1
|
Funnell JL, Fougere J, Zahn D, Dutz S, Gilbert RJ. Delivery of TGFβ3 from Magnetically Responsive Coaxial Fibers Reduces Spinal Cord Astrocyte Reactivity In Vitro. Adv Biol (Weinh) 2024; 8:e2300531. [PMID: 38935534 PMCID: PMC11473240 DOI: 10.1002/adbi.202300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/29/2024] [Indexed: 06/29/2024]
Abstract
A spinal cord injury (SCI) compresses the spinal cord, killing neurons and glia at the injury site and resulting in prolonged inflammation and scarring that prevents regeneration. Astrocytes, the main glia in the spinal cord, become reactive following SCI and contribute to adverse outcomes. The anti-inflammatory cytokine transforming growth factor beta 3 (TGFβ3) has been shown to mitigate astrocyte reactivity; however, the effects of prolonged TGFβ3 exposure on reactive astrocyte phenotype have not yet been explored. This study investigates whether magnetic core-shell electrospun fibers can be used to alter the release rate of TGFβ3 using externally applied magnetic fields, with the eventual application of tailored drug delivery based on SCI severity. Magnetic core-shell fibers are fabricated by incorporating superparamagnetic iron oxide nanoparticles (SPIONs) into the shell and TGFβ3 into the core solution for coaxial electrospinning. Magnetic field stimulation increased the release rate of TGFβ3 from the fibers by 25% over 7 days and released TGFβ3 reduced gene expression of key astrocyte reactivity markers by at least twofold. This is the first study to magnetically deliver bioactive proteins from magnetic fibers and to assess the effect of sustained release of TGFβ3 on reactive astrocyte phenotype.
Collapse
Affiliation(s)
- Jessica L Funnell
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th St., Troy, NY, 12180, USA
| | - Jasper Fougere
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th St., Troy, NY, 12180, USA
| | - Diana Zahn
- Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 2, 98693, Ilmenau, Germany
| | - Silvio Dutz
- Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 2, 98693, Ilmenau, Germany
- Westsächsische Hochschule Zwickau, Kornmarkt 1, 08056, Zwickau, Germany
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th St., Troy, NY, 12180, USA
- Albany Stratton Veteran Affairs Medical Center, 113 Holland Ave., Albany, NY, 12208, USA
| |
Collapse
|
2
|
Ismail OI, Hassanin HM. Ameliorative effects of gallic acid on tebuconazole-induced adverse effects in the cerebellum of adult albino rats: histopathological and immunohistochemical evidence. Ultrastruct Pathol 2024; 48:351-366. [PMID: 39105544 DOI: 10.1080/01913123.2024.2387685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Tebuconazole (TEB) is a common triazole sterol demethylation inhibitor fungicide utilized to manage a variety of diseases in crops like cereals, fruits, and vegetables. The aim of this work was to assess the effects of TEB on the structure of the cerebellum in adult albino rats and possible protective impact of co-administration of Gallic acid (GA). Four groups of forty adult male albino rats were randomly selected, and the rats in group I received corn oil through daily gavage for 4 weeks. Group II received GA dissolved in the normal saline at a dose of 100 mg/kg through daily gavage for 4 weeks, group III administered with TEB dissolved in corn oil at its acceptable daily intake dose (0.02 mg/kg body weight) through daily gavage for 4 weeks, group IV rats received both TEB and GA. For light microscopic, ultrastructural, and immunohistochemical investigations, cerebellar specimens were prepared. TEB exposure led to neuronal damage in the form of degenerated Purkinje cells with vacuolated cytoplasm, areas of lost Purkinje cells, the basket cells appeared vacuolated with degenerated neuropil, the granule cells clumped with congested areas between them, dilated cerebellar islands, weak positive bcl2 immunoreactions in the Purkinje cells, and numerous GFAP-positive astrocytes. GA mitigated TEB-mediated histological changes in the cerebellar cortex. We concluded that TEB caused Purkinje neurons in the rat cerebellar cortex to degenerate and undergo apoptosis. GA had a neuroprotective benefit against TEB toxicity in the rat cerebellar cortex.
Collapse
Affiliation(s)
- Omnia I Ismail
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hala Mohamed Hassanin
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Selective stimulation of calcium signalling pathways in astrocytes with graphene electrodes. NATURE NANOTECHNOLOGY 2024; 19:1253-1254. [PMID: 39014183 DOI: 10.1038/s41565-024-01712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
|
4
|
Fabbri R, Scidà A, Saracino E, Conte G, Kovtun A, Candini A, Kirdajova D, Spennato D, Marchetti V, Lazzarini C, Konstantoulaki A, Dambruoso P, Caprini M, Muccini M, Ursino M, Anderova M, Treossi E, Zamboni R, Palermo V, Benfenati V. Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes. NATURE NANOTECHNOLOGY 2024; 19:1344-1353. [PMID: 38987650 PMCID: PMC11405283 DOI: 10.1038/s41565-024-01711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell-electrolyte or cell-material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine.
Collapse
Affiliation(s)
- Roberta Fabbri
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Alessandra Scidà
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Emanuela Saracino
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Giorgia Conte
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Alessandro Kovtun
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Andrea Candini
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Diletta Spennato
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Valeria Marchetti
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Chiara Lazzarini
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Aikaterini Konstantoulaki
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Paolo Dambruoso
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Bologna, Italy
| | - Mauro Ursino
- Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Emanuele Treossi
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Vincenzo Palermo
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| |
Collapse
|
5
|
Spennato D, Leone J, Gundhardt C, Varnavski O, Fabbri R, Caprini M, Zamboni R, Benfenati V, Goodson T. Investigations of Astrocyte Calcium Signaling and Imaging with Classical and Nonclassical Light. J Phys Chem B 2024; 128:7966-7977. [PMID: 39133203 DOI: 10.1021/acs.jpcb.4c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The application of light in studying and influencing cellular behavior with improved temporal and spatial resolution remains a key objective in fields such as chemistry, physics, medicine, and engineering. In the brain, nonexcitable cells called astrocytes play essential roles in regulating homeostasis and cognitive function through complex calcium signaling pathways. Understanding these pathways is vital for deciphering brain physiology and neurological disorders like Parkinson's and Alzheimer's. Despite challenges in selectively targeting astrocyte signaling pathways due to shared molecular equipment with neurons, recent advancements in laser technology offer promising avenues. However, the effort to use laser light properties to study astroglial cell function is still limited. This work aims to exploit an in-depth pharmacological analysis of astrocyte calcium channels to determine the physiological mechanism induced by exposure to classical nanosecond-pulsed light. We herein report molecular clues supporting the use of visible-nanosecond laser pulses as a promising approach to excite primary rat neocortical astrocytes and unprecedentedly report on the implementation of entangled two-photon microscopy to image them.
Collapse
Affiliation(s)
- Diletta Spennato
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Josephine Leone
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolyn Gundhardt
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Oleg Varnavski
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Roberta Fabbri
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Marco Caprini
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, 40126 Bologna, Italy
| | - Roberto Zamboni
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Valentina Benfenati
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Theodor Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Cocola C, Abeni E, Martino V, Piscitelli E, Morara S, Pelucchi P, Mosca E, Chiodi A, Mohamed T, Palizban M, De Petro G, Porta G, Greve B, Noghero A, Magnaghi V, Bellipanni G, Kehler J, Götte M, Bussolino F, Milanesi L, Zucchi I, Reinbold R. Transmembrane protein TMEM230, regulator of metalloproteins and motor proteins in gliomas and gliosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:255-297. [PMID: 38960477 DOI: 10.1016/bs.apcsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.
Collapse
Affiliation(s)
- Cinzia Cocola
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Edoardo Abeni
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Martino
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Eleonora Piscitelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Stefano Morara
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Monza Brianza, Italy
| | - Paride Pelucchi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Ettore Mosca
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Alice Chiodi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Mira Palizban
- Department of Gynecology, and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Porta
- Centro di Medicina Genomica, Department of Medicine and Surgery University of Insubria, Varese, Italy
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Alessio Noghero
- Laboratory of Vascular Oncology Candiolo Cancer Institute, IRCCS, Candiolo, Italy; Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Gianfranco Bellipanni
- Department of Biology, Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States; Center for Biotechnology, Sbarro Institute for Research and Molecular Medicine and Department of Biology, Temple University, Philadelphia, PA, United State
| | - James Kehler
- National Institutes of Health, NIDDK, Laboratory of Cell and Molecular Biology, Bethesda, MD, United States
| | - Martin Götte
- Department of Gynecology, and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Federico Bussolino
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States; Department of Oncology, University of Turin, Orbassano, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Ileana Zucchi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy; Associazione Fondazione Renato Dulbecco, Milano, Italy.
| | - Rolland Reinbold
- Institute of Biomedical Technologies, National Research Council, Milan, Italy; Associazione Fondazione Renato Dulbecco, Milano, Italy.
| |
Collapse
|
7
|
Gao Y, Wang Y, Wu Y, Liu S. Biomaterials targeting the microenvironment for spinal cord injury repair: progression and perspectives. Front Cell Neurosci 2024; 18:1362494. [PMID: 38784712 PMCID: PMC11111957 DOI: 10.3389/fncel.2024.1362494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) disrupts nerve pathways and affects sensory, motor, and autonomic function. There is currently no effective treatment for SCI. SCI occurs within three temporal periods: acute, subacute, and chronic. In each period there are different alterations in the cells, inflammatory factors, and signaling pathways within the spinal cord. Many biomaterials have been investigated in the treatment of SCI, including hydrogels and fiber scaffolds, and some progress has been made in the treatment of SCI using multiple materials. However, there are limitations when using individual biomaterials in SCI treatment, and these limitations can be significantly improved by combining treatments with stem cells. In order to better understand SCI and to investigate new strategies for its treatment, several combination therapies that include materials combined with cells, drugs, cytokines, etc. are summarized in the current review.
Collapse
Affiliation(s)
- Yating Gao
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Renkler NZ, Scialla S, Russo T, D’Amora U, Cruz-Maya I, De Santis R, Guarino V. Micro- and Nanostructured Fibrous Composites via Electro-Fluid Dynamics: Design and Applications for Brain. Pharmaceutics 2024; 16:134. [PMID: 38276504 PMCID: PMC10819193 DOI: 10.3390/pharmaceutics16010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reproducible microenvironment for brain cells can represent a key tool for tissue repair and regeneration. Indeed, this is crucial to support cell growth, mitigate inflammation phenomena and provide adequate structural properties needed to support the damaged tissue, corroborating the activity of the vascular network and ultimately the functionality of neurons. In this context, electro-fluid dynamic techniques (EFDTs), i.e., electrospinning, electrospraying and related techniques, offer the opportunity to engineer a wide variety of composite substrates by integrating fibers, particles, and hydrogels at different scales-from several hundred microns down to tens of nanometers-for the generation of countless patterns of physical and biochemical cues suitable for influencing the in vitro response of coexistent brain cell populations mediated by the surrounding microenvironment. In this review, an overview of the different technological approaches-based on EFDTs-for engineering fibrous and/or particle-loaded composite substrates will be proposed. The second section of this review will primarily focus on describing current and future approaches to the use of composites for brain applications, ranging from therapeutic to diagnostic/theranostic use and from repair to regeneration, with the ultimate goal of providing insightful information to guide future research efforts toward the development of more efficient and reliable solutions.
Collapse
Affiliation(s)
- Nergis Zeynep Renkler
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| |
Collapse
|
9
|
Pio T, Hill EJ, Kebede N, Andersen J, Sloan SA. Neuron-Astrocyte Interactions: A Human Perspective. ADVANCES IN NEUROBIOLOGY 2024; 39:69-93. [PMID: 39190072 DOI: 10.1007/978-3-031-64839-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
This chapter explores the intricate interactions between neurons and astrocytes within the nervous system with a particular emphasis on studies conducted in human tissue or with human cells. We specifically explore how neuron-astrocyte interactions relate to processes of cellular development, morphology, migration, synapse formation, and metabolism. These findings enrich our understanding of basic neurobiology and how disruptions in these processes are relevant to human diseases.The study of human neuron-astrocyte interactions is made possible because of transformative in vitro advancements that have facilitated the generation and sustained culture of human neural cells. In addition, the rise of techniques like sequencing at single-cell resolution has enabled the exploration of numerous human cell atlases and their comparisons to other animal model systems. Thus, the innovations outlined in this chapter illuminate the convergence and divergence of neuron-astrocyte interactions across species. As technologies progress, continually more sophisticated in vitro systems will increasingly reflect in vivo environments and deepen our command of neuron-glial interactions in human biology.
Collapse
Affiliation(s)
- Taylor Pio
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nardos Kebede
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jimena Andersen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Carmina D, Benfenati V, Simonelli C, Rotolo A, Cardano P, Grovale N, Mangoni di S Stefano L, de Santo T, Zamboni R, Palermo V, Muccini M, De Seta F. Innovative solutions for disease management. Bioelectron Med 2023; 9:28. [PMID: 38053220 DOI: 10.1186/s42234-023-00131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The increasing prevalence of chronic diseases is a driver for emerging big data technologies for healthcare including digital platforms for data collection, systems for active patient engagement and education, therapy specific predictive models, optimized patient pathway models. Powerful bioelectronic medicine tools for data collection, analysis and visualization allow for joint processing of large volumes of heterogeneous data, which in turn can produce new insights about patient outcomes and alternative interpretations of clinical patterns that can lead to implementation of optimized clinical decisions and clinical patient pathway by healthcare professionals.With this perspective, we identify innovative solutions for disease management and evaluate their impact on patients, payers and society, by analyzing their impact in terms of clinical outcomes (effectiveness, safety, and quality of life) and economic outcomes (cost-effectiveness, savings, and productivity).As a result, we propose a new approach based on the main pillars of innovation in the disease management area, i.e. progressive patient care models, patient-centric approaches, bioelectronics for precise medicine, and lean management that, combined with an increase in appropriate private-public-citizen-partnership, leads towards Patient-Centric Healthcare.
Collapse
Affiliation(s)
- Dafni Carmina
- Medtronic Clinical & Regulatory Solutions - Study & Scientific Solutions, Via Aurelia 866, Roma, 00165, Italy.
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e Fotoreattività, via Gobetti 101, Bologna, 40129, Italy.
| | - Claudia Simonelli
- Medtronic Clinical & Regulatory Solutions - Study & Scientific Solutions, Via Aurelia 866, Roma, 00165, Italy
| | - Alessia Rotolo
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, Bologna, 40129, Italy
| | - Paola Cardano
- Medtronic Clinical & Regulatory Solutions - Study & Scientific Solutions, Via Aurelia 866, Roma, 00165, Italy
| | - Nicoletta Grovale
- Medtronic Clinical & Regulatory Solutions - Study & Scientific Solutions, Via Aurelia 866, Roma, 00165, Italy
| | | | - Tiziana de Santo
- Medtronic Clinical & Regulatory Solutions - Study & Scientific Solutions, Via Aurelia 866, Roma, 00165, Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e Fotoreattività, via Gobetti 101, Bologna, 40129, Italy
| | - Vincenzo Palermo
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e Fotoreattività, via Gobetti 101, Bologna, 40129, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, Bologna, 40129, Italy
- Mister Smart Innovation S, via Gobetti 101, Bologna, 40129, Italy
| | - Francesco De Seta
- Medtronic Clinical & Regulatory Solutions - Study & Scientific Solutions, Via Aurelia 866, Roma, 00165, Italy
| |
Collapse
|
11
|
Ladagu AD, Olopade FE, Chazot P, Oyagbemi AA, Ohiomokhare S, Folarin OR, Gilbert TT, Fuller M, Luong T, Adejare A, Olopade JO. Attenuation of Vanadium-Induced Neurotoxicity in Rat Hippocampal Slices (In Vitro) and Mice (In Vivo) by ZA-II-05, a Novel NMDA-Receptor Antagonist. Int J Mol Sci 2023; 24:16710. [PMID: 38069032 PMCID: PMC10706475 DOI: 10.3390/ijms242316710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Exposure to heavy metals, such as vanadium, poses an ongoing environmental and health threat, heightening the risk of neurodegenerative disorders. While several compounds have shown promise in mitigating vanadium toxicity, their efficacy is limited. Effective strategies involve targeting specific subunits of the NMDA receptor, a glutamate receptor linked to neurodegenerative conditions. The potential neuroprotective effects of ZA-II-05, an NMDA receptor antagonist, against vanadium-induced neurotoxicity were explored in this study. Organotypic rat hippocampal slices, and live mice, were used as models to comprehensively evaluate the compound's impact. Targeted in vivo fluorescence analyses of the hippocampal slices using propidium iodide as a marker for cell death was utilized. The in vivo study involved five dams, each with eight pups, which were randomly assigned to five experimental groups (n = 8 pups). After administering treatments intraperitoneally over six months, various brain regions were assessed for neuropathologies using different immunohistochemical markers. High fluorescence intensity was observed in the hippocampal slices treated with vanadium, signifying cell death. Vanadium-exposed mice exhibited demyelination, microgliosis, and neuronal cell loss. Significantly, treatment with ZA-II-05 resulted in reduced cellular death in the rat hippocampal slices and preserved cellular integrity and morphological architecture in different anatomical regions, suggesting its potential in countering vanadium-induced neurotoxicity.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| | | | - Paul Chazot
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK;
| | - Ademola A. Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan 200284, Nigeria;
| | - Samuel Ohiomokhare
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK;
| | - Oluwabusayo Racheal Folarin
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| | - Taidinda Tashara Gilbert
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| | - Madison Fuller
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph’s University, Philadelphia, PA 19131, USA; (M.F.); (T.L.)
| | - Toan Luong
- Department of Neuroscience, College of Arts and Sciences, Saint Joseph’s University, Philadelphia, PA 19131, USA; (M.F.); (T.L.)
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA;
| | - James O. Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (O.R.F.); (T.T.G.); (J.O.O.)
| |
Collapse
|
12
|
Liu Z, Mao S, Hu Y, Liu F, Shao X. Hydrogel platform facilitating astrocytic differentiation through cell mechanosensing and YAP-mediated transcription. Mater Today Bio 2023; 22:100735. [PMID: 37576868 PMCID: PMC10413151 DOI: 10.1016/j.mtbio.2023.100735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Astrocytes are multifunctional glial cells that are essential for brain functioning. Most existing methods to induce astrocytes from stem cells are inefficient, requiring couples of weeks. Here, we designed an alginate hydrogel-based method to realize high-efficiency astrocytic differentiation from human neural stem cells. Comparing to the conventional tissue culture materials, the hydrogel drastically promoted astrocytic differentiation within three days. We investigated the regulatory mechanism underlying the enhanced differentiation, and found that the stretch-activated ion channels and Yes-associated protein (YAP), a mechanosensitive transcription coactivator, were both indispensable. In particular, the Piezo1 Ca2+ channel, but not transient receptor potential vanilloid 4 (TRPV4) channel, was necessary for promoting the astrocytic differentiation. The stretch-activated channels regulated the nuclear localization of YAP, and inhibition of the channels down-regulated the expression of YAP as well as its target genes. When blocking the YAP/TEAD-mediated transcription, astrocytic differentiation on the hydrogel significantly declined. Interestingly, cells on the hydrogel showed a remarkable filamentous actin assembly together with YAP nuclear translocation during the differentiation, while a progressive gel rupture at the cell-hydrogel interface along with a change in the gel elasticity was detected. These findings suggest that spontaneous decrosslinking of the hydrogel alters its mechanical properties, delivering mechanical stimuli to the cells. These mechanical signals activate the Piezo1 Ca2+ channel, facilitate YAP nuclear transcription via actomyosin cytoskeleton, and eventually provoke the astrocytic differentiation. While offering an efficient approach to obtain astrocytes, our work provides novel insights into the mechanism of astrocytic development through mechanical regulation.
Collapse
Affiliation(s)
- Zhongqian Liu
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yubin Hu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Feng Liu
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaowei Shao
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
13
|
Fabbri R, Spennato D, Conte G, Konstantoulaki A, Lazzarini C, Saracino E, Nicchia GP, Frigeri A, Zamboni R, Spray DC, Benfenati V. The emerging science of Glioception: Contribution of glia in sensing, transduction, circuit integration of interoception. Pharmacol Ther 2023; 245:108403. [PMID: 37024060 DOI: 10.1016/j.pharmthera.2023.108403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Interoception is the process by which the nervous system regulates internal functions to achieve homeostasis. The role of neurons in interoception has received considerable recent attention, but glial cells also contribute. Glial cells can sense and transduce signals including osmotic, chemical, and mechanical status of extracellular milieu. Their ability to dynamically communicate "listening" and "talking" to neurons is necessary to monitor and regulate homeostasis and information integration in the nervous system. This review introduces the concept of "Glioception" and focuses on the process by which glial cells sense, interpret and integrate information about the inner state of the organism. Glial cells are ideally positioned to act as sensors and integrators of diverse interoceptive signals and can trigger regulatory responses via modulation of the activity of neuronal networks, both in physiological and pathological conditions. We believe that understanding and manipulating glioceptive processes and underlying molecular mechanisms provide a key path to develop new therapies for the prevention and alleviation of devastating interoceptive dysfunctions, among which pain is emphasized here with more focused details.
Collapse
Affiliation(s)
- Roberta Fabbri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, viale del Risorgimento 2, 40136 Bologna, Italy.
| | - Diletta Spennato
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Giorgia Conte
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Aikaterini Konstantoulaki
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126 Bologna, BO, Italy
| | - Chiara Lazzarini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Grazia Paola Nicchia
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, BA, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Antonio Frigeri
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Roberto Zamboni
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| |
Collapse
|
14
|
Serrano-Garcia W, Bonadies I, Thomas SW, Guarino V. New Insights to Design Electrospun Fibers with Tunable Electrical Conductive-Semiconductive Properties. SENSORS (BASEL, SWITZERLAND) 2023; 23:1606. [PMID: 36772646 PMCID: PMC9919353 DOI: 10.3390/s23031606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 05/14/2023]
Abstract
Fiber electronics, such as those produced by the electrospinning technique, have an extensive range of applications including electrode surfaces for batteries and sensors, energy storage, electromagnetic interference shielding, antistatic coatings, catalysts, drug delivery, tissue engineering, and smart textiles. New composite materials and blends from conductive-semiconductive polymers (C-SPs) offer high surface area-to-volume ratios with electrical tunability, making them suitable for use in fields including electronics, biofiltration, tissue engineering, biosensors, and "green polymers". These materials and structures show great potential for embedded-electronics tissue engineering, active drug delivery, and smart biosensing due to their electronic transport behavior and mechanical flexibility with effective biocompatibility. Doping, processing methods, and morphologies can significantly impact the properties and performance of C-SPs and their composites. This review provides an overview of the current literature on the processing of C-SPs as nanomaterials and nanofibrous structures, mainly emphasizing the electroactive properties that make these structures suitable for various applications.
Collapse
Affiliation(s)
- William Serrano-Garcia
- Advanced Materials Bio & Integration Research (AMBIR) Laboratory, Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Sylvia W Thomas
- Advanced Materials Bio & Integration Research (AMBIR) Laboratory, Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, Pad.20, 80125 Naples, Italy
| |
Collapse
|
15
|
Shao X, Liu Z, Mao S, Han L. Unraveling the Mechanobiology Underlying Traumatic Brain Injury with Advanced Technologies and Biomaterials. Adv Healthc Mater 2022; 11:e2200760. [PMID: 35841392 DOI: 10.1002/adhm.202200760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury (TBI) is a worldwide health and socioeconomic problem, associated with prolonged and complex neurological aftermaths, including a variety of functional deficits and neurodegenerative disorders. Research on the long-term effects has highlighted that TBI shall be regarded as a chronic health condition. The initiation and exacerbation of TBI involve a series of mechanical stimulations and perturbations, accompanied by mechanotransduction events within the brain tissues. Mechanobiology thus offers a unique perspective and likely promising approach to unravel the underlying molecular and biochemical mechanisms leading to neural cells dysfunction after TBI, which may contribute to the discovery of novel targets for future clinical treatment. This article investigates TBI and the subsequent brain dysfunction from a lens of neuromechanobiology. Following an introduction, the mechanobiological insights are examined into the molecular pathology of TBI, and then an overview is given of the latest research technologies to explore neuromechanobiology, with particular focus on microfluidics and biomaterials. Challenges and prospects in the current field are also discussed. Through this article, it is hoped that extensive technical innovation in biomedical devices and materials can be encouraged to advance the field of neuromechanobiology, paving potential ways for the research and rehabilitation of neurotrauma and neurological diseases.
Collapse
Affiliation(s)
- Xiaowei Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China
| | - Zhongqian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
16
|
Furlani F, Montanari M, Sangiorgi N, Saracino E, Campodoni E, Sanson A, Benfenati V, Tampieri A, Panseri S, Sandri M. Electroconductive and injectable hydrogels based on gelatin and PEDOT:PSS for a minimally invasive approach in nervous tissue regeneration. Biomater Sci 2022; 10:2040-2053. [PMID: 35302129 DOI: 10.1039/d2bm00116k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
This work describes the development of electroconductive hydrogels as injectable matrices for neural tissue regeneration by exploiting a biocompatible conductive polymer - poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) - combined with a biomimetic polymer network made of gelatin. Our approach involved also genipin - a natural cross-linking agent - to promote gelation of gelatin networks embedding PEDOT:PSS. The achieved results suggest that physical-chemical properties of the resulting hydrogels, like impedance, gelation time, mechanical properties, swelling and degradation in physiological conditions, can be finely tuned by the amount of PEDOT:PSS and genipin used in the formulation. Furthermore, the presence of PEDOT:PSS (i) enhances the electrical conductivity, (ii) improves the shear modulus of the resulting hydrogels though (iii) partially impairing their resistance to shear deformation, (iv) reduces gelation time and (v) reduces their swelling ability in physiological medium. Additionally, the resulting electroconductive hydrogels demonstrate enhanced adhesion and growth of primary rat cortical astrocytes. Given the permissive interaction of hydrogels with primary astrocytes, the presented biomimetic, electroconductive and injectable hydrogels display potential applications as minimally invasive systems for neurological therapies and damaged brain tissue repair.
Collapse
Affiliation(s)
- Franco Furlani
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Margherita Montanari
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Nicola Sangiorgi
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Emanuela Saracino
- National Research Council of Italy - Institute of Organic Synthesis and Photoreactivity (ISOF-CNR), via Gobetti, 101, I - 40129, Bologna, Italy
| | - Elisabetta Campodoni
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Alessandra Sanson
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Valentina Benfenati
- National Research Council of Italy - Institute of Organic Synthesis and Photoreactivity (ISOF-CNR), via Gobetti, 101, I - 40129, Bologna, Italy
| | - Anna Tampieri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Silvia Panseri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Monica Sandri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| |
Collapse
|
17
|
Chen K, Stieger KC, Kozai TD. Challenges and opportunities of advanced gliomodulation technologies for excitation-inhibition balance of brain networks. Curr Opin Biotechnol 2021; 72:112-120. [PMID: 34773740 PMCID: PMC8671375 DOI: 10.1016/j.copbio.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
Recent neuroscience studies have highlighted the critical role of glial cells in information processing. This has increased the demand for technologies that selectively modulate glial cells that regulate the excitation-inhibition balance of neural network function. Engineered technologies that modulate glial activity may be necessary for precise tuning of neural network activity in higher-order brain function. This perspective summarizes how glial cells regulate excitation and inhibition of neural circuits, highlights available technologies for glial modulation, and discusses current challenges and potential opportunities for glial engineering technologies.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi Dy Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Yang B, Liang C, Chen D, Cheng F, Zhang Y, Wang S, Shu J, Huang X, Wang J, Xia K, Ying L, Shi K, Wang C, Wang X, Li F, Zhao Q, Chen Q. A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Bioact Mater 2021; 15:103-119. [PMID: 35386356 PMCID: PMC8941182 DOI: 10.1016/j.bioactmat.2021.11.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
The current effective method for treatment of spinal cord injury (SCI) is to reconstruct the biological microenvironment by filling the injured cavity area and increasing neuronal differentiation of neural stem cells (NSCs) to repair SCI. However, the method is characterized by several challenges including irregular wounds, and mechanical and electrical mismatch of the material-tissue interface. In the current study, a unique and facile agarose/gelatin/polypyrrole (Aga/Gel/PPy, AGP3) hydrogel with similar conductivity and modulus as the spinal cord was developed by altering the concentration of Aga and PPy. The gelation occurred through non-covalent interactions, and the physically crosslinked features made the AGP3 hydrogels injectable. In vitro cultures showed that AGP3 hydrogel exhibited excellent biocompatibility, and promoted differentiation of NSCs toward neurons whereas it inhibited over-proliferation of astrocytes. The in vivo implanted AGP3 hydrogel completely covered the tissue defects and reduced injured cavity areas. In vivo studies further showed that the AGP3 hydrogel provided a biocompatible microenvironment for promoting endogenous neurogenesis rather than glial fibrosis formation, resulting in significant functional recovery. RNA sequencing analysis further indicated that AGP3 hydrogel significantly modulated expression of neurogenesis-related genes through intracellular Ca2+ signaling cascades. Overall, this supramolecular strategy produces AGP3 hydrogel that can be used as favorable biomaterials for SCI repair by filling the cavity and imitating the physiological properties of the spinal cord. A facile strategy was developed to fabricate AGP3 hydrogel satisfying physiological requirements. AGP3 hydrogel promoted the differentiation of NSCs into neurons in vitro. AGP3 hydrogel could activate endogenous neurogenesis to repair spinal cord injury. AGP3 hydrogel modulated expression of neurogenesis-related genes in vitro.
Collapse
|
19
|
Xu B, Pei J, Feng L, Zhang XD. Graphene and graphene-related materials as brain electrodes. J Mater Chem B 2021; 9:9485-9496. [PMID: 34797365 DOI: 10.1039/d1tb01795k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neural electrodes are used for acquiring neuron signals in brain-machine interfaces, and they are crucial for next-generation neuron engineering and related medical applications. Thus, developing flexible, stable and high-resolution neural electrodes will play an important role in stimulation, acquisition, recording and analysis of signals. Compared with traditional metallic electrodes, electrodes based on graphene and other two-dimensional materials have attracted wide attention in electrophysiological recording and stimulation due to their excellent physical properties such as unique flexibility, low resistance, and high optical transparency. In this review, we have reviewed the recent progress of electrodes based on graphene, graphene/polymer compounds and graphene-related materials for neuron signal recording, stimulation, and related optical signal coupling technology, which provides an outlook on the role of electrodes in the nanotechnology-neuron interface as well as medical diagnosis.
Collapse
Affiliation(s)
- Boyu Xu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Jiahui Pei
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Liefeng Feng
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China. .,Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
20
|
Critical Involvement of Glial Cells in Manganese Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1596185. [PMID: 34660781 PMCID: PMC8514895 DOI: 10.1155/2021/1596185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
Over the years, most of the research concerning manganese exposure was restricted to the toxicity of neuronal cells. Manganese is an essential trace element that in high doses exerts neurotoxic effects. However, in the last two decades, efforts have shifted toward a more comprehensive approach that takes into account the involvement of glial cells in the development of neurotoxicity as a brain insult. Glial cells provide structural, trophic, and metabolic support to neurons. Nevertheless, these cells play an active role in adult neurogenesis, regulation of synaptogenesis, and synaptic plasticity. Disturbances in glial cell function can lead to neurological disorders, including neurodegenerative diseases. This review highlights the pivotal role that glial cells have in manganese-induced neurotoxicity as well as the most sounding mechanisms involved in the development of this phenomenon.
Collapse
|
21
|
Saracino E, Zuppolini S, Guarino V, Benfenati V, Borriello A, Zamboni R, Ambrosio L. Polyaniline nano-needles into electrospun bio active fibres support in vitro astrocyte response. RSC Adv 2021; 11:11347-11355. [PMID: 35423613 PMCID: PMC8695954 DOI: 10.1039/d1ra00596k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have proposed that the bioelectrical response of glial cells, called astrocytes, currently represents a key target for neuroregenerative purposes. Here, we propose the fabrication of electrospun nanofibres containing gelatin and polyaniline (PANi) synthesized in the form of nano-needles (PnNs) as electrically conductive scaffolds to support the growth and functionalities of primary astrocytes. We report a fine control of the morphological features in terms of fibre size and spatial distribution and fibre patterning, i.e. random or aligned fibre organization, as revealed by SEM- and TEM-supported image analysis. We demonstrate that the peculiar morphological properties of fibres - i.e., the fibre size scale and alignment - drive the adhesion, proliferation, and functional properties of primary cortical astrocytes. In addition, the gradual transmission of biochemical and biophysical signals due to the presence of PnNs combined with the presence of gelatin results in a permissive and guiding environment for astrocytes. Accordingly, the functional properties of astrocytes measured via cell patch-clamp experiments reveal that PnNs do not alter the bioelectrical properties of resting astrocytes, thus setting the scene for the use of PnN-loaded nanofibres as bioconductive platforms for interfacing astrocytes and controlling their bioelectrical properties.
Collapse
Affiliation(s)
- Emanuela Saracino
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy via Gobetti, 101 40129 Bologna Italy
| | - Simona Zuppolini
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| | - Valentina Benfenati
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy via Gobetti, 101 40129 Bologna Italy
| | - Anna Borriello
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy via Gobetti, 101 40129 Bologna Italy
| | - Luigi Ambrosio
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy Mostra d'Oltremare, Pad. 20, V. le J. F. Kennedy 54 Naples Italy
| |
Collapse
|
22
|
Saghazadeh A, Rezaei N. Biosensing surfaces and therapeutic biomaterials for the central nervous system in COVID-19. EMERGENT MATERIALS 2021; 4:293-312. [PMID: 33718777 PMCID: PMC7944718 DOI: 10.1007/s42247-021-00192-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 can affect the central nervous system (CNS) indirectly by inflammatory mechanisms and even directly enter the CNS. Thereby, COVID-19 can evoke a range of neurosensory conditions belonging to infectious, inflammatory, demyelinating, and degenerative classes. A broad range of non-specific options, including anti-viral agents and anti-inflammatory protocols, is available with varying therapeutic. Due to the high mortality and morbidity in COVID-19-related brain damage, some changes to these general protocols, however, are necessary for ensuring the delivery of therapeutic(s) to the specific components of the CNS to meet their specific requirements. The biomaterials approach permits crossing the blood-brain barrier (BBB) and drug delivery in a more accurate and sustained manner. Beyond the BBB, drugs can protect neural cells, stimulate endogenous stem cells, and induce plasticity more effectively. Biomaterials for cell delivery exist, providing an efficient tool to improve cell retention, survival, differentiation, and integration. This paper will review the potentials of the biomaterials approach for the damaged CNS in COVID-19. It mainly includes biomaterials for promoting synaptic plasticity and modulation of inflammation in the post-stroke brain, extracellular vesicles, exosomes, and conductive biomaterials to facilitate neural regeneration, and artificial nerve conduits for treatment of neuropathies. Also, biosensing surfaces applicable to the first sensory interface between the host and the virus that encourage the generation of accelerated anti-viral immunity theoretically offer hope in solving COVID-19.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|