1
|
Chibh S, Aggarwal N, Gupta N, Ali S, Mishra J, Tiwari S, Ali ME, Mishra DP, Panda JJ. Photoresponsive and Shape-Switchable MoS 2-Peptide-Hybrid Nanosystems for Enacting Photochemo and siRNA-Mediated Gene Therapy in Glioma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29318-29340. [PMID: 40340386 DOI: 10.1021/acsami.5c03616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Exfoliated 2D transition-metal dichalcogenide (TMDCs)-based nanomaterials have captured a huge biomedical territory owing to their supreme physicochemical properties. However, the tedious and harsh chemical exfoliation of bulk MoS2 impacts its utility in the biological domain. The study introduces a facile and environmentally benign way of shape-tunable exfoliation of bulk MoS2 materials in an aqueous dispersion using designed self-assembled, tetrapeptide (Fmoc-HCKF-OH)-based nanostructures, generating hybrid MoS2-peptide nanosystems for both tumor-targeted [employing folic acid (FA) functionalization] and NIR-responsive delivery of anticancer siRNA/drug in glioma. Exfoliated MoS2-peptide NSs here prove to be an excellent photothermal agent by inducing a temperature elevation upto ∼51 °C upon 808 nm NIR absorption. Enhanced siRNA/Dox loading onto the 2D flat morphology of MoS2-peptide NSs resulted in ∼90% cancer cell death in C6 glioma cells under NIR exposure. The expression of the Galectin-1 oncogene was suppressed following the treatment. Thereafter, analysis in the C6 glioma syngeneic rat model demonstrated a significant reduction (>10 fold) in tumor volume with siRNA/Dox-loaded FA-MoS2-peptide NSs + NIR as compared to the phosphate buffer saline-treated control group. Further, in vivo biodistribution studies confirmed the higher targetability of FA-conjugated hybrid NSs. Taken together, our findings promote the utility of TMDC-based nanomaterials in conjecture with a biocompatible peptide scaffold as a trimodal chemo, gene, and phototherapeutic agent.
Collapse
Affiliation(s)
- Sonika Chibh
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Nidhi Aggarwal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Neelam Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Shahjad Ali
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Jibanananda Mishra
- School of Basic, Applied and Biosciences, RIMT University, Mandi-Gobindgarh, Punjab 147301, India
| | - Siddharth Tiwari
- BRIC-National Agri-Food and Biomanufacturing Institute (BRIC-NABI) (Formerly National Agri-Food Biotechnology Institute), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Durga Prasad Mishra
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram extension, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Jiban Jyoti Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
2
|
Zhang X, Xu Z, Zhang Y, Wei D, Zhang S, Wang J, Ren J. Engineered molybdenum disulfide nanosheets as scavengers against oxidative stress inhibit ferroptosis to alleviate acute kidney injury. NANOSCALE 2025; 17:7460-7473. [PMID: 40008616 DOI: 10.1039/d4nr05060f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Acute kidney injury (AKI) is a common clinical kidney dysfunction associated with high morbidity, elevated mortality, and poor prognosis. It results from redox imbalance caused by abnormal excess production of endogenous reactive oxygen species (ROS) at the renal tubules, which in turn initiates a series of pathological processes, such as cellular apoptosis, necrosis, and ferroptosis, eventually leading to structural and functional impairment of the kidney. Thereinto, ferroptosis induced by the lethal accumulation of lipid peroxidation is extensively involved in renal damage. Nanotechnology-mediated therapeutic strategies to scavenge excessive ROS and thereby inhibit ferroptosis represents a promising strategy for AKI management. Herein, we report two engineered ultrathin molybdenum disulfide (MoS2) nanosheets (NSs) modified with polyvinylpyrrolidone (PVP) and bovine serum albumin (BSA), respectively, with excellent biocompatibility and antioxidative defense capability for AKI treatment. The engineered NSs, with a readily variable valence state of molybdenum ions, rescued cell viability by consuming various forms of cellular ROS and significantly facilitated glutathione peroxidase 4 (GPX4) expression to mitigate ferroptosis in renal tubular epithelial cells. In a glycerol-induced AKI mouse model, the PVP-MoS2 NSs were largely accumulated in the injured kidneys, where they provided robust antioxidative protection against ROS attack and suppressed the oxidative stress-induced inflammatory response, thereby maintaining normal kidney function. Of the two engineered NSs, PVP-MoS2 displayed superior biological stability and therapeutic effects and could thus serve as a powerful antioxidant platform for use in the treatment of AKI and other ROS-associated diseases. This study underscores the potential of two-dimensional nanomaterials in precisely treating AKI and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Xuwu Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China.
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Zhipeng Xu
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Yongzheng Zhang
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Dan Wei
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jianning Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China.
- The First Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Jiayu Ren
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
3
|
Hamed EM, Li SFY. Transition Metal Dichalcogenides in Biomedical Devices and Biosensors: A New Frontier for Precision Healthcare. ACS Biomater Sci Eng 2025. [PMID: 40110810 DOI: 10.1021/acsbiomaterials.4c02465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Transition metal dichalcogenides (TMDs) have emerged as groundbreaking materials in the field of biomedical applications, particularly in the development of biosensors and medical devices. Their unique electronic and optical properties, combined with their tunability and biocompatibility, position TMDs as promising candidates for enhancing early disease detection and enabling personalized medicine. This perspective explores the multifaceted potential of TMDs, highlighting their applications in fluorescence and Raman-based biosensing, wearable and implantable devices, and smart therapeutic systems for targeted treatment. Additionally, we address critical challenges such as regulatory hurdles, long-term stability, and ethical considerations surrounding continuous health monitoring and data privacy. Looking to the future, we envision TMDs playing a vital role in the advancement of precision medicine, facilitating real-time health monitoring and individualized treatments. However, the successful integration of TMDs into clinical practice necessitates interdisciplinary collaboration among materials science, bioengineering, and clinical medicine. By fostering such collaboration, we can fully harness the capabilities of TMDs to revolutionize healthcare, making it more accessible, precise, and personalized for patients worldwide.
Collapse
Affiliation(s)
- Eslam M Hamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
4
|
Wang J, Li S, Yang L, Kwan C, Xie C, Cheung KY, Sun RW, Chan ASC, Huang Z, Cai Z, Zeng T, Leung KC. Janus and Amphiphilic MoS 2 2D Sheets for Surface-Directed Orientational Assemblies toward Ex Vivo Dual Substrate Release. SMALL METHODS 2024; 8:e2400533. [PMID: 38874104 PMCID: PMC11671850 DOI: 10.1002/smtd.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Indexed: 06/15/2024]
Abstract
The two-dimensional (2-D) Janus and amphiphilic molybdenum disulfide (MoS2) nanosheet with opposite optical activities on each side (amphichiral) is synthesized by modifying sandwich-like bulk MoS2 with tannic acid and cholesterol through biphasic emulsion method. This new type of amphichiral Janus MoS2 nanosheet consists of a hydrophilic and positive optical activity tannic acid side as well as a hydrophobic and negative optical activity cholesterol side thereby characterized by circular dichroism. Surface-directed orientational differentiation assemblies are performed for the as-synthesized 2D material and are characterized by contact angle, infrared spectroscopy, X-ray photoelectron, and circular dichroism spectroscopies. The amphiphilic nature of the materials is demonstrated by the pre-organization of the nanosheets on either hydrophobic or hydrophilic surfaces, providing unprecedented properties of circular dichroism signal enhancement and wettability. Selective detachment of the surface organic groups (cholesterol and tannic acid fragments) is realized by matrix-assisted laser desorption/ionisation - time-of-flight (MALDI-TOF) mass spectrometry, and the dual substrate release in tissue is detected by ex vivo mass spectrometry imaging.
Collapse
Affiliation(s)
- Jianing Wang
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Shuqi Li
- College of EnvironmentZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
| | - Lin Yang
- Department of ChemistryThe Chinese University of Hong KongShatin, New TerritoriesHong Kong SARP. R. China
| | - Chak‐Shing Kwan
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
- Department of ChemistryGreat Bay University and Great Bay Institute for Advanced StudyDongguan523000P. R. China
| | - Chengyi Xie
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Kwan Yin Cheung
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Raymond Wai‐Yin Sun
- Guangzhou Lee & Man Technology Company Limited8 Huanshi Avenue, NanshaGuangzhou511458P. R. China
| | - Albert S. C. Chan
- Guangzhou Lee & Man Technology Company Limited8 Huanshi Avenue, NanshaGuangzhou511458P. R. China
| | - Zhifeng Huang
- Department of ChemistryThe Chinese University of Hong KongShatin, New TerritoriesHong Kong SARP. R. China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| | - Tao Zeng
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
- College of EnvironmentZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
| | - Ken Cham‐Fai Leung
- Department of Chemistry and State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityKowloon TongKowloonHong Kong SARP. R. China
| |
Collapse
|
5
|
Du Y, Luo Y, Gu Z. Molecular dynamics simulations reveal concentration-dependent blockage of graphene quantum dots to water channel protein openings. Sci Rep 2024; 14:26485. [PMID: 39489799 PMCID: PMC11532551 DOI: 10.1038/s41598-024-77592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Graphene quantum dots (GQDs) have attracted significant attention across various scientific research areas due to their exceptional properties. However, studies on the potential toxicity of GQDs have yielded conflicting results. Therefore, a comprehensive evaluation of the toxicity profile of GQDs is essential for a thorough understanding of their biosafety. In this work, employing a molecular dynamics (MD) simulation approach, we investigate the interactions between GQDs and graphene oxide quantum dots (GOQDs) with the AQP1 water channel protein, aiming to explore the potential biological influence of GQDs/GOQDs. Our MD simulation results reveal that GQDs can adsorb to the loop region around the openings of AQP1 water channels, resulting in the blockage of these channels and potential toxicity. Interestingly, this blockage is concentration-dependent, with higher GQD concentrations leading to a greater likelihood of blockage. Additionally, GOQDs show a lower probability of blocking the openings of AQP1 water channels compared to GQDs, due to the hydrophobicity of the loop regions around the openings, which ultimately leads to lower interaction energy. Therefore, these findings provide new insights into the potential adverse impact of GQDs on AQP1 water channels through the blockage of their openings, offering valuable molecular insights into the toxicity profile of GQD nanomaterials.
Collapse
Affiliation(s)
- Yunbo Du
- Department of Critical Care Medicine, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China
| | - Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| |
Collapse
|
6
|
Silva EP, Rechotnek F, Lima AMO, da Silva ACP, Sequinel T, Freitas CF, Martins AF, Muniz EC. Design and fabrication strategies of molybdenum disulfide-based nanomaterials for combating SARS-CoV-2 and other respiratory diseases: A review. BIOMATERIALS ADVANCES 2024; 163:213949. [PMID: 39002189 DOI: 10.1016/j.bioadv.2024.213949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Affiliation(s)
- Elisangela P Silva
- Department of Chemistry, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Fernanda Rechotnek
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Antônia M O Lima
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | | | - Thiago Sequinel
- Faculty of Exact Sciences and Technology (FACET), Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Camila F Freitas
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Alessandro F Martins
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Paraná (UTFPR), Apucarana, PR, Brazil; Department of Chemistry, Pittsburg State University (PSU), Pittsburg, KS, USA.
| | - Edvani C Muniz
- Department of Chemistry, Federal University of Piauí (UFPI), Teresina, PI, Brazil; Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| |
Collapse
|
7
|
Kim J, Mayorga-Burrezo P, Song SJ, Mayorga-Martinez CC, Medina-Sánchez M, Pané S, Pumera M. Advanced materials for micro/nanorobotics. Chem Soc Rev 2024; 53:9190-9253. [PMID: 39139002 DOI: 10.1039/d3cs00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Autonomous micro/nanorobots capable of performing programmed missions are at the forefront of next-generation micromachinery. These small robotic systems are predominantly constructed using functional components sourced from micro- and nanoscale materials; therefore, combining them with various advanced materials represents a pivotal direction toward achieving a higher level of intelligence and multifunctionality. This review provides a comprehensive overview of advanced materials for innovative micro/nanorobotics, focusing on the five families of materials that have witnessed the most rapid advancements over the last decade: two-dimensional materials, metal-organic frameworks, semiconductors, polymers, and biological cells. Their unique physicochemical, mechanical, optical, and biological properties have been integrated into micro/nanorobots to achieve greater maneuverability, programmability, intelligence, and multifunctionality in collective behaviors. The design and fabrication methods for hybrid robotic systems are discussed based on the material categories. In addition, their promising potential for powering motion and/or (multi-)functionality is described and the fundamental principles underlying them are explained. Finally, their extensive use in a variety of applications, including environmental remediation, (bio)sensing, therapeutics, etc., and remaining challenges and perspectives for future research are discussed.
Collapse
Affiliation(s)
- Jeonghyo Kim
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Su-Jin Song
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Mariana Medina-Sánchez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi, 5, Bilbao, 48009, Spain
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and Nano-Biosystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, CH-8092 Zürich, Switzerland
| | - Martin Pumera
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
8
|
Xu G, Peng G, Yang J, Wu M, Li W, Wang J, Zhu L, Zhang W, Ge F, Song P. Molybdenum disulfide nanosheets based non-oxygen-dependent and heat-initiated free radical nanogenerator with antimicrobial peptides for antimicrobial, biofilm ablation and wound healing. BIOMATERIALS ADVANCES 2024; 162:213920. [PMID: 38901063 DOI: 10.1016/j.bioadv.2024.213920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
Chronic refractory wounds caused by multidrug-resistant (MDR) bacterial and biofilm infections are a substantial threat to human health, which presents a persistent challenge in managing clinical wound care. We here synthesized a composite nanosheet AIPH/AMP/MoS2, which can potentially be used for combined therapy because of the photothermal effect induced by MoS2, its ability to deliver antimicrobial peptides, and its ability to generate alkyl free radicals independent of oxygen. The synthesized nanosheets exhibited 61 % near-infrared (NIR) photothermal conversion efficiency, marked photothermal stability and free radical generating ability. The minimal inhibitory concentrations (MICs) of the composite nanosheets against MDR Escherichia coli (MDR E. coli) and MDR Staphylococcus aureus (MDR S. aureus) were approximately 38 μg/mL and 30 μg/mL, respectively. The composite nanosheets (150 μg/mL) effectively ablated >85 % of the bacterial biofilm under 808-nm NIR irradiation for 6 min. In the wound model experiment, approximately 90 % of the wound healed after the 4-day treatment with the composite nanosheets. The hemolysis experiment, mouse embryonic fibroblast (MEFs) cytotoxicity experiment, and mouse wound healing experiment all unveiled the excellent biocompatibility of the composite nanosheets. According to the transcriptome analysis, the composite nanosheets primarily exerted a synergistic therapeutic effect by disrupting the cellular membrane function of S. aureus and inhibiting quorum sensing mediated by the two-component system. Thus, the synthesized composite nanosheets exhibit remarkable antibacterial and biofilm ablation properties and therefore can be used to improve wound healing in chronic biofilm infections.
Collapse
Affiliation(s)
- Guanglin Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Guanglan Peng
- The first Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241002, Anhui, China
| | - Jianping Yang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Mingcai Wu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Wanzhen Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Jun Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Longbao Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Weiwei Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| | - Fei Ge
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| | - Ping Song
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China.
| |
Collapse
|
9
|
Li T, Guan C, Xu L, Li C, Song Z, Zhang N, Yang C, Shen X, Li D, Wei G, Xu Y. Facile synthesis of MoS 2@red phosphorus heterojunction for synergistically photodynamic and photothermal therapy of renal cell carcinoma. Colloids Surf B Biointerfaces 2024; 241:114031. [PMID: 38878661 DOI: 10.1016/j.colsurfb.2024.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 06/09/2024] [Indexed: 07/29/2024]
Abstract
The therapy of the clear cell renal cell carcinoma (ccRCC) is crucial for the human healthcare due to its easy metastasis and recurrence, as well as resistance to radiotherapy and chemotherapy. In this work, we propose the synthesis of MoS2@red phosphorus (MoS2@RP) heterojunction to induce synergistic photodynamic and photothermal therapy (PDT/PTT) of ccRCC. The MoS2@RP heterojunction exhibits enhanced spectra absorption in the NIR range and produce local heat-increasing under the NIR laser irradiation compared with pure MoS2 and RP. The high photocatalytic activity of the MoS2@RP heterojunction contributes to effective transferring of the photo-excited electrons from the RP to MoS2, which promotes the production of various types of radical oxygen species (ROS) to kill the ccRCC cells. After the NIR irradiation, the MoS2@RP can effectively induce the apoptosis in the ccRCC cells through localized hyperthermia and the generation of ROS, while exhibiting low cytotoxicity towards normal kidney cells. In comparison to MoS2, the MoS2@RP heterojunction shows an approximate increase of 22 % in the lethality rate of the ccRCC cells and no significant change in toxicity towards normal cells. Furthermore, the PDT/PTT treatment using the MoS2@RP heterojunction effectively eradicates a substantial number of deep-tissue ccRCC cells in vivo without causing significant damage to major organs. This study presents promising effect of the MoS2@RP heterojunction-based photo-responsive therapy for effective ccRCC treatment.
Collapse
Affiliation(s)
- Tianyang Li
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Guan
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingyu Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenyu Li
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhuo Song
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ningxin Zhang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengyu Yang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuefei Shen
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071 China.
| | - Yan Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, George A, Ouyang S, Liu F. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnology 2024; 22:515. [PMID: 39198894 PMCID: PMC11351052 DOI: 10.1186/s12951-024-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyang Gan
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Sihui Ouyang
- College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
11
|
Goswami P, Kumar V, Gupta G. Biomedical prospects and challenges of metal dichalcogenides nanomaterials. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:033001. [PMID: 39655850 DOI: 10.1088/2516-1091/ad6abb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/02/2024] [Indexed: 12/18/2024]
Abstract
The biomedical applications of metal dichalcogenides (MDCs) nanomaterials (NMs) are an emerging discipline because of their unique attributes like high surface-to-volume ratio, defect sites, superb catalytic performance, and excitation-dependent emission, which is helpful in bio-imaging and cancer cell killing. Due to the compatibility of sensing material with cells and tissues, MoS2, WS2, and SnS2NMs have piqued the interest of researchers in various biomedical applications like photothermal therapy used in killing cancer cells, drug delivery, photoacoustic tomography (PAT) used in bio-imaging, nucleic acid or gene delivery, tissue engineering, wound healing, etc. Furthermore, these NMs' functionalization and defect engineering can enhance therapeutic efficacy, biocompatibility, high drug transport efficiency, adjustable drug release, dispersibility, and biodegradability. Among the aforementioned materials, MoS2NMs have extensively been explored via functionalization and defects engineering to improve biosensing properties. However, further enhancement is still available. Aside from MoS2, the distinct chemo-physical and optical features of WS2and SnS2NMs promise considerable potential in biosensing, nanomedicine, and pharmaceuticals. This article mainly focuses on the challenges and future aspects of two-dimensional MDCs NMs in biomedical applications, along with their advancements in various medical diagnosis processes.
Collapse
Affiliation(s)
- Preeti Goswami
- CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India
- Academy of Scientific & Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Videsh Kumar
- CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India
- Delhi Technological University, New Delhi 110042, India
| | - Govind Gupta
- CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India
- Academy of Scientific & Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
12
|
Li M, Zhou W, Zhou W, Liu C, Song S, Han W, Li Y, He D, Yu C. An Asymmetric NIR-II Organic Fluorophore with an Ultra-Large Stokes Shift for Imaging-Guided and Targeted Phototherapy. ACS Biomater Sci Eng 2024; 10:4541-4551. [PMID: 38853393 DOI: 10.1021/acsbiomaterials.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
NIR-II imaging-guided phototherapy is an attractive, yet challenging, tumor treatment strategy. By monitoring the accumulation of phototherapy reagents at the tumor site through imaging and determining the appropriate therapy window, the therapeutic effect could be significantly improved. Probes with NIR-II (1000-1700 nm) fluorescence emission and a large Stokes shift hold great promise for fluorescence imaging with deep penetration, minimized self-quenching, and high spatiotemporal resolution. However, due to the lack of a suitable molecular framework, the design of a simple small-molecule dye with a large Stokes shift and NIR-II fluorescence emission has rarely been reported. Herein, we prepare an asymmetric D-π-A type NIR-II fluorescence probe (TBy). The probe is incapsulated in an amphiphilic polymer and modified with a fibronectin targeting peptide CREKA, which could recognize the fibrin-fibronectin complex overexpressed in multiple malignant tumors. The nanoparticles thus constructed (TByC-NPs) have maximum fluorescence emission at 1037 nm with a large Stokes shift of 426 nm, which is the largest Stokes shift among organic NIR-II fluorescent dyes reported in the literature. The TByC-NPs exhibit a good NIR-II imaging performance, active tumor targeting, and good photothermal and photodynamic capabilities. In vitro and in vivo studies verify that the TByC nanoplatform shows outstanding biocompatibility for NIR-II imaging-guided phototherapy and provides an excellent antitumor effect.
Collapse
Affiliation(s)
- Mengyao Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Weiping Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chang Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuang Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wenzhao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Ying Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Di He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
13
|
Li M, Li X, Lv Y, Yan H, Wang XY, He J, Zhou C, Ouyang Y. Chiral MoS 2@BC fibrous membranes selectively promote peripheral nerve regeneration. J Nanobiotechnology 2024; 22:337. [PMID: 38886712 PMCID: PMC11181549 DOI: 10.1186/s12951-024-02493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Molybdenum disulfide (MoS2) has excellent physical and chemical properties. Further, chiral MoS2 (CMS) exhibits excellent chiroptical and enantioselective effects, and the enantioselective properties of CMS have been studied for the treatment of neurodegenerative diseases. Intriguingly, left- and right-handed materials have different effects on promoting the differentiation of neural stem cells into neurons. However, the effect of the enantioselectivity of chiral materials on peripheral nerve regeneration remains unclear. METHODS In this study, CMS@bacterial cellulose (BC) scaffolds were fabricated using a hydrothermal approach. The CMS@BC films synthesized with L-2-amino-3-phenyl-1-propanol was defined as L-CMS. The CMS@BC films synthesized with D-2-amino-3-phenyl-1-propanol was defined as D-CMS. The biocompatibility of CMS@BC scaffolds and their effect on Schwann cells (SCs) were validated by cellular experiments. In addition, these scaffolds were implanted in rat sciatic nerve defect sites for three months. RESULTS These chiral scaffolds displayed high hydrophilicity, good mechanical properties, and low cytotoxicity. Further, we found that the L-CMS scaffolds were superior to the D-CMS scaffolds in promoting SCs proliferation. After three months, the scaffolds showed good biocompatibility in vivo, and the nerve conducting velocities of the L-CMS and D-CMS scaffolds were 51.2 m/s and 26.8 m/s, respectively. The L-CMS scaffolds showed a better regenerative effect than the D-CMS scaffolds. Similarly, the sciatic nerve function index and effects on the motor and electrophysiological functions were higher for the L-CMS scaffolds than the D-CMS scaffolds. Finally, the axon diameter and myelin sheath thickness of the regenerated nerves were improved in the L-CMS group. CONCLUSION We found that the CMS@BC can promote peripheral nerve regeneration, and in general, the L-CMS group exhibited superior repair performance. Overall, the findings of this study reveal that CMS@BC can be used as a chiral nanomaterial nerve scaffold for peripheral nerve repair.
Collapse
Affiliation(s)
- Mengru Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Xiao Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaowei Lv
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China
| | - Hede Yan
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiang-Yang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jin He
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Chao Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China.
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 201306, China.
| |
Collapse
|
14
|
Huang C, Zhou W, Guan W, Ye N. Molybdenum disulfide nanosheet induced reactive oxygen species for high-efficiency luminol chemiluminescence. Anal Chim Acta 2024; 1295:342324. [PMID: 38355225 DOI: 10.1016/j.aca.2024.342324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/10/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Luminol chemiluminescence (CL) sensing system remains an excellent candidate for application in bioanalysis due to its good water solubility. However, traditional luminol CL system usually requires the addition of oxidizing agents and sensitizers to obtain high efficiency for the improvement of detection sensitivity. Although numerous studies on the nanomaterial-enhanced luminol CL systems have been carried out, there is still great potential to develop inexpensive, readily available and easily handled catalysts to construct simple and effective CL platform for biomolecular sensing. RESULTS Few-layered MoS2 nanosheets (NS) prepared by sonication-assisted exfoliation of commercially available bulk MoS2 were found to significantly enhance the CL of luminol‒dissolved oxygen in the absence of additional oxidants. The mechanism study demonstrated that exfoliated MoS2 NS could catalyze the decomposition of dissolved oxygen by virtue of its exposed active sites on the surface, generating increased reactive oxygen intermediates, which then oxidize luminol and produce intense CL emission. The proposed high-efficiency luminol CL system was then employed for the extremely sensitive identification of dopamine based on the quenching of CL by dopamine. The limit of detection (LOD) for dopamine can be as low as 2.07 nM. Besides, it also works well in the actual urine sample with good recoveries (99.6-100.6 %), confirming the practicability of the method. SIGNIFICANCE As a new type of CL catalyst, MoS2 NS developed in this work are easy to obtain, simple to prepare and can be produced in large quantities, which lays a foundation for extending applicability of MoS2 NS in the CL field, and provides a new idea for developing simple and highly sensitive CL sensing system.
Collapse
Affiliation(s)
- Chuanlin Huang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
15
|
Xie H, Yang M, He X, Zhan Z, Jiang H, Ma Y, Hu C. Polydopamine-Modified 2D Iron (II) Immobilized MnPS 3 Nanosheets for Multimodal Imaging-Guided Cancer Synergistic Photothermal-Chemodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306494. [PMID: 38083977 PMCID: PMC10870060 DOI: 10.1002/advs.202306494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Indexed: 02/17/2024]
Abstract
Manganese phosphosulphide (MnPS3 ), a newly emerged and promising member of the 2D metal phosphorus trichalcogenides (MPX3 ) family, has aroused abundant interest due to its unique physicochemical properties and applications in energy storage and conversion. However, its potential in the field of biomedicine, particularly as a nanotherapeutic platform for cancer therapy, has remained largely unexplored. Herein, a 2D "all-in-one" theranostic nanoplatform based on MnPS3 is designed and applied for imaging-guided synergistic photothermal-chemodynamic therapy. (Iron) Fe (II) ions are immobilized on the surface of MnPS3 nanosheets to facilitate effective chemodynamic therapy (CDT). Upon surface modification with polydopamine (PDA) and polyethylene glycol (PEG), the obtained Fe-MnPS3 /PDA-PEG nanosheets exhibit exceptional photothermal conversion efficiency (η = 40.7%) and proficient pH/NIR-responsive Fenton catalytic activity, enabling efficient photothermal therapy (PTT) and CDT. Importantly, such nanoplatform can also serve as an efficient theranostic agent for multimodal imaging, facilitating real-time monitoring and guidance of the therapeutic process. After fulfilling the therapeutic functions, the Fe-MnPS3 /PDA-PEG nanosheets can be efficiently excreted from the body, alleviating the concerns of long-term retention and potential toxicity. This work presents an effective, precise, and safe 2D "all-in-one" theranostic nanoplatform based on MnPS3 for high-efficiency tumor-specific theranostics.
Collapse
Affiliation(s)
- Hanhan Xie
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Ming Yang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Zhen Zhan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Yanmei Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent SystemsDepartment of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Human‐Augmentation and Rehabilitation Robotics in UniversitiesSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
16
|
Miao L, Wei Y, Lu X, Jiang M, Liu Y, Li P, Ren Y, Zhang H, Chen W, Han B, Lu W. Interaction of 2D nanomaterial with cellular barrier: Membrane attachment and intracellular trafficking. Adv Drug Deliv Rev 2024; 204:115131. [PMID: 37977338 DOI: 10.1016/j.addr.2023.115131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
The cell membrane serves as a barrier against the free entry of foreign substances into the cell. Limited by factors such as solubility and targeting, it is difficult for some drugs to pass through the cell membrane barrier and exert the expected therapeutic effect. Two-dimensional nanomaterial (2D NM) has the advantages of high drug loading capacity, flexible modification, and multimodal combination therapy, making them a novel drug delivery vehicle for drug membrane attachment and intracellular transport. By modulating the surface properties of nanocarriers, it is capable of carrying drugs to break through the cell membrane barrier and achieve precise treatment. In this review, we review the classification of various common 2D NMs, the primary parameters affecting their adhesion to cell membranes, and the uptake mechanisms of intracellular transport. Furthermore, we discuss the therapeutic potential of 2D NMs for several major disorders. We anticipate this review will deepen researchers' understanding of the interaction of 2D NM drug carriers with cell membrane barriers, and provide insights for the subsequent development of novel intelligent nanomaterials capable of intracellular transport.
Collapse
Affiliation(s)
- Li Miao
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yaoyao Wei
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Xue Lu
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Min Jiang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China; State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yixuan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peishan Li
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxin Ren
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China.
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
17
|
Self A, Farell M, Samineni L, Kumar M, Gomez EW. 2D Materials for Combination Therapy to Address Challenges in the Treatment of Cancer. ADVANCED NANOBIOMED RESEARCH 2023; 3. [DOI: 10.1002/anbr.202300070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
2D materials exhibit a variety of characteristics that make them appealing platforms for cancer treatment such as high drug loading capacity and photothermal and photodynamic properties. A key advantage of 2D material platforms for oncological applications is the ability to harness multiple modalities including drug delivery, photothermal therapy, photodynamic therapy, chemodynamic therapy, gene delivery, and immunotherapy approaches for improved efficacy. In this review, a comparison of the unique properties of different classes of 2D materials that enable their usage as platforms for multimodal therapy is provided. Further, the benefits and drawbacks of different platforms are also highlighted. Finally, current challenges and emerging opportunities for future development of 2D materials to further enable combination therapy and translation from the bench to clinical oncology applications are discussed.
Collapse
Affiliation(s)
- Ava Self
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Megan Farell
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Laximicharan Samineni
- Department of Civil, Architectural, and Environmental Engineering The University of Texas at Austin Austin TX 78712 USA
- McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Manish Kumar
- Department of Civil, Architectural, and Environmental Engineering The University of Texas at Austin Austin TX 78712 USA
- McKetta Department of Chemical Engineering The University of Texas at Austin Austin TX 78712 USA
| | - Esther W. Gomez
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
18
|
Liang K, Xue Y, Zhao B, Wen M, Xu Z, Sukhorukov G, Zhang L, Shang L. Chirality-Dependent Angiogenic Activity of MoS 2 Quantum Dots toward Regulatable Tissue Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304857. [PMID: 37590390 DOI: 10.1002/smll.202304857] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Despite great advances in understanding the biological behaviors of chiral materials, the effect of chirality-configured nanoparticles on tissue regeneration-related biological processes remains poorly understood. Herein, the chirality of MoS2 quantum dots (QDs) is tailored by functionalization with l-/d-penicillamine, and the profound chiral effects of MoS2 QDs on cellular activities, angiogenesis, and tissue regeneration are thoroughly investigated. Specifically, d-MoS2 QDs show a positive effect in promoting the growth, proliferation, and migration of human umbilical vein endothelial cells. The expression of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), and fibroblast growth factor (FGF) in d-MoS2 QDs group is substantially up-regulated, resulting in enhanced tube formation activity. This distinct phenomenon is largely due to the higher internalization efficiency of d-MoS2 QDs than l-MoS2 QDs and chirality-dependent nano-bio interactions. In vivo angiogenic assay shows the expression level of angiogenic markers in newly-formed skin tissues of d-MoS2 QDs group is higher than that in l-MoS2 QDs group, leading to an accelerated re-epithelialization and improved skin regeneration. The findings of chirality-dependent angiogenesis activity of MoS2 QDs provide new insights into the biological activity of MoS2 nanomaterials, which also opens up a new path to the rational design of chiral nanomaterials for tissue regeneration application.
Collapse
Affiliation(s)
- Kangqiang Liang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Bin Zhao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Mengyao Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Ziqi Xu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Gleb Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Centre for Neuroscience and Brain Research, Skolkovo Institute of Science and Technology, Bolshoi pr.30, 143025, Moscow, Russia
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| |
Collapse
|
19
|
Li H, Liu M, Zhang S, Xie X, Zhu Y, Liu T, Li J, Tu Z, Wen W. Construction of CpG Delivery Nanoplatforms by Functionalized MoS 2 Nanosheets for Boosting Antitumor Immunity in Head and Neck Squamous Cell Carcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300380. [PMID: 37340576 DOI: 10.1002/smll.202300380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/06/2023] [Indexed: 06/22/2023]
Abstract
Despite the promising achievements of immune checkpoint blockade (ICB) therapy for tumor treatment, its therapeutic effect against solid tumors is limited due to the suppressed tumor immune microenvironment (TIME). Herein, a series of polyethyleneimine (Mw = 0.8k, PEI0.8k )-covered MoS2 nanosheets with different sizes and charge densities are synthesized, and the CpG, a toll-like receptor-9 agonist, is enveloped to construct nanoplatforms for the treatment of head and neck squamous cell carcinoma (HNSCC). It is proved that functionalized nanosheets with medium size display similar CpG loading capacity regardless of low or high PEI0.8k coverage owing to the flexibility and crimpability of 2D backbone. CpG-loaded nanosheets with medium size and low charge density (CpG@MM -PL ) could promote the maturation, antigen-presenting capacity, and proinflammatory cytokines generation of bone marrow-derived dendritic cells (DCs). Further analysis reveals that CpG@MM -PL effectively boosts the TIME of HNSCC in vivo including DC maturation and cytotoxic T lymphocyte infiltration. Most importantly, the combination of CpG@MM -PL and ICB agents anti-programmed death 1 hugely improves the tumor therapeutic effect, inspiring more attempts for cancer immunotherapy. In addition, this work uncovers a pivotal feature of the 2D sheet-like materials in nanomedicine development, which should be considered for the design of future nanosheet-based therapeutic nanoplatforms.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Ming Liu
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Shuaiyin Zhang
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Xinran Xie
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Tianrun Liu
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Jian Li
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhaoxu Tu
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Weiping Wen
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
20
|
Chen Z, Wei X, Zheng Y, Zhang Z, Gu W, Liao W, Zhang H, Wang X, Liu J, Li H, Xu W. Targeted co-delivery of curcumin and erlotinib by MoS 2 nanosheets for the combination of synergetic chemotherapy and photothermal therapy of lung cancer. J Nanobiotechnology 2023; 21:333. [PMID: 37717020 PMCID: PMC10505307 DOI: 10.1186/s12951-023-02099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Curcumin (Cur), a bioactive component of Chinese traditional medicine, has demonstrated inhibitory properties against cancer cell proliferation while synergistically enhancing the anticancer efficacy of erlotinib (Er). However, the individual limitations of both drugs, including poor aqueous solubility, lack of targeting ability, short half-life, etc., and their distinct pharmacokinetic profiles mitigate or eliminate their combined antitumor potential. RESULTS In this study, we developed a molybdenum disulfide (MoS2)-based delivery system, functionalized with polyethylene glycol (PEG) and biotin, and co-loaded with Cur and Er, to achieve efficient cancer therapy. The MoS2-PEG-Biotin-Cur/Er system effectively converted near-infrared (NIR) light into heat, thereby inducing direct photothermal ablation of cancer cells and promoting controlled release of Cur and Er. Biotin-mediated tumor targeting facilitated the selective accumulation of MoS2-PEG-Biotin-Cur/Er at the tumor site, thus enhancing the synergistic antitumor effects of Cur and Er. Remarkably, MoS2-PEG-Biotin-Cur/Er achieved the combination of synergistic chemotherapy and photothermal therapy (PTT) upon NIR irradiation, effectively suppressing lung cancer cell proliferation and inhabiting tumor growth in vivo. CONCLUSIONS The as-synthesized MoS2-PEG-Biotin-Cur/Er, featuring high targeting ability, NIR light-responsive drug release, and the integration of synergistic chemotherapy and PTT, may provide a promising strategy for the treatment of lung cancer in clinical practice.
Collapse
Affiliation(s)
- Zhihuai Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Xinqi Wei
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Yunru Zheng
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Zongwei Zhang
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Wang Gu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Wenjun Liao
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350005, China
| | - Hua Zhang
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Xiaoying Wang
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China
| | - Jian Liu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China.
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China.
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
21
|
Xiao Y, He Y, Xu C, Li M, Hu F, Wang W, Wang Z, Cao Y. Exposure to MoS2 nanosheets or bulk activated Kruppel-like factor 4 in 3D Caco-2 spheroids in vitro and mouse intestines in vivo. ENVIRONMENTAL TOXICOLOGY 2023; 38:1925-1938. [PMID: 37186336 DOI: 10.1002/tox.23819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
MoS2 nanosheets (NSs) are novel 2D nanomaterials (NMs) being used in many important fields. Recently, we proposed the need to evaluate the influences of NMs on Kruppel-like factors (KLFs) even if these materials are relatively biocompatible. In this study, we investigated the influences of MoS2 NSs or bulk on KLF4 signaling pathway in 3D Caco-2 spheroids in vitro and mouse intestines in vivo. Through the analysis of our previous RNA-sequencing data, we found that exposure to MoS2 NSs or bulk activated KLF4 expression in 3D Caco-2 spheroids. Consistently, these materials also activated KLF4-related gene ontology (GO) terms and down-regulated a panel of KLF4-downstream genes. To verify these findings, we repeatedly exposed mice to MoS2 NSs or bulk materials via intragastrical administration (1 mg/kg bodyweight, once a day, for 4 days). It was shown that oral exposure to these materials decreased bodyweight, leading to relatively higher organ coefficients. As expected, exposure to both types of materials increased Mo elements as well as other trace elements, such as Zn, Fe, and Mn in mouse intestines. The exposure also induced morphological changes of intestines, such as shortening of intestinal villi and decreased crypt depth, which may result in decreased intestinal lipid staining. Consistent with RNA-sequencing data, we found that material exposure increased KLF4 protein staining in mouse intestines and decreased two KLF4 downstream proteins, namely extracellular signal-regulated kinase (ERK) and serine/threonine kinase (AKT). We concluded that MoS2 materials were capable to activate KLF4-signaling pathway in intestines both in vivo and in vitro.
Collapse
Affiliation(s)
- You Xiao
- Fifth Department of Anorectal, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Yuanyuan He
- Graduate School of Hunan University, Hunan University of Chinese Medicine, Changsha, China
| | - Chongsi Xu
- Fifth Department of Anorectal, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Mei Li
- Fifth Department of Anorectal, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Fan Hu
- Fifth Department of Anorectal, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Wei Wang
- Fifth Department of Anorectal, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Zhenquan Wang
- Third Department of Anorectal, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
22
|
Kang Y, Zhang Y, Li X, Wang X, Zhang J, Li L. Protein-Assisted Molybdenum Disulfide as Biomimetic Nanozyme for Antibacterial Application. ACS APPLIED BIO MATERIALS 2023. [PMID: 37317061 DOI: 10.1021/acsabm.3c00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Molybdenum-based nanomaterials with variable oxidation states can be developed as nanozyme catalysts. In this work, we developed a one-pot method for the preparation of molybdenum disulfide assisted by protein. Protamine was used as a cationic template to link molybdate anions and form complexes. During hydrothermal synthesis, protamine can affect the nucleation process of molybdenum disulfide and inhibit their aggregation, which facilitates the fabrication of small-sized molybdenum disulfide nanoparticles. Moreover, the abundant amino/guanidyl groups of protamine could both physically adsorb and chemically bond to molybdenum disulfide and further modulate the crystal structures. The optimized size and crystalline structure enabled a higher exposure of active sites, which enhanced the peroxidase-like activity of molybdenum disulfide/protamine nanocomposites. Meanwhile, the antibacterial activity of protamine was retained in the molybdenum disulfide/protamine nanocomposites, which could synergize with the peroxidase-like activity of molybdenum disulfide to kill bacteria. Therefore, the molybdenum disulfide/protamine nanocomposites are good candidates for antibacterial agents with lower chances of antimicrobial resistance. This study establishes an easy way to design artificial nanozymes by compounding suitable components.
Collapse
Affiliation(s)
- Yuetong Kang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yun Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xinrui Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jingqi Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
23
|
Kumari M, Kashyap HK. Wrapping-Trapping versus Extraction Mechanism of Bactericidal Activity of MoS 2 Nanosheets against Staphylococcus aureus Bacterial Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5440-5453. [PMID: 37013340 DOI: 10.1021/acs.langmuir.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The promising broad-spectrum antibacterial activity of two-dimensional molybdenum disulfide (2D MoS2) has been widely recognized in the past decade. However, a comprehensive understanding of how the antibacterial pathways opted by the MoS2 nanosheets varies with change in lipid compositions of different bacterial strains is imperative to harness their full antibacterial potential and remains unexplored thus far. Herein, we present an atomistic molecular dynamics (MD) study to investigate the distinct modes of antibacterial action of MoS2 nanosheets against Staphylococcus aureus (S. aureus) under varying conditions. We observed that the freely dispersed nanosheets readily adhered to the bacterial membrane outer surface and opted for an unconventional surface directed "wrapping-trapping" mechanism at physiological temperature (i.e., 310 K). The adsorbed nanosheets mildly influenced the membrane structure by originating a compact packing of the lipid molecules present in its direct contact. Interestingly, these surface adsorbed nanosheets exhibited extensive phospholipid extraction to their surface, thereby inducing transmembrane water passage analogous to the cellular leakage, even at a slight increment of 20 K in the temperature. The strong van der Waals interactions between lipid fatty acyl tails and MoS2 basal planes were primarily responsible for this destructive phospholipid extraction. In addition, the MoS2 nanosheets bound to an imaginary substrate, controlling their vertical alignment, demonstrated a "nano-knives" action by spontaneously piercing inside the membrane core through their sharp corner, subsequently causing localized lipid ordering in their vicinity. The larger nanosheet produced a more profound deteriorating impact in all of the observed mechanisms. Keeping the existing knowledge about the bactericidal activity of 2D MoS2 in view, our study concludes that their antibacterial activity is strongly governed by the lipid composition of the bacterial membrane and can be intensified either by controlling the nanosheet vertical alignment or by moderately warming up the systems.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
24
|
Yan Z, Liu Z, Yang B, Zhu X, Song E, Song Y. Long-term exposure of molybdenum disulfide nanosheets leads to hepatic lipid accumulation and atherogenesis in apolipoprotein E deficient mice. NANOIMPACT 2023; 30:100462. [PMID: 37059265 DOI: 10.1016/j.impact.2023.100462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 06/03/2023]
Abstract
Before their large-scale applications, it is necessary to understand the biological effects of nanomaterials. Although two-dimensional nanomaterials (2D NMs) molybdenum disulfide nanosheets (MoS2 NSs) are promising in biomedical fields, the current knowledge regarding their toxicities is inadequate. Using apolipoprotein E deficient (ApoE-/-) mice as a long-term exposure model, this study demonstrated that intravenous (i.v.) injection of MoS2 NSs most accumulated in the liver and caused in situ hepatic damage. Histopathological examination indicated severe infiltration of inflammatory cells and irregular central veins in the MoS2 NSs-treated mouse liver. Meanwhile, the overwhelming expressions of inflammatory cytokines, dyslipidemia, and dysregulated hepatic lipid metabolism implied the potential vascular toxicity of MoS2 NSs. Indeed, our result supported that MoS2 NSs exposure is highly associated with atherosclerotic progression. This study provided the first line of evidence on the vascular toxicity of MoS2 NSs, which remind scientists to pay attention to the rational use of MoS2 NSs, especially in the biomedical fields.
Collapse
Affiliation(s)
- Ziyi Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zixuan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
25
|
Xu Y, Yang W, Han Y, Bian K, Zeng W, Hao L, Wang H, Cheng Y, Wang P, Zhang B. Biomimetic Molybdenum Sulfide-Catalyzed Tumor Ferroptosis and Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207544. [PMID: 36683226 DOI: 10.1002/smll.202207544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The chemical generation of singlet oxygen (1 O2 ) by the MoO4 2- -catalyzed disproportionation of hydrogen peroxide (H2 O2 ) has been widely applied in numerous catalytic processes; however, such molybdate ions cannot be administered for redox-based cancer therapeutics. This work reports the albumin-mediated biomimetic synthesis of highly active molybdenum sulfide (denoted MoB) nanocatalysts that mediate the simultaneous generation of 1 O2 and superoxide anion (O2 •- ) from H2 O2 , which is relatively abundant in malignant tumors. The MoB-catalyzed reactive oxygen species (ROS) are able to activate the ferroptosis pathway and cause lipid peroxidation for efficient cancer therapy. Furthermore, for the first time, the catalytic activity of MoB is visualized in situ. Moreover, a catalytic imaging modality based on MoB is developed for specific imaging of inflammation diseases without background interference. Therefore, this study presents a biomimetic strategy toward Mo-based nanocatalysts for ROS-facilitated tumor ferroptosis and catalytic imaging.
Collapse
Affiliation(s)
- Yan Xu
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yi Han
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Kexin Bian
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weiwei Zeng
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Liangwen Hao
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Hui Wang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yingsheng Cheng
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
26
|
Qiu K, Zou W, Fang Z, Wang Y, Bell S, Zhang X, Tian Z, Xu X, Ji B, Li D, Huang T, Diao J. 2D MoS 2 and BN Nanosheets Damage Mitochondria through Membrane Penetration. ACS NANO 2023; 17:4716-4728. [PMID: 36848459 DOI: 10.1021/acsnano.2c11003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the progression of nanotechnology, a growing number of nanomaterials have been created and incorporated into organisms and ecosystems, which raises significant concern about potential hazards of these materials on human health, wildlife, and the environment. Two-dimensional (2D) nanomaterials are one type of nanomaterials with thicknesses ranging from that of a single atom or of several atoms and have been proposed for a variety of biomedical applications such as drug delivery and gene therapy, but the toxicity thereof on subcellular organelles remains to be studied. In this work, we studied the impact of two typical 2D nanomaterials, MoS2 and BN nanosheets, on mitochondria, which are a type of membranous subcellular organelle that provides energy to cells. While 2D nanomaterials at a low dose exhibited a negligible cell mortality rate, significant mitochondrial fragmentation and partially reduced mitochondrial functions occurred; cells initiate mitophagy in response to mitochondrial damages, which cleans damaged mitochondria to avoid damage accumulation. Moreover, the molecular dynamics simulation results revealed that both MoS2 and BN nanosheets can spontaneously penetrate the mitochondrial lipid membrane through the hydrophobic interaction. The membrane penetration induced heterogeneous lipid packing resulting in damages. Our results demonstrate that even at a low dose 2D nanomaterials can physically damage mitochondria by penetrating the membrane, which draws attention to carefully evaluating the cytotoxicity of 2D nanomaterials for the potential biomedical application.
Collapse
Affiliation(s)
- Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Weiwei Zou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Zhou Fang
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yuxin Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Sam Bell
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Xiuqiong Xu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Baohua Ji
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Dechang Li
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
- Department of Pediatrics, University at Buffalo, 1001 Main Street, Buffalo, New York 14203, United States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| |
Collapse
|
27
|
Chen S, Kang Z, Peralta-Videa JR, Zhao L. Environmental implication of MoS 2 nanosheets: Effects on maize plant growth and soil microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160362. [PMID: 36427736 DOI: 10.1016/j.scitotenv.2022.160362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Molybdenum disulfide (MoS2) nanosheets have been used extensively in a variety of fields including medical and industrial. However, little is known about their toxicity effects, especially to edible plants. In this greenhouse study, maize (Zea mays) seedlings were exposed for 4 weeks, through the soil route, to 10 and 100 mg/kg of 2H MoS2 nanosheets. Plant growth, physiological parameters (chlorophyll, antioxidants, and MDA), along with Mo and nutrient element contents were determined in plant tissues. Results showed that at both doses, the nanosheets decreased plant growth. Inductively coupled plasma-mass spectrometry data also showed that both 2H MoS2 concentrations allowed Mo absorption and translocation by maize plants. Additionally, at 100 mg/kg the nanosheets significantly reduced Ca, Mg, Mn, and Zn in leaves, and Na in roots. Gene sequencing data of 16S rRNA showed, that MoS2 nanosheets changed the soil microbial community structure, compared with the untreated control. In addition, nitrogen-fixing microorganisms such as Burkholderiales, Rhizobiales and Xanthobacteraceae were enriched. Overall, the data suggest that, even at low dose (10 mg/kg), the 2H MoS2 nanosheets perturbed both the nutrient uptake by maize plants and the soil microbial communities.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Kang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jose R Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
28
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
29
|
Das S, Sharma U, Mukherjee B, Sasikala Devi AA, Velusamy J. Polygonal gold nanocrystal induced efficient phase transition in 2D-MoS 2for enhancing photo-electrocatalytic hydrogen generation. NANOTECHNOLOGY 2023; 34:145202. [PMID: 36548988 DOI: 10.1088/1361-6528/acade6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Plasmonic nanocrystals (NCs) assisted phase transition of two-dimensional molybdenum disulfide (2D-MoS2) unlashes numerous opportunities in the fields of energy harvesting via electrocatalysis and photoelectrocatalysis by enhancing electronic conductivity, increasing catalytic active sites, lowering Gibbs free energy for hydrogen adsorption and desorption, etc. Here, we report the synthesis of faceted gold pentagonal bi-pyramidal (Au-PBP) nanocrystals (NC) for efficient plasmon-induced phase transition (from 2 H to 1 T phase) in chemical vapor deposited 2D-MoS2. The as-developed Au-PBP NC with the increased number of corners and edges showed an enhanced multi-modal plasmonic effect under light irradiations. The overpotential of hydrogen evolution reaction (HER) was reduced by 61 mV, whereas the Tafel slope decreased by 23.7 mV/dec on photoexcitation of the Au-PBP@MoS2hybrid catalyst. The enhanced performance can be attributed to the light-induced 2H to 1 T phase transition of 2D-MoS2, increased active sites, reduced Gibbs free energy, efficient charge separation, change in surface potential, and improved electrical conductivity of 2D-MoS2film. From density functional theory (DFT) calculations, we obtain a significant change in the electronic properties of 2D-MoS2(i.e. work function, surface chemical potential, and the density of states), which was primarily due to the plasmonic interactions and exchange-interactions between the Au-PBP nanocrystals and monolayer 2D-MoS2, thereby enhancing the phase transition and improving the surface properties. This work would lay out finding assorted routes to explore more complex nanocrystals-based multipolar plasmonic NC to escalate the HER activity of 2D-MoS2and other 2D transition metal dichalcogenides.
Collapse
Affiliation(s)
- Santanu Das
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005, India
| | - Uttam Sharma
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005, India
| | - Bratindranath Mukherjee
- Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005, India
| | | | - Jayaramakrishnan Velusamy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom
| |
Collapse
|
30
|
Kong C, Chen X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. Int J Nanomedicine 2022; 17:6427-6446. [PMID: 36540374 PMCID: PMC9760263 DOI: 10.2147/ijn.s388996] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Photoactivation therapy based on photodynamic therapy (PDT) and photothermal therapy (PTT) has been identified as a tumour ablation modality for numerous cancer indications, with photosensitisers and photothermal conversion agents playing important roles in the phototherapy process, especially in recent decades. In addition, the iteration of nanotechnology has strongly promoted the development of phototherapy in tumour treatment. PDT can increase the sensitivity of tumour cells to PTT by interfering with the tumour microenvironment, whereas the heat generated by PTT can increase blood flow, improve oxygen supply and enhance the PDT therapeutic effect. In addition, tumour cell debris generated by phototherapy can serve as tumour-associated antigens, evoking antitumor immune responses. In this review, the research progress of phototherapy, and its research effects in combination with immunotherapy on the treatment of tumours are mainly outlined, and issues that may need continued attention in the future are raised.
Collapse
Affiliation(s)
- Cunqing Kong
- Department of medical imaging center, central hospital affiliated to Shandong first medical university, Jinan, People’s Republic of China
| | - Xingcai Chen
- Department of Human Anatomy and Center for Genomics and Personalized Medicine, Nanning, People’s Republic of China,Correspondence: Xingcai Chen, Email
| |
Collapse
|
31
|
Li Z, Ma D, Zhang Y, Luo Z, Weng L, Ding X, Wang L. Biomimetic 3D Recognition with 2D Flexible Nanoarchitectures for Ultrasensitive and Visual Extracellular Vesicle Detection. Anal Chem 2022; 94:14794-14800. [PMID: 36215207 DOI: 10.1021/acs.analchem.2c03839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite increasing recognition of extracellular vesicles being important circulating biomarkers in disease diagnosis and prognosis, current strategies for extracellular vesicle detection remain limited due to the compromised sample purification and extensive labeling procedures in complex body fluids. Here, we developed a 2D magnetic platform that greatly improves capture efficiency and readily realizes visible signal conversion for extracellular vesicle detection. The technology, termed high-affinity recognition and visual extracellular vesicle testing (HARVEST), leverages 2D flexible Fe3O4-MoS2 nanostructures to recognize extracellular vesicles through multidentate affinity binding and feasible magnetic separation, thus enhancing the extracellular vesicle capture performance with both yield and separation time, affording high sensitivity with the detection limit of 20 extracellular vesicle particles/μL. Through integration with lipid labeling chemistry and the fluorescence visualization system, the platform enables rapid and visible detection. The number of extracellular vesicles can be feasibly determined by smart mobile phones, readily adapted for point-of-care diagnosis. When clinically evaluated, the strategy accurately differentiates melanoma samples from the normal cohort with an AUC of 0.98, demonstrating the efficient extracellular vesicle detection strategy with 2D flexible platforms for cancer diagnosis.
Collapse
Affiliation(s)
- Ziyan Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Die Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Yawei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Zhimin Luo
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| |
Collapse
|
32
|
Li M, Singh R, Wang Y, Marques C, Zhang B, Kumar S. Advances in Novel Nanomaterial-Based Optical Fiber Biosensors-A Review. BIOSENSORS 2022; 12:bios12100843. [PMID: 36290980 PMCID: PMC9599727 DOI: 10.3390/bios12100843] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 05/24/2023]
Abstract
This article presents a concise summary of current advancements in novel nanomaterial-based optical fiber biosensors. The beneficial optical and biological properties of nanomaterials, such as nanoparticle size-dependent signal amplification, plasmon resonance, and charge-transfer capabilities, are widely used in biosensing applications. Due to the biocompatibility and bioreceptor combination, the nanomaterials enhance the sensitivity, limit of detection, specificity, and response time of sensing probes, as well as the signal-to-noise ratio of fiber optic biosensing platforms. This has established a practical method for improving the performance of fiber optic biosensors. With the aforementioned outstanding nanomaterial properties, the development of fiber optic biosensors has been efficiently promoted. This paper reviews the application of numerous novel nanomaterials in the field of optical fiber biosensing and provides a brief explanation of the fiber sensing mechanism.
Collapse
Affiliation(s)
- Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Yiran Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Carlos Marques
- Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
33
|
|
34
|
A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Ali SR, De M. Fe-Doped MoS 2 Nanozyme for Antibacterial Activity and Detoxification of Mustard Gas Simulant. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42940-42949. [PMID: 36122369 DOI: 10.1021/acsami.2c11245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The peroxidase-like catalytic activity of various nanozymes was extensively applied in various fields. In this study, we have demonstrated the preparation of Fe-doped MoS2 (Fe@MoS2) nanomaterials with enhanced peroxidase-like activity of MoS2 in a co-catalytic pathway. In view of Fenton reaction, the peroxidase-like Fe@MoS2 nanozyme prompted the decomposition of hydrogen peroxide (H2O2) to a reactive hydroxyl radical (·OH). The efficient decomposition of H2O2 in the presence of Fe@MoS2 has been employed toward the antibacterial activity and detoxification of mustard gas simulant. The combined effect of Fe@MoS2 and H2O2 showed remarkable antibacterial activity against the drug-resistant bacterial strain methicillin-resistant Staphylococcus aureus and Escherichia coli with the use of minimal concentration of H2O2. Fe@MoS2 was further applied for the detoxification of the chemical warfare agent sulfur mustard simulant, 2-chloroethyl ethyl sulfide, by selective conversion to the nontoxic sulfoxide. This work demonstrates the development of a hybrid nanozyme and its environmental remediation from harmful chemicals to microbes.
Collapse
Affiliation(s)
- Sk Rajab Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
36
|
Wang J, Chen B, Zhang W, Wu Y, Chen L, Wen J, Yan H. Property Comparison of Transition‐Metal Dichalcogenides (MoS
2
, MoSe
2
and MoTe
2
) and Their Applicability as Electrochemical Biosensors for Glucose Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202201722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiameng Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Baohua Chen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Wuyi Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Yifeng Wu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Lanlan Chen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Jia Wen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| | - Hongyuan Yan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province College of Pharmaceutical Science Institute of Life Science and Green Development Hebei University Baoding 071002 China
| |
Collapse
|
37
|
Alkallas FH, Ben Gouider Trabelsi A, Shkir M, AlFaify S. Enhanced Room Temperature Ammonia Gas Sensing Properties of Fe-Doped MoO 3 Thin Films Fabricated Using Nebulizer Spray Pyrolysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2797. [PMID: 36014662 PMCID: PMC9414738 DOI: 10.3390/nano12162797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
MoO3 thin films are fabricated using nebulizer spray pyrolysis technique, which is doped with Fe at various concentrations of 1, 2, 3, and 4% for ammonia gas sensors application at room temperature. X-ray diffraction (XRD) study confirms the growth of the crystal by Fe doping up to 3%, nano rods shape morphology of the thin film samples observed by field emission scanning electron microscope (FESEM), reduction in bandgap is evidenced via UV-VIS spectrophotometer. Gas sensing study is performed using gas analyzing chamber attached with Keithley source meter. Since 3% Fe doped MoO3 sample displayed nano rods over the film surface which exhibits highest sensitivity of 38,500%, in a short period of raise and decay time 54 and 6 s. Our findings confirms that the 3% Fe doped MoO3 films suitability for ammonia gas sensing application.
Collapse
Affiliation(s)
- Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohd Shkir
- Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Department of Chemistry and University Centre for Research & Development, Chandigarh, University, Mohali 140413, Punjab, India
| | - Salem AlFaify
- Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
38
|
Selvam G, Dheivasigamani T, Prabhu A, Mani NK. Embellishing 2-D MoS 2 Nanosheets on Lotus Thread Devices for Enhanced Hydrophobicity and Antimicrobial Activity. ACS OMEGA 2022; 7:24606-24613. [PMID: 35874217 PMCID: PMC9301725 DOI: 10.1021/acsomega.2c02337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Herein, we report cellulose-based threads from Indian sacred Lotus (Nelumbo nucifera) of the Nymphaceae family embellished with MoS2 nanosheets for its enhanced hydrophobic and antimicrobial properties. MoS2 nanosheets synthesized by a coprecipitation method using sodium molybdate dihydrate (Na2MoO4·2H2O) and thioacetamide (CH3CSNH2) were used as a sourse for MoS2 particle growth with cellulose threads extracted from lotus peduncles. The size, crystallinity, and morphology of pure and MoS2-coated fibers were studied using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). the XRD pattern of pure lotus threads showed a semicrystalline nature, and the threads@MoS2 composite showed more crystallinity than the pure threads. SEM depicts that pure lotus threads possess a smooth surface, and the MoS2 nanosheets growth can be easily identified on the threads@MoS2. Further, the presence of MoS2 nanosheets on threads was confirmed with EDX elemental analysis. Antimicrobial studies with Escherichia coli and Candida albicans reveal that threads@MoS2 have better resistance than its counterpart, i.e., pure threads. MoS2 sheets play a predominant role in restricting the wicking capability of the pure threads due to their enhanced hydrophobic property. The water absorbency assay denotes the absorption rate of threads@MoS2 to 80%, and threads@MoS2 shows no penetration for the observed 60 min, thus confirming its wicking restriction. The contact angle for threads@MoS2 is 128°, indicating its improved hydrophobicity.
Collapse
Affiliation(s)
- Govarthini
Seerangan Selvam
- Nano-crystal
Design and Application Lab (n-DAL), Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore-641062, Tamil Nadu India
| | - Thangaraju Dheivasigamani
- Nano-crystal
Design and Application Lab (n-DAL), Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore-641062, Tamil Nadu India
| | - Anusha Prabhu
- Microfluidics,
Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology,
Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal 576104, Karnataka India
| | - Naresh Kumar Mani
- Microfluidics,
Sensors and Diagnostics Laboratory (μSenD), Department of Biotechnology,
Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal 576104, Karnataka India
| |
Collapse
|
39
|
Luo B, Li X, Liu P, Cui M, Zhou G, Long J, Wang X. Self-assembled NIR-responsive MoS 2@quaternized chitosan/nanocellulose composite paper for recyclable antibacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128896. [PMID: 35439698 DOI: 10.1016/j.jhazmat.2022.128896] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Paper products are widely used in daily life, while the lack of antibacterial activity has made them become some disease transmission media. Herein, we introduced NIR-responsive molybdenum disulfide nanosheets (MoS2) to endow nanocellulose paper antibacterial activity by electrostatic self-assembly with quaternized chitosan (QCS). Firstly, the MoS2 nanosheets were exfoliated and stabilized with QCS under ultrasonication. The strong coordination between QCS and MoS2 as well as the electrostatic attraction between QCS and cellulose nanofiber (CNF) helped to fabricate the MoS2@QCS/CNF composite paper. The MoS2@QCS/CNF composite paper exhibited excellent photothermal and photodynamic activity, achieving over 99.9% antibacterial efficacy against both E. coli and S. aureus, respectively. The hyperthermia induced by MoS2 accelerated the glutathione (GSH) consumption and the reactive oxygen species (ROS)-independent oxidative stress destroyed the bacteria membranes integrity, synergistically leading to the malondialdehyde (MDA) oxidation and protein leakage to inhibit the bacteria growth. Importantly, the self-assembled fibrous network incorporating with the photo-stable antibacterial MoS2 enabled the flexible composite paper with excellent mechanical strength and recyclability for long-term antimicrobial, possessing over 99.9% inhibition even after five cycles. No cell cytotoxicity was observed for the MoS2@QCS/CNF composite paper, suggesting the potential of composite paper for bacterial infection control.
Collapse
Affiliation(s)
- Bichong Luo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Pai Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Meng Cui
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Guangying Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Jin Long
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
40
|
Mphuthi N, Sikhwivhilu L, Ray SS. Functionalization of 2D MoS 2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. BIOSENSORS 2022; 12:bios12060386. [PMID: 35735534 PMCID: PMC9220812 DOI: 10.3390/bios12060386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 05/24/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) have gained considerable attention due to their distinctive properties and broad range of possible applications. One of the most widely studied transition metal dichalcogenides is molybdenum disulfide (MoS2). The 2D MoS2 nanosheets have unique and complementary properties to those of graphene, rendering them ideal electrode materials that could potentially lead to significant benefits in many electrochemical applications. These properties include tunable bandgaps, large surface areas, relatively high electron mobilities, and good optical and catalytic characteristics. Although the use of 2D MoS2 nanosheets offers several advantages and excellent properties, surface functionalization of 2D MoS2 is a potential route for further enhancing their properties and adding extra functionalities to the surface of the fabricated sensor. The functionalization of the material with various metal and metal oxide nanostructures has a significant impact on its overall electrochemical performance, improving various sensing parameters, such as selectivity, sensitivity, and stability. In this review, different methods of preparing 2D-layered MoS2 nanomaterials, followed by different surface functionalization methods of these nanomaterials, are explored and discussed. Finally, the structure-properties relationship and electrochemical sensor applications over the last ten years are discussed. Emphasis is placed on the performance of 2D MoS2 with respect to the performance of electrochemical sensors, thereby giving new insights into this unique material and providing a foundation for researchers of different disciplines who are interested in advancing the development of MoS2-based sensors.
Collapse
Affiliation(s)
- Ntsoaki Mphuthi
- DSI-Mintek Nanotechnology Innovation Centre, Randburg 2125, South Africa;
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Lucky Sikhwivhilu
- DSI-Mintek Nanotechnology Innovation Centre, Randburg 2125, South Africa;
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
41
|
Barzegar PEF, Mohammadi Z, Sattari S, Beiranvand Z, Salahvarzi M, Rossoli K, Adeli S, Beyranvand S, Maleki S, Kazeminava F, Mousazadeh H, Raisi A, Farjanikish G, Sadegh AB, Shahbazi F, Adeli M. Graphene-MoS 2 polyfunctional hybrid hydrogels for the healing of transected Achilles tendon. BIOMATERIALS ADVANCES 2022; 137:212820. [PMID: 35929257 DOI: 10.1016/j.bioadv.2022.212820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Healing of injured tendon is a major clinical challenge in orthopaedic medicine, due to the poor regenerative potential of this tissue. Two-dimensional nanomaterials, as versatile scaffolds, have shown a great potential to support, trigger and accelerate the tendon regeneration. However, weak mechanical properties, poor functionality and low biocompatibility of these scaffolds as well as post-surgery infections are main drawbacks that limit their development in the higher clinical phases. In this work, a series of hydrogels consisting polyglycerol functionalized reduced graphene oxide (PG), polyglycerol-functionalized molybdenum disulfide (PMoS2) and PG/PMoS2 hybrid within the gelatin matrix are formulated in new scaffolds and their ability for the healing of injured Achilles tendon, due to their high mechanical properties, low toxicity, cell proliferation enhancement, and antibacterial activities is investigated. While scaffolds containing PG and PMoS2 showed a moderate tendon regeneration and anti-inflammatory effect, respectively, their hybridization into PG/PMoS2 demonstrated a synergistic healing efficiency. Along the same line, an accelerated return of tendon function with low peritendinous adhesion and low cross-sectional area in animal group treated with scaffold containing PG/PMoS2 was observed. Taking advantage of the high biocompatibility, high strength, straightforward construction and fast tendon regeneration, PG/PMoS2 can be used as a new scaffold for the future tissue engineering.
Collapse
Affiliation(s)
| | - Zahra Mohammadi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Zahra Beiranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Maryam Salahvarzi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Kiarash Rossoli
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Saeid Adeli
- Research and Development of Razi Kimya Gahar Startup Company, Khorramabad, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Sara Maleki
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Mousazadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Ghasem Farjanikish
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Amin Bigham Sadegh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Feizollah Shahbazi
- Department of Agricultural Machinery, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
42
|
Sethulekshmi AS, Appukuttan S, Joseph K, Aprem AS, Sisupal SB. MoS 2 based nanomaterials: Advanced antibacterial agents for future. J Control Release 2022; 348:158-185. [PMID: 35662576 DOI: 10.1016/j.jconrel.2022.05.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023]
Abstract
Bacterial infections are yet another serious threat to human health. Misuse or overuse of conventional antibiotics has led to the arrival of various super resistant bacteria along with many serious side effects to human body. In this exigent circumstance, the use of nanomaterial based antibacterial agents is one of the most appropriate solutions to fight against bacteria thereby causing an inhibition to bacterial proliferation. Recent studies show that, due to the large surface area, high biocompatibility, strong near-infrared (NIR) absorption and low cytotoxicity, molybdenum disulphide (MoS2), an extraordinary member in the transition metal dichalcogenides (TMDs) is extensively explored in the obliteration of many drug resistant bacteria, photothermal therapy and drug delivery. MoS2 based nanomaterials can effectively prevent bacterial growth through many mechanisms. Through this review, we have tried to provide an inclusive knowledge on the recent progress of antibacterial studies in MoS2 based nanomaterials including MoS2 nanosheets, nanoflowers, quantum dot (QD), hybrid nanocomposites and polymer nanocomposites. Moreover, toxicity of MoS2 based nanomaterials is described at the end of the review.
Collapse
Affiliation(s)
- A S Sethulekshmi
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Saritha Appukuttan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India..
| | - Kuruvilla Joseph
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala PO, Kerala, India.
| | - Abi Santhosh Aprem
- Corporate R&D Centre, HLL Lifecare Ltd. Akkulam, Trivandrum, Kerala, India.
| | | |
Collapse
|
43
|
Adam J, Del Sorbo MR, Kaur J, Romano R, Singh M, Valadan M, Altucci C. Surface Interactions Studies of Novel Two-Dimensional Molybdenum Disulfide with Gram-Negative and Gram-Positive Bacteria. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2070186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Jaber Adam
- Laboratory of Bio-Nano-Photonics, Department of Physics “Ettore Pancini”, University of Naples “Federico II”, Naples, Italy
| | | | - Jasneet Kaur
- Laboratory of Bio-Nano-Photonics, Department of Physics “Ettore Pancini”, University of Naples “Federico II”, Naples, Italy
| | - Rocco Romano
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Manjot Singh
- Laboratory of Bio-Nano-Photonics, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Mohammadhassan Valadan
- Laboratory of Bio-Nano-Photonics, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale di Fisica Nucleare, Naples, Italy
| | - Carlo Altucci
- Laboratory of Bio-Nano-Photonics, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale di Fisica Nucleare, Naples, Italy
| |
Collapse
|
44
|
Zeng H, Hu X, Zhou Q, Luo J, Hou X. Extracellular polymeric substances mediate defect generation and phytotoxicity of single-layer MoS 2. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128361. [PMID: 35236038 DOI: 10.1016/j.jhazmat.2022.128361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional transition metal dichalcogenide (TMDC) nanomaterials have attracted tremendous research interest in various fields, but the effects of eco-corona formation on the transformation mechanisms and ecological risk of TMDCs remain largely unknown. The effect of eco-corona formation on TMDC reactivity was explored using extracellular polymeric substances (EPS) as the eco-corona constituents and single-layer molybdenum disulfide (SLMoS2) as the model TMDC. We found that EPS promoted lattice distortion and the formation of defects (sulfur vacancies and pores) on SLMoS2 after it was aged (precoated) with EPS under simulated visible-light irradiation. In addition, the EPS-corona induced higher free radical (especially hyperoxide radical) photogeneration by SLMoS2. Furthermore, compared to pristine SLMoS2, SLMoS2-EPS exhibited stronger developmental inhibition, oxidative stress, membrane damage, photosynthetic toxicity and metabolic perturbation effects on Chlorella vulgaris. However, the endocytosis pathway (especially macropinocytosis) of SLMoS2 entry into C. vulgaris was inhibited by EPS. Metabolic and transcriptomic analyses revealed that the enhanced toxicity of SLMoS2-EPS was associated with the downregulation of fatty acid metabolism and transcription related to photosynthesis, respectively. The present work provides mechanistic insights into the roles of the EPS-corona on the environmental transformation and phytotoxicity of TMDCs, which benefit environmental safety assessments and sustainable applications of engineered nanomaterials.
Collapse
Affiliation(s)
- Hui Zeng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Jiwei Luo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
45
|
Chen F, Luo Y, Liu X, Zheng Y, Han Y, Yang D, Wu S. 2D Molybdenum Sulfide-Based Materials for Photo-Excited Antibacterial Application. Adv Healthc Mater 2022; 11:e2200360. [PMID: 35385610 DOI: 10.1002/adhm.202200360] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/01/2023]
Abstract
Bacterial infections have seriously threatened human health and the abuse of natural or artificial antibiotics leads to bacterial resistance, so development of a new generation of antibacterial agents and treatment methods is urgent. 2D molybdenum sulfide (MoS2 ) has good biocompatibility, high specific surface area to facilitate surface modification and drug loading, adjustable energy bandgap, and high near-infrared photothermal conversion efficiency (PCE), so it is often used for antibacterial application through its photothermal or photodynamic effects. This review comprehensively summarizes and discusses the fabrication processes, structural characteristics, antibacterial performance, and the corresponding mechanisms of MoS2 -based materials as well as their representative antibacterial applications. In addition, the outlooks on the remaining challenges that should be addressed in the field of MoS2 are also proposed.
Collapse
Affiliation(s)
- Fangqian Chen
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Yue Luo
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Yufeng Zheng
- School of Materials Science & Engineering Peking University Beijing 100871 China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shanxi 710049 China
| | - Dapeng Yang
- College of Chemical Engineering and Materials Science Quanzhou Normal University Quanzhou Fujian Province 362000 China
| | - Shuilin Wu
- School of Materials Science & Engineering Peking University Beijing 100871 China
| |
Collapse
|
46
|
Kumar A, Sood A, Han SS. Molybdenum disulfide (MoS 2)-based nanostructures for tissue engineering applications: prospects and challenges. J Mater Chem B 2022; 10:2761-2780. [PMID: 35262167 DOI: 10.1039/d2tb00131d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molybdenum disulfide (MoS2) nanostructures have recently earned substantial thoughts from the scientific communities owing to their unique physicochemical, optical and electrical properties. Although MoS2 has been mostly highlighted for its industrial applications, its biological applicability has not been extensively explored. The introduction of nanotechnology in the field of tissue engineering has significantly contributed to human welfare by displaying advancement in tissue regeneration. Assimilation of MoS2 nanostructures into the polymer matrix has been considered a persuasive material of choice for futuristic tissue engineering applications. The current review provides a general discussion on the structural properties of different MoS2 nanostructures. Further, this article focuses on the interactions of MoS2 with biological systems in terms of its cellular toxicity, and biocompatibility along with its capability for cell proliferation, adhesion, and immunomodulation. The article continues to confer the utility of MoS2 nanostructure-based scaffolds for various tissue engineering applications. The article also highlights some emerging prospects and possibilities of the applicability of MoS2-based nanostructures in large organ tissue engineering. Finally, the article concludes with a brief annotation on the challenges and limitations that need to be overcome in order to make plentiful use of this wonderful material for tissue engineering applications.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea. .,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea. .,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| |
Collapse
|
47
|
|
48
|
Chen F, Tang Q, Ma T, Zhu B, Wang L, He C, Luo X, Cao S, Ma L, Cheng C. Structures, properties, and challenges of emerging
2D
materials in bioelectronics and biosensors. INFOMAT 2022. [DOI: 10.1002/inf2.12299] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Qing Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Bihui Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Liyun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
- Department of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| |
Collapse
|
49
|
Li J, Zhao R, Yang F, Qi X, Ye P, Xie M. An erythrocyte membrance-camouflaged biomimetic nanoplatform for enhanced chemo-photothermal therapy of breast cancer. J Mater Chem B 2022; 10:2047-2056. [DOI: 10.1039/d1tb02522h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nano drug delivery system is a research hotspot in the field of tumor therapy. Molybdenum disulfide (MoS2) nanosheet was selected as the base material and natural red blood cell membrane...
Collapse
|
50
|
Singh VK, Jain P, Panda S, Kuila BK, Pitchaimuthu S, Das S. Sulfonic acid/sulfur trioxide (SO 3H/SO 3) functionalized two-dimensional MoS 2 nanosheets for high-performance photocatalysis of organic pollutants. NEW J CHEM 2022. [DOI: 10.1039/d2nj02222b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the enhanced photocatalytic activity of sulfonic acid/sulfur trioxide (SO3H/SO3) functionalized two-dimensional (2D)-MoS2 (SO3H/SO3-MoS2) nanosheets synthesized using a one-pot hydrothermal method.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Prachi Jain
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Subrata Panda
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Biplab Kumar Kuila
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sudhagar Pitchaimuthu
- Research Centre for Carbon Solutions, Institute of Mechanical, Processing and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Santanu Das
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|