1
|
Korsgaard Andreasen L, Slot Andreasen EV, He W, Rantanen J, Genina N. Insight into manufacturing of bespoke combination drug products containing carvedilol and simvastatin by fused deposition modeling. Pharm Dev Technol 2025; 30:314-322. [PMID: 40035789 DOI: 10.1080/10837450.2025.2475965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/06/2025]
Abstract
The goal of this study was to explore the fabrication of a combination drug product containing two poorly soluble active pharmaceutical ingredients (APIs), carvedilol (CAR) and simvastatin (SIM), in therapeutically relevant doses (25 mg of each API) with a distinct, easily distinguishable shape. Fused deposition modeling, combined with hot-melt extrusion (HME), was used to produce hollow heart-shaped dual-loaded tablets in which the two APIs were spatially separated with an intermediate API-free layer. Water-soluble hydroxypropyl methylcellulose of varying molecular weights was used as the primary polymer for HME. The incorporation of a processability-improving polymer, such as polycaprolactone, was necessary to facilitate the printing of these delicate geometries and lower the printing temperature. The 3D-printed tablets contained the therapeutic doses of both APIs; however, further optimization of manufacturing processes is required to improve drug content uniformity. The drug release from the printed tablets was sustained, with complete release of CAR observed after 24 h, demonstrating the suitability of the designed drug products for oral delivery.
Collapse
Affiliation(s)
| | | | - Wuzhong He
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Natalja Genina
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Poudel I, Mita N, Babu RJ. 3D printed dosage forms, where are we headed? Expert Opin Drug Deliv 2024; 21:1595-1614. [PMID: 38993098 DOI: 10.1080/17425247.2024.2379943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION 3D Printing (3DP) is an innovative fabrication technology that has gained enormous popularity through its paradigm shifts in manufacturing in several disciplines, including healthcare. In this past decade, we have witnessed the impact of 3DP in drug product development. Almost 8 years after the first USFDA approval of the 3D printed tablet Levetiracetam (Spritam), the interest in 3DP for drug products is high. However, regulatory agencies have often questioned its large-scale industrial practicability, and 3DP drug approval/guidelines are yet to be streamlined. AREAS COVERED In this review, major technologies involved with the fabrication of drug products are introduced along with the prospects of upcoming technologies, including AI (Artificial Intelligence). We have touched upon regulatory updates and discussed the burning limitations, which require immediate focus, illuminating status, and future perspectives on the near future of 3DP in the pharmaceutical field. EXPERT OPINION 3DP offers significant advantages in rapid prototyping for drug products, which could be beneficial for personalizing patient-based pharmaceutical dispensing. It seems inevitable that the coming decades will be marked by exponential growth in personalization, and 3DP could be a paradigm-shifting asset for pharmaceutical professionals.
Collapse
Affiliation(s)
- Ishwor Poudel
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Nur Mita
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Faculty of Pharmacy, Mulawarman University, Samarinda, Kalimantan Timur, Indonesia
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| |
Collapse
|
3
|
Algahtani MS, Ahmad J, Mohammed AA, Ahmad MZ. Extrusion-based 3D printing for development of complex capsular systems for advanced drug delivery. Int J Pharm 2024; 663:124550. [PMID: 39103062 DOI: 10.1016/j.ijpharm.2024.124550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
This review explores the feasibility of extrusion-based 3D printing techniques for producing complex dosage forms (such as capsular shells/devices) that provide controlled drug release and targeted delivery. The current discussion explores how extrusion-based 3D printing techniques, particularly Fused Deposition Modelling (FDM) and Pressure-Assisted Modelling (PAM), offer significant advantages in fabricating such complex dosage forms. This technology enables the fabrication of single-, dual-, or multi-compartment capsular systems with customized designs/geometry of the capsular shell to achieve delayed, sustained, or pulsatile drug release. The impact of customized design/geometry on the biopharmaceutical performances of loaded therapeutics is comprehensively discussed. The potential of 3D printing techniques for different specialized drug delivery purposes like gastric floating, implants, suppositories, and printfills are also addressed. This technique has the potential to significantly improve the therapeutic outcomes, and patient adherence to medication regimens, and pave the way for personalized medicine.
Collapse
Affiliation(s)
- Mohammed S Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia.
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| |
Collapse
|
4
|
Yasin H, Al-Tabakha MMA, Chan SY. Fabrication of Polypill Pharmaceutical Dosage Forms Using Fused Deposition Modeling 3D Printing: A Systematic Review. Pharmaceutics 2024; 16:1285. [PMID: 39458614 PMCID: PMC11510916 DOI: 10.3390/pharmaceutics16101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The pharmacy profession has undergone significant changes driven by advancements in patient care and healthcare systems. The FDA approval of Spritam® (levetiracetam), the first 3D-printed drug, has sparked increased interest in the use of Fused Deposition Modeling (FDM) 3D printing for pharmaceutical applications, particularly in the production of polypills. METHODS This review provides an overview of FDM 3D printing in the development of pharmaceutical dosage forms, focusing on its operation, printing parameters, materials, additives, advantages, and limitations. Key aspects, such as the ability to personalize medication and the challenges associated with the technique, including drug stability at high temperatures, are discussed. RESULTS Fourteen studies relevant to FDM 3D-printed polypills were analyzed from an initial pool of 60. The increasing number of publications highlights the growing global interest in this technology, with the UK contributing the highest number of studies. CONCLUSIONS FDM 3D printing offers significant potential for personalized medicine by enabling precise control over dosage forms and tailoring treatments to individual patient needs. However, limitations such as high printing temperatures and the lack of standardized GMP guidelines for large-scale production must be addressed to fully realize its potential in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Haya Yasin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moawia M. A. Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| |
Collapse
|
5
|
Zgouro P, Katsamenis OL, Moschakis T, Eleftheriadis GK, Kyriakidis AS, Chachlioutaki K, Kyriaki Monou P, Ntorkou M, Zacharis CK, Bouropoulos N, Fatouros DG, Karavasili C, Gioumouxouzis CI. A floating 3D printed polypill formulation for the coadministration and sustained release of antihypertensive drugs. Int J Pharm 2024; 655:124058. [PMID: 38552754 DOI: 10.1016/j.ijpharm.2024.124058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Polypharmacy is a common issue, especially among elderly patients resulting in administration errors and patient inconvenience. Hypertension is a prevalent health condition that frequently leads to polypharmacy, as its treatment typically requires the co-administration of more than one different Active Pharmaceutical Ingredients (API's). To address these issues, floating hollow torus-shaped dosage forms were developed, aiming at providing prolonged gastric retention and sustained drug release. The dosage forms (polypills) containing three anti-hypertensive API's (diltiazem (DIL), propranolol (PRP) and hydrochlorothiazide (HCTZ)) were created via Fused Deposition Modelling 3D printing. A multitude of the dosage forms were loaded into a capsule and the resulting formulation achieved prolonged retention times over a 12-hour period in vitro, by leveraging both the buoyancy of the dosage forms, and the "cheerios effect" that facilitates the aggregation and retention of the dosage forms via a combination of surface tension and shape of the objects. Physicochemical characterization methods and imaging techniques were employed to investigate the properties and the internal and external structure of the dosage forms. Furthermore, an ex vivo porcine stomach model revealed substantial aggregation, adhesion and retention of the 3D printed dosage forms in porcine stomach. In vitro dissolution testing demonstrated almost complete first-order release of PRP and DIL (93.52 % and 99.9 %, respectively) and partial release of HCTZ (65.22 %) in the 12 h timeframe. Finally, a convolution-based single-stage approach was employed in order to predict the pharmacokinetic (PK) parameters of the API's of the formulation and the resemblance of their PK behavior with previously reported data.
Collapse
Affiliation(s)
- Paola Zgouro
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Orestis L Katsamenis
- μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK; Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK
| | - Thomas Moschakis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Georgios K Eleftheriadis
- Pharmacare Premium Limited, R&D Department, HHF003 Hal Far Industrial Estate, Birzebbugia BBG3000, Malta
| | - Athanasios S Kyriakidis
- Pharmacare Premium Limited, R&D Department, HHF003 Hal Far Industrial Estate, Birzebbugia BBG3000, Malta
| | - Konstantina Chachlioutaki
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Paraskevi Kyriaki Monou
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Marianna Ntorkou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science,University of Patras, 26504 Rio, Patras,Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
| | - Christina Karavasili
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Christos I Gioumouxouzis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
6
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
7
|
Ebrahimi F, Xu H, Fuenmayor E, Major I. Tailoring drug release in bilayer tablets through droplet deposition modeling and injection molding. Int J Pharm 2024; 653:123859. [PMID: 38307401 DOI: 10.1016/j.ijpharm.2024.123859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
This study explores the innovative production of personalized bilayer tablets, integrating two advanced manufacturing techniques: Droplet Deposition Modeling (DDM) and Injection Molding (IM). Unlike traditional methods limited to customizing dense bilayer medicines, our approach uses Additive Manufacturing (AM) to effectively adjust drug release profiles. Focusing on Caffeine and Paracetamol, we found successful processing for both DDM and IM using Caffeine formulation. The high viscosity of Paracetamol formulation posed challenges during DDM processing. Integrating Paracetamol formulation for the over-molding process proved effective, demonstrating IM's versatility in handling complex formulations. Varying infill percentages in DDM tablets led to distinct porosities affecting diverse drug release profiles in DDM-fabricated tablets. In contrast, tablets with high-density structures formed through the over-molding process displayed slower and more uniform release patterns. Combining DDM and IM techniques allows for overcoming the inherent limitations of each technique independently, enabling the production of bilayer tablets with customizable drug release profiles. The study's results offer promising insights into the future of personalized medicine, suggesting new pathways for the development of customized oral dosage forms.
Collapse
Affiliation(s)
- Farnoosh Ebrahimi
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Han Xu
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Evert Fuenmayor
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland.
| |
Collapse
|
8
|
Wang Y, Genina N, Müllertz A, Rantanen J. Binder jetting 3D printing in fabricating pharmaceutical solid products for precision medicine. Basic Clin Pharmacol Toxicol 2024; 134:325-332. [PMID: 38105694 DOI: 10.1111/bcpt.13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Current treatment strategies are moving towards patient-centricity, which emphasizes the need for new solutions allowing for medication tailored to a patient. This can be realized by precision medicine where patient diversity is considered during treatment. However, the broader use of precision medicine is restricted by the current technological solutions and rigid manufacturing of pharmaceutical products by mass production principles. Additive manufacturing of pharmaceutical products can provide a feasible solution to this challenge. In this review, a particular subtype of additive manufacturing, that is, binder jetting 3D printing, is introduced as a solution for fabricating pharmaceutical solid products that can be considered as precision medicine. Technical aspects, practical applications, unique advantages and challenges related to this technique are discussed, indicating that binder jetting 3D printing possesses the potential for fabricating already new product prototypes, where diversity in patient treatment in terms of the needs for specific drug type, dose and drug release can be accounted. To further advance this type of mass customization of pharmaceuticals, multidisciplinary research initiatives are needed not only to cover the engineering aspects but also to bridge these innovations with patient-centric perspectives.
Collapse
Affiliation(s)
- Yingya Wang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk A/S, Bagsvaerd, Denmark
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Ong JJ, Chow YL, Gaisford S, Cook MT, Swift T, Telford R, Rimmer S, Qin Y, Mai Y, Goyanes A, Basit AW. Supramolecular chemistry enables vat photopolymerization 3D printing of novel water-soluble tablets. Int J Pharm 2023; 643:123286. [PMID: 37532009 DOI: 10.1016/j.ijpharm.2023.123286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Vat photopolymerization has garnered interest from pharmaceutical researchers for the fabrication of personalised medicines, especially for drugs that require high precision dosing or are heat labile. However, the 3D printed structures created thus far have been insoluble, limiting printable dosage forms to sustained-release systems or drug-eluting medical devices which do not require dissolution of the printed matrix. Resins that produce water-soluble structures will enable more versatile drug release profiles and expand potential applications. To achieve this, instead of employing cross-linking chemistry to fabricate matrices, supramolecular chemistry may be used to impart dynamic interaction between polymer chains. In this study, water-soluble drug-loaded printlets (3D printed tablets) are fabricated via digital light processing (DLP) 3DP for the first time. Six formulations with varying ratios of an electrolyte acrylate monomer, [2-(acryloyloxy)ethyl]trimethylammonium chloride (TMAEA), and a co-monomer, 1-vinyl-2-pyrrolidone (NVP), were prepared to produce paracetamol-loaded printlets. 1H NMR spectroscopy analysis confirmed the integration of TMAEA and NVP in the polymer, and residual TMAEA monomers were found to be present only in trace amounts (0.71 - 1.37 %w/w). The apparent molecular mass of the photopolymerised polymer was found to exceed 300,000 Da with hydrodynamic radii of 15 - 20 nm, estimated based on 1H DOSY NMR measurements The loaded paracetamol was completely released from the printlets between 45 minutes to 5 hours. In vivo single-dose acute toxicity studies in rats suggest that the printlets did not cause any tissue damage. The findings reported in this study represent a significant step towards the adoption of vat photopolymerization-based 3DP to produce personalised medicines.
Collapse
Affiliation(s)
- Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Yee Lam Chow
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Michael T Cook
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Thomas Swift
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, UK
| | - Richard Telford
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, UK
| | - Stephen Rimmer
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, UK
| | - Yujia Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| |
Collapse
|
10
|
Rouaz-El Hajoui K, Herrada-Manchón H, Rodríguez-González D, Fernández MA, Aguilar E, Suñé-Pou M, Nardi-Ricart A, Pérez-Lozano P, García-Montoya E. Pellets and gummies: Seeking a 3D printed gastro-resistant omeprazole dosage for paediatric administration. Int J Pharm 2023; 643:123289. [PMID: 37536640 DOI: 10.1016/j.ijpharm.2023.123289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
The production of 3D printed pharmaceuticals has thrived in recent years, as it allows the generation of customised medications in small batches. This is particularly helpful for patients who need specific doses or formulations, such as children. Compounding pharmacies seek alternatives to conventional solid oral doses, opting for oral liquid formulations. However, ensuring quality and stability, especially for pH-sensitive APIs like omeprazole, remains a challenge. This paper presents the application of semi-solid extrusion 3D printing technology to develop patient-tailored medicinal gummies, with an eye-catching appearances, serving as an innovative omeprazole pharmaceutical form for paediatric use. The study compares 3D printing hydrogels with dissolved omeprazole to hydrogels loaded with gastro-resistant omeprazole pellets, a ground-breaking approach.. Gastro-resistance and dissolution profiles were studied using different methods for better comparison and to emphasize the significance of the assay's methodology. Both developed formulas exhibit proper rheology, good printability, and meet content and mass uniformity standards. However, the high gastro-resistance and suitable release profile of 3D printed chewable semi-solid doses with enteric pellets highlight this as an effective strategy to address the challenge of paediatric medication.
Collapse
Affiliation(s)
- Khadija Rouaz-El Hajoui
- Departamento de Farmacia, Tecnología Farmacéutica y Físico Química, Facultad de Farmacia y Ciencias de la Alimentación. Universidad de Barcelona. Avda. Joan XXIII, 27-31. 08028 Barcelona, Spain
| | - Helena Herrada-Manchón
- Fundación Idonial. Parque Científico y Tecnológico de Gijón. Avda. Jardín Botánico, 1345. 33203 Gijón, Asturias, Spain
| | - David Rodríguez-González
- Fundación Idonial. Parque Científico y Tecnológico de Gijón. Avda. Jardín Botánico, 1345. 33203 Gijón, Asturias, Spain; Centro de Innovación en Química Avanzada (ORFEO-CINQA), Instituto Universitario de Química Organometálica "Enrique Moles", Departamento de Química Orgánica e Inorgánica. Universidad de Oviedo. C/ Julián Clavería, 8. 33006 Oviedo, Asturias, Spain
| | - Manuel Alejandro Fernández
- Fundación Idonial. Parque Científico y Tecnológico de Gijón. Avda. Jardín Botánico, 1345. 33203 Gijón, Asturias, Spain
| | - Enrique Aguilar
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Instituto Universitario de Química Organometálica "Enrique Moles", Departamento de Química Orgánica e Inorgánica. Universidad de Oviedo. C/ Julián Clavería, 8. 33006 Oviedo, Asturias, Spain
| | - Marc Suñé-Pou
- Departamento de Farmacia, Tecnología Farmacéutica y Físico Química, Facultad de Farmacia y Ciencias de la Alimentación. Universidad de Barcelona. Avda. Joan XXIII, 27-31. 08028 Barcelona, Spain; IDIBELL-UB Research Group, Pharmacotherapy, Pharmacogenomics and Pharmaceutical Technology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Nardi-Ricart
- Departamento de Farmacia, Tecnología Farmacéutica y Físico Química, Facultad de Farmacia y Ciencias de la Alimentación. Universidad de Barcelona. Avda. Joan XXIII, 27-31. 08028 Barcelona, Spain
| | - Pilar Pérez-Lozano
- Departamento de Farmacia, Tecnología Farmacéutica y Físico Química, Facultad de Farmacia y Ciencias de la Alimentación. Universidad de Barcelona. Avda. Joan XXIII, 27-31. 08028 Barcelona, Spain; IDIBELL-UB Research Group, Pharmacotherapy, Pharmacogenomics and Pharmaceutical Technology, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Encarna García-Montoya
- Departamento de Farmacia, Tecnología Farmacéutica y Físico Química, Facultad de Farmacia y Ciencias de la Alimentación. Universidad de Barcelona. Avda. Joan XXIII, 27-31. 08028 Barcelona, Spain; IDIBELL-UB Research Group, Pharmacotherapy, Pharmacogenomics and Pharmaceutical Technology, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
11
|
Huanbutta K, Burapapadh K, Sriamornsak P, Sangnim T. Practical Application of 3D Printing for Pharmaceuticals in Hospitals and Pharmacies. Pharmaceutics 2023; 15:1877. [PMID: 37514063 PMCID: PMC10385973 DOI: 10.3390/pharmaceutics15071877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Three-dimensional (3D) printing is an unrivaled technique that uses computer-aided design and programming to create 3D products by stacking materials on a substrate. Today, 3D printing technology is used in the whole drug development process, from preclinical research to clinical trials to frontline medical treatment. From 2009 to 2020, the number of research articles on 3D printing in healthcare applications surged from around 10 to 2000. Three-dimensional printing technology has been applied to several kinds of drug delivery systems, such as oral controlled release systems, micropills, microchips, implants, microneedles, rapid dissolving tablets, and multiphase release dosage forms. Compared with conventional manufacturing methods of pharmaceutical products, 3D printing has many advantages, including high production rates due to the flexible operating systems and high drug loading with the desired precision and accuracy for potent drugs administered in small doses. The cost of production via 3D printing can be decreased by reducing material wastage, and the process can be adapted to multiple classes of pharmaceutically active ingredients, including those with poor solubility. Although several studies have addressed the benefits of 3D printing technology, hospitals and pharmacies have only implemented this process for a small number of practical applications. This article discusses recent 3D printing applications in hospitals and pharmacies for medicinal preparation. The article also covers the potential future applications of 3D printing in pharmaceuticals.
Collapse
Affiliation(s)
- Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Kanokporn Burapapadh
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, 169, Saensook, Muang, Chonburi 20131, Thailand
| |
Collapse
|
12
|
Saxena A, Malviya R. 3D Printable Drug Delivery Systems: Next-generation Healthcare Technology and Regulatory Aspects. Curr Pharm Des 2023; 29:2814-2826. [PMID: 38018197 DOI: 10.2174/0113816128275872231105183036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
A revolutionary shift in healthcare has been sparked by the development of 3D printing, propelling us into an era replete with boundless opportunities for personalized DDS (Drug Delivery Systems). Precise control of the kinetics of drug release can be achieved through 3D printing, improving treatment efficacy and patient compliance. Additionally, 3D printing facilitates the co-administration of multiple drugs, simplifying treatment regimens. The technology offers rapid prototyping and manufacturing capabilities, reducing development timelines and costs. The seamless integration of advanced algorithms and artificial neural networks (ANN) augments the precision and efficacy of 3D printing, propelling us toward the forefront of personalized medicine. This comprehensive review delves into the regulatory frontiers governing 3D printable drug delivery systems, with an emphasis on adhering to rigorous safety protocols to ensure the well-being of patients by leveraging the latest advancements in 3D printing technologies powered by artificial intelligence. The paradigm promises superior therapeutic outcomes and optimized medication experiences and sets the stage for an immersive future within the Metaverse, wherein healthcare seamlessly converges with virtual environments to unlock unparalleled possibilities for personalized treatments.
Collapse
Affiliation(s)
- Anmol Saxena
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
13
|
Beer N, Kaae S, Genina N, Sporrong SK, Alves TL, Hoebert J, De Bruin ML, Hegger I. Magistral Compounding with 3D Printing: A Promising Way to Achieve Personalized Medicine. Ther Innov Regul Sci 2023; 57:26-36. [PMID: 35943712 PMCID: PMC9755095 DOI: 10.1007/s43441-022-00436-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/20/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Magistral compounding has always been an integral part of pharmacy practice. The increasing demand worldwide for personalized drug treatments might be accommodated by an increase in magistral compounding. The new, flexible technology of 3D medicine printing could advance this process even further. However, the issue of how 3D medicine printing can be implemented within the existing magistral compounding infrastructure has not been explored. AIMS To investigate how 3D printing can be integrated into the existing compounding system by taking regulatory, economic, and profession-oriented aspects into account. METHODS Semi-structured interviews were conducted with relevant Dutch stakeholders representing various health institutions, such as health ministries and boards, professional bodies, and different types of pharmacies. Participants were identified through purposeful sampling. Content analysis was applied to identify the main themes. RESULTS A total of 15 Dutch stakeholders were interviewed. It was found that the prevalence of compounding in community pharmacies in the Netherlands has decreased as a result of the practice shifting to specialized compounding pharmacies due to higher costs, lack of space, and the need to fulfill quality requirements. All interviewees considered 3D printing to be a promising compounding technique for community pharmacies, as it offers an automated approach with high digital flexibility and enables adapted formulations, including 'polypills.' Regulatory and quality assurance challenges were considered comparable to those of normal magistral products; however, there remain pending regulatory issues regarding quality control, particularly for Active Pharmaceutical Ingredients containing intermediate feedstock materials (e.g., prefilled cartridges) in 3D printing. 3D printing was believed to become cost effective over time. CONCLUSION In the Netherlands, specialized compounding pharmacies have largely taken over compounding activities. 3D printing could be introduced within this system; however, challenges regarding how to regulate prefilled cartridges have yet to be addressed. Compounding using 3D printing in regular community pharmacies could enhance patients' individualized treatment; however, this activity would require incentives to stimulate the return of compounding to normal pharmacy practice.
Collapse
Affiliation(s)
- Netta Beer
- Social and Clinical Pharmacy Research Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Susanne Kaae
- Social and Clinical Pharmacy Research Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Natalja Genina
- Manufacturing and Materials Research Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - Sofia Kälvemark Sporrong
- Social and Clinical Pharmacy Research Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark ,Social Pharmacy Group, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Teresa Leonardo Alves
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Joëlle Hoebert
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marie Louise De Bruin
- Copenhagen Centre for Regulatory Science, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark ,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ingrid Hegger
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
14
|
Ong JJ, Castro BM, Gaisford S, Cabalar P, Basit AW, Pérez G, Goyanes A. Accelerating 3D printing of pharmaceutical products using machine learning. Int J Pharm X 2022; 4:100120. [PMID: 35755603 PMCID: PMC9218223 DOI: 10.1016/j.ijpx.2022.100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional printing (3DP) has seen growing interest within the healthcare industry for its ability to fabricate personalized medicines and medical devices. However, it may be burdened by the lengthy empirical process of formulation development. Active research in pharmaceutical 3DP has led to a wealth of data that machine learning could utilize to provide predictions of formulation outcomes. A balanced dataset is critical for optimal predictive performance of machine learning (ML) models, but data available from published literature often only include positive results. In this study, in-house and literature-mined data on hot melt extrusion (HME) and fused deposition modeling (FDM) 3DP formulations were combined to give a more balanced dataset of 1594 formulations. The optimized ML models predicted the printability and filament mechanical characteristics with an accuracy of 84%, and predicted HME and FDM processing temperatures with a mean absolute error of 5.5 °C and 8.4 °C, respectively. The performance of these ML models was better than previous iterations with a smaller and a more imbalanced dataset, highlighting the importance of providing a structured and heterogeneous dataset for optimal ML performance. The optimized models were integrated in an updated web-application, M3DISEEN, that provides predictions on filament characteristics, printability, HME and FDM processing temperatures, and drug release profiles (https://m3diseen.com/predictionsFDM/). By simulating the workflow of preparing FDM-printed pharmaceutical products, the web-application expedites the otherwise empirical process of formulation development, facilitating higher pharmaceutical 3DP research throughput.
Collapse
Affiliation(s)
- Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Brais Muñiz Castro
- IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK
| | - Pedro Cabalar
- IRLab, Department of Computer Science, University of A Coruña, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK
| | - Gilberto Pérez
- IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.,FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK.,Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain
| |
Collapse
|
15
|
Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Innovations in Chewable Formulations: The Novelty and Applications of 3D Printing in Drug Product Design. Pharmaceutics 2022; 14:1732. [PMID: 36015355 PMCID: PMC9412656 DOI: 10.3390/pharmaceutics14081732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Since their introduction, chewable dosage forms have gained traction due to their ability to facilitate swallowing, especially in paediatric, geriatric and dysphagia patients. Their benefits stretch beyond human use to also include veterinary applications, improving administration and palatability in different animal species. Despite their advantages, current chewable formulations do not account for individualised dosing and palatability preferences. In light of this, three-dimensional (3D) printing, and in particular the semi-solid extrusion technology, has been suggested as a novel manufacturing method for producing customised chewable dosage forms. This advanced approach offers flexibility for selecting patient-specific doses, excipients, and organoleptic properties, which are critical for ensuring efficacy, safety and adherence to the treatment. This review provides an overview of the latest advancements in chewable dosage forms for human and veterinary use, highlighting the motivations behind their use and covering formulation considerations, as well as regulatory aspects.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| |
Collapse
|
16
|
Preferences of Healthcare Professionals on 3D-Printed Tablets: A Pilot Study. Pharmaceutics 2022; 14:pharmaceutics14071521. [PMID: 35890417 PMCID: PMC9319202 DOI: 10.3390/pharmaceutics14071521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Highlights Abstract An inaugural study was performed to understand the perceptions of healthcare professionals toward the potential benefits of 3D printing in Singapore. This study sought to increase awareness of 3D printing applications for viable clinical applications and to elucidate the current gaps in therapy where 3D printing could play a role. A common example would be the use of 3D printing to manufacture polypills, thereby reducing the daily pill burden of patients and possibly improving medication adherence. A qualitative descriptive survey with a single-centered cross-sectional design was performed at Tan Tock Seng Hospital, a tertiary referral hospital with 1700 beds. This study had a total of 55 respondents comprising doctors and pharmacists. Most of the respondents viewed the 3D printing of oral dosage forms favorably and agreed about the potential advantages this technology could offer. More than 60% of the respondents were also willing to prescribe 3D printed tablets to patients. Respondents’ concerns were grouped into three main categories: formulation considerations, manufacturing processes, and administrative issues. Viewed in its entirety, this study provides a valuable starting point for understanding the perceptions of healthcare professionals in adopting 3D printing technology.
Collapse
|
17
|
Abstract
A polypill-type strategy for primary prevention was first published at the turn of the century and advised that a multi-ingredient pill applied to an adult population would prevent up to 80% of cardiovascular and stroke events. Such a pill should contain small doses of antihypertensives, lipid-lowering drugs, and some nutrients. The startling increase of the global stroke burden has led to a revival of this concept and the propagation of a population-based prevention strategy. Recent cardiovascular fixed-dose combination trials have shown a significant effect in reducing not only blood pressure and cholesterol levels but also in reducing cardiovascular and stroke events. In most of the studies, the study population was for secondary prevention and the total number of strokes was small. Nevertheless, it is now clear that a large proportion of primary prevention must take this path. It is especially promising when combined with community health workers interventions for modifying risk behavior. While a polypill-type approach seems most efficacious in underserved regions of high-income countries as well as in low- and middle-income countries, it seems to have a large overall effect in spite of some problems with nonadherence or potential side effects. It should be available and affordable for large target populations. Larger phase 4 studies are under way.
Collapse
Affiliation(s)
- Michael Brainin
- Department for Clinical Neuroscience and Preventive Medicine, University for Continuing Education Krems, Austria (M.B., Y.T.)
| | - Yvonne Teuschl
- Department for Clinical Neuroscience and Preventive Medicine, University for Continuing Education Krems, Austria (M.B., Y.T.)
| | - Sheila Martins
- Neurology and Neurosurgery Service, Hospital Moinhos de Vento, Brazil (S.M.).,Neurology Service, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (S.M.)
| |
Collapse
|
18
|
Additive Manufacturing Strategies for Personalized Drug Delivery Systems and Medical Devices: Fused Filament Fabrication and Semi Solid Extrusion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092784. [PMID: 35566146 PMCID: PMC9100145 DOI: 10.3390/molecules27092784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
Novel additive manufacturing (AM) techniques and particularly 3D printing (3DP) have achieved a decade of success in pharmaceutical and biomedical fields. Highly innovative personalized therapeutical solutions may be designed and manufactured through a layer-by-layer approach starting from a digital model realized according to the needs of a specific patient or a patient group. The combination of patient-tailored drug dose, dosage, or diagnostic form (shape and size) and drug release adjustment has the potential to ensure the optimal patient therapy. Among the different 3D printing techniques, extrusion-based technologies, such as fused filament fabrication (FFF) and semi solid extrusion (SSE), are the most investigated for their high versatility, precision, feasibility, and cheapness. This review provides an overview on different 3DP techniques to produce personalized drug delivery systems and medical devices, highlighting, for each method, the critical printing process parameters, the main starting materials, as well as advantages and limitations. Furthermore, the recent developments of fused filament fabrication and semi solid extrusion 3DP are discussed. In this regard, the current state of the art, based on a detailed literature survey of the different 3D products printed via extrusion-based techniques, envisioning future directions in the clinical applications and diffusion of such systems, is summarized.
Collapse
|
19
|
Varghese R, Sood P, Salvi S, Karsiya J, Kumar D. 3D printing in the pharmaceutical sector: Advances and evidences. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
20
|
Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FK, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 2022; 181:114076. [PMID: 34890739 DOI: 10.1016/j.addr.2021.114076] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.
Collapse
|
21
|
Adamov I, Medarević Đ, Ivković B, Ivković A, Ibrić S. Digital light processing (DLP) 3D printing technique applied in the fabrication of two-layered tablets: The concept of a combined polypill. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-40365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ever since 3D printing was introduced to the field of pharmacy, it has caused a paradigm shift from the manufacturing of large-scale to small batches of medicines tailored accordingly to the specific needs of patients. This study aimed to formulate and fabricate two-layered 3D tablets using the digital light processing (DLP) technique. Hydrochlorothiazide (HHT,5%,w/w) and warfarin sodium (WS,5%,w/w) were selected as model drugs. The printing process was initiated with 0.1% of photoinitiator, at a constant ratio of poly(ethylene glycol)diacrylate and poly(ethylene glycol) 400, 1:1, with the addition of water (10%,w/w). Single-layered tablets of 8.00 mm diameter and 1.50 mm thickness, containing HHT and WS respectively, were successfully printed, as well as combined two-layered 3D tablets, with each of the active substances in separate layers. Dissolution tests of single-layered tablets showed immediate, but incomplete release of WS (81.47±1.47%, after 45min), and prolonged and complete release of HHT (98.17±3.11%, after 8h), while significantly slower and incomplete release of both drugs from the combined two-layered 3D tablets was observed. The absence of drug-polymer interaction and presence of a layered cross-sectional tablet structure were confirmed. DLP technique enables simple and rapid fabrication of combined two-layered 3D tablets, while further optimization of formulation factors is necessary to achieve complete drug release.
Collapse
|
22
|
Barber BW, Dumont C, Caisse P, Simon GP, Boyd BJ. A 3D-Printed Polymer-Lipid-Hybrid Tablet towards the Development of Bespoke SMEDDS Formulations. Pharmaceutics 2021; 13:pharmaceutics13122107. [PMID: 34959390 PMCID: PMC8707116 DOI: 10.3390/pharmaceutics13122107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022] Open
Abstract
3D printing is a rapidly growing area of interest within pharmaceutical science thanks to its versatility in creating different dose form geometries and drug doses to enable the personalisation of medicines. Research in this area has been dominated by polymer-based materials; however, for poorly water-soluble lipophilic drugs, lipid formulations present advantages in improving bioavailability. This study progresses the area of 3D-printed solid lipid formulations by providing a 3D-printed dissolvable polymer scaffold to compartmentalise solid lipid formulations within a single dosage form. This allows the versatility of different drugs in different lipid formulations, loaded into different compartments to generate wide versatility in drug release, and specific control over release geometry to tune release rates. Application to a range of drug molecules was demonstrated by incorporating the model lipophilic drugs; halofantrine, lumefantrine and clofazimine into the multicompartmental scaffolded tablets. Fenofibrate was used as the model drug in the single compartment scaffolded tablets for comparison with previous studies. The formulation-laden scaffolds were characterised using X-ray CT and dispersion of the formulation was studied using nephelometry, while release of a range of poorly water-soluble drugs into different gastrointestinal media was studied using HPLC. The studies show that dispersion and drug release are predictably dependent on the exposed surface area-to-volume ratio (SA:V) and independent of the drug. At the extremes of SA:V studied here, within 20 min of dissolution time, formulations with an SA:V of 0.8 had dispersed to between 90 and 110%, and completely released the drug, where as an SA:V of 0 yielded 0% dispersion and drug release. Therefore, this study presents opportunities to develop new dose forms with advantages in a polypharmacy context.
Collapse
Affiliation(s)
- Bryce W. Barber
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, Melbourne 3052, Australia;
| | - Camille Dumont
- Gattefossé SAS, 36 Chemin de Genas, CEDEX, 69804 Saint-Priest, France; (C.D.); (P.C.)
| | - Philippe Caisse
- Gattefossé SAS, 36 Chemin de Genas, CEDEX, 69804 Saint-Priest, France; (C.D.); (P.C.)
| | - George P. Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Melbourne 3800, Australia;
| | - Ben J. Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, Melbourne 3052, Australia;
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
23
|
Awad A, Trenfield SJ, Pollard TD, Ong JJ, Elbadawi M, McCoubrey LE, Goyanes A, Gaisford S, Basit AW. Connected healthcare: Improving patient care using digital health technologies. Adv Drug Deliv Rev 2021; 178:113958. [PMID: 34478781 DOI: 10.1016/j.addr.2021.113958] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/12/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022]
Abstract
Now more than ever, traditional healthcare models are being overhauled with digital technologies of Healthcare 4.0 increasingly adopted. Worldwide, digital devices are improving every stage of the patient care pathway. For one, sensors are being used to monitor patient metrics 24/7, permitting swift diagnosis and interventions. At the treatment stage, 3D printers are under investigation for the concept of personalised medicine by allowing patients access to on-demand, customisable therapeutics. Robots are also being explored for treatment, by empowering precision surgery, rehabilitation, or targeted drug delivery. Within medical logistics, drones are being leveraged to deliver critical treatments to remote areas, collect samples, and even provide emergency aid. To enable seamless integration within healthcare, the Internet of Things technology is being exploited to form closed-loop systems that remotely communicate with one another. This review outlines the most promising healthcare technologies and devices, their strengths, drawbacks, and opportunities for clinical adoption.
Collapse
Affiliation(s)
- Atheer Awad
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sarah J Trenfield
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Thomas D Pollard
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Moe Elbadawi
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Laura E McCoubrey
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alvaro Goyanes
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK.
| |
Collapse
|
24
|
Eleftheriadis GK, Genina N, Boetker J, Rantanen J. Modular design principle based on compartmental drug delivery systems. Adv Drug Deliv Rev 2021; 178:113921. [PMID: 34390776 DOI: 10.1016/j.addr.2021.113921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
The current manufacturing solutions for oral solid dosage forms are fundamentally based on technologies from the 19th century. This approach is well suited for mass production of one-size-fits-all products; however, it does not allow for a straight-forward personalization and mass customization of the pharmaceutical end-product. In order to provide better therapies to the patients, a need for innovative manufacturing concepts and product design principles has been rising. Additive manufacturing opens up a possibility for compartmentalization of drug products, including design of spatially separated multidrug and functional excipient compartments. This compartmentalized solution can be further expanded to modular design thinking. Modular design is referring to combination of building blocks containing a given amount of drug compound(s) and related functional excipients into a larger final product. Implementation of modular design principles is paving the way for implementing the emerging personalization potential within health sciences by designing compartmental and reactive product structures that can be manufactured based on the individual needs of each patient. This review will introduce the existing compartmentalized product design principles and discuss the integration of these into edible electronics allowing for innovative control of drug release.
Collapse
Affiliation(s)
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Johan Boetker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
25
|
Polymers in pharmaceutical additive manufacturing: A balancing act between printability and product performance. Adv Drug Deliv Rev 2021; 177:113923. [PMID: 34390775 DOI: 10.1016/j.addr.2021.113923] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Materials and manufacturing processes share a common purpose of enabling the pharmaceutical product to perform as intended. This review on the role of polymeric materials in additive manufacturing of oral dosage forms, focuses on the interface between the polymer and key stages of the additive manufacturing process, which determine printability. By systematically clarifying and comparing polymer functional roles and properties for a variety of AM technologies, together with current and emerging techniques to characterize these properties, suggestions are provided to stimulate the use of readily available and sometimes underutilized pharmaceutical polymers in additive manufacturing. We point to emerging characterization techniques and digital tools, which can be harnessed to manage existing trade-offs between the role of polymers in printer compatibility versus product performance. In a rapidly evolving technological space, this serves to trigger the continued development of 3D printers to suit a broader variety of polymers for widespread applications of pharmaceutical additive manufacturing.
Collapse
|
26
|
Xu X, Awwad S, Diaz-Gomez L, Alvarez-Lorenzo C, Brocchini S, Gaisford S, Goyanes A, Basit AW. 3D Printed Punctal Plugs for Controlled Ocular Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13091421. [PMID: 34575497 PMCID: PMC8464872 DOI: 10.3390/pharmaceutics13091421] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023] Open
Abstract
Dry eye disease is a common ocular disorder that is characterised by tear deficiency or excessive tear evaporation. Current treatment involves the use of eye drops; however, therapeutic efficacy is limited because of poor ocular bioavailability of topically applied formulations. In this study, digital light processing (DLP) 3D printing was employed to develop dexamethasone-loaded punctal plugs. Punctal plugs with different drug loadings were fabricated using polyethylene glycol diacrylate (PEGDA) and polyethylene glycol 400 (PEG 400) to create a semi-interpenetrating network (semi-IPN). Drug-loaded punctal plugs were characterised in terms of physical characteristics (XRD and DSC), potential drug-photopolymer interactions (FTIR), drug release profile, and cytocompatibility. In vitro release kinetics of the punctal plugs were evaluated using an in-house flow rig model that mimics the subconjunctival space. The results showed sustained release of dexamethasone for up to 7 days from punctal plugs made with 20% w/w PEG 400 and 80% w/w PEGDA, while punctal plugs made with 100% PEGDA exhibited prolonged releases for more than 21 days. Herein, our study demonstrates that DLP 3D printing represents a potential manufacturing platform for fabricating personalised drug-loaded punctal plugs with extended release characteristics for ocular administration.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
| | - Sahar Awwad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.)
| | - Steve Brocchini
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.D.-G.); (C.A.-L.)
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- Correspondence: (A.G.); (A.W.B.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (X.X.); (S.A.); (S.B.); (S.G.)
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- Correspondence: (A.G.); (A.W.B.)
| |
Collapse
|
27
|
Raijada D, Wac K, Greisen E, Rantanen J, Genina N. Integration of personalized drug delivery systems into digital health. Adv Drug Deliv Rev 2021; 176:113857. [PMID: 34389172 DOI: 10.1016/j.addr.2021.113857] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022]
Abstract
Personalized drug delivery systems (PDDS), implying the patient-tailored dose, dosage form, frequency of administration and drug release kinetics, and digital health platforms for diagnosis and treatment monitoring, patient adherence, and traceability of drug products, are emerging scientific areas. Both fields are advancing at a fast pace. However, despite the strong complementary nature of these disciplines, there are only a few successful examples of merging these areas. Therefore, it is important and timely to combine PDDS with an increasing number of high-end digital health solutions to create an interactive feedback loop between the actual needs of each patient and the drug products. This review provides an overview of advanced design solutions for new products such as interactive personalized treatment that would interconnect the pharmaceutical and digital worlds. Furthermore, we discuss the recent advancements in the pharmaceutical supply chain (PSC) management and related limitations of the current mass production model. We summarize the current state of the art and envision future directions and potential development areas.
Collapse
Affiliation(s)
- Dhara Raijada
- Department of Pharmacy, University of Copenhagen, Denmark
| | - Katarzyna Wac
- Department of Computer Science, University of Copenhagen, Denmark; Quality of Life Technologies Lab, Center for Informatics, University of Geneva, Switzerland
| | | | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Denmark
| | - Natalja Genina
- Department of Pharmacy, University of Copenhagen, Denmark.
| |
Collapse
|
28
|
Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharm Sin B 2021; 11:2488-2504. [PMID: 34567958 PMCID: PMC8447232 DOI: 10.1016/j.apsb.2021.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional printing is a technology that prints the products layer-by-layer, in which materials are deposited according to the digital model designed by computer aided design (CAD) software. This technology has competitive advantages regarding product design complexity, product personalization, and on-demand manufacturing. The emergence of 3D technology provides innovative strategies and new ways to develop novel drug delivery systems. This review summarizes the application of 3D printing technologies in the pharmaceutical field, with an emphasis on the advantages of 3D printing technologies for achieving rapid drug delivery, personalized drug delivery, compound drug delivery and customized drug delivery. In addition, this article illustrates the limitations and challenges of 3D printing technologies in the field of pharmaceutical formulation development.
Collapse
|
29
|
Muñiz Castro B, Elbadawi M, Ong JJ, Pollard T, Song Z, Gaisford S, Pérez G, Basit AW, Cabalar P, Goyanes A. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Release 2021; 337:530-545. [PMID: 34339755 DOI: 10.1016/j.jconrel.2021.07.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Three-dimensional printing (3DP) is a transformative technology that is advancing pharmaceutical research by producing personalized drug products. However, advances made via 3DP have been slow due to the lengthy trial-and-error approach in optimization. Artificial intelligence (AI) is a technology that could revolutionize pharmaceutical 3DP through analyzing large datasets. Herein, literature-mined data for developing AI machine learning (ML) models was used to predict key aspects of the 3DP formulation pipeline and in vitro dissolution properties. A total of 968 formulations were mined and assessed from 114 articles. The ML techniques explored were able to learn and provide accuracies as high as 93% for values in the filament hot melt extrusion process. In addition, ML algorithms were able to use data from the composition of the formulations with additional input features to predict the drug release of 3D printed medicines. The best prediction was obtained by an artificial neural network that was able to predict drug release times of a formulation with a mean error of ±24.29 min. In addition, the most important variables were revealed, which could be leveraged in formulation development. Thus, it was concluded that ML proved to be a suitable approach to modelling the 3D printing workflow.
Collapse
Affiliation(s)
- Brais Muñiz Castro
- IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain
| | - Moe Elbadawi
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Thomas Pollard
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Zhe Song
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England TN24 8DH, UK
| | - Gilberto Pérez
- IRLab, CITIC Research Center, Department of Computer Science, University of A Coruña, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England TN24 8DH, UK.
| | - Pedro Cabalar
- IRLab, Department of Computer Science, University of A Coruña, Spain
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., Henwood House, Henwood, Ashford, Kent, England TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain.
| |
Collapse
|
30
|
Disrupting 3D printing of medicines with machine learning. Trends Pharmacol Sci 2021; 42:745-757. [PMID: 34238624 DOI: 10.1016/j.tips.2021.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
3D printing (3DP) is a progressive technology capable of transforming pharmaceutical development. However, despite its promising advantages, its transition into clinical settings remains slow. To make the vital leap to mainstream clinical practice and improve patient care, 3DP must harness modern technologies. Machine learning (ML), an influential branch of artificial intelligence, may be a key partner for 3DP. Together, 3DP and ML can utilise intelligence based on human learning to accelerate drug product development, ensure stringent quality control (QC), and inspire innovative dosage-form design. With ML's capabilities, streamlined 3DP drug delivery could mark the next era of personalised medicine. This review details how ML can be applied to elevate the 3DP of pharmaceuticals and importantly, how it can expedite 3DP's integration into mainstream healthcare.
Collapse
|
31
|
Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Adv Drug Deliv Rev 2021; 174:553-575. [PMID: 33965461 DOI: 10.1016/j.addr.2021.05.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) printing is a revolutionary technology that is disrupting pharmaceutical development by enabling the production of personalised printlets (3D printed drug products) on demand. By creating small batches of dose flexible medicines, this versatile technology offers significant advantages for clinical practice and drug development, namely the ability to personalise medicines to individual patient needs, as well as expedite drug development timelines within preclinical studies through to first-in-human (FIH) and Phase I/II clinical trials. Despite the widely demonstrated benefits of 3D printing pharmaceuticals, the clinical potential of the technology is yet to be realised. In this timely review, we provide an overview of the latest cutting-edge investigations in 3D printing pharmaceuticals in the pre-clinical and clinical arena and offer a forward-looking approach towards strategies to further aid the translation of 3D printing into the clinic.
Collapse
|
32
|
Patel SK, Khoder M, Peak M, Alhnan MA. Controlling drug release with additive manufacturing-based solutions. Adv Drug Deliv Rev 2021; 174:369-386. [PMID: 33895213 DOI: 10.1016/j.addr.2021.04.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 02/09/2023]
Abstract
3D printing is an innovative manufacturing technology with great potential to revolutionise solid dosage forms. Novel features of 3D printing technology confer advantage over conventional solid dosage form manufacturing technologies, including rapid prototyping and an unparalleled capability to fabricate complex geometries with spatially separated conformations. Such a novel technology could transform the pharmaceutical industry, enabling the production of highly personalised dosage forms with well-defined release profiles. In this work, we review the current state of the art of using additive manufacturing for predicting and understanding drug release from 3D printed novel structures. Furthermore, we describe a wide spectrum of 3D printing technologies, materials, procedure, and processing parameters used to fabricate fundamentally different matrices with different drug releases. The different methods to manipulate drug release patterns including the surface area-to-mass ratio, infill pattern, geometry, and composition, are critically evaluated. Moreover, the drug release mechanisms and models that could aid exploiting the release profile are also covered. Finally, this review also covers the design opportunities alongside the technical and regulatory challenges that these rapidly evolving technologies present.
Collapse
|
33
|
Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv Drug Deliv Rev 2021; 174:406-424. [PMID: 33951489 DOI: 10.1016/j.addr.2021.04.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Powder bed fusion (PBF) is a 3D printing method that selectively consolidates powders into 3D objects using a power source. PBF has various derivatives; selective laser sintering/melting, direct metal laser sintering, electron beam melting and multi-jet fusion. These technologies provide a multitude of benefits that make them well suited for the fabrication of bespoke drug-laden formulations, devices and implants. This includes their superior printing resolution and speed, and ability to produce objects without the need for secondary supports, enabling them to precisely create complex products. Herein, this review article outlines the unique applications of PBF 3D printing, including the main principles underpinning its technologies and highlighting their novel pharmaceutical and biomedical applications. The challenges and shortcomings are also considered, emphasising on their effects on the 3D printed products, whilst providing a forward-thinking view.
Collapse
|
34
|
Borandeh S, van Bochove B, Teotia A, Seppälä J. Polymeric drug delivery systems by additive manufacturing. Adv Drug Deliv Rev 2021; 173:349-373. [PMID: 33831477 DOI: 10.1016/j.addr.2021.03.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
Additive manufacturing (AM) is gaining interests in drug delivery applications, offering innovative opportunities for the design and development of systems with complex geometry and programmed controlled release profile. In addition, polymer-based drug delivery systems can improve drug safety, efficacy, patient compliance, and are the key materials in AM. Therefore, combining AM and polymers can be beneficial to overcome the existing limitations in the development of controlled release drug delivery systems. Considering these advantages, here we are focusing on the recent developments in the field of polymeric drug delivery systems prepared by AM. This review provides a comprehensive overview on a holistic polymer-AM perspective for drug delivery systems with discussion on the materials, properties, design and fabrication techniques and the mechanisms used to achieve a controlled release system. The current challenges and future perspectives for personalized medicine and clinical use of these systems are also briefly discussed.
Collapse
Affiliation(s)
- Sedigheh Borandeh
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Bas van Bochove
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Arun Teotia
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo 02150, Finland.
| |
Collapse
|
35
|
Eleftheriadis GK, Kantarelis E, Monou PK, Andriotis EG, Bouropoulos N, Tzimtzimis EK, Tzetzis D, Rantanen J, Fatouros DG. Automated digital design for 3D-printed individualized therapies. Int J Pharm 2021; 599:120437. [PMID: 33662466 DOI: 10.1016/j.ijpharm.2021.120437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Customization of pharmaceutical products is a central requirement for personalized medicines. However, the existing processing and supply chain solutions do not support such manufacturing-on-demand approaches. In order to solve this challenge, three-dimensional (3D) printing has been applied for customization of not only the dose and release characteristics, but also appearance of the product (e.g., size and shape). A solution for customization can be realized via non-expert-guided processing of digital designs and drug dose. This study presents a proof-of-concept computational algorithm which calculates the optimal dimensions of grid-like orodispersible films (ODFs), considering the recommended dose. Further, the algorithm exports a digital design file which contains the required ODF configuration. Cannabidiol (CBD) was incorporated in the ODFs, considering the simple correspondence between the recommended dose and the patient's weight. The ODFs were 3D-printed and characterized for their physicochemical, mechanical, disintegration and drug release properties. The algorithm was evaluated for its accuracy on dose estimation, highlighting the reproducibility of individualized ODFs. The in vitro performance was principally affected by the thickness and volume of the grid-like structures. The concept provides an alternative approach that promotes automation in the manufacturing of personalized medications in distributed points of care, such as hospitals and local pharmacies.
Collapse
Affiliation(s)
- Georgios K Eleftheriadis
- Division of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Efthymios Kantarelis
- KTH Royal Institute of Technology, Department of Chemical Engineering, SE100 44 Stockholm, Sweden
| | - Paraskevi Kyriaki Monou
- Division of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftherios G Andriotis
- Division of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Rio, Patras, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras, Greece
| | - Emmanouil K Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thermi, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thermi, Greece
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Dimitrios G Fatouros
- Division of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
36
|
Paunović N, Bao Y, Coulter FB, Masania K, Geks AK, Klein K, Rafsanjani A, Cadalbert J, Kronen PW, Kleger N, Karol A, Luo Z, Rüber F, Brambilla D, von Rechenberg B, Franzen D, Studart AR, Leroux JC. Digital light 3D printing of customized bioresorbable airway stents with elastomeric properties. SCIENCE ADVANCES 2021; 7:7/6/eabe9499. [PMID: 33536222 PMCID: PMC7857684 DOI: 10.1126/sciadv.abe9499] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/17/2020] [Indexed: 05/19/2023]
Abstract
Central airway obstruction is a life-threatening disorder causing a high physical and psychological burden to patients. Standard-of-care airway stents are silicone tubes, which provide immediate relief but are prone to migration. Thus, they require additional surgeries to be removed, which may cause tissue damage. Customized bioresorbable airway stents produced by 3D printing would be highly needed in the management of this disorder. However, biocompatible and biodegradable materials for 3D printing of elastic medical implants are still lacking. Here, we report dual-polymer photoinks for digital light 3D printing of customized and bioresorbable airway stents. These stents exhibit tunable elastomeric properties with suitable biodegradability. In vivo study in healthy rabbits confirmed biocompatibility and showed that the stents stayed in place for 7 weeks after which they became radiographically invisible. This work opens promising perspectives for the rapid manufacturing of the customized medical devices for which high precision, elasticity, and degradability are sought.
Collapse
Affiliation(s)
- Nevena Paunović
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Yinyin Bao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Kunal Masania
- Complex Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
- Shaping Matter Lab, Faculty of Aerospace Engineering, TU Delft, Delft, Netherlands
| | - Anna Karoline Geks
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Karina Klein
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ahmad Rafsanjani
- Complex Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
- SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark
| | - Jasmin Cadalbert
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Peter W Kronen
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Veterinary Anaesthesia Services-International, Winterthur, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| | - Nicole Kleger
- Complex Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Agnieszka Karol
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Zhi Luo
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Fabienne Rüber
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Davide Brambilla
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | | | - Daniel Franzen
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, Switzerland.
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
Makris E, Hu L, Jones GB, Wright JM. Moving the Dial on Heart Failure Patient Adherence Rates. Patient Prefer Adherence 2020; 14:2407-2418. [PMID: 33324042 PMCID: PMC7733338 DOI: 10.2147/ppa.s283277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Heart failure remains a substantive contributor to patient morbidity and mortality rates worldwide and represents a significant burden on the healthcare ecosystem. Faced with persistent physical symptoms and debilitating social consequences, patients follow complex treatment regimens and often have difficulty adhering to them. PURPOSE In this manuscript, we review factors which contribute to low adherence rates and advance potential single- and multi-factor-based interventions. It is hoped that these observations can lead to improvements in managed care of this vulnerable population of patients. METHODS A narrative review of the primary literature was performed on contributing factors with primary focus on the period 2015-2020 using available databases and search engines. Adherence pain points identified were mapped against a series of potential solutions which are presented. RESULTS Enhancement of treatment adherence relies on two approaches viz. single-factor and multi-factor solutions. Single factors identified include electronic reminders, enhanced health education, financial incentives, gamification strategies, community drivers, persona-based modeling, and burden relief of poly pharmacy. Multi-factor solutions combine two or more of the seven approaches offering the potential for flexible interventions tailored to the individual. DISCUSSION AND CONCLUSION Heart failure patients with poor adherence have increased mortality, hospitalization needs, and healthcare costs. This review highlights current single-factor and multi-factor adherence methods. Against a backdrop of diversity of approaches, multi-factor solutions cast the widest net for positively influencing adherent behaviors. A key enabler lies in the development and leveraging of patient personas in the synthesis of successful intervention methods. Deployable solutions can also be envisioned in clinical trials where adherence tracking represents an essential component.
Collapse
Affiliation(s)
- Eleanna Makris
- TRD Innovation Group, Novartis Pharmaceuticals, East Hanover, NJ07936, USA
| | - Lucy Hu
- TRD Innovation Group, Novartis Pharmaceuticals, East Hanover, NJ07936, USA
| | - Graham B Jones
- TRD Innovation Group, Novartis Pharmaceuticals, East Hanover, NJ07936, USA
- Clinical and Translational Science Institute, Tufts University Medical Center, Boston, MA02111, USA
| | - Justin M Wright
- TRD Innovation Group, Novartis Pharmaceuticals, East Hanover, NJ07936, USA
| |
Collapse
|
38
|
Xu X, Awad A, Robles-Martinez P, Gaisford S, Goyanes A, Basit AW. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Control Release 2020; 329:743-757. [PMID: 33031881 DOI: 10.1016/j.jconrel.2020.10.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) printing is transforming manufacturing paradigms within healthcare. Vat photopolymerization 3D printing technology combines the benefits of high resolution and favourable printing speed, offering a sophisticated approach to fabricate bespoke medical devices and drug delivery systems. Herein, an overview of the vat polymerization techniques, their unique applications in the fields of drug delivery and medical device fabrication, material examples and the advantages they provide within healthcare, is provided. The challenges and drawbacks presented by this technology are also discussed. It is forecast that the adoption of 3D printing could pave the way for a personalised health system, advancing from traditional treatments pathways towards digital healthcare.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Pamela Robles-Martinez
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I + D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| |
Collapse
|
39
|
M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines. Int J Pharm 2020; 590:119837. [PMID: 32961295 DOI: 10.1016/j.ijpharm.2020.119837] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023]
Abstract
Artificial intelligence (AI) has the potential to reshape pharmaceutical formulation development through its ability to analyze and continuously monitor large datasets. Fused deposition modeling (FDM) three-dimensional printing (3DP) has made significant advancements in the field of oral drug delivery with personalized drug-loaded formulations being designed, developed and dispensed for the needs of the patient. The FDM 3DP process begins with the production of drug-loaded filaments by hot melt extrusion (HME), followed by the printing of a drug product using a FDM 3D printer. However, the optimization of the fabrication parameters is a time-consuming, empirical trial approach, requiring expert knowledge. Here, M3DISEEN, a web-based pharmaceutical software, was developed to accelerate FDM 3D printing using AI machine learning techniques (MLTs). In total, 614 drug-loaded formulations were designed from a comprehensive list of 145 different pharmaceutical excipients, 3D printed and assessed in-house. To build the predictive tool, a dataset was constructed and models were trained and tested at a ratio of 75:25. Significantly, the AI models predicted key fabrication parameters with accuracies of 76% and 67% for the printability and the filament characteristics, respectively. Furthermore, the AI models predicted the HME and FDM processing temperatures with a mean absolute error of 8.9 °C and 8.3 °C, respectively. Strikingly, the AI models achieved high levels of accuracy by solely inputting the pharmaceutical excipient trade names. Therefore, AI provides an effective holistic modeling technology and software to streamline and advance 3DP as a significant technology within drug development. M3DISEEN is available at (http://m3diseen.com/predictions/).
Collapse
|
40
|
Temperature and solvent facilitated extrusion based 3D printing for pharmaceuticals. Eur J Pharm Sci 2020; 152:105430. [DOI: 10.1016/j.ejps.2020.105430] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/09/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
|
41
|
Govender R, Abrahmsén-Alami S, Larsson A, Borde A, Liljeblad A, Folestad S. Independent Tailoring of Dose and Drug Release via a Modularized Product Design Concept for Mass Customization. Pharmaceutics 2020; 12:E771. [PMID: 32823877 PMCID: PMC7465528 DOI: 10.3390/pharmaceutics12080771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Independent individualization of multiple product attributes, such as dose and drug release, is a crucial overarching requirement of pharmaceutical products for individualized therapy as is the unified integration of individualized product design with the processes and production that drive patient access to such therapy. Individualization intrinsically demands a marked increase in the number of product variants to suit smaller, more stratified patient populations. One established design strategy to provide enhanced product variety is product modularization. Despite existing customized and/or modular product design concepts, multifunctional individualization in an integrated manner is still strikingly absent in pharma. Consequently, this study aims to demonstrate multifunctional individualization through a modular product design capable of providing an increased variety of release profiles independent of dose and dosage form size. To further exhibit that increased product variety is attainable even with a low degree of product modularity, the modular design was based upon a fixed target dosage form size of approximately 200 mm3 comprising two modules, approximately 100 mm3 each. Each module contained a melt-extruded and molded formulation of 40% w/w metoprolol succinate in a PEG1500 and Kollidon® VA64 erodible hydrophilic matrix surrounded by polylactic acid and/or polyvinyl acetate as additional release rate-controlling polymers. Drug release testing confirmed the generation of predictable, combined drug release kinetics for dosage forms, independent of dose, based on a product's constituent modules and enhanced product variety through a minimum of six dosage form release profiles from only three module variants. Based on these initial results, the potential of the reconfigurable modular product design concept is discussed for unified integration into a pharmaceutical mass customization/mass personalization context.
Collapse
Affiliation(s)
- Rydvikha Govender
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; (S.A.-A.); (A.B.); (A.L.)
- Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden;
| | - Susanna Abrahmsén-Alami
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; (S.A.-A.); (A.B.); (A.L.)
| | - Anette Larsson
- Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden;
| | - Anders Borde
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; (S.A.-A.); (A.B.); (A.L.)
| | - Alexander Liljeblad
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; (S.A.-A.); (A.B.); (A.L.)
| | - Staffan Folestad
- Innovation Strategies and External Liaison, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden;
| |
Collapse
|