1
|
Tran HA, Maraldo A, Ho TT, Thai MT, van Hilst Q, Joukhdar H, Kordanovski M, Sahoo JK, Hartsuk O, Santos M, Wise SG, Kaplan DL, Do TN, Kilian KA, Lim KS, Rnjak‐Kovacina J. Probing the Interplay of Protein Self-Assembly and Covalent Bond Formation in Photo-Crosslinked Silk Fibroin Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407923. [PMID: 39548941 PMCID: PMC12019910 DOI: 10.1002/smll.202407923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/27/2024] [Indexed: 11/18/2024]
Abstract
Covalent crosslinking of silk fibroin via native tyrosine residues has been extensively explored; however, while these materials are very promising for biomedical, optical, soft robotics, and sensor applications, their structure and mechanical properties are unstable over time. This instability results in spontaneous silk self-assembly and stiffening over time, a process that is poorly understood. This study investigates the interplay between self-assembly and di-tyrosine bond formation in silk hydrogels photo-crosslinked using ruthenium (Ru) and sodium persulfate (SPS) with visible light. The effects of silk concentration, molecular weight, Ru/SPS concentration, and solvent conditions are examined. The Ru/SPS system enables rapid crosslinking, achieving gelation within seconds and incorporating over 90% of silk into the network, even at very low protein concentrations (≥0.75% wt/v). A model emerges where silk self-assembly both before and after crosslinking affects protein phase separation, mesoscale structure, and dynamic changes in the hydrogel network over time. Silk concentration has the greatest impact on hydrogel properties, with higher silk concentration hydrogels experiencing two orders of magnitude increase in stiffness within 1 week. This new understanding and ability to tune hydrogel properties and dynamic stiffening aids in developing advanced materials for 4D biofabrication, sensing, 3D cancer models, drug delivery, and soft robotics.
Collapse
Affiliation(s)
- Hien A. Tran
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Anton Maraldo
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Trinh Thi‐Phuong Ho
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Mai Thanh Thai
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- College of Engineering & Computer Science and VinUni‐Illinois Smart Health CenterHanoi100000Vietnam
| | - Quinn van Hilst
- Chronic Diseases ThemeSchool of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Habib Joukhdar
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Chronic Diseases ThemeSchool of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Marija Kordanovski
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Onur Hartsuk
- Department of Biomedical EngineeringTufts UniversityBostonMA02155USA
| | - Miguel Santos
- Chronic Diseases ThemeSchool of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Steven G. Wise
- Chronic Diseases ThemeSchool of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - David L. Kaplan
- Department of Biomedical EngineeringTufts UniversityBostonMA02155USA
| | - Thanh Nho Do
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Kristopher A. Kilian
- School of ChemistryUniversity of New South WalesSydneyNSW2052Australia
- Australian Center for NanomedicineUniversity of New South WalesSydneyNSW2052Australia
- School of Materials Science and EngineeringUniversity of New South Wales SydneySydneyNSW2052Australia
- School of Clinical MedicineFaculty of Medicine and HealthUniversity of New South WalesSydneyNSW2052Australia
| | - Khoon S. Lim
- Chronic Diseases ThemeSchool of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Center for NanomedicineUniversity of New South WalesSydneyNSW2052Australia
- Tyree Foundation Institute of Health EngineeringSydneyNSW2052Australia
| |
Collapse
|
2
|
Manoochehrabadi T, Solouki A, Majidi J, Khosravimelal S, Lotfi E, Lin K, Daryabari SH, Gholipourmalekabadi M. Silk biomaterials for corneal tissue engineering: From research approaches to therapeutic potentials; A review. Int J Biol Macromol 2025; 305:141039. [PMID: 39956223 DOI: 10.1016/j.ijbiomac.2025.141039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The corneal complications can result in opacity and eventual blindness. Furthermore, a shortage of available donors constrains the existing therapeutic options. Therefore, one of the most promising strategies involves the application of biomaterials, particularly silk. Silk has garnered significant attention among these biomaterials due to its natural origin and diverse features derived from different sources. One of the most critical factors of silk is its transparency, which is crucial for the cornea, and there are no concerns about infection. This material also possesses several advantages, including cost-effectiveness in production, biocompatibility in vivo and in vitro, biodegradation, and desirable mechanical characteristics. Modifications in the topographical structure, porosity, and crystallinity of silk enhance its properties and optimize its suitability for wound dressing, efficient drug delivery systems, and various cornea-related treatments. In each layer, silk was examined as a single biomaterial or blended with the others, so, this review aims to explore silk as a potential material for corneal regenerative medicine from a novel viewpoint. By considering a range of studies, a classification system has been developed that categorizes the utilization of silk in the various layers of the cornea and sub-categorizes the different modifications and applications of silk.
Collapse
Affiliation(s)
- Tahereh Manoochehrabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Solouki
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jila Majidi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadjad Khosravimelal
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ehsan Lotfi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kaili Lin
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| | | | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; NanoBiotechnology & Regenerative Medicine Innovation Group, Noavarn Salamat ZHINO (PHC), Tehran, Iran.
| |
Collapse
|
3
|
Li M, Qin D, Chen J, Jia B, Wei Z, Zhang Y, Cheng W, Liu Q, Wang F, Li J, Zhang H, Liu K. Engineered Protein Fibers with Reinforced Mechanical Properties Via β-Sheet High-Order Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410199. [PMID: 39435633 PMCID: PMC11633540 DOI: 10.1002/advs.202410199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Protein fibers are ideal alternatives to synthetic polymers due to their unique mechanical properties, biocompatibility, and sustainability. However, engineering biomimetic protein fibers with high mechanical properties remains challenging, particularly in mimicking the high molecular weight of natural proteins and regulating their complex hierarchical structures. Here, a modular design and multi-scale assembly strategy is developed to manufacture robust protein fibers using low- or medium-molecular-weight proteins. The distinct functional and structural properties of flexible, rigid, and cross-linked domains in modular proteins are skillfully harnessed. By regulating the ratio of rigid to flexible domains, the formation of high-order β-sheet crystals aligned along the fiber axis is promoted, enhancing both strength and toughness. Furthermore, the dynamic imine cross-linking network, formed by the aldehyde-amine condensation reaction of the cross-linked domains, further reinforces the protein fibers. Remarkably, fibers spun from modular proteins significantly smaller than natural spidroin exhibit outstanding mechanical properties, surpassing those of protein fibers with same or even higher molecular weights. This strategy offers a promising pathway for fabricating protein fibers suitable for diverse applications.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Dawen Qin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Jing Chen
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Zheng Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Yi Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Wenhao Cheng
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Qianqian Liu
- Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100084China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
- Engineering Research Center of Advanced Rare Earth Materials(Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
- Xiangfu LaboratoryBuilding 5, No.828 Zhongxing Road, Xitang Town, JiashanJiaxingZhejiang314102China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
- Engineering Research Center of Advanced Rare Earth Materials(Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
- Xiangfu LaboratoryBuilding 5, No.828 Zhongxing Road, Xitang Town, JiashanJiaxingZhejiang314102China
| |
Collapse
|
4
|
Yogeshwaran S, Goodarzi Hosseinabadi H, Gendy DE, Miri AK. Design considerations and biomaterials selection in embedded extrusion 3D bioprinting. Biomater Sci 2024; 12:4506-4518. [PMID: 39045682 DOI: 10.1039/d4bm00550c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In embedded extrusion 3D bioprinting, a temporary matrix preserves a paste-like filament ejecting from a narrow nozzle. For granular sacrificial matrices, the methodology is known as the freeform reversible embedding of suspended hydrogels (FRESH). Embedded extrusion 3D bioprinting methods result in more rapid and controlled manufacturing of cell-laden tissue constructs, particularly vascular and multi-component structures. This report focuses on the working principles and bioink design criteria for implementing conventional embedded extrusion and FRESH 3D bioprinting strategies. We also present a set of experimental data as a guideline for selecting the support bath or matrix. We discuss the advantages of embedded extrusion methods over conventional biomanufacturing methods. This work provides a short recipe for selecting inks and printing parameters for desired shapes in embedded extrusion and FRESH 3D bioprinting methods.
Collapse
Affiliation(s)
- Swaprakash Yogeshwaran
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA.
| | - Hossein Goodarzi Hosseinabadi
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Daniel E Gendy
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA.
| | - Amir K Miri
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA.
| |
Collapse
|
5
|
Wen K, Zhang C, Zhang G, Wang M, Mei G, Zhang Z, Zhao W, Guo W, Zhou Q, Liu E, Zhu Y, Bai J, Zhu M, Wang W, Liu Z, Zhou X. Jellyfish-Inspired Artificial Spider Silk for Luminous Surgical Sutures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314158. [PMID: 39081084 DOI: 10.1002/adma.202314158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/08/2024] [Indexed: 09/19/2024]
Abstract
The development of functional surgical sutures with excellent mechanical properties, good fluorescence, and high cytocompatibility is highly required in the field of medical surgeries. Achieving fibers that simultaneously exhibit high mechanical robustness, good spinnability, and durable fluorescence emission has remained challenging up to now. Taking inspiration from the spinning process of spider silk and the luminescence mechanism of jellyfish, this work reports a luminous artificial spider silk prepared with the aim of balancing the fiber spinnability and mechanical robustness. This is realized by employing highly hydrated segments with aggregation-induced luminescence for enhancing the fiber spinnability and polyhydroxyl segments for increasing the fiber mechanical robustness. Twist insertion during fiber spinning improves the fiber strength, toughness, and fluorescence emission. Furthermore, coating the fiber with an additional polymer layer results in a "sheath-core" architecture with improved mechanical properties and capacity to withstand water. This work provides a new design strategy for performing luminescent and robust surgical sutures.
Collapse
Affiliation(s)
- Kai Wen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Zhang
- Department of Science, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Guanghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Meilin Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenzhen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weiqiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenjin Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Zhou
- Department of Orthopaedics, Tianjin First Central Hospital, Nankai University, Tianjin, 300071, China
| | - Enzhao Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yutian Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiang Zhou
- Department of Science, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
6
|
Tran DT, Yadav AS, Nguyen NK, Singha P, Ooi CH, Nguyen NT. Biodegradable Polymers for Micro Elastofluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303435. [PMID: 37292037 DOI: 10.1002/smll.202303435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 06/10/2023]
Abstract
Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.
Collapse
Affiliation(s)
- Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
7
|
Moreno-Tortolero RO, Luo Y, Parmeggiani F, Skaer N, Walker R, Serpell LC, Holland C, Davis SA. Molecular organization of fibroin heavy chain and mechanism of fibre formation in Bombyx mori. Commun Biol 2024; 7:786. [PMID: 38951579 PMCID: PMC11217467 DOI: 10.1038/s42003-024-06474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Fibroins' transition from liquid to solid is fundamental to spinning and underpins the impressive native properties of silk. Herein, we establish a fibroin heavy chain fold for the Silk-I polymorph, which could be relevant for other similar proteins, and explains mechanistically the liquid-to-solid transition of this silk, driven by pH reduction and flow stress. Combining spectroscopy and modelling we propose that the liquid Silk-I fibroin heavy chain (FibH) from the silkworm, Bombyx mori, adopts a newly reported β-solenoid structure. Similarly, using rheology we propose that FibH N-terminal domain (NTD) templates reversible higher-order oligomerization driven by pH reduction. Our integrated approach bridges the gap in understanding FibH structure and provides insight into the spatial and temporal hierarchical self-assembly across length scales. Our findings elucidate the complex rheological behaviour of Silk-I, solutions and gels, and the observed liquid crystalline textures within the silk gland. We also find that the NTD undergoes hydrolysis during standard regeneration, explaining key differences between native and regenerated silk feedstocks. In general, in this study we emphasize the unique characteristics of native and native-like silks, offering a fresh perspective on our fundamental understanding of silk-fibre production and applications.
Collapse
Affiliation(s)
- Rafael O Moreno-Tortolero
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, BS8 1TS, UK.
| | - Yijie Luo
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Fabio Parmeggiani
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff, CF10 3NB, UK
| | - Nick Skaer
- Orthox Ltd, Milton Park, 66 Innovation Drive, Abingdon, OX14 4RQ, UK
| | - Robert Walker
- Orthox Ltd, Milton Park, 66 Innovation Drive, Abingdon, OX14 4RQ, UK
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Sean A Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
8
|
Agostinacchio F, Fitzpatrick V, Dirè S, Kaplan DL, Motta A. Silk fibroin-based inks for in situ 3D printing using a double crosslinking process. Bioact Mater 2024; 35:122-134. [PMID: 38312518 PMCID: PMC10837071 DOI: 10.1016/j.bioactmat.2024.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
The shortage of tissues and organs for transplantation is an urgent clinical concern. In situ 3D printing is an advanced 3D printing technique aimed at printing the new tissue or organ directly in the patient. The ink for this process is central to the outcomes, and must meet specific requirements such as rapid gelation, shape integrity, stability over time, and adhesion to surrounding healthy tissues. Among natural materials, silk fibroin exhibits fascinating properties that have made it widely studied in tissue engineering and regenerative medicine. However, further improvements in silk fibroin inks are needed to match the requirements for in situ 3D printing. In the present study, silk fibroin-based inks were developed for in situ applications by exploiting covalent crosslinking process consisting of a pre-photo-crosslinking prior to printing and in situ enzymatic crosslinking. Two different silk fibroin molecular weights were characterized and the synergistic effect of the covalent bonds with shear forces enhanced the shift in silk secondary structure toward β-sheets, thus, rapid stabilization. These hydrogels exhibited good mechanical properties, stability over time, and resistance to enzymatic degradation over 14 days, with no significant changes over time in their secondary structure and swelling behavior. Additionally, adhesion to tissues in vitro was demonstrated.
Collapse
Affiliation(s)
- Francesca Agostinacchio
- National Interuniversity Consortium of Material Science and Technology, Florence, Italy
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Sandra Dirè
- Materials Chemistry Group & “Klaus Müller” Magnetic Resonance Laboratory, Department of Industrial Engineering, University of Trento, Trento, Italy
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Antonella Motta
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Trento, Italy
| |
Collapse
|
9
|
Singh YP, Bandyopadhyay A, Dey S, Bhardwaj N, Mandal BB. Trends and advances in silk based 3D printing/bioprinting towards cartilage tissue engineering and regeneration. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:022002. [PMID: 39655857 DOI: 10.1088/2516-1091/ad2d59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/27/2024] [Indexed: 12/18/2024]
Abstract
Cartilage repair remains a significant clinical challenge in orthopedics due to its limited self- regeneration potential and often progresses to osteoarthritis which reduces the quality of life. 3D printing/bioprinting has received vast attention in biofabrication of functional tissue substitutes due to its ability to develop complex structures such as zonally structured cartilage and osteochondral tissue as per patient specifications with precise biomimetic control. Towards a suitable bioink development for 3D printing/bioprinting, silk fibroin has garnered much attention due to its advantageous characteristics such as shear thinning behavior, cytocompatibility, good printability, structural fidelity, affordability, and ease of availability and processing. This review attempts to provide an overview of current trends/strategies and recent advancements in utilizing silk-based bioinks/biomaterial-inks for cartilage bioprinting. Herein, the development of silk-based bioinks/biomaterial-inks, its components and the associated challenges, along with different bioprinting techniques have been elaborated and reviewed. Furthermore, the applications of silk-based bioinks/biomaterial-inks in cartilage repair followed by challenges and future directions are discussed towards its clinical translations and production of next-generation biological implants.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nandana Bhardwaj
- Department of Science and Mathematics, Indian Institute of Information Technology Guwahati, Bongora, Guwahati 781015, Assam, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
10
|
Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small Joint Organoids 3D Bioprinting: Construction Strategy and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302506. [PMID: 37814373 DOI: 10.1002/smll.202302506] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Osteoarthritis (OA) is a chronic disease that causes pain and disability in adults, affecting ≈300 million people worldwide. It is caused by damage to cartilage, including cellular inflammation and destruction of the extracellular matrix (ECM), leading to limited self-repairing ability due to the lack of blood vessels and nerves in the cartilage tissue. Organoid technology has emerged as a promising approach for cartilage repair, but constructing joint organoids with their complex structures and special mechanisms is still challenging. To overcome these boundaries, 3D bioprinting technology allows for the precise design of physiologically relevant joint organoids, including shape, structure, mechanical properties, cellular arrangement, and biological cues to mimic natural joint tissue. In this review, the authors will introduce the biological structure of joint tissues, summarize key procedures in 3D bioprinting for cartilage repair, and propose strategies for constructing joint organoids using 3D bioprinting. The authors also discuss the challenges of using joint organoids' approaches and perspectives on their future applications, opening opportunities to model joint tissues and response to joint disease treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
11
|
Schneider KH, Goldberg BJ, Hasturk O, Mu X, Dötzlhofer M, Eder G, Theodossiou S, Pichelkastner L, Riess P, Rohringer S, Kiss H, Teuschl-Woller AH, Fitzpatrick V, Enayati M, Podesser BK, Bergmeister H, Kaplan DL. Silk fibroin, gelatin, and human placenta extracellular matrix-based composite hydrogels for 3D bioprinting and soft tissue engineering. Biomater Res 2023; 27:117. [PMID: 37978399 PMCID: PMC10656895 DOI: 10.1186/s40824-023-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND There is a great clinical need and it remains a challenge to develop artificial soft tissue constructs that can mimic the biomechanical properties and bioactivity of natural tissue. This is partly due to the lack of suitable biomaterials. Hydrogels made from human placenta offer high bioactivity and represent a potential solution to create animal-free 3D bioprinting systems that are both sustainable and acceptable, as placenta is widely considered medical waste. A combination with silk and gelatin polymers can bridge the biomechanical limitations of human placenta chorion extracellular matrix hydrogels (hpcECM) while maintaining their excellent bioactivity. METHOD In this study, silk fibroin (SF) and tyramine-substituted gelatin (G-TA) were enzymatically crosslinked with human placental extracellular matrix (hpcECM) to produce silk-gelatin-ECM composite hydrogels (SGE) with tunable mechanical properties, preserved elasticity, and bioactive functions. The SGE composite hydrogels were characterized in terms of gelation kinetics, protein folding, and bioactivity. The cyto- and biocompatibility of the SGE composite was determined by in vitro cell culture and subcutaneous implantation in a rat model, respectively. The most cell-supportive SGE formulation was then used for 3-dimensional (3D) bioprinting that induced chemical crosslinking during extrusion. CONCLUSION Addition of G-TA improved the mechanical properties of the SGE composite hydrogels and inhibited crystallization and subsequent stiffening of SF for up to one month. SGE hydrogels exhibit improved and tunable biomechanical properties and high bioactivity for encapsulated cells. In addition, its use as a bioink for 3D bioprinting with free reversible embedding of suspended hydrogels (FRESH) has been validated, opening the possibility to fabricate highly complex scaffolds for artificial soft tissue constructs with natural biomechanics in future.
Collapse
Affiliation(s)
- Karl Heinrich Schneider
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, 1090, Austria
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Benjamin J Goldberg
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Roy J Carver Department of Biomedical Engineering, College of Engineering, the University of Iowa, Iowa City, IA, 52242, USA
| | - Marvin Dötzlhofer
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Gabriela Eder
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Sophia Theodossiou
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, 83725, USA
| | - Luis Pichelkastner
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Riess
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Sabrina Rohringer
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Herbert Kiss
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Andreas H Teuschl-Woller
- Department Life Science Technologies, University of Applied Sciences Technikum Wien, 1200, Vienna, Austria
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203, Compiegne, France
| | - Marjan Enayati
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, 1090, Austria
| | - Bruno K Podesser
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, 1090, Austria
| | - Helga Bergmeister
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, 1090, Austria
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
12
|
Mu X, Amouzandeh R, Vogts H, Luallen E, Arzani M. A brief review on the mechanisms and approaches of silk spinning-inspired biofabrication. Front Bioeng Biotechnol 2023; 11:1252499. [PMID: 37744248 PMCID: PMC10512026 DOI: 10.3389/fbioe.2023.1252499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Silk spinning, observed in spiders and insects, exhibits a remarkable biological source of inspiration for advanced polymer fabrications. Because of the systems design, silk spinning represents a holistic and circular approach to sustainable polymer fabrication, characterized by renewable resources, ambient and aqueous processing conditions, and fully recyclable "wastes." Also, silk spinning results in structures that are characterized by the combination of monolithic proteinaceous composition and mechanical strength, as well as demonstrate tunable degradation profiles and minimal immunogenicity, thus making it a viable alternative to most synthetic polymers for the development of advanced biomedical devices. However, the fundamental mechanisms of silk spinning remain incompletely understood, thus impeding the efforts to harness the advantageous properties of silk spinning. Here, we present a concise and timely review of several essential features of silk spinning, including the molecular designs of silk proteins and the solvent cues along the spinning apparatus. The solvent cues, including salt ions, pH, and water content, are suggested to direct the hierarchical assembly of silk proteins and thus play a central role in silk spinning. We also discuss several hypotheses on the roles of solvent cues to provide a relatively comprehensive analysis and to identify the current knowledge gap. We then review the state-of-the-art bioinspired fabrications with silk proteins, including fiber spinning and additive approaches/three-dimensional (3D) printing. An emphasis throughout the article is placed on the universal characteristics of silk spinning developed through millions of years of individual evolution pathways in spiders and silkworms. This review serves as a stepping stone for future research endeavors, facilitating the in vitro recapitulation of silk spinning and advancing the field of bioinspired polymer fabrication.
Collapse
Affiliation(s)
- Xuan Mu
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | | | | | | | | |
Collapse
|
13
|
Badini S, Regondi S, Lammi C, Bollati C, Donvito G, Pugliese R. Computational Mechanics of Form-Fitting 3D-Printed Lattice-Based Wrist-Hand Orthosis for Motor Neuron Disease. Biomedicines 2023; 11:1787. [PMID: 37509427 PMCID: PMC10376028 DOI: 10.3390/biomedicines11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Motor neuron disease (MND) patients often experience hand-wrist muscle atrophy resulting in severe social consequences and hampering their daily activities. Although hand-wrist orthosis is commonly used to assist weakened muscles, its effectiveness is limited due to the rapid progression of the disease and the need for customization to suit individual patient requirements. To address these challenges, this study investigates the application of three-dimensional (3D) printing technology to design and fabricate two lattice structures inspired by silkworm cocoons, using poly-ε-caprolactone as feedstock material. Finite element method (FEM) analysis is employed to study the mechanical behavior, enabling control over the geometric configuration incorporated into the hand-wrist orthosis. Through tensile displacement and three-point bending simulations, the stress distribution is examined for both lattice geometries. Geometry-1 demonstrates anisotropic behavior, while geometry-2 exhibits no strict directional dependence due to its symmetry and uniform node positioning. Moreover, the biocompatibility of lattices with human skin fibroblasts is investigated, confirming excellent biocompatibility. Lastly, the study involves semi-structured interviews with MND patients to gather feedback and develop prototypes of form-fitting 3D-printed lattice-based hand-wrist orthosis. By utilizing 3D printing technology, this study aims to provide customized orthosis that can effectively support weakened muscles and reposition the hand for individuals with MND.
Collapse
Affiliation(s)
- Silvia Badini
- Nemolab, ASST GOM Niguarda Cà Granda Hospital, 20162 Milan, Italy
| | - Stefano Regondi
- Nemolab, ASST GOM Niguarda Cà Granda Hospital, 20162 Milan, Italy
- NEuroMuscular Omnicenter (NEMO), 20162 Milan, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Giordana Donvito
- Nemolab, ASST GOM Niguarda Cà Granda Hospital, 20162 Milan, Italy
| | | |
Collapse
|
14
|
Mu X, Gerhard-Herman MD, Zhang YS. Building Blood Vessel Chips with Enhanced Physiological Relevance. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201778. [PMID: 37693798 PMCID: PMC10489284 DOI: 10.1002/admt.202201778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 09/12/2023]
Abstract
Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well-controlled microenvironment and spatial-temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, we discuss several critical aspects of vascular physiology, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. We also review state-of-art blood vessel chips that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. We envision that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marie Denise Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Milazzo M, Fitzpatrick V, Owens CE, Carraretto IM, McKinley GH, Kaplan DL, Buehler MJ. 3D Printability of Silk/Hydroxyapatite Composites for Microprosthetic Applications. ACS Biomater Sci Eng 2023; 9:1285-1295. [PMID: 36857509 DOI: 10.1021/acsbiomaterials.2c01357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Micro-prosthetics requires the fabrication of mechanically robust and personalized components with sub-millimetric feature accuracy. Three-dimensional (3D) printing technologies have had a major impact on manufacturing such miniaturized devices for biomedical applications; however, biocompatibility requirements greatly constrain the choice of usable materials. Hydroxyapatite (HA) and its composites have been widely employed to fabricate bone-like structures, especially at the macroscale. In this work, we investigate the rheology, printability, and prosthetic mechanical properties of HA and HA-silk protein composites, focusing on the roles of composition and water content. We correlate key linear and nonlinear shear rheological parameters to geometric outcomes of printing and explain how silk compensates for the inherent brittleness of printed HA components. By increasing ink ductility, the inclusion of silk improves the quality of printed items through two mechanisms: (1) reducing underextrusion by lowering the required elastic modulus and, (2) reducing slumping by increasing the ink yield stress proportional to the modulus. We demonstrate that the elastic modulus and compressive strength of parts fabricated from silk-HA inks are higher than those for rheologically comparable pure-HA inks. We construct a printing map to guide the manufacturing of HA-based inks with excellent final properties, especially for use in biomedical applications for which sub-millimetric features are required.
Collapse
Affiliation(s)
- Mario Milazzo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Massachusetts Avenue 77, Cambridge, Massachusetts 02139, United States
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Crystal E Owens
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Igor M Carraretto
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Energy, Politecnico di Milano, via Lambruschini 4a, 20156 Milano, MI, Italy
| | - Gareth H McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Massachusetts Avenue 77, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Xie M, Lian L, Mu X, Luo Z, Garciamendez-Mijares CE, Zhang Z, López A, Manríquez J, Kuang X, Wu J, Sahoo JK, González FZ, Li G, Tang G, Maharjan S, Guo J, Kaplan DL, Zhang YS. Volumetric additive manufacturing of pristine silk-based (bio)inks. Nat Commun 2023; 14:210. [PMID: 36639727 PMCID: PMC9839706 DOI: 10.1038/s41467-023-35807-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Volumetric additive manufacturing (VAM) enables fast photopolymerization of three-dimensional constructs by illuminating dynamically evolving light patterns in the entire build volume. However, the lack of bioinks suitable for VAM is a critical limitation. This study reports rapid volumetric (bio)printing of pristine, unmodified silk-based (silk sericin (SS) and silk fibroin (SF)) (bio)inks to form sophisticated shapes and architectures. Of interest, combined with post-fabrication processing, the (bio)printed SS constructs reveal properties including reversible as well as repeated shrinkage and expansion, or shape-memory; whereas the (bio)printed SF constructs exhibit tunable mechanical performances ranging from a few hundred Pa to hundreds of MPa. Both types of silk-based (bio)inks are cytocompatible. This work supplies expanded bioink libraries for VAM and provides a path forward for rapid volumetric manufacturing of silk constructs, towards broadened biomedical applications.
Collapse
Affiliation(s)
- Maobin Xie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Liming Lian
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zhenrui Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Arturo López
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jennifer Manríquez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Federico Zertuche González
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Gang Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| |
Collapse
|
17
|
Chakraborty J, Mu X, Pramanick A, Kaplan DL, Ghosh S. Recent advances in bioprinting using silk protein-based bioinks. Biomaterials 2022; 287:121672. [PMID: 35835001 DOI: 10.1016/j.biomaterials.2022.121672] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
3D printing has experienced swift growth for biological applications in the field of regenerative medicine and tissue engineering. Essential features of bioprinting include determining the appropriate bioink, printing speed mechanics, and print resolution while also maintaining cytocompatibility. However, the scarcity of bioinks that provide printing and print properties and cell support remains a limitation. Silk Fibroin (SF) displays exceptional features and versatility for inks and shows the potential to print complex structures with tunable mechanical properties, degradation rates, and cytocompatibility. Here we summarize recent advances and needs with the use of SF protein from Bombyx mori silkworm as a bioink, including crosslinking methods for extrusion bioprinting using SF and the maintenance of cell viability during and post bioprinting. Additionally, we discuss how encapsulated cells within these SF-based 3D bioprinted constructs are differentiated into various lineages such as skin, cartilage, and bone to expedite tissue regeneration. We then shift the focus towards SF-based 3D printing applications, including magnetically decorated hydrogels, in situ bioprinting, and a next-generation 4D bioprinting approach. Future perspectives on improvements in printing strategies and the use of multicomponent bioinks to improve print fidelity are also discussed.
Collapse
Affiliation(s)
- Juhi Chakraborty
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 2155, USA
| | - Ankita Pramanick
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 2155, USA
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India.
| |
Collapse
|
18
|
Tan XH, Liu L, Mitryashkin A, Wang Y, Goh JCH. Silk Fibroin as a Bioink - A Thematic Review of Functionalization Strategies for Bioprinting Applications. ACS Biomater Sci Eng 2022; 8:3242-3270. [PMID: 35786841 DOI: 10.1021/acsbiomaterials.2c00313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioprinting is an emerging tissue engineering technique that has attracted the attention of researchers around the world, for its ability to create tissue constructs that recapitulate physiological function. While the technique has been receiving hype, there are still limitations to the use of bioprinting in practical applications, much of which is due to inappropriate bioink design that is unable to recapitulate complex tissue architecture. Silk fibroin (SF) is an exciting and promising bioink candidate that has been increasingly popular in bioprinting applications because of its processability, biodegradability, and biocompatibility properties. However, due to its lack of optimum gelation properties, functionalization strategies need to be employed so that SF can be effectively used in bioprinting applications. These functionalization strategies are processing methods which allow SF to be compatible with specific bioprinting techniques. Previous literature reviews of SF as a bioink mainly focus on discussing different methods to functionalize SF as a bioink, while a comprehensive review on categorizing SF functional methods according to their potential applications is missing. This paper seeks to discuss and compartmentalize the different strategies used to functionalize SF for bioprinting and categorize the strategies for each bioprinting method (namely, inkjet, extrusion, and light-based bioprinting). By compartmentalizing the various strategies for each printing method, the paper illustrates how each strategy is better suited for a target tissue application. The paper will also discuss applications of SF bioinks in regenerating various tissue types and the challenges and future trends that SF can take in its role as a bioink material.
Collapse
Affiliation(s)
- Xuan Hao Tan
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore.,Integrative Sciences and Engineering Programme, National University of Singapore, University Hall, Tan Chin Tuan Wing, #05-03, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Ling Liu
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Alexander Mitryashkin
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Yunyun Wang
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - James Cho Hong Goh
- Department of Biomedical Engineering, College of Engineering and Design, National University of Singapore, 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore.,Integrative Sciences and Engineering Programme, National University of Singapore, University Hall, Tan Chin Tuan Wing, #05-03, 21 Lower Kent Ridge Road, Singapore 119077, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119288, Singapore
| |
Collapse
|
19
|
Williams MAC, Mair DB, Lee W, Lee E, Kim DH. Engineering Three-Dimensional Vascularized Cardiac Tissues. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:336-350. [PMID: 33559514 PMCID: PMC9063162 DOI: 10.1089/ten.teb.2020.0343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022]
Abstract
Heart disease is one of the largest burdens to human health worldwide and has very limited therapeutic options. Engineered three-dimensional (3D) vascularized cardiac tissues have shown promise in rescuing cardiac function in diseased hearts and may serve as a whole organ replacement in the future. One of the major obstacles in reconstructing these thick myocardial tissues to a clinically applicable scale is the integration of functional vascular networks capable of providing oxygen and nutrients throughout whole engineered constructs. Without perfusion of oxygen and nutrient flow throughout the entire engineered tissue not only is tissue viability compromised, but also overall tissue functionality is lost. There are many supporting technologies and approaches that have been developed to create vascular networks such as 3D bioprinting, co-culturing hydrogels, and incorporation of soluble angiogenic factors. In this state-of-the-art review, we discuss some of the most current engineered vascular cardiac tissues reported in the literature and future directions in the field. Impact statement The field of cardiac tissue engineering is rapidly evolving and is now closer than ever to having engineered tissue models capable of predicting preclinical responses to therapeutics, modeling diseases, and being used as a means of rescuing cardiac function following injuries to the native myocardium. However, a major obstacle of engineering thick cardiac tissue remains to be the integration of functional vasculature. In this review, we highlight seminal and recently published works that have influenced and pushed the field of cardiac tissue engineering toward achieving vascularized functional tissues.
Collapse
Affiliation(s)
| | - Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wonjae Lee
- Department of Neurosurgery, Stanford School of Medicine, Stanford, California, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Mu X, Gonzalez-Obeso C, Xia Z, Sahoo JK, Li G, Cebe P, Zhang YS, Kaplan DL. 3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin. Molecules 2022; 27:molecules27072148. [PMID: 35408547 PMCID: PMC9000323 DOI: 10.3390/molecules27072148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/10/2022] Open
Abstract
Silk fibroin, regenerated from Bombyx mori, has shown considerable promise as a printable, aqueous-based ink using a bioinspired salt-bath system in our previous work. Here, we further developed and characterized silk fibroin inks that exhibit concentration-dependent fluorescence spectra at the molecular level. These insights supported extrusion-based 3D printing using concentrated silk fibroin solutions as printing inks. 3D monolithic proteinaceous structures with high aspect ratios were successfully printed using these approaches, including cantilevers only supported at one end. This work provides further insight and broadens the utility of 3D printing with silk fibroin inks for the microfabrication of proteinaceous structures.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (C.G.-O.); (Z.X.); (J.K.S.); (G.L.)
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Constancio Gonzalez-Obeso
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (C.G.-O.); (Z.X.); (J.K.S.); (G.L.)
| | - Zhiyu Xia
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (C.G.-O.); (Z.X.); (J.K.S.); (G.L.)
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (C.G.-O.); (Z.X.); (J.K.S.); (G.L.)
| | - Gang Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (C.G.-O.); (Z.X.); (J.K.S.); (G.L.)
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA;
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Correspondence: (Y.S.Z.); (D.L.K.)
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (C.G.-O.); (Z.X.); (J.K.S.); (G.L.)
- Correspondence: (Y.S.Z.); (D.L.K.)
| |
Collapse
|
21
|
|
22
|
Freitas AI, Domingues L, Aguiar TQ. Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J Adv Res 2022; 36:249-264. [PMID: 35127175 PMCID: PMC8799874 DOI: 10.1016/j.jare.2021.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background The potential applications of protein-engineered functional materials are so wide and exciting that the interest in these eco-friendly advanced materials will further expand in the future. Tag-mediated protein purification/immobilization technologies have emerged as green and cost-effective approaches for the fabrication of such materials. Strategies that combine the purification and immobilization of recombinant proteins/peptides onto/into natural, synthetic or hybrid materials in a single-step are arising and attracting increasing interest. Aim of Review This review highlights the most significant advances of the last 5 years within the scope of tag-mediated protein purification/immobilization and elucidates their contributions for the development of efficient single-step purification and immobilization strategies. Recent progresses in the field of protein-engineered materials created using innovative protein-tag combinations and future opportunities created by these new technologies are also summarized and identified herein. Key Scientific Concepts of Review Protein purification/immobilization tags present a remarkable ability to establish specific non-covalent/covalent interactions between solid materials and biological elements, which prompted the creation of tailor-made and advanced functional materials, and of next-generation hybrid materials. Affinity tags can bind to a wide range of materials (of synthetic, natural or hybrid nature), being most suitable for protein purification. Covalently binding tags are most suitable for long-term protein immobilization, but can only bind naturally to protein-based materials. Hybrid affinity-covalently binding tags have allowed efficient one-step purification and immobilization of proteins onto different materials, as well as the development of innovative protein-engineered materials. Self-aggregating tags have been particularly useful in combination with other tags for generating protein-engineered materials with self-assembling, flexible and/or responsive properties. While these tags have been mainly explored for independent protein purification, immobilization or functionalization purposes, efficient strategies that combine tag-mediated purification and immobilization/functionalization in a single-step will be essential to guarantee the sustainable manufacturing of advanced protein-engineered materials.
Collapse
Affiliation(s)
- Ana I. Freitas
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Tatiana Q. Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
23
|
Wu R, Ma L, Liu XY. From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103981. [PMID: 34802200 PMCID: PMC8811810 DOI: 10.1002/advs.202103981] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Indexed: 05/11/2023]
Abstract
Bombyx mori silk fibers exhibit significant potential for applications in smart textiles, such as fiber sensors, fiber actuators, optical fibers, and energy harvester. Silk fibroin (SF) from B. mori silkworm fibers can be reconstructed/functionalized at the mesoscopic scale during refolding from the solution state into fibers. This facilitates the mesoscopic functionalization by engaging functional seeds in the refolding of unfolded SF molecules. In particular, SF solutions can be self-assembled into regenerated fiber devices by artificial spinning technologies, such as wet spinning, dry spinning, microfluidic spinning, electrospinning, and direct writing. Meso-functionalization manipulates the SF property from the mesoscopic scale, transforming the original silk fibers into smart fiber devices with smart functionalities, such as sensors, actuators, optical fibers, luminous fibers, and energy harvesters. In this review, the progress of mesoscopic structural construction from SF materials to fiber electronics/photonics is comprehensively summarized, along with the spinning technologies and fiber structure characterization methods. The applications, prospects, and challenges of smart silk fibers in textile devices for wearable personalized healthcare, self-propelled exoskeletons, optical and luminous fibers, and sustainable energy harvesters are also discussed.
Collapse
Affiliation(s)
- Ronghui Wu
- College of Ocean and Earth SciencesState Key Laboratory of Marine Environmental Science (MEL)Xiamen361005P. R. China
| | - Liyun Ma
- College of Ocean and Earth SciencesState Key Laboratory of Marine Environmental Science (MEL)Xiamen361005P. R. China
| | - Xiang Yang Liu
- College of Ocean and Earth SciencesState Key Laboratory of Marine Environmental Science (MEL)Xiamen361005P. R. China
| |
Collapse
|
24
|
Mu X, Yuen JSK, Choi J, Zhang Y, Cebe P, Jiang X, Zhang YS, Kaplan DL. Conformation-driven strategy for resilient and functional protein materials. Proc Natl Acad Sci U S A 2022; 119:e2115523119. [PMID: 35074913 PMCID: PMC8795527 DOI: 10.1073/pnas.2115523119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023] Open
Abstract
The exceptional elastic resilience of some protein materials underlies essential biomechanical functions with broad interest in biomedical fields. However, molecular design of elastic resilience is restricted to amino acid sequences of a handful of naturally occurring resilient proteins such as resilin and elastin. Here, we exploit non-resilin/elastin sequences that adopt kinetically stabilized, random coil-dominated conformations to achieve near-perfect resilience comparable with that of resilin and elastin. We also show a direct correlation between resilience and Raman-characterized protein conformations. Furthermore, we demonstrate that metastable conformation of proteins enables the construction of mechanically graded protein materials that exhibit spatially controlled conformations and resilience. These results offer insights into molecular mechanisms of protein elastomers and outline a general conformation-driven strategy for developing resilient and functional protein materials.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139
| | - John S K Yuen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Yixin Zhang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155
| | - Xiaocheng Jiang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139;
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155;
| |
Collapse
|
25
|
Wang H, Wang Z, Liu H, Liu J, Li R, Zhu X, Ren M, Wang M, Liu Y, Li Y, Jia Y, Wang C, Wang J. Three-Dimensional Printing Strategies for Irregularly Shaped Cartilage Tissue Engineering: Current State and Challenges. Front Bioeng Biotechnol 2022; 9:777039. [PMID: 35071199 PMCID: PMC8766513 DOI: 10.3389/fbioe.2021.777039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/07/2021] [Indexed: 12/05/2022] Open
Abstract
Although there have been remarkable advances in cartilage tissue engineering, construction of irregularly shaped cartilage, including auricular, nasal, tracheal, and meniscus cartilages, remains challenging because of the difficulty in reproducing its precise structure and specific function. Among the advanced fabrication methods, three-dimensional (3D) printing technology offers great potential for achieving shape imitation and bionic performance in cartilage tissue engineering. This review discusses requirements for 3D printing of various irregularly shaped cartilage tissues, as well as selection of appropriate printing materials and seed cells. Current advances in 3D printing of irregularly shaped cartilage are also highlighted. Finally, developments in various types of cartilage tissue are described. This review is intended to provide guidance for future research in tissue engineering of irregularly shaped cartilage.
Collapse
Affiliation(s)
- Hui Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Jiaqi Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Ronghang Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Xiujie Zhu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Ming Ren
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Mingli Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yuzhe Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Youbin Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yuxi Jia
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Chenyu Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Chen H, Pieuchot L, Xiao P, Dumur F, Lalevée J. Water-soluble/visible-light-sensitive naphthalimide derivative-based photoinitiating systems: 3D printing of antibacterial hydrogels. Polym Chem 2022. [DOI: 10.1039/d2py00417h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adaptability of hydrogels allows these structures to be used in a variety of industries, including biomedicine, soft electronics, and sensors. In this study, 10 different naphthalimide derivatives were prepared (five...
Collapse
|
27
|
Jao D, Hu X, Beachley V. Bioinspired Silk Fiber Spinning System via Automated Track-Drawing. ACS APPLIED BIO MATERIALS 2021; 4:8192-8204. [DOI: 10.1021/acsabm.1c00630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Khosropanah MH, Vaghasloo MA, Shakibaei M, Mueller AL, Kajbafzadeh AM, Amani L, Haririan I, Azimzadeh A, Hassannejad Z, Zolbin MM. Biomedical applications of silkworm (Bombyx Mori) proteins in regenerative medicine (a narrative review). J Tissue Eng Regen Med 2021; 16:91-109. [PMID: 34808032 DOI: 10.1002/term.3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Silk worm (Bombyx Mori) protein, have been considered as potential materials for a variety of advanced engineering and biomedical applications for decades. Recently, silkworm silk has gained significant importance in research attention mainly because of its remarkable and exceptional mechanical properties. Silk has already been shown to have unique interactions with cells in tissues through bio-recognition units. The natural silk contains fibroin and sericin and has been used in various tissues of the human body (skin, bone, nerve, and so on). Besides, silk also still has anti-cancer, anti-tyrosinase, anti-coagulant, anti-oxidant, anti-bacterial, and anti-diabetic properties. This article is supposed to describe the diverse biomedical capabilities of B. Mori silk as the appropriate biomaterial among the assorted natural and artificial polymers that are presently accessible, and ideal for usage in regenerative medicine fields.
Collapse
Affiliation(s)
- Mohammad Hossein Khosropanah
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alizadeh Vaghasloo
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Amani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy and Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Gorenkova N, Maitz MF, Böhme G, Alhadrami HA, Jiffri EH, Totten JD, Werner C, Carswell HVO, Seib FP. The innate immune response of self-assembling silk fibroin hydrogels. Biomater Sci 2021; 9:7194-7204. [PMID: 34553708 DOI: 10.1039/d1bm00936b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Silk has a long track record of use in humans, and recent advances in silk fibroin processing have opened up new material formats. However, these new formats and their applications have subsequently created a need to ascertain their biocompatibility. Therefore, the present aim was to quantify the haemocompatibility and inflammatory response of silk fibroin hydrogels. This work demonstrated that self-assembled silk fibroin hydrogels, as one of the most clinically relevant new formats, induced very low blood coagulation and platelet activation but elevated the inflammatory response of human whole blood in vitro. In vivo bioluminescence imaging of neutrophils and macrophages showed an acute, but mild, local inflammatory response which was lower than or similar to that induced by polyethylene glycol, a benchmark material. The time-dependent local immune response in vivo was corroborated by histology, immunofluorescence and murine whole blood analyses. Overall, this study confirms that silk fibroin hydrogels induce a similar immune response to that of PEG hydrogels, while also demonstrating the power of non-invasive bioluminescence imaging for monitoring tissue responses.
Collapse
Affiliation(s)
- Natalia Gorenkova
- King Fahd Medical Research Center, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK. .,I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya street, Moscow, 119991, Russian Federation
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Georg Böhme
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK. .,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Hani A Alhadrami
- King Fahd Medical Research Center, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia
| | - Essam H Jiffri
- King Fahd Medical Research Center, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia
| | - John D Totten
- King Fahd Medical Research Center, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.,Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstraße 105, 01307 Dresden, Germany
| | - Hilary V O Carswell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK. .,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.,EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, Glasgow G1 1RD, UK
| |
Collapse
|
30
|
Qin N, Qian ZG, Zhou C, Xia XX, Tao TH. 3D electron-beam writing at sub-15 nm resolution using spider silk as a resist. Nat Commun 2021; 12:5133. [PMID: 34446721 PMCID: PMC8390743 DOI: 10.1038/s41467-021-25470-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Electron beam lithography (EBL) is renowned to provide fabrication resolution in the deep nanometer scale. One major limitation of current EBL techniques is their incapability of arbitrary 3d nanofabrication. Resolution, structure integrity and functionalization are among the most important factors. Here we report all-aqueous-based, high-fidelity manufacturing of functional, arbitrary 3d nanostructures at a resolution of sub-15 nm using our developed voltage-regulated 3d EBL. Creating arbitrary 3d structures of high resolution and high strength at nanoscale is enabled by genetically engineering recombinant spider silk proteins as the resist. The ability to quantitatively define structural transitions with energetic electrons at different depths within the 3d protein matrix enables polymorphic spider silk proteins to be shaped approaching the molecular level. Furthermore, genetic or mesoscopic modification of spider silk proteins provides the opportunity to embed and stabilize physiochemical and/or biological functions within as-fabricated 3d nanostructures. Our approach empowers the rapid and flexible fabrication of heterogeneously functionalized and hierarchically structured 3d nanocomponents and nanodevices, offering opportunities in biomimetics, therapeutic devices and nanoscale robotics.
Collapse
Affiliation(s)
- Nan Qin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengzhe Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China.
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
31
|
Tsurkan D, Simon P, Schimpf C, Motylenko M, Rafaja D, Roth F, Inosov DS, Makarova AA, Stepniak I, Petrenko I, Springer A, Langer E, Kulbakov AA, Avdeev M, Stefankiewicz AR, Heimler K, Kononchuk O, Hippmann S, Kaiser D, Viehweger C, Rogoll A, Voronkina A, Kovalchuk V, Bazhenov VV, Galli R, Rahimi-Nasrabadi M, Molodtsov SL, Rahimi P, Falahi S, Joseph Y, Vogt C, Vyalikh DV, Bertau M, Ehrlich H. Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin-Atacamite Composite and its Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101682. [PMID: 34085323 DOI: 10.1002/adma.202101682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano-level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers. Yet, an understanding of these mechanisms can lead to the development of unusual-but functional-hybrid materials. In this work, a key way of designing centimeter-scale macroporous 3D composites, using renewable marine biopolymer spongin and a model industrial solution that simulates the highly toxic copper-containing waste generated in the production of printed circuit boards worldwide, is proposed. A new spongin-atacamite composite material is developed and its structure is confirmed using neutron diffraction, X-ray diffraction, high-resolution transmission electron microscopy/selected-area electron diffraction, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. The formation mechanism for this material is also proposed. This study provides experimental evidence suggesting multifunctional applicability of the designed composite in the development of 3D constructed sensors, catalysts, and antibacterial filter systems.
Collapse
Affiliation(s)
- Dmitry Tsurkan
- Institut of Electronic- und Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599, Freiberg, Germany
| | - Paul Simon
- Max-Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187, Dresden, Germany
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Mykhaylo Motylenko
- Institute of Materials Science, TU Bergakademie Freiberg, 09599, Freiberg, Germany
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Friedrich Roth
- Institute of Experimental Physics, TU Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Dmytro S Inosov
- Institute of Solid State and Materials Physics, TU Dresden, D-01069, Dresden, Germany
- Dresden-Würzburg Cluster of Excellence on Complexity and Topology in Quantum Matter (ct.qmat), TU Dresden, D-01062, Dresden, Germany
| | - Anna A Makarova
- Institute of Chemistry and Biochemistry, Free University of Berlin, D-14195, Berlin, Germany
| | - Izabela Stepniak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, ul. Berdychowo 4, Poznan, 60-965, Poland
| | - Iaroslav Petrenko
- Institut of Electronic- und Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599, Freiberg, Germany
| | - Armin Springer
- Medizinische Biologie und Elektronenmikroskopisches Zentrum (EMZ), Strempelstraße 14, 18057, Rostock, Germany
- Universitätsmedizin Rostock, Strempelstraße 14, 18057, Rostock, Germany
| | - Enrico Langer
- Institute of Semiconductors and Microsystems, TU Dresden, 01062, Dresden, Germany
| | - Anton A Kulbakov
- Institute of Solid State and Materials Physics, TU Dresden, D-01069, Dresden, Germany
- Dresden-Würzburg Cluster of Excellence on Complexity and Topology in Quantum Matter (ct.qmat), TU Dresden, D-01062, Dresden, Germany
| | - Maxim Avdeev
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW, 2234, Australia
| | - Artur R Stefankiewicz
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Korbinian Heimler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Olga Kononchuk
- Institute of Chemical Technology, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Sebastian Hippmann
- Institute of Chemical Technology, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Doreen Kaiser
- Institute of Chemical Technology, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Christine Viehweger
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Anika Rogoll
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsia, 21018, Ukraine
| | - Valentine Kovalchuk
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsia, 21018, Ukraine
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsia, 21018, Ukraine
| | | | - Roberta Galli
- Department of Medical Physics and Biomedical Engineering, Clinical Sensoring and Monitoring - Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, 1951683759, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, 1951683759, Iran
- Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, ITMO University, St. Petersburg, 197101, Russia
| | - Serguei L Molodtsov
- Institute of Experimental Physics, TU Bergakademie Freiberg, 09599, Freiberg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Parvaneh Rahimi
- Institut of Electronic- und Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599, Freiberg, Germany
| | - Sedigheh Falahi
- Institut of Electronic- und Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599, Freiberg, Germany
| | - Yvonne Joseph
- Institut of Electronic- und Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599, Freiberg, Germany
| | - Carla Vogt
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Denis V Vyalikh
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Spain
| | - Martin Bertau
- Institute of Chemical Technology, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Hermann Ehrlich
- Institut of Electronic- und Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599, Freiberg, Germany
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
- Centre for Climate Change Research, Toronto, ON, M4P 1J4, Canada
- A.R. Environmental Solutions, ICUBE-University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
32
|
Wan Q, Yang M, Hu J, Lei F, Shuai Y, Wang J, Holland C, Rodenburg C, Yang M. Mesoscale structure development reveals when a silkworm silk is spun. Nat Commun 2021; 12:3711. [PMID: 34140492 PMCID: PMC8211695 DOI: 10.1038/s41467-021-23960-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/29/2021] [Indexed: 11/14/2022] Open
Abstract
Silk fibre mechanical properties are attributed to the development of a multi-scale hierarchical structure during spinning. By careful ex vivo processing of a B. mori silkworm silk solution we arrest the spinning process, freezing-in mesoscale structures corresponding to three distinctive structure development stages; gelation, fibrilization and the consolidation phase identified in this work, a process highlighted by the emergence and extinction of 'water pockets'. These transient water pockets are a manifestation of the interplay between protein dehydration, phase separation and nanofibril assembly, with their removal due to nanofibril coalescence during consolidation. We modeled and validated how post-draw improves mechanical properties and refines a silk's hierarchical structure as a result of consolidation. These insights enable a better understanding of the sequence of events that occur during spinning, ultimately leading us to propose a robust definition of when a silkworm silk is actually 'spun'.
Collapse
Affiliation(s)
- Quan Wan
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mei Yang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jiaqi Hu
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Fang Lei
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yajun Shuai
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jie Wang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Chris Holland
- Department of Material Science and Engineering, University of Sheffield, Sheffield, UK.
| | - Cornelia Rodenburg
- Department of Material Science and Engineering, University of Sheffield, Sheffield, UK.
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
33
|
|
34
|
Burgos-Morales O, Gueye M, Lacombe L, Nowak C, Schmachtenberg R, Hörner M, Jerez-Longres C, Mohsenin H, Wagner H, Weber W. Synthetic biology as driver for the biologization of materials sciences. Mater Today Bio 2021; 11:100115. [PMID: 34195591 PMCID: PMC8237365 DOI: 10.1016/j.mtbio.2021.100115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023] Open
Abstract
Materials in nature have fascinating properties that serve as a continuous source of inspiration for materials scientists. Accordingly, bio-mimetic and bio-inspired approaches have yielded remarkable structural and functional materials for a plethora of applications. Despite these advances, many properties of natural materials remain challenging or yet impossible to incorporate into synthetic materials. Natural materials are produced by living cells, which sense and process environmental cues and conditions by means of signaling and genetic programs, thereby controlling the biosynthesis, remodeling, functionalization, or degradation of the natural material. In this context, synthetic biology offers unique opportunities in materials sciences by providing direct access to the rational engineering of how a cell senses and processes environmental information and translates them into the properties and functions of materials. Here, we identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials. This includes materials that are otherwise produced from petrochemical resources, but also materials where the bio-produced substances contribute unique properties and functions not existing in traditional materials. Second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material. We finally provide a perspective of future scientific directions of this promising area of research and discuss science policy that would be required to support research and development in this field.
Collapse
Affiliation(s)
- O. Burgos-Morales
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - M. Gueye
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
| | - L. Lacombe
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
| | - C. Nowak
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - R. Schmachtenberg
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - M. Hörner
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - C. Jerez-Longres
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Spemann Graduate School of Biology and Medicine - SGBM, University of Freiburg, Freiburg, 79104, Germany
| | - H. Mohsenin
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - H.J. Wagner
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Department of Biosystems Science and Engineering - D-BSSE, ETH Zurich, Basel, 4058, Switzerland
| | - W. Weber
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Spemann Graduate School of Biology and Medicine - SGBM, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
35
|
Shen Y, Levin A, Kamada A, Toprakcioglu Z, Rodriguez-Garcia M, Xu Y, Knowles TPJ. From Protein Building Blocks to Functional Materials. ACS NANO 2021; 15:5819-5837. [PMID: 33760579 PMCID: PMC8155333 DOI: 10.1021/acsnano.0c08510] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
Proteins are the fundamental building blocks for high-performance materials in nature. Such materials fulfill structural roles, as in the case of silk and collagen, and can generate active structures including the cytoskeleton. Attention is increasingly turning to this versatile class of molecules for the synthesis of next-generation green functional materials for a range of applications. Protein nanofibrils are a fundamental supramolecular unit from which many macroscopic protein materials are formed. In this Review, we focus on the multiscale assembly of such protein nanofibrils formed from naturally occurring proteins into new supramolecular architectures and discuss how they can form the basis of material systems ranging from bulk gels, films, fibers, micro/nanogels, condensates, and active materials. We review current and emerging approaches to process and assemble these building blocks in a manner which is different to their natural evolutionarily selected role but allows the generation of tailored functionality, with a focus on microfluidic approaches. We finally discuss opportunities and challenges for this class of materials, including applications that can be involved in this material system which consists of fully natural, biocompatible, and biodegradable feedstocks yet has the potential to generate materials with performance and versatility rivalling that of the best synthetic polymers.
Collapse
Affiliation(s)
- Yi Shen
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- School
of Chemical and Biomolecular Engineering, The University of Sydney, 2006 Sydney, New South Wales, Australia
| | - Aviad Levin
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ayaka Kamada
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Zenon Toprakcioglu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marc Rodriguez-Garcia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Xampla, the BioInnovation Building, 25 Cambridge
Science Park Road, Cambridge CB4 0FW, U.K.
| | - Yufan Xu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
36
|
Mu X, Agostinacchio F, Xiang N, Pei Y, Khan Y, Guo C, Cebe P, Motta A, Kaplan DL. Recent Advances in 3D Printing with Protein-Based Inks. Prog Polym Sci 2021; 115:101375. [PMID: 33776158 PMCID: PMC7996313 DOI: 10.1016/j.progpolymsci.2021.101375] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) printing is a transformative manufacturing strategy, allowing rapid prototyping, customization, and flexible manipulation of structure-property relationships. Proteins are particularly appealing to formulate inks for 3D printing as they serve as essential structural components of living systems, provide a support presence in and around cells and for tissue functions, and also provide the basis for many essential ex vivo secreted structures in nature. Protein-based inks are beneficial in vivo due to their mechanics, chemical and physical match to the specific tissue, and full degradability, while also to promoting implant-host integration and serving as an interface between technology and biology. Exploiting the biological, chemical, and physical features of protein-based inks can provide key opportunities to meet the needs of tissue engineering and regenerative medicine. Despite these benefits, protein-based inks impose nontrivial challenges to 3D printing such as concentration and rheological features and reconstitution of the structural hierarchy observed in nature that is a source of the robust mechanics and functions of these materials. This review introduces photo-crosslinking mechanisms and rheological principles that underpins a variety of 3D printing techniques. The review also highlights recent advances in the design, development, and biomedical utility of monolithic and composite inks from a range of proteins, including collagen, silk, fibrinogen, and others. One particular focus throughout the review is to introduce unique material characteristics of proteins, including amino acid sequences, molecular assembly, and secondary conformations, which are useful for designing printing inks and for controlling the printed structures. Future perspectives of 3D printing with protein-based inks are also provided to support the promising spectrum of biomedical research accessible to these materials.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Francesca Agostinacchio
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - Ning Xiang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Ying Pei
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yousef Khan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
37
|
Sharma A, Sharma P, Roy S. Elastin-inspired supramolecular hydrogels: a multifaceted extracellular matrix protein in biomedical engineering. SOFT MATTER 2021; 17:3266-3290. [PMID: 33730140 DOI: 10.1039/d0sm02202k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The phenomenal advancement in regenerative medicines has led to the development of bioinspired materials to fabricate a biomimetic artificial extracellular matrix (ECM) to support cellular survival, proliferation, and differentiation. Researchers have diligently developed protein polymers consisting of functional sequences of amino acids evolved in nature. Nowadays, certain repetitive bioinspired polymers are treated as an alternative to synthetic polymers due to their unique properties like biodegradability, easy scale-up, biocompatibility, and non-covalent molecular associations which imparts tunable supramolecular architecture to these materials. In this direction, elastin has been identified as a potential scaffold that renders extensibility and elasticity to the tissues. Elastin-like polypeptides (ELPs) are artificial repetitive polymers that exhibit lower critical solution temperature (LCST) behavior in a particular environment than synthetic polymers and hence have gained extensive interest in the fabrication of stimuli-responsive biomaterials. This review discusses in detail the unique structural aspects of the elastin and its soluble precursor, tropoelastin. Furthermore, the versatility of elastin-like peptides is discussed through numerous examples that bolster the significance of elastin in the field of regenerative medicines such as wound care, cardiac tissue engineering, ocular disorders, bone tissue regeneration, etc. Finally, the review highlights the importance of exploring short elastin-mimetic peptides to recapitulate the structural and functional aspects of elastin for advanced healthcare applications.
Collapse
Affiliation(s)
- Archita Sharma
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306, Punjab, India.
| | | | | |
Collapse
|
38
|
Yonesi M, Garcia-Nieto M, Guinea GV, Panetsos F, Pérez-Rigueiro J, González-Nieto D. Silk Fibroin: An Ancient Material for Repairing the Injured Nervous System. Pharmaceutics 2021; 13:429. [PMID: 33806846 PMCID: PMC8004633 DOI: 10.3390/pharmaceutics13030429] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Silk refers to a family of natural fibers spun by several species of invertebrates such as spiders and silkworms. In particular, silkworm silk, the silk spun by Bombyx mori larvae, has been primarily used in the textile industry and in clinical settings as a main component of sutures for tissue repairing and wound ligation. The biocompatibility, remarkable mechanical performance, controllable degradation, and the possibility of producing silk-based materials in several formats, have laid the basic principles that have triggered and extended the use of this material in regenerative medicine. The field of neural soft tissue engineering is not an exception, as it has taken advantage of the properties of silk to promote neuronal growth and nerve guidance. In addition, silk has notable intrinsic properties and the by-products derived from its degradation show anti-inflammatory and antioxidant properties. Finally, this material can be employed for the controlled release of factors and drugs, as well as for the encapsulation and implantation of exogenous stem and progenitor cells with therapeutic capacity. In this article, we review the state of the art on manufacturing methodologies and properties of fiber-based and non-fiber-based formats, as well as the application of silk-based biomaterials to neuroprotect and regenerate the damaged nervous system. We review previous studies that strategically have used silk to enhance therapeutics dealing with highly prevalent central and peripheral disorders such as stroke, Alzheimer's disease, Parkinson's disease, and peripheral trauma. Finally, we discuss previous research focused on the modification of this biomaterial, through biofunctionalization techniques and/or the creation of novel composite formulations, that aim to transform silk, beyond its natural performance, into more efficient silk-based-polymers towards the clinical arena of neuroprotection and regeneration in nervous system diseases.
Collapse
Affiliation(s)
- Mahdi Yonesi
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Fivos Panetsos
- Silk Biomed SL, 28260 Madrid, Spain;
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
39
|
Cornejo-Bravo JM, Palomino K, Palomino-Vizcaino G, Pérez-Landeros OM, Curiel-Alvarez M, Valdez-Salas B, Bucio E, Magaña H. Poly( N-vinylcaprolactam) and Salicylic Acid Polymeric Prodrug Grafted onto Medical Silicone to Obtain a Novel Thermo- and pH-Responsive Drug Delivery System for Potential Medical Devices. MATERIALS 2021; 14:ma14051065. [PMID: 33668741 PMCID: PMC7956192 DOI: 10.3390/ma14051065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022]
Abstract
New medical devices with anti-inflammatory properties are critical to prevent inflammatory processes and infections in medical/surgical procedures. In this work, we present a novel functionalization of silicone for medical use with a polymeric prodrug and a thermosensitive polymer, by graft polymerization (gamma rays), for the localized release of salicylic acid, an analgesic, and anti-inflammatory drug. Silicone rubber (SR) films were functionalized in two stages using graft polymerization from ionizing radiation (60Co). The first stage was grafting poly(N-vinylcaprolactam) (PNVCL), a thermo-sensitive polymer, onto SR to obtain SR-g-PNVCL. In the second stage, poly(2-methacryloyloxy-benzoic acid) (P2MBA), a polymeric prodrug, was grafted to obtain (SR-g-PNVCL)-g-P2MBA. The degree of functionalization depended on the concentrations of monomers and the irradiation dose. The films were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy/energy-dispersive X-ray spectrometry (SEM–EDX), thermogravimetric analysis (TGA), and contact angle. An upper critical solution temperature (UCST) of the films was demonstrated by the swelling degree as a temperature function. (SR-g-PNVCL)-g-P2MBA films demonstrated hydrolysis-mediated drug release from the polymeric prodrug, pH, and temperature sensitivity. GC–MS confirmed the presence of the drug (salicylic acid), after polymer hydrolysis. The concentration of the drug in the release media was quantified by HPLC. Cytocompatibility and thermo-/pH sensitivity of functionalized medical silicone were demonstrated in cancer and non-cancer cells.
Collapse
Affiliation(s)
- José M. Cornejo-Bravo
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico; (J.M.C.-B.); (K.P.)
| | - Kenia Palomino
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico; (J.M.C.-B.); (K.P.)
| | - Giovanni Palomino-Vizcaino
- Faculty of Health Sciences, Autonomous University of Baja California, University Boulevard No. 1000, Tijuana 22260, Mexico;
| | - Oscar M. Pérez-Landeros
- Institute of Engineering, Autonomous University of Baja California, Benito Juárez Boulevard, Mexicali 21280, Mexico; (O.M.P.-L.); (M.C.-A.); (B.V.-S.)
| | - Mario Curiel-Alvarez
- Institute of Engineering, Autonomous University of Baja California, Benito Juárez Boulevard, Mexicali 21280, Mexico; (O.M.P.-L.); (M.C.-A.); (B.V.-S.)
| | - Benjamín Valdez-Salas
- Institute of Engineering, Autonomous University of Baja California, Benito Juárez Boulevard, Mexicali 21280, Mexico; (O.M.P.-L.); (M.C.-A.); (B.V.-S.)
| | - Emilio Bucio
- Department of Radiation Chemistry and Radiochemistry, Institute of Nuclear Science, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Héctor Magaña
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico; (J.M.C.-B.); (K.P.)
- Correspondence:
| |
Collapse
|
40
|
Narayan OP, Mu X, Hasturk O, Kaplan DL. Dynamically tunable light responsive silk-elastin-like proteins. Acta Biomater 2021; 121:214-223. [PMID: 33326881 PMCID: PMC7856074 DOI: 10.1016/j.actbio.2020.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Dynamically tunable biomaterials are of particular interest in the field of biomedical engineering because of the potential utility for shape-change materials, drug and cell delivery and tissue regeneration. Stimuli-responsive proteins formed into hydrogels are potential candidates for such systems, due to the genetic tailorability and control over structure-function relationships. Here we report the synthesis of genetically engineered Silk-Elastin-Like Protein (SELP) photoresponsive hydrogels. Polymerization of the SELPs and monomeric adenosylcobalamin (AdoB12)-dependent photoreceptor C-terminal adenosylcobalamin binding domain (CarHC) was achieved using genetically encoded SpyTag-SpyCatcher peptide-protein pairs under mild physiological conditions. The hydrogels exhibited a partial collapse of the crosslinked molecular network with both decreased loss and storage moduli upon exposure to visible light. The materials were also evaluated for cytotoxicity and the encapsulation and release of L929 murine fibroblasts from 3D cultures. The design of these photo-responsible proteins provides new stimuli-responsive SELP-CarHC hydrogels for dynamically tunable protein-based materials.
Collapse
Affiliation(s)
- Om Prakash Narayan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
41
|
Li K, Zhang F, Wang D, Qiu Q, Liu M, Yu A, Cui Y. Silkworm-inspired electrohydrodynamic jet 3D printing of composite scaffold with ordered cell scale fibers for bone tissue engineering. Int J Biol Macromol 2021; 172:124-132. [PMID: 33418047 DOI: 10.1016/j.ijbiomac.2021.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
The combination of biomimetic and 3D printing has created novel opportunities for the manufacture of 3D engineered materials. A sub-microscale E-Jet 3D printing method, inspired by the dehydration and protein enrichment process of silkworm, was developed to fabricate composite bone tissue scaffold with the characteristics of controllability, fast and inexpensive. By applying the resultant effects of thermal field and flow field to low viscous composite ink, the concentration gradient biopolymer ink was obtained near the needle tip, mimicking the advanced dehydration of natural spinning apparatus. After electrical shearing force were applied on concentration gradient ink, a stable and fine jet formed. Various printing modes (droplet, continuous fiber) and structure resolutions were achieved by adjusting local solvent evaporation. Thin film, high resolution 2D structures, high aspect ratio well-bonding 3D structures were fabricated. The printed result showed that a 100 μm-sized needle could be employed directly to print patterning down to 800 nm. The printed composite scaffold with controllability of fiber size and space has been proved the feasibility as a medium for bone tissue regeneration. It can be estimated that the novel biomimetic E-Jet 3D printing technique is a new and promising way for bone tissue repairing.
Collapse
Affiliation(s)
- Kai Li
- School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China.
| | - Fangyuan Zhang
- School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
| | - Dazhi Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Quanshui Qiu
- Beijing Institute of Space Mechanics & Electricity, Beijing 100190, China
| | - Maiqi Liu
- School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
| | - Aibing Yu
- School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
| | - Yuguo Cui
- School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
| |
Collapse
|
42
|
Mu X, Sahoo JK, Cebe P, Kaplan DL. Photo-Crosslinked Silk Fibroin for 3D Printing. Polymers (Basel) 2020; 12:E2936. [PMID: 33316890 PMCID: PMC7763742 DOI: 10.3390/polym12122936] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Silk fibroin in material formats provides robust mechanical properties, and thus is a promising protein for 3D printing inks for a range of applications, including tissue engineering, bioelectronics, and bio-optics. Among the various crosslinking mechanisms, photo-crosslinking is particularly useful for 3D printing with silk fibroin inks due to the rapid kinetics, tunable crosslinking dynamics, light-assisted shape control, and the option to use visible light as a biocompatible processing condition. Multiple photo-crosslinking approaches have been applied to native or chemically modified silk fibroin, including photo-oxidation and free radical methacrylate polymerization. The molecular characteristics of silk fibroin, i.e., conformational polymorphism, provide a unique method for crosslinking and microfabrication via light. The molecular design features of silk fibroin inks and the exploitation of photo-crosslinking mechanisms suggest the exciting potential for meeting many biomedical needs in the future.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (J.K.S.)
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (J.K.S.)
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA;
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (J.K.S.)
| |
Collapse
|
43
|
Chakraborty J, Ghosh S. Cellular Proliferation, Self-Assembly, and Modulation of Signaling Pathways in Silk Fibroin Gelatin-Based 3D Bioprinted Constructs. ACS APPLIED BIO MATERIALS 2020; 3:8309-8320. [DOI: 10.1021/acsabm.0c01252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juhi Chakraborty
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
44
|
Chu CK, Joseph AJ, Limjoco MD, Yang J, Bose S, Thapa LS, Langer R, Anderson DG. Chemical Tuning of Fibers Drawn from Extensible Hyaluronic Acid Networks. J Am Chem Soc 2020; 142:19715-19721. [PMID: 33141568 DOI: 10.1021/jacs.0c09691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer fibers with specific chemical and mechanical properties are key components of many biomaterials used for regenerative medicine and drug delivery. Here, we develop a bioinspired, low-energy process to produce mechanically tunable biopolymer fibers drawn from aqueous solutions. Hyaluronic acid (HA) forms dynamic cross-links with branched polyethylene glycol polymers end-functionalized with boronic acids of varied structure to produce extensible polymer networks. This dynamic fiber precursor (DFP) is directly drawn by pultrusion into HA fibers that display high aspect ratios, ranging from 4 to 20 μm in diameter and up to ∼10 m in length. Dynamic rheology measurements of the DFP and tensile testing of the resulting fibers reveal design considerations to tune the propensity for fiber formation and fiber mechanical properties, including the effect of polymer structure and concentration on elastic modulus, tensile strength, and ultimate strain. The materials' humidity-responsive contractile behavior, a unique property of spider silks rarely observed in synthetic materials, highlights possibilities for further biomimetic and stimulus-responsive fiber applications. This work demonstrates that chemical modification of dynamic interactions can be used to tune the mechanical properties of pultrusion-based fibers and their precursors.
Collapse
Affiliation(s)
- Crystal K Chu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alby J Joseph
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew D Limjoco
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, United States
| | - Jiawei Yang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, United States
| | - Suman Bose
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lavanya S Thapa
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, United States
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Chen Z, Zhang Q, Li H, Wei Q, Zhao X, Chen F. Elastin-like polypeptide modified silk fibroin porous scaffold promotes osteochondral repair. Bioact Mater 2020; 6:589-601. [PMID: 33005824 PMCID: PMC7509194 DOI: 10.1016/j.bioactmat.2020.09.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Silk fibroin (SF) is considered biocompatible and biodegradable for osteochondral repair. However, it lacks a bioactive domain for cell adhesion, proliferation and differentiation, limiting its therapeutic efficacy. To revamp SF as a biomimicking and bioactive microenvironment to regulate cell behaviours, we engineered an elastin-like polypeptide (ELP, Val-Pro-Gly-Xaa-Gly) to modify SF fibers via simple and green dehydrothermal (DHT) treatment. Our results demonstrated that the ELP successfully bound to SF, and the scaffold was reinforced by the fusion of the silk fiber intersections with ELP (S-ELP-DHT) via the DHT treatment. Both bone mesenchymal stem cells (BMSCs) and chondrocytes exhibited improved spreading and proliferation on the S-ELP-DHT scaffolds. The ex vivo and in vivo experiments further demonstrated enhanced mature bone and cartilage tissue formation using the S-ELP-DHT scaffolds compared to the naked SF scaffolds. These results indicated that a recombinant ELP-modified silk scaffold can mimic three-dimensional (3D) cell microenvironment, and improve bone and cartilage regeneration. We envision that our scaffolds have huge clinical potential for osteochondral repair. Elastin-like polypeptide (ELP) modified silk fibroin (SF) scaffold was developed via dehydrothermal treatment (S-ELP-DHT). The S-ELP-DHT scaffold provided a beneficial cell microenvironment for osteochondral repair. Greater mature bone and cartilage tissue formation were achieved. Improved repair efficacy for articular osteochondral defects was confirmed.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province, 710069, China
| | - Qiang Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Hongmin Li
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province, 710069, China
| | - Qi Wei
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province, 710069, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Corresponding author.
| | - Fulin Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province, 710069, China
- Corresponding author.
| |
Collapse
|
46
|
Hybrid Spider Silk with Inorganic Nanomaterials. NANOMATERIALS 2020; 10:nano10091853. [PMID: 32947954 PMCID: PMC7559941 DOI: 10.3390/nano10091853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022]
Abstract
High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.
Collapse
|