, AB, Canada.
| | | | - Peter E Light
- Faculty of Medicine and Dentistry Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, 112 St., Edmonton, T6G 2R3, AB, Canada.
| | - Petr Musilek
- Electrical and Computer Engineering, University of Alberta, 116 St., Edmonton, T6G 2R3, AB, Canada; Applied Cybernetics, University of Hradec Králové, Rokitanského 62/26, Hradec Králové, 500 03, Czechia, Czech Republic.
| |
Collapse
|
34
|
Baghban R, Talebnejad MR, Meshksar A, Heydari M, Khalili MR. Recent advancements in nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma, review and update. J Nanobiotechnology 2023; 21:402. [PMID: 37919748 PMCID: PMC10621182 DOI: 10.1186/s12951-023-02166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Despite the existence of numerous eye drops in the market, most of them are not sufficiently effective because of quick clearance and the barriers within the eye. To increase the delivery of the drugs to the eye, various new formulations have been explored in recent decades. These formulations aim to enhance drug retention and penetration, while enabling sustained drug release over extended periods. One such innovative approach is the utilization of contact lenses, which were originally designed for cosmetic purposes and vision correction. Contact lenses have appeared as a promising formulation for ocular drug delivery, as they can increase the bioavailability of drugs in the eye and diminish unwanted side effects. They are specifically appropriate for treating chronic eye conditions, making them an area of interest for researchers in the field of ophthalmology. This review outlines the promising potential of nanomaterial-laden contact lenses for diagnosis and treatment of glaucoma. It classifies therapeutic approaches based on nanomaterial type, summarizes diagnostic advances, discusses improvement of contact lenses properties, covers marketing perspectives, and acknowledges the challenges of these innovative contact lenses for glaucoma management.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Talebnejad
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aidin Meshksar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Waspodo N, Giffari Makkaraka MA, Nislawati R, Ismail A, Taufik Fadillah Zainal A, Lolok GB. Role of excessive weight in intraocular pressure: a systematic review and meta-analysis. BMJ Open Ophthalmol 2023; 8:e001355. [PMID: 37963670 PMCID: PMC10649692 DOI: 10.1136/bmjophth-2023-001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023] Open
Abstract
OBJECTIVE This systematic review and meta-analysis aimed to analyse the effect of excess body weight on intraocular pressure (IOP) values. METHOD AND ANALYSIS A literature search from PubMed, Medline and ScienceDirect Databases on 18 May 2023 was conducted by three reviewers, then filtered each study based on inclusion and exclusion criteria. For the quality assessment of included studies, the Newcastle-Ottawa Scale was adapted. Meta-analysis was performed using RevMan V.5.4 by entering the IOP values of each group to measure the mean difference. RESULTS From 2656 studies, there were 9 studies that matched the criteria and then were included to perform a quantitative meta-analysis. The results showed a mean difference of 0.93 (95% CI: 0.67 to 1.18) of the excessive weight group against the normal weight group. This suggests that there is a significant relationship between excess body weight and increasing values of IOP. CONCLUSION It can be concluded that excessive body weight tends to lead to higher IOP, which means that high IOP becomes a major risk factor for glaucoma.
Collapse
Affiliation(s)
- Noro Waspodo
- Department of Ophthalmology, Hasanuddin University, Makassar, Indonesia
| | | | - Ririn Nislawati
- Department of Ophthalmology, Hasanuddin University, Makassar, Indonesia
| | - Abrar Ismail
- Department of Ophthalmology, Hasanuddin University, Makassar, Indonesia
| | | | | |
Collapse
|
36
|
Kazanskiy NL, Khonina SN, Butt MA. Smart Contact Lenses-A Step towards Non-Invasive Continuous Eye Health Monitoring. BIOSENSORS 2023; 13:933. [PMID: 37887126 PMCID: PMC10605521 DOI: 10.3390/bios13100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
According to the age-old adage, while eyes are often considered the gateway to the soul, they might also provide insights into a more pragmatic aspect of our health: blood sugar levels. This potential breakthrough could be realized through the development of smart contact lenses (SCLs). Although contact lenses were first developed for eyesight correction, new uses have recently become available. In the near future, it might be possible to monitor a variety of ocular and systemic disorders using contact lens sensors. Within the realm of glaucoma, SCLs present a novel prospect, offering a potentially superior avenue compared to traditional management techniques. These lenses introduce the possibility of non-invasive and continuous monitoring of intraocular pressure (IOP) while also enabling the personalized administration of medication as and when needed. This convergence holds great promise for advancing glaucoma care. In this review, recent developments in SCLs, including their potential applications, such as IOP and glucose monitoring, are briefly discussed.
Collapse
Affiliation(s)
- Nikolay L. Kazanskiy
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Svetlana N. Khonina
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | | |
Collapse
|
37
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
38
|
Yuan W, Zhao F, Liu X, Xu J. Development of corneal contact lens materials and current clinical application of contact lenses: A review. Biointerphases 2023; 18:050801. [PMID: 37756594 DOI: 10.1116/6.0002618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Unlike conventional glasses, corneal contact lenses (CLs) can directly contact the surface of the tear film through the application of biopolymer materials, to achieve therapeutic and cosmetic purposes. Since the advent of polymethylmethacrylate, a material that has gained widespread use and attention, statistically, there are now more than 150 × 106 people around the world who wear corneal contact lenses. However, the associated complications caused by the interaction of contact lenses with the ocular surface, tear film, endogenous and environmental microorganisms, and components of the solution affect nearly one-third of the wearer population. The application of corneal contact lenses in correcting vision and myopia control has been widely recognized. With the development of related materials, corneal contact lenses are applied to the treatment of ocular surface diseases, including corneal bandage lenses, drug-loaded corneal contact lenses, biosensors, and other new products, while minimizing the side effects associated with CL wear. This paper summarized the development history and material properties of CLs, focused on the current main clinical applications and mechanisms, as well as clarified the possible complications in wearing therapeutic contact lenses and the direction for improvement in the future.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Xiaoyu Liu
- Department of Ophthalmology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian 116033, China
| | - Jun Xu
- Department of Ophthalmology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian 116033, China
| |
Collapse
|
39
|
Lai CF, Shiau FJ. Hydrogel Contact Lenses Embedded with Amine-Functionalized Large-Pore Mesoporous Silica Nanoparticles with Extended Hyaluronic Acid Release. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2441. [PMID: 37686949 PMCID: PMC10490223 DOI: 10.3390/nano13172441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Contact lenses (CLs) have emerged as an effective method for delivering ophthalmic drugs. In this research, we designed hydrogel CLs capable of extended release, utilizing large-pore mesoporous silica nanoparticles (LPMSNs) to deliver hyaluronic acid (HA) for treating dry eye syndrome. LPMSNs were functionalized with amine groups (LPMSN-amine) to enhance HA loading and release capacity. In vitro release studies demonstrated that LPMSN-amine CLs exhibited superior slower HA release than LPMSN-siloxane and standard CLs. Within 120 h, the cumulative amount of HA released from LPMSN-amine CLs reached approximately 275.58 µg, marking a 12.6-fold improvement compared to standard CLs, when loaded from 0.1 wt% HA solutions. Furthermore, LPMSN-amine CLs effectively maintained moisture, mitigating ocular surface dehydration, making them a promising solution for dry eye management. This study successfully developed LPMSN-amine CLs for extended HA release, identifying the optimal functional groups and loading conditions to achieve sustained release.
Collapse
Affiliation(s)
- Chun-Feng Lai
- Department of Photonics, Feng Chia University, Taichung 407, Taiwan
| | | |
Collapse
|
40
|
Lyu X, Hu Y, Shi S, Wang S, Li H, Wang Y, Zhou K. Hydrogel Bioelectronics for Health Monitoring. BIOSENSORS 2023; 13:815. [PMID: 37622901 PMCID: PMC10452556 DOI: 10.3390/bios13080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Hydrogels are considered an ideal platform for personalized healthcare due to their unique characteristics, such as their outstanding softness, appealing biocompatibility, excellent mechanical properties, etc. Owing to the high similarity between hydrogels and biological tissues, hydrogels have emerged as a promising material candidate for next generation bioelectronic interfaces. In this review, we discuss (i) the introduction of hydrogel and its traditional applications, (ii) the work principles of hydrogel in bioelectronics, (iii) the recent advances in hydrogel bioelectronics for health monitoring, and (iv) the outlook for future hydrogel bioelectronics' development.
Collapse
Affiliation(s)
- Xinyan Lyu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
| | - Yan Hu
- The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Y.H.); (S.S.)
| | - Shuai Shi
- The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Y.H.); (S.S.)
| | - Siyuan Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
| | - Haowen Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
| | - Yuheng Wang
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China;
| | - Kun Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China; (X.L.); (S.W.); (H.L.)
- The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Y.H.); (S.S.)
| |
Collapse
|
41
|
Lakowicz JR, Badugu R, Sivashanmugan K, Reece A. Remote Measurements of Tear Electrolyte Concentrations on Both Sides of an Inserted Contact Lens. CHEMOSENSORS (BASEL, SWITZERLAND) 2023; 11:463. [PMID: 38274567 PMCID: PMC10810336 DOI: 10.3390/chemosensors11080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In this paper, a method is described to perform ion concentration measurements on both sides of an inserted contact lens, without physical contact with the eye or the contact lens. The outer surface of an eye is covered with a tear film that has multiple layers. The central aqueous layer contains electrolytes and proteins. When a contact lens is inserted, it becomes localized in the central layer, which creates two layers known as the pre-lens tear film (PLTF) and the post-lens tear film (PoLTF). The PoLTF is in direct contact with the sensitive corneal epithelial cells which control electrolyte concentrations in tears. It is difficult to measure the overall electrolyte concentration in tears because of the small 7 μL volume of bulk tears. No methods are known, and no method has been proposed, to selectively measure the concentrations of electrolytes in the smaller volumes of the PLTF and the PoLTF. In this paper, we demonstrate the ability to localize fluorophores on each side of a contact lens without probe mixing or diffusion across the lens. We measured the concentration of sodium in the region of the PoLTF using a sodium-sensitive fluorophore positioned on the inner surface of a contact lens. The fluorescence measurements do not require physical contact and are mostly independent of eye motion and fluorophore concentration. The method is generic and can be combined with ion-sensitive fluorophores for the other electrolytes in tears. Instrumentation for non-contact measurements is likely to be inexpensive with modern opto-electronic devices. We expect these lenses to be used for measurements of other ions in the PLTF and the PoLTF, and thus become useful for both research and in the diagnosis of infections, keratitis and biomarkers for diseases.
Collapse
Affiliation(s)
- Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of
Biochemistry and Molecular Biology, University of Maryland School of Medicine,
Baltimore, MD 21201, USA
| | - Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of
Biochemistry and Molecular Biology, University of Maryland School of Medicine,
Baltimore, MD 21201, USA
| | - Kundan Sivashanmugan
- Center for Fluorescence Spectroscopy, Department of
Biochemistry and Molecular Biology, University of Maryland School of Medicine,
Baltimore, MD 21201, USA
| | - Albert Reece
- Center for Fluorescence Spectroscopy, Department of
Biochemistry and Molecular Biology, University of Maryland School of Medicine,
Baltimore, MD 21201, USA
- Department of Obstetrics, Gynecology and Reproductive
Sciences, University of Maryland School of Medicine, 655 W. Baltimore St.,
Baltimore, MD 21201, USA
| |
Collapse
|
42
|
Ren X, Zhou Y, Lu F, Zhai L, Wu H, Chen Z, Wang C, Zhu X, Xie Y, Cai P, Xu J, Tang X, Li J, Yao J, Jiang Q, Hu B. Contact Lens Sensor with Anti-jamming Capability and High Sensitivity for Intraocular Pressure Monitoring. ACS Sens 2023. [PMID: 37262351 DOI: 10.1021/acssensors.3c00542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Contact lens sensors provide a noninvasive approach for intraocular pressure (IOP) monitoring in patients with glaucoma. Accurate measurement of this imperceptible pressure variation requires highly sensitive sensors in the absence of simultaneously amplifying IOP signal and blinking-induced noise. However, current noise-reduction methods rely on external filter circuits, which thicken contact lenses and reduce signal quality. Here, we introduce a contact lens strain sensor with an anti-jamming ability by utilizing a self-lubricating layer to reduce the coefficient of friction (COF) to remove the interference from the tangential force. The sensor achieves exceptionally high sensitivity due to the strain concentration layout and the confined occurrence of sympatric microcracks. The animal tests prove our lens can accurately detect IOP safely and reliably.
Collapse
Affiliation(s)
- Xueyang Ren
- Department of Neuro-Psychiatric Institute, the Affiliated Brain Hospital with Nanjing Medical University, Nanjing 210029, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yunfan Zhou
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fangzhou Lu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Leili Zhai
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Hao Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Zhongda Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Changxian Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xuefei Zhu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yandong Xie
- Department of Neuro-Psychiatric Institute, the Affiliated Brain Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Pingqiang Cai
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Juan Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Xianglong Tang
- Department of Neuro-Psychiatric Institute, the Affiliated Brain Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jianqing Li
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
- School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
| | - Jin Yao
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qin Jiang
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
43
|
VURAL B, ULUDAĞ İ, İNCE B, ÖZYURT C, ÖZTÜRK F, SEZGİNTÜRK MK. Fluid-based wearable sensors: a turning point in personalized healthcare. Turk J Chem 2023; 47:944-967. [PMID: 38173754 PMCID: PMC10760819 DOI: 10.55730/1300-0527.3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/31/2023] [Accepted: 05/22/2023] [Indexed: 01/05/2024] Open
Abstract
Nowadays, it has become very popular to develop wearable devices that can monitor biomarkers to analyze the health status of the human body more comprehensively and accurately. Wearable sensors, specially designed for home care services, show great promise with their ease of use, especially during pandemic periods. Scientists have conducted many innovative studies on new wearable sensors that can noninvasively and simultaneously monitor biochemical indicators in body fluids for disease prediction, diagnosis, and management. Using noninvasive electrochemical sensors, biomarkers can be detected in tears, saliva, perspiration, and skin interstitial fluid (ISF). In this review, biofluids used for noninvasive wearable sensor detection under four main headings, saliva, sweat, tears, and ISF-based wearable sensors, were examined in detail. This report analyzes nearly 50 recent articles from 2017 to 2023. Based on current research, this review also discusses the evolution of wearable sensors, potential implementation challenges, and future prospects.
Collapse
Affiliation(s)
- Berfin VURAL
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - İnci ULUDAĞ
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Bahar İNCE
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Canan ÖZYURT
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Funda ÖZTÜRK
- Department of Chemistry, Faculty of Arts and Sciences, Tekirdağ Namık Kemal University, Tekirdağ,
Turkiye
| | - Mustafa Kemal SEZGİNTÜRK
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| |
Collapse
|
44
|
Flynn CD, Chang D, Mahmud A, Yousefi H, Das J, Riordan KT, Sargent EH, Kelley SO. Biomolecular sensors for advanced physiological monitoring. NATURE REVIEWS BIOENGINEERING 2023; 1:1-16. [PMID: 37359771 PMCID: PMC10173248 DOI: 10.1038/s44222-023-00067-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
Abstract
Body-based biomolecular sensing systems, including wearable, implantable and consumable sensors allow comprehensive health-related monitoring. Glucose sensors have long dominated wearable bioanalysis applications owing to their robust continuous detection of glucose, which has not yet been achieved for other biomarkers. However, access to diverse biological fluids and the development of reagentless sensing approaches may enable the design of body-based sensing systems for various analytes. Importantly, enhancing the selectivity and sensitivity of biomolecular sensors is essential for biomarker detection in complex physiological conditions. In this Review, we discuss approaches for the signal amplification of biomolecular sensors, including techniques to overcome Debye and mass transport limitations, and selectivity improvement, such as the integration of artificial affinity recognition elements. We highlight reagentless sensing approaches that can enable sequential real-time measurements, for example, the implementation of thin-film transistors in wearable devices. In addition to sensor construction, careful consideration of physical, psychological and security concerns related to body-based sensor integration is required to ensure that the transition from the laboratory to the human body is as seamless as possible.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Dingran Chang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
| | - Alam Mahmud
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| | - Hanie Yousefi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Kimberly T. Riordan
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Edward H. Sargent
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
- Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Shana O. Kelley
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL USA
| |
Collapse
|
45
|
Lai CF, Shiau FJ. Enhanced and Extended Ophthalmic Drug Delivery by pH-Triggered Drug-Eluting Contact Lenses with Large-Pore Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18630-18638. [PMID: 37023369 DOI: 10.1021/acsami.2c22860] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Drug-eluting contact lenses (DCLs) have attracted considerable attention as potential therapeutic ophthalmic drug delivery devices. In this study, we propose, fabricate, and investigate pH-triggered DCLs that are combined with large-pore mesoporous silica nanoparticles (LPMSNs). Compared to reference DCLs, LPMSN-laden DCLs can prolong the residence time of glaucoma drugs in an artificial lacrimal fluid (ALF) environment at pH 7.4. Additionally, LPMSN-laden DCLs do not require drug preloading and are compatible with current contact lens manufacturing processes. LPMSN-laden DCLs soaked at pH 6.5 exhibit better drug loading than reference DCLs due to their specific adsorption. The sustained and extended release of glaucoma drugs by LPMSN-laden DCLs was successfully monitored in ALF, and the drug release mechanism was further explained. We also evaluated the cytotoxicity of LPMSN-laden DCLs, and qualitative and quantitative results showed no cytotoxicity. Our experimental results demonstrate that LPMSNs are excellent nanocarriers that have the potential to be used as safe and stable nanocarriers for the delivery of glaucoma drugs or other drugs. pH-triggered LPMSN-laden DCLs can significantly improve drug loading efficiency and control prolonged drug release, indicating that they have great potential for future biomedical applications.
Collapse
Affiliation(s)
- Chun-Feng Lai
- Department of Photonics, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| | - Fu-Jia Shiau
- Department of Photonics, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| |
Collapse
|
46
|
Mondal H, Kim HJ, Mohanto N, Jee JP. A Review on Dry Eye Disease Treatment: Recent Progress, Diagnostics, and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15030990. [PMID: 36986851 PMCID: PMC10051136 DOI: 10.3390/pharmaceutics15030990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Dry eye disease is a multifactorial disorder of the eye and tear film with potential damage to the ocular surface. Various treatment approaches for this disorder aim to alleviate disease symptoms and restore the normal ophthalmic environment. The most widely used dosage form is eye drops of different drugs with 5% bioavailability. The use of contact lenses to deliver drugs increases bioavailability by up to 50%. Cyclosporin A is a hydrophobic drug loaded onto contact lenses to treat dry eye disease with significant improvement. The tear is a source of vital biomarkers for various systemic and ocular disorders. Several biomarkers related to dry eye disease have been identified. Contact lens sensing technology has become sufficiently advanced to detect specific biomarkers and predict disease conditions accurately. This review focuses on dry eye disease treatment with cyclosporin A-loaded contact lenses, contact lens biosensors for ocular biomarkers of dry eye disease, and the possibility of integrating sensors in therapeutic contact lenses.
Collapse
Affiliation(s)
- Himangsu Mondal
- Drug Delivery Research Lab, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Nijaya Mohanto
- Drug Delivery Research Lab, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Jun-Pil Jee
- Drug Delivery Research Lab, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
47
|
Qiao Y, Luo J, Cui T, Liu H, Tang H, Zeng Y, Liu C, Li Y, Jian J, Wu J, Tian H, Yang Y, Ren TL, Zhou J. Soft Electronics for Health Monitoring Assisted by Machine Learning. NANO-MICRO LETTERS 2023; 15:66. [PMID: 36918452 PMCID: PMC10014415 DOI: 10.1007/s40820-023-01029-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Due to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality. Therefore, it is easy to build the specific dataset, which is important to improve the performance of machine learning algorithm. At the same time, with the assistance of machine learning algorithm, the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis. The soft electronics and machining learning algorithms complement each other very well. It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future. Therefore, in this review, we will give a careful introduction about the new soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by machine learning algorithm will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Jinan Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Haidong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yingfen Zeng
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jinming Jian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jingzhi Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
48
|
Narasimhan V, Siddique RH, Kim UJ, Lee S, Kim H, Roh Y, Wang YM, Choo H. Glasswing-Butterfly-Inspired Multifunctional Scleral Lens and Smartphone Raman Spectrometer for Point-of-Care Tear Biomarker Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205113. [PMID: 36453578 PMCID: PMC9929119 DOI: 10.1002/advs.202205113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Augmenting contact lenses with sensing capabilities requires incorporating multiple functionalities within a diminutive device. Inspired by multifunctional biophotonic nanostructures of glasswing butterflies, a nanostructured scleral lens with enhanced optical, bactericidal, and sensing capabilities is reported. When used in conjunction with a smartphone-integrated Raman spectrometer, the feasibility of point-of-care applications is demonstrated. The bioinspired nanostructures made on parylene films are mounted on the anterior and posterior side of a scleral lens to create a nanostructured lens. Compared to unstructured parylene, nanostructured parylene minimizes glare by 4.3-fold at large viewing angles up to 80o . When mounted on a scleral lens, the nanostructures block 2.8-fold more ultraviolet (UVA) light while offering 1.1-fold improved transmission in the visible regime. Furthermore, the nanostructures exhibit potent bactericidal activity against Escherichia coli, killing 89% of tested bacteria within 4 h. The same nanostructures, when gold-coated, are used to perform rapid label-free multiplex detection of lysozyme and lactoferrin, the protein biomarkers of the chronic dry eye disease, in whole human tears using drop-coating deposition Raman spectroscopy. The detection of both proteins in whole human tear samples from different subjects using the nanostructured lens produced excellent correlation with commercial enzyme-based assays while simultaneously displaying a 1.5-fold lower standard deviation.
Collapse
Affiliation(s)
- Vinayak Narasimhan
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
- Meta Vision LabSamsung Semiconductor Inc.PasadenaCA91101USA
| | - Radwanul Hasan Siddique
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
- Meta Vision LabSamsung Semiconductor Inc.PasadenaCA91101USA
| | - Un Jeong Kim
- Advanced Sensor LabSamsung Advanced Institute of TechnologySamsung ElectronicsSuwonGyeonggi‐do16678South Korea
| | - Suyeon Lee
- Advanced Sensor LabSamsung Advanced Institute of TechnologySamsung ElectronicsSuwonGyeonggi‐do16678South Korea
| | - Hyochul Kim
- Advanced Sensor LabSamsung Advanced Institute of TechnologySamsung ElectronicsSuwonGyeonggi‐do16678South Korea
| | - YoungGeun Roh
- Advanced Sensor LabSamsung Advanced Institute of TechnologySamsung ElectronicsSuwonGyeonggi‐do16678South Korea
| | | | - Hyuck Choo
- Advanced Sensor LabSamsung Advanced Institute of TechnologySamsung ElectronicsSuwonGyeonggi‐do16678South Korea
| |
Collapse
|
49
|
Ahmadian N, Manickavasagan A, Ali A. Comparative assessment of blood glucose monitoring techniques: a review. J Med Eng Technol 2023; 47:121-130. [PMID: 35895023 DOI: 10.1080/03091902.2022.2100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Monitoring blood glucose levels is a vital indicator of diabetes mellitus management. The mainstream techniques of glucometers are invasive, painful, expensive, intermittent, and time-consuming. The ever-increasing number of global diabetic patients urges the development of alternative non-invasive glucose monitoring techniques. Recent advances in electrochemical biosensors, biomaterials, wearable sensors, biomedical signal processing, and microfabrication technologies have led to significant research and ideas in elevating the patient's life quality. This review provides up-to-date information about the available technologies and compares the advantages and limitations of invasive and non-invasive monitoring techniques. The scope of measuring glucose concentration in other bio-fluids such as interstitial fluid (ISF), tears, saliva, and sweat are also discussed. The high accuracy level of invasive methods in measuring blood glucose concentrations gives them superiority over other methods due to lower average absolute error between the detected glucose concentration and reference values. Whereas minimally invasive, and non-invasive techniques have the advantages of continuous and pain-free monitoring. Various blood glucose monitoring techniques have been evaluated based on their correlation to blood, patient-friendly, time efficiency, cost efficiency, and accuracy. Finally, this review also compares the currently available glucose monitoring devices in the market.
Collapse
Affiliation(s)
- Nivad Ahmadian
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Annamalai Manickavasagan
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Amanat Ali
- School of Engineering, College of Engineering and Physical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
50
|
Zhang Y, Hu Y, Jiang N, Yetisen AK. Wearable artificial intelligence biosensor networks. Biosens Bioelectron 2023; 219:114825. [PMID: 36306563 DOI: 10.1016/j.bios.2022.114825] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
The demand for high-quality healthcare and well-being services is remarkably increasing due to the ageing global population and modern lifestyles. Recently, the integration of wearables and artificial intelligence (AI) has attracted extensive academic and technological attention for its powerful high-dimensional data processing of wearable biosensing networks. This work reviews the recent developments in AI-assisted wearable biosensing devices in disease diagnostics and fatigue monitoring demonstrating the trend towards personalised medicine with highly efficient, cost-effective, and accurate point-of-care diagnosis by finding hidden patterns in biosensing data and detecting abnormalities. The reliability of adaptive learning and synthetic data and data privacy still need further investigation to realise personalised medicine in the next decade. Due to the worldwide popularity of smartphones, they have been utilised for sensor readout, wireless data transfer, data processing and storage, result display, and cloud server communication leading to the development of smartphone-based biosensing systems. The recent advances have demonstrated a promising future for the healthcare system because of the increasing data processing power, transfer efficiency and storage capacity and diversifying functionalities.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| |
Collapse
|