1
|
Broadbent M, Chadwick SJ, Brust M, Volk M. Gold Nanoparticles for Photothermal and Photodynamic Therapy. ACS OMEGA 2024; 9:44846-44859. [PMID: 39524681 PMCID: PMC11541516 DOI: 10.1021/acsomega.4c08797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Cancer cells exposed to 13 nm gold nanoparticles and irradiated with cw laser light at 532 nm are shown to undergo cell death via two competing causes. When cells contain relatively high quantities of gold nanoparticles and/or receive a high dose of light, photothermal effects dominate, which are independent of the cellular location of the gold nanoparticles and affect all cells in the irradiated area due to the rapid diffusion of heat. In contrast, at lower doses of nanoparticles and light, the photogeneration of singlet oxygen triggers cell death only in cells that contain a sufficient number of nanoparticles. The parallel occurrence of both effects will need to be considered carefully when designing practical therapy applications. In particular, the photodynamic effect should allow for a cell-type-specific treatment modality that can distinguish between cancer and normal cells using suitable targeting ligands on the nanoparticle surface, providing a highly selective route for cancer therapy.
Collapse
Affiliation(s)
- Matthew Broadbent
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Samantha J. Chadwick
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Mathias Brust
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Martin Volk
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| |
Collapse
|
2
|
Jayasankar G, Koilpillai J, Narayanasamy D. A Systematic Study on Long-acting Nanobubbles: Current Advancement and Prospects on Theranostic Properties. Adv Pharm Bull 2024; 14:278-301. [PMID: 39206408 PMCID: PMC11347731 DOI: 10.34172/apb.2024.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 09/04/2024] Open
Abstract
Delivery of diagnostic drugs via nanobubbles (NBs) has shown to be an emerging field of study. Due to their small size, NBs may more easily travel through constricted blood vessels and precisely target certain bodily parts. NB is considered the major treatment for cancer treatment and other diseases which are difficult to diagnose. The field of NBs is dynamic and continues to grow as researchers discover new properties and seek practical applications in various fields. The predominant usage of NBs in novel drug delivery is to enhance the bioavailability, and controlled drug release along with imaging properties NBs are important because they may change interfacial characteristics including surface force, lubrication, and absorption. The quick diffusion of gas into the water was caused by a hypothetical film that was stimulated and punctured by a strong acting force at the gas/water contact of the bubble. In this article, various prominent aspects of NBs have been discussed, along with the long-acting nature, and the theranostical aspect which elucidates the potential marketed drugs along with clinical trial products. The article also covers quality by design aspects, different production techniques that enable method-specific therapeutic applications, increasing the floating time of the bubble, and refining its properties to enhance the prepared NB's quality. NB containing both analysis and curing properties makes it special from other nano-carriers. This work includes all the possible methods of preparing NB, its application, all marketed drugs, and products in clinical trials.
Collapse
Affiliation(s)
| | | | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institution of Science and Technology, Kattankulathur, Chengalpattu, India
| |
Collapse
|
3
|
Ramon J, Engelen Y, De Keersmaecker H, Goemaere I, Punj D, Mejía Morales J, Bonte C, Berx G, Hoste E, Stremersch S, Lentacker I, De Smedt SC, Raemdonck K, Braeckmans K. Laser-induced vapor nanobubbles for B16-F10 melanoma cell killing and intracellular delivery of chemotherapeutics. J Control Release 2024; 365:1019-1036. [PMID: 38065413 DOI: 10.1016/j.jconrel.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/25/2023]
Abstract
The most lethal form of skin cancer is cutaneous melanoma, a tumor that develops in the melanocytes, which are found in the epidermis. The treatment strategy of melanoma is dependent on the stage of the disease and often requires combined local and systemic treatment. Over the years, systemic treatment of melanoma has been revolutionized and shifted toward immunotherapeutic approaches. Phototherapies like photothermal therapy (PTT) have gained considerable attention in the field, mainly because of their straightforward applicability in melanoma skin cancer, combined with the fact that these strategies are able to induce immunogenic cell death (ICD), linked with a specific antitumor immune response. However, PTT comes with the risk of uncontrolled heating of the surrounding healthy tissue due to heat dissipation. Here, we used pulsed laser irradiation of endogenous melanin-containing melanosomes to induce cell killing of B16-F10 murine melanoma cells in a non-thermal manner. Pulsed laser irradiation of the B16-F10 cells resulted in the formation of water vapor nanobubbles (VNBs) around endogenous melanin-containing melanosomes, causing mechanical cell damage. We demonstrated that laser-induced VNBs are able to kill B16-F10 cells with high spatial resolution. When looking more deeply into the cell death mechanism, we found that a large part of the B16-F10 cells succumbed rapidly after pulsed laser irradiation, reaching maximum cell death already after 4 h. Practically all necrotic cells demonstrated exposure of phosphatidylserine on the plasma membrane and caspase-3/7 activity, indicative of regulated cell death. Furthermore, calreticulin, adenosine triphosphate (ATP) and high-mobility group box 1 (HMGB1), three key damage-associated molecular patterns (DAMPs) in ICD, were found to be exposed from B16-F10 cells upon pulsed laser irradiation to an extent that exceeded or was comparable to the bona fide ICD-inducer, doxorubicin. Finally, we could demonstrate that VNB formation from melanosomes induced plasma membrane permeabilization. This allowed for enhanced intracellular delivery of bleomycin, an ICD-inducing chemotherapeutic, which further boosted cell death with the potential to improve the systemic antitumor immune response.
Collapse
Affiliation(s)
- Jana Ramon
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| | - Yanou Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, 9000 Ghent, Belgium.
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Light Microscopy Core Facility, Ghent University, 9000 Ghent, Belgium.
| | - Ilia Goemaere
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium.
| | - Deep Punj
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium.
| | - Julián Mejía Morales
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium.
| | - Cédric Bonte
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium.
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium; Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| | - Esther Hoste
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| | - Stephan Stremersch
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Ghent University, 9000 Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| |
Collapse
|
4
|
Zhang R, Gao Y, Chen L, Li D, Ge G. Tunable Gas-Gas Reactions through Nanobubble Pathway. Chemphyschem 2023; 24:e202300429. [PMID: 37534533 DOI: 10.1002/cphc.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Combustible gas-gas reactions usually do not occur spontaneously upon mixing without ignition or other triggers to lower the activation energy barrier. Nanobubbles, however, could provide such a possibility in solution under ambient conditions due to high inner pressure and catalytic radicals within their boundary layers. Herein, a tunable gas-gas reaction strategy via bulk nanobubble pathway is developed by tuning the interface charge of one type of bulk nanobubble and promoting its fusion and reaction with another, where the reaction-accompanied size and number concentration change of the bulk nanobubbles and the corresponding thermal effect clearly confirm the occurrence of the nanobubble-based H2 /O2 combustion. In addition, abundant radicals can be detected during the reaction, which is considered to be critical to ignite the gas reaction during the fusion of nanobubbles in water at room temperature. Therefore, the nanobubble-based gas-gas reactions provide a safe and efficient pathway to produce energy and synthesize new matter inaccessible under mild or ambient conditions.
Collapse
Affiliation(s)
- Ruiyi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Dexing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Parsamian P, Liu Y, Xie C, Chen Z, Kang P, Wijesundara YH, Al-Kharji NM, Ehrman RN, Trashi O, Randrianalisoa JH, Zhu X, D’Souza M, Wilson LA, Kim MJ, Qin Z, Gassensmith JJ. Enhanced Nanobubble Formation: Gold Nanoparticle Conjugation to Qβ Virus-like Particles. ACS NANO 2023; 17:7797-7805. [PMID: 36884260 PMCID: PMC10461784 DOI: 10.1021/acsnano.3c00638] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plasmonic gold nanostructures are a prevalent tool in modern hypersensitive analytical techniques such as photoablation, bioimaging, and biosensing. Recent studies have shown that gold nanostructures generate transient nanobubbles through localized heating and have been found in various biomedical applications. However, the current method of plasmonic nanoparticle cavitation events has several disadvantages, specifically including small metal nanostructures (≤10 nm) which lack size control, tuneability, and tissue localization by use of ultrashort pulses (ns, ps) and high-energy lasers which can result in tissue and cellular damage. This research investigates a method to immobilize sub-10 nm AuNPs (3.5 and 5 nm) onto a chemically modified thiol-rich surface of Qβ virus-like particles. These findings demonstrate that the multivalent display of sub-10 nm gold nanoparticles (AuNPs) caused a profound and disproportionate increase in photocavitation by upward of 5-7-fold and significantly lowered the laser fluency by 4-fold when compared to individual sub-10 nm AuNPs. Furthermore, computational modeling showed that the cooling time of QβAuNP scaffolds is significantly extended than that of individual AuNPs, proving greater control of laser fluency and nanobubble generation as seen in the experimental data. Ultimately, these findings showed how QβAuNP composites are more effective at nanobubble generation than current methods of plasmonic nanoparticle cavitation.
Collapse
Affiliation(s)
- Perouza Parsamian
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Yaning Liu
- Department of Mechanical Engineering University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Chen Xie
- Department of Mechanical Engineering University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Zhuo Chen
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Peiyuan Kang
- Department of Mechanical Engineering University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Yalini H. Wijesundara
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Noora M. Al-Kharji
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Ryanne Nicole Ehrman
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Jaona Harifidy Randrianalisoa
- Institut de Thermique, Mécanique, Matériaux – ITheMM EA 7548 Université de Reims Champagne-Ardenne, Campus Moulin de la Housse, F-51687, Reims, France
| | - Xiangyu Zhu
- Department of Materials Science and Engineering University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Matthew D’Souza
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Lucas Anderson Wilson
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Moon J. Kim
- Department of Materials Science and Engineering University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Zhenpeng Qin
- Department of Mechanical Engineering University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| | - Jeremiah J. Gassensmith
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
- Department of Biomedical Engineering University of Texas at Dallas 800 West Campbell Road, Richardson, Texas 75080-3021, United States
| |
Collapse
|
6
|
Burruss CP, Kacker A. The current status of nanotechnological approaches to therapy and drug delivery in otolaryngology: A contemporary review. Laryngoscope Investig Otolaryngol 2022; 7:1762-1772. [PMID: 36544970 PMCID: PMC9764775 DOI: 10.1002/lio2.952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives/Hypothesis To summarize the current standing of nanomedicine-based technology, particularly nanoparticles (NPs), for drug delivery and diagnostic mechanisms in otolaryngology and the otolaryngology subspecialties. Methods Literature searches were performed using PubMed and Ovid MEDLINE from 2010 to 2022. The search focused on original articles describing developments and applications of nanotechnology and drug delivery in otology, neurotology, cranial base surgery, head and neck oncology, laryngology, bronchoesophagology, and rhinology. Keyword searches and cross-referencing were also performed. No statistical analysis was performed. Results The PubMed search yielded 29 articles, and two Ovid MEDLINE searches both yielded 7 and 26 articles, respectively. Cross-referencing and keyword searches in PubMed and Google Scholar yielded numerous articles. The results indicate that currently, NPs are the most thoroughly studied nanotechnology for drug delivery and therapy in otolaryngology. Organic NPs have been utilized for drug delivery in otology and head and neck oncology due to their high biocompatibility. Inorganic NPs have similarly been utilized for drug delivery. However, inorganic NPs seem to be studied less extensively in these fields, likely due to an increased risk for heavy metal toxicity. Due to their magnetic properties, inorganic NPs have been utilized for magnetic-guided delivery in otology and thermoradiation and magnetic resonance imaging in head and neck oncology. Applications of nanotechnology to the fields of laryngology, bronchoesophagology, and rhinology have been studied less compared with otology and head and neck oncology. However, researchers have primarily employed NPs and other nanotechnologies such as nanofibers and nanoclusters for drug elution at mucosal surfaces to reduce airway and nasal inflammation. Conclusions Nanomedicine offers potential benefits in the treatment of patients in the field of otolaryngology due to enhanced control over drug release, cell-specific targeting, and the potential to reduce drug toxicity. Future work is needed to ensure the safety of these therapies to integrate this field of research into human therapies.
Collapse
Affiliation(s)
| | - Ashutosh Kacker
- Department of Otolaryngology–Head and Neck SurgeryWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
7
|
Counil C, Abenojar E, Perera R, Exner AA. Extrusion: A New Method for Rapid Formulation of High-Yield, Monodisperse Nanobubbles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200810. [PMID: 35587613 PMCID: PMC9233137 DOI: 10.1002/smll.202200810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/24/2022] [Indexed: 06/03/2023]
Abstract
Shell-stabilized gas microbubbles (MB) and nanobubbles (NB) are frequently used for biomedical ultrasound imaging and therapeutic applications. While it is widely recognized that monodisperse bubbles can be more effective in these applications, the efficient formulation of uniform bubbles at high concentrations is difficult to achieve. Here, it is demonstrated that a standard mini-extruder setup, commonly used to make vesicles or liposomes, can be used to quickly and efficiently generate monodisperse NBs with high yield. In this highly reproducible technique, the NBs obtained have an average diameter of 0.16 ± 0.05 µm and concentration of 6.2 ± 1.8 × 1010 NBs mL-1 compared to 0.32 ± 0.1 µm and 3.2 ± 0.7 × 1011 mL-1 for NBs made using mechanical agitation. Parameters affecting the extrusion and NB generation process including the temperature, concentration of the lipid solution, and the number of passages through the extruder are also examined. Moreover, it is demonstrated that extruded NBs show a strong acoustic response in vitro and a strong and persistent US signal enhancement under nonlinear contrast enhanced ultrasound imaging in mice. The extrusion process is a new, efficient, and scalable technique that can be used to easily produce high yield smaller monodispersed nanobubbles.
Collapse
Affiliation(s)
- Claire Counil
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-7207, USA
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-7207, USA
| | - Reshani Perera
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-7207, USA
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-7207, USA
| |
Collapse
|
8
|
Detert M, Chen Y, Zandvliet HJW, Lohse D. Transition in the growth mode of plasmonic bubbles in binary liquids. SOFT MATTER 2022; 18:4136-4145. [PMID: 35583141 PMCID: PMC9157508 DOI: 10.1039/d2sm00315e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Multi-component fluids with phase transitions show a plethora of fascinating phenomena with rich physics. Here we report on a transition in the growth mode of plasmonic bubbles in binary liquids. By employing high-speed imaging we reveal that the transition is from slow evaporative to fast convective growth and accompanied by a sudden increase in radius. The transition occurs as the three-phase contact line reaches the spinodal temperature of the more volatile component leading to massive, selective evaporation. This creates a strong solutal Marangoni flow along the bubble which marks the beginning of convective growth. We support this interpretation by simulations. After the transition the bubble starts to oscillate in position and in shape. Though different in magnitude the frequencies of both oscillations follow the same power law , which is characteristic of bubble shape oscillations, with the surface tension σ as the restoring force and the bubble's added mass as inertia. The transitions and the oscillations both induce a strong motion in the surrounding liquid, opening doors for various applications where local mixing is beneficial.
Collapse
Affiliation(s)
- Marvin Detert
- Physics of Fluids Group, Department of Science and Technology, Max Planck Center for Complex Fluid Dynamics and J. M. Burgers Centre for Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, 7500AE Enschede, The Netherlands.
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Yibo Chen
- Physics of Fluids Group, Department of Science and Technology, Max Planck Center for Complex Fluid Dynamics and J. M. Burgers Centre for Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, 7500AE Enschede, The Netherlands.
| | - Harold J W Zandvliet
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Department of Science and Technology, Max Planck Center for Complex Fluid Dynamics and J. M. Burgers Centre for Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, 7500AE Enschede, The Netherlands.
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK. Enhanced Permeability and Retention Effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther 2022; 39:102915. [PMID: 35597441 DOI: 10.1016/j.pdpdt.2022.102915] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.
Collapse
Affiliation(s)
- Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | | | - Surya Prakash Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
10
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
11
|
Liposome-Tethered Gold Nanoparticles Triggered by Pulsed NIR Light for Rapid Liposome Contents Release and Endosome Escape. Pharmaceutics 2022; 14:pharmaceutics14040701. [PMID: 35456535 PMCID: PMC9025641 DOI: 10.3390/pharmaceutics14040701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Remote triggering of contents release with micron spatial and sub-second temporal resolution has been a long-time goal of medical and technical applications of liposomes. Liposomes can sequester a variety of bioactive water-soluble ions, ligands and enzymes, and oligonucleotides. The bilayer that separates the liposome interior from the exterior solution provides a physical barrier to contents release and degradation. Tethering plasmon-resonant, hollow gold nanoshells to the liposomes, or growing gold nanoparticles directly on the liposome exterior, allows liposome contents to be released by nanosecond or shorter pulses of near-infrared light (NIR). Gold nanoshells or nanoparticles strongly adsorb NIR light; cells, tissues, and physiological media are transparent to NIR, allowing penetration depths of millimeters to centimeters. Nano to picosecond pulses of NIR light rapidly heat the gold nanoshells, inducing the formation of vapor nanobubbles, similar to cavitation bubbles. The collapse of the nanobubbles generates mechanical forces that rupture bilayer membranes to rapidly release liposome contents at the preferred location and time. Here, we review the syntheses, characterization, and applications of liposomes coupled to plasmon-resonant gold nanostructures for delivering a variety of biologically important contents in vitro and in vivo with sub-micron spatial control and sub-second temporal control.
Collapse
|
12
|
Falih SMJ, Al-Saray ST, Alfaris AA, Al-Ali AAA. The synergistic effect of eucalyptus oil and retinoic acid on human esophagus cancer cell line SK-GT-4. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In order to improve cancer patients' chances of survival, scientists have prioritized finding alternatives to chemotherapy, focusing their efforts on natural sources. The current study investigates the anti-cancer action of retinoic acid and Eucalyptus oil in esophageal cancer and studies their combined effect as well as the cellular pathways that each trigger as part of ongoing research in this field. As a model of esophageal cancer, the SK-GT-4 cancer cell line was treated with a series of concentrations of both materials.
Results
The concentrations of Eucalyptus oil (10, 100, 1000, and 1500 g/mL) and Retinoic acid (5, 100, 150, and 200 M/mL) were used for treatment of cells. The MTT test was used to assess the anti-cancer activity of Eucalyptus oil and Retinoic acid, and qPCR was used to determine cellular pathways. Our findings show that both Eucalyptus oil and Retinoic acid inhibit cancer cell growth significantly. Our findings revealed that the IC50 values for eucalyptus oil were 63 g/mL and 111.3 M l/mL for retinoic acid. Furthermore, the impact was at the level that causes apoptosis. The findings suggested that any herbal substance could act as an inducer of the caspase-9-dependent pathway. The caspase-8-dependent pathway, on the other hand, was restricted to retinoic acid.
Conclusion
Our research discovered that the two chemicals worked together to create a synergistic effect. This synergistic effect could be attributed to a close connection between external and internal apoptotic pathways, which inhibits SK-GT-4 cell growth.
Graphical Abstract
Collapse
|
13
|
Afshari R, Akhavan O, Hamblin MR, Varma RS. Review of Oxygenation with Nanobubbles: Possible Treatment for Hypoxic COVID-19 Patients. ACS APPLIED NANO MATERIALS 2021; 4:11386-11412. [PMID: 37556289 PMCID: PMC8565459 DOI: 10.1021/acsanm.1c01907] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/12/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus disease (COVID-19) pandemic, which has spread around the world, caused the death of many affected patients, partly because of the lack of oxygen arising from impaired respiration or blood circulation. Thus, maintaining an appropriate level of oxygen in the patients' blood by devising alternatives to ventilator systems is a top priority goal for clinicians. The present review highlights the ever-increasing application of nanobubbles (NBs), miniature gaseous vesicles, for the oxygenation of hypoxic patients. Oxygen-containing NBs can exert a range of beneficial physiologic and pharmacologic effects that include tissue oxygenation, as well as tissue repair mechanisms, antiinflammatory properties, and antibacterial activity. In this review, we provide a comprehensive survey of the application of oxygen-containing NBs, with a primary focus on the development of intravenous platforms. The multimodal functions of oxygen-carrying NBs, including antimicrobial, antiinflammatory, drug carrying, and the promotion of wound healing are discussed, including the benefits and challenges of using NBs as a treatment for patients with acute hypoxemic respiratory failure, particularly due to COVID-19.
Collapse
Affiliation(s)
- Ronak Afshari
- Department of Physics, Sharif University
of Technology, P.O. Box 11155-9161, Tehran 14588-89694,
Iran
| | - Omid Akhavan
- Department of Physics, Sharif University
of Technology, P.O. Box 11155-9161, Tehran 14588-89694,
Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science,
University of Johannesburg, Doornfontein 2028, South
Africa
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and Materials,
Czech Advanced Technology and Research Institute, Palacky
University, Šlechtitelů 27, Olomouc 78371, Czech
Republic
| |
Collapse
|
14
|
Xiong R, Hua D, Van Hoeck J, Berdecka D, Léger L, De Munter S, Fraire JC, Raes L, Harizaj A, Sauvage F, Goetgeluk G, Pille M, Aalders J, Belza J, Van Acker T, Bolea-Fernandez E, Si T, Vanhaecke F, De Vos WH, Vandekerckhove B, van Hengel J, Raemdonck K, Huang C, De Smedt SC, Braeckmans K. Photothermal nanofibres enable safe engineering of therapeutic cells. NATURE NANOTECHNOLOGY 2021; 16:1281-1291. [PMID: 34675410 PMCID: PMC7612007 DOI: 10.1038/s41565-021-00976-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 08/03/2021] [Indexed: 05/18/2023]
Abstract
Nanoparticle-sensitized photoporation is an upcoming approach for the intracellular delivery of biologics, combining high efficiency and throughput with excellent cell viability. However, as it relies on close contact between nanoparticles and cells, its translation towards clinical applications is hampered by safety and regulatory concerns. Here we show that light-sensitive iron oxide nanoparticles embedded in biocompatible electrospun nanofibres induce membrane permeabilization by photothermal effects without direct cellular contact with the nanoparticles. The photothermal nanofibres have been successfully used to deliver effector molecules, including CRISPR-Cas9 ribonucleoprotein complexes and short interfering RNA, to adherent and suspension cells, including embryonic stem cells and hard-to-transfect T cells, without affecting cell proliferation or phenotype. In vivo experiments furthermore demonstrated successful tumour regression in mice treated with chimeric antibody receptor T cells in which the expression of programmed cell death protein 1 (PD1) is downregulated after nanofibre photoporation with short interfering RNA to PD1. In conclusion, cell membrane permeabilization with photothermal nanofibres is a promising concept towards the safe and more efficient production of engineered cells for therapeutic applications, including stem cell or adoptive T cell therapy.
Collapse
Affiliation(s)
- Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (Nanjing Forestry University-Ghent University), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China.
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - Dawei Hua
- Joint Laboratory of Advanced Biomedical Materials (Nanjing Forestry University-Ghent University), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jelter Van Hoeck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Laurens Léger
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Stijn De Munter
- Department of Diagnostic Sciences and Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Laurens Raes
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jeffrey Aalders
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Joke Belza
- Department of Chemistry, Atomic and Mass Spectrometry Research Group, Ghent University, Ghent, Belgium
| | - Thibaut Van Acker
- Department of Chemistry, Atomic and Mass Spectrometry Research Group, Ghent University, Ghent, Belgium
| | - Eduardo Bolea-Fernandez
- Department of Chemistry, Atomic and Mass Spectrometry Research Group, Ghent University, Ghent, Belgium
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Frank Vanhaecke
- Department of Chemistry, Atomic and Mass Spectrometry Research Group, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jolanda van Hengel
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (Nanjing Forestry University-Ghent University), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China.
| | - Stefaan C De Smedt
- Joint Laboratory of Advanced Biomedical Materials (Nanjing Forestry University-Ghent University), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China.
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- Center for Advanced Light Microscopy, Ghent University, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- Center for Advanced Light Microscopy, Ghent University, Ghent, Belgium.
| |
Collapse
|
15
|
Xiong R, Xu RX, Huang C, De Smedt S, Braeckmans K. Stimuli-responsive nanobubbles for biomedical applications. Chem Soc Rev 2021; 50:5746-5776. [PMID: 33972972 DOI: 10.1039/c9cs00839j] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive nanobubbles have received increased attention for their application in spatial and temporal resolution of diagnostic techniques and therapies, particularly in multiple imaging methods, and they thus have significant potential for applications in the field of biomedicine. This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel applications. Properties of both internal- and external-stimuli responsive nanobubbles are highlighted and discussed considering the potential features required for biomedical applications. Furthermore, the methods used for synthesis and characterization of nanobubbles are outlined. Finally, novel biomedical applications are proposed alongside the advantages and shortcomings inherent to stimuli-responsive nanobubbles.
Collapse
Affiliation(s)
- Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230022, P. R. China and Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China.
| | - Stefaan De Smedt
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
16
|
Zhang Q, Li R, Lee E, Luo T. Optically Driven Gold Nanoparticles Seed Surface Bubble Nucleation in Plasmonic Suspension. NANO LETTERS 2021; 21:5485-5492. [PMID: 33939430 DOI: 10.1021/acs.nanolett.0c04913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal surface bubbles play important roles in applications like microfluidics and biosensing, but their formation on transparent substrates immersed in a plasmonic nanoparticle (NP) suspension has an unknown origin. Here, we reveal NPs deposited on the transparent substrate by optical forces are responsible for the nucleation of such photothermal surface bubbles. We show the surface bubble formation is always preceded by the optically driven NPs moving toward and deposited to the surface. Interestingly, such optically driven motion can happen both along and against the photon stream. The laser power density thresholds to form a surface bubble drastically differ depending on if the surface is forward- or backward-facing the light propagation direction. We attributed this to different optical power densities needed to enable optical pulling and pushing of NPs in the suspension, as optical pulling requires higher light intensity to excite supercavitation around NPs to enable proper optical configuration.
Collapse
Affiliation(s)
- Qiushi Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ruiyang Li
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Eungkyu Lee
- Department of Electronic Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Center for Sustainable Energy of Notre Dame (ND Energy), University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
17
|
Carnis J, Kirner F, Lapkin D, Sturm S, Kim YY, Baburin IA, Khubbutdinov R, Ignatenko A, Iashina E, Mistonov A, Steegemans T, Wieck T, Gemming T, Lubk A, Lazarev S, Sprung M, Vartanyants IA, Sturm EV. Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging. NANOSCALE 2021; 13:10425-10435. [PMID: 34028473 DOI: 10.1039/d1nr01806j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report the detailed structural characterization of a faceted mesocrystal grain self-assembled from 60 nm sized gold nanocubes. Using coherent X-ray diffraction imaging, we determined the structure of the mesocrystal with the resolution sufficient to resolve each gold nanoparticle. The reconstructed electron density of the gold mesocrystal reveals its intrinsic structural heterogeneity, including local deviations of lattice parameters, and the presence of internal defects. The strain distribution shows that the average superlattice obtained by angular X-ray cross-correlation analysis and the real, "multidomain" structure of a mesocrystal are very close to each other, with a deviation less than 10%. These results will provide an important impact to understanding the fundamental principles of structuring and self-assembly including ensuing properties of mesocrystals.
Collapse
Affiliation(s)
- Jerome Carnis
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Felizitas Kirner
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Sebastian Sturm
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | | | - Ruslan Khubbutdinov
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany. and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| | - Alexandr Ignatenko
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Ekaterina Iashina
- Saint-Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
| | - Alexander Mistonov
- Saint-Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
| | | | - Thomas Wieck
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Thomas Gemming
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Axel Lubk
- Leibniz Institute for Solid State and Materials Research, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Sergey Lazarev
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany. and National Research Tomsk Polytechnic University (TPU), pr. Lenina 30, 634050 Tomsk, Russia
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany. and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
| | - Elena V Sturm
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
18
|
Zhang C, Li Y, Ma X, He W, Liu C, Liu Z. Functional micro/nanobubbles for ultrasound medicine and visualizable guidance. Sci China Chem 2021; 64:899-914. [PMID: 33679901 PMCID: PMC7921288 DOI: 10.1007/s11426-020-9945-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
Chemically functionalized gas-filled bubbles with a versatile micro/nano-sized scale have witnessed a long history of developments and emerging applications in disease diagnosis and treatments. In combination with ultrasound and image-guidance, micro/nanobubbles have been endowed with the capabilities of biomedical imaging, drug delivery, gene transfection and disease-oriented therapy. As an external stimulus, ultrasound (US)-mediated targeting treatments have been achieving unprecedented efficiency. Nowadays, US is playing a crucial role in visualizing biological/pathological changes in lives as a reliable imaging technique and a powerful therapeutic tool. This review retrospects the history of ultrasound, the chemistry of functionalized agents and summarizes recent advancements of functional micro/nanobubbles as US contrast agents in preclinical and transclinical research. Latest ultrasound-based treatment modalities in association with functional micro/nanobubbles have been highlighted as their great potentials for disease precision therapy. It is believed that these state-of-the-art micro/nanobubbles will become a booster for ultrasound medicine and visualizable guidance to serve future human healthcare in a more comprehensive and practical manner.
Collapse
Affiliation(s)
- Chen Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072 China
| | - Yihong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072 China
| | - Xinyong Ma
- Division of Academic & Cultural Activities, Academic Divisions of the Chinese Academy of Sciences, Beijing, 100190 China
| | - Wenxin He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072 China
| | - Chenxi Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072 China
| | - Zhe Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
19
|
Yang S, Han G, Chen Q, Yu L, Wang P, Zhang Q, Dong J, Zhang W, Huang J. Au-Pt Nanoparticle Formulation as a Radiosensitizer for Radiotherapy with Dual Effects. Int J Nanomedicine 2021; 16:239-248. [PMID: 33469284 PMCID: PMC7811476 DOI: 10.2147/ijn.s287523] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Background Radiotherapy occupies an essential position as one of the most significant approaches for the clinical treatment of cancer. However, we cannot overcome the shortcoming of X-rays which is the high value of the oxygen enhancement ratio (OER). Radiosensitizers with the ability to enhance the radiosensitivity of tumor cells provide an alternative to changing X-rays to protons and heavy ion radiotherapy. Materials and Methods We prepared the Au-Pt nanoparticles (Au-Pt NPs) using a one-step method. The characteristics of the Au-Pt NPs were determined using TEM, HAADF-STEM, elemental mapping images, and DLS. The enhanced radiotherapy was demonstrated in vitro using MTT assays, colony formation assays, fluorescence imaging, and flow cytometric analyses of the apoptosis. The biodistribution of the Au-Pt NPs was analyzed using ICP-OES, and thermal images. The enhanced radiotherapy was demonstrated in vitro using immunofluorescence images, tumor volume and weigh, and hematoxylin & eosin (H&E) staining. Results Polyethylene glycol (PEG) functionalized nanoparticles composed of the metallic elements Au and Pt were designed to increase synergistic radiosensitivity. The mechanism demonstrated that heavy metal NPs possess a high X-ray photon capture cross-section and Compton scattering effect which increased DNA damage. Furthermore, the Au-Pt NPs exhibited enzyme-mimicking activities by catalyzing the decomposition of endogenous H2O2 to O2 in the solid tumor microenvironment (TME). Conclusion Our work provides a systematically administered radiosensitizer that can selectively reside in a tumor via the EPR effect and enhances the efficiency of treating cancer with radiotherapy.
Collapse
Affiliation(s)
- Song Yang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Gaohua Han
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Quan Chen
- Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Thoracic Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Lei Yu
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Peng Wang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Qi Zhang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jiang Dong
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Wei Zhang
- Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Infectious Disease, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Quantum Leap from Gold and Silver to Aluminum Nanoplasmonics for Enhanced Biomedical Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanotechnology has been used in many biosensing and medical applications, in the form of noble metal (gold and silver) nanoparticles and nanostructured substrates. However, the translational clinical and industrial applications still need improvements of the efficiency, selectivity, cost, toxicity, reproducibility, and morphological control at the nanoscale level. In this review, we highlight the recent progress that has been made in the replacement of expensive gold and silver metals with the less expensive aluminum. In addition to low cost, other advantages of the aluminum plasmonic nanostructures include a broad spectral range from deep UV to near IR, providing additional signal enhancement and treatment mechanisms. New synergistic treatments of bacterial infections, cancer, and coronaviruses are envisioned. Coupling with gain media and quantum optical effects improve the performance of the aluminum nanostructures beyond gold and silver.
Collapse
|
21
|
Santra TS, Kar S, Chen TC, Chen CW, Borana J, Lee MC, Tseng FG. Near-infrared nanosecond-pulsed laser-activated highly efficient intracellular delivery mediated by nano-corrugated mushroom-shaped gold-coated polystyrene nanoparticles. NANOSCALE 2020; 12:12057-12067. [PMID: 32469040 DOI: 10.1039/d0nr01792b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, an efficient intracellular delivery of molecules with high cell viability is reported using nanosecond-pulsed laser-activated plasmonic photoporation, mediated by high-aspect-ratio nano-corrugated mushroom-shaped gold-coated polystyrene nanoparticles (nm-AuPNPs) at near-infrared wavelength. Upon pulsed laser illumination, nm-AuPNPs exhibit greater plasmonic extinction than spherical AuPNPs, which increase their energy efficiency and reduce the necessary illumination of light, effectively controlling cell damage and improving the delivery efficiency. Nm-AuPNPs exhibit surface plasmon absorption at near infrared region with a peak at 945 nm. Pulsed laser illumination at this plasmon peak triggers explosive nanobubbles, which create transient membrane pores, allowing the delivery of dyes, quantum dots and plasmids into the different cell types. The results can be tuned by laser fluence, exposure time, molecular size and concentration of nm-AuPNPs. The best results are found for CL1-0 cells, which yielded a 94% intracellular PI dye uptake and ∼100% cell viability at 35 mJ cm-2 laser fluence for 945 nm wavelength. Thus, the presented approach has proven to have an inevitable potential for biological cell research and therapeutic applications.
Collapse
Affiliation(s)
- Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Srabani Kar
- Electrical Engineering Division, University of Cambridge, CB3 0FA, Cambridge, UK
| | - Te-Chang Chen
- Institute of Photonics Technology, National Tsing Hua University, Taiwan
| | - Chih-Wei Chen
- Institute of Molecular Medicine, National Tsing Hua University, Taiwan
| | - Jayant Borana
- Department of Engineering and System Science, National Tsing Hua University, Taiwan.
| | - Ming-Chang Lee
- Institute of Photonics Technology, National Tsing Hua University, Taiwan and Department of Electrical Engineering, National Tsing Hua University, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Taiwan. and Institute of Nanoengineering and Microsystems, National Tsing Hua University, Taiwan and Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, Taiwan
| |
Collapse
|
22
|
Michailidi ED, Bomis G, Varoutoglou A, Kyzas GZ, Mitrikas G, Mitropoulos AC, Efthimiadou EK, Favvas EP. Bulk nanobubbles: Production and investigation of their formation/stability mechanism. J Colloid Interface Sci 2020; 564:371-380. [DOI: 10.1016/j.jcis.2019.12.093] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/04/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022]
|
23
|
Liu X, Wu X, Xing Y, Zhang Y, Zhang X, Pu Q, Wu M, Zhao JX. Reduced Graphene Oxide/Mesoporous Silica Nanocarriers for pH-Triggered Drug Release and Photothermal Therapy. ACS APPLIED BIO MATERIALS 2020; 3:2577-2587. [DOI: 10.1021/acsabm.9b01108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiao Liu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xu Wu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Yuqian Xing
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Ying Zhang
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Xuefei Zhang
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Science, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
24
|
Shin JE, Ogunyankin MO, Zasadzinski JA. Near Infrared-Triggered Liposome Cages for Rapid, Localized Small Molecule Delivery. Sci Rep 2020; 10:1706. [PMID: 32015363 PMCID: PMC6997424 DOI: 10.1038/s41598-020-58764-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
Photolabile chelating cages or protecting groups need complex chemical syntheses and require UV, visible, or two-photon NIR light to trigger release. Different cages have different solubilities, reaction rates, and energies required for triggering. Here we show that liposomes containing calcium, adenosine triphosphate, or carboxyfluorescein are tethered to plasmon-resonant hollow gold nanoshells (HGN) tuned to absorb light from 650-950 nm. Picosecond pulses of near infrared (NIR) light provided by a two-photon microscope, or by a stand-alone laser during flow through microfluidic channels, trigger contents release with spatial and temporal control. NIR light adsorption heats the HGN, inducing vapor nanobubbles that rupture the liposome, releasing cargo within milliseconds. Any water-soluble molecule can be released at essentially the same rate from the liposome-HGN. By using liposomes of different composition, or HGN of different sizes or shapes with different nanobubble threshold fluences, or irradiating on or off resonance, two different cargoes can be released simultaneously, one before the other, or in a desired ratio. Calcium release from liposome-HGN can be spatially patterned to crosslink alginate gels and trap living cells. Liposome-HGN provide stable, biocompatible isolation of the bioactive compound from its surroundings with minimal interactions with the local environment.
Collapse
Affiliation(s)
- Jeong Eun Shin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Maria O Ogunyankin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.,Bristol, Myers, Squibb, 1 Squibb Drive, New Brunswick, NJ, 08902, USA
| | - Joseph A Zasadzinski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| |
Collapse
|
25
|
Detert M, Zeng B, Wang Y, Le The H, Zandvliet HJW, Lohse D. Plasmonic Bubble Nucleation in Binary Liquids. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:2591-2597. [PMID: 32030112 PMCID: PMC6996646 DOI: 10.1021/acs.jpcc.9b10064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Metal nanoparticles under laser irradiation can produce enormous heat due to surface plasmon resonance. When submerged in a liquid, this can lead to the nucleation of plasmonic bubbles. In the very early stage, the nucleation of a giant vapor bubble was observed with an ultrahigh-speed camera. In this study, the formation of this giant bubble on gold nanoparticles in six binary liquid combinations has been investigated. We find that the time delay between the beginning of the laser heating and the bubble nucleation is determined by the absolute amount of dissolved gas in the liquid. Moreover, the bubble volume mainly depends on the vaporization energy of the liquid, consisting of the latent heat of vaporization and the energy needed to reach the boiling temperature. Our results contribute to controlling the initial giant bubble nucleation and have strong bearings on applications of such bubbles.
Collapse
Affiliation(s)
- Marvin Detert
- Physics of Fluids,
Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute,
and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente,
P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Binglin Zeng
- Physics of Fluids,
Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute,
and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing 100083, China
| | - Yuliang Wang
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing 100083, China
- Beijing
Advanced Innovation Center for Biomedical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing 100191, China
| | - Hai Le The
- Physics of Fluids,
Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute,
and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Harold J. W. Zandvliet
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente,
P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Detlef Lohse
- Physics of Fluids,
Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute,
and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen 37077, Germany
| |
Collapse
|
26
|
de Leon A, Perera R, Hernandez C, Cooley M, Jung O, Jeganathan S, Abenojar E, Fishbein G, Sojahrood AJ, Emerson CC, Stewart PL, Kolios MC, Exner AA. Contrast enhanced ultrasound imaging by nature-inspired ultrastable echogenic nanobubbles. NANOSCALE 2019; 11:15647-15658. [PMID: 31408083 PMCID: PMC6716144 DOI: 10.1039/c9nr04828f] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Advancement of ultrasound molecular imaging applications requires not only a reduction in size of the ultrasound contrast agents (UCAs) but also a significant improvement in the in vivo stability of the shell-stabilized gas bubble. The transition from first generation to second generation UCAs was marked by an advancement in stability as air was replaced by a hydrophobic gas, such as perfluoropropane and sulfur hexafluoride. Further improvement can be realized by focusing on how well the UCAs shell can retain the encapsulated gas under extreme mechanical deformations. Here we report the next generation of UCAs for which we engineered the shell structure to impart much better stability under repeated prolonged oscillation due to ultrasound, and large changes in shear and turbulence as it circulates within the body. By adapting an architecture with two layers of contrasting elastic properties similar to bacterial cell envelopes, our ultrastable nanobubbles (NBs) withstand continuous in vitro exposure to ultrasound with minimal signal decay and have a significant delay on the onset of in vivo signal decay in kidney, liver, and tumor. Development of ultrastable NBs can potentially expand the role of ultrasound in molecular imaging, theranostics, and drug delivery.
Collapse
Affiliation(s)
- Al de Leon
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Reshani Perera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christopher Hernandez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michaela Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Olive Jung
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Selva Jeganathan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Grace Fishbein
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | | | - Corey C Emerson
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Phoebe L Stewart
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
27
|
Sarkar D, Kang P, Nielsen SO, Qin Z. Non-Arrhenius Reaction-Diffusion Kinetics for Protein Inactivation over a Large Temperature Range. ACS NANO 2019; 13:8669-8679. [PMID: 31268674 PMCID: PMC7384293 DOI: 10.1021/acsnano.9b00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding protein folding and unfolding has been a long-standing fundamental question and has important applications in manipulating protein activity in biological systems. Experimental investigations of protein unfolding have been predominately conducted by small temperature perturbations (e.g., temperature jump), while molecular simulations are limited to small time scales (microseconds) and high temperatures to observe unfolding. Thus, it remains unclear how fast a protein unfolds irreversibly and loses function (i.e., inactivation) across a large temperature range. In this work, using nanosecond pulsed heating of individual plasmonic nanoparticles to create precise localized heating, we examine the protein inactivation kinetics at extremely high temperatures. Connecting this with protein inactivation measurements at low temperatures, we observe that the kinetics of protein unfolding is less sensitive to temperature change at the higher temperatures, which significantly departs from the Arrhenius behavior extrapolated from low temperatures. To account for this effect, we propose a reaction-diffusion model that modifies the temperature-dependence of protein inactivation by introducing a diffusion limit. Analysis of the reaction-diffusion model provides general guidelines in the behavior of protein inactivation (reaction-limited, transition, diffusion-limited) across a large temperature range from physiological temperature to extremely high temperatures. We further demonstrate that the reaction-diffusion model is particularly useful for designing optimal operating conditions for protein photoinactivation. The experimentally validated reaction-diffusion kinetics of protein unfolding is an important step toward understanding protein-inactivation kinetics over a large temperature range. It has important applications including molecular hyperthermia and calls for future studies to examine this model for other protein molecules.
Collapse
Affiliation(s)
- Daipayan Sarkar
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Peiyuan Kang
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Steven O. Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, The University of Texas at Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
28
|
Wang Y, Zhao B, Wang L, Bu W, Liu S, Sun B. Nanoparticles based on retinoic acid caped with ferrocenium: a novel synthesized targetable nanoparticle both with anti-cancer effect and drug loading capacity. RSC Adv 2019; 9:16208-16214. [PMID: 35521379 PMCID: PMC9064344 DOI: 10.1039/c9ra02472g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
To date, there is an urgent need for cancer treatment to improve in many ways in order to successfully cure all cancers. Retinoic acid (RA) is a promising anti-cancer drug through influencing cancer stem cells (CSCs). Taxol is a chemotherapy drug for many cancers. To increase the anti-cancer effects of RA and taxol, we created a novel RA nanoparticle, FCRAN, which has the ability of carrying a second anti-cancer drug, taxol, using nanotechnological methods. The results of this study demonstrated that this RA nanoparticle was water-soluble and retained the same effects as RA on cancer cells, such as inhibiting the proliferation of CSCs, inducing the differentiation of CSCs, and enhancing the sensitivity of CSCs to chemotherapeutic drugs. In addition, this RA nanoparticle can be used to carry a second anticancer drug, taxol, to become FCRAN/T and synergistically enhance the anti-cancer effects of both drugs in vivo. Interestingly, the FCRAN/T is a targetable anti-cancer nanoparticle in the presence of higher levels of glutathione (GSH) in cancer cells. Our results demonstrate that our novel synthesized nanoparticles not only retain the RA functions, but can also carry a second anticancer drug to play a synergistic anticancer role with good water solubility, in particular FCRAN/T can target cancer cells. Therefore, our novel synthesized targetable anti-cancer nanoparticles have a better application prospect than that of RA or taxol alone. A retinoic acid nanoparticle with the ability of carrying a second anti-cancer drug, taxol, was developed. The anti-cancer nanoparticles were shown to have a better application prospect than that of RA or taxol alone.![]()
Collapse
Affiliation(s)
- Yibo Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 People's Republic of China
| | - Bin Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 People's Republic of China.,Department of Periodontosis, School and Hospital of Stomatology, Jilin University Changchun 130041 People's Republic of China
| | - Lu Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 People's Republic of China
| | - Wenhuan Bu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 People's Republic of China
| | - Shuwei Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 People's Republic of China
| | - Bin Sun
- Department of Oral and Maxilloficial Surgery, School and Hospital of Stomatology, Jilin University Changchun 130041 People's Republic of China .,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 People's Republic of China
| |
Collapse
|
29
|
Cho SK, Su LJ, Mao C, Wolenski CD, Flaig TW, Park W. Multifunctional nanoclusters of NaYF 4:Yb 3+,Er 3+ upconversion nanoparticle and gold nanorod for simultaneous imaging and targeted chemotherapy of bladder cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:784-792. [PMID: 30678969 PMCID: PMC6407122 DOI: 10.1016/j.msec.2018.12.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/03/2018] [Accepted: 12/27/2018] [Indexed: 12/27/2022]
Abstract
This paper reports successful synthesis of multifunctional nanoclusters of upconversion nanoparticle (UCNP) and gold nanorod (AuNR) through a PEGylation process. UCNPs emit visible luminescence under near-infrared excitation, producing high-contrast images with no background fluorescence. When coupled with AuNRs, the resulting UCNP-AuNR multifunctional nanoclusters are capable of simultaneous detection and treatment of bladder cancer. These UCNP-AuNR nanoclusters are further functionalized with antibodies to epidermal growth factor receptor (EGFR) to target bladder cancer cells known to overexpress EGFRs. This paper demonstrates, for the first time, efficient targeting of bladder cancer cells with UCNP-AuNR nanoclusters. In addition to high-contrast imaging and consequently high sensitivity detection of bladder cancer cells, highly selective optoporation-assisted chemotherapy was accomplished using a dosage of chemotherapy agent significantly lower than any previous reports, within a clinically relevant incubation time window. These results are highly relevant to the eventual human application in which the nanoclusters and chemotherapy drugs will be directly instilled in bladder via urinary catheter.
Collapse
Affiliation(s)
- Suehyun K Cho
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Lih-Jen Su
- Division of Medical Oncology, School of Medicine, University of Colorado Denver, 12801 E. 17(th) Ave. Aurora, CO 80045, USA
| | - Chenchen Mao
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Connor D Wolenski
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Thomas W Flaig
- Division of Medical Oncology, School of Medicine, University of Colorado Denver, 12801 E. 17(th) Ave. Aurora, CO 80045, USA
| | - Wounjhang Park
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
30
|
Shin JE, Ogunyankin MO, Zasadzinski JA. Perfluoroheptane-Loaded Hollow Gold Nanoshells Reduce Nanobubble Threshold Flux. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804476. [PMID: 30653279 PMCID: PMC8908779 DOI: 10.1002/smll.201804476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Indexed: 05/09/2023]
Abstract
The threshold flux for nanobubble formation and liposome rupture is reduced by 50-60% by adding a liquid mixture of tetradecanol and perfluoroheptane to the interior cavity of 40 nm diameter hollow gold nanoshells (HGN), and allowing the tetradecanol to solidify to hold the perfluoroheptane in place. On absorption of picosecond pulses of near-infrared light, the perfluoroheptane vaporizes to initiate cavitation-like nanobubbles as the HGN temperature increases. The lower spinodal temperature and heat capacity of perfluoroheptane relative to water causes the threshold flux for nanobubble formation to decrease. The perfluoroheptane-containing HGN can be linked via thiol-PEG-lipid tethers to carboxyfluorescein-containing liposomes and shows a similar decreased flux necessary for liposome contents release.
Collapse
Affiliation(s)
| | | | - Joseph A. Zasadzinski
- to whom correspondence should be addressed: Dr. Joseph A. Zasadzinski, 380 Amundson Hall, 421 Washington Ave SE, Minneapolis, Minnesota 55455, ,
| |
Collapse
|
31
|
M SM, Veeranarayanan S, Maekawa T, D SK. External stimulus responsive inorganic nanomaterials for cancer theranostics. Adv Drug Deliv Rev 2019; 138:18-40. [PMID: 30321621 DOI: 10.1016/j.addr.2018.10.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/03/2018] [Accepted: 10/08/2018] [Indexed: 01/21/2023]
Abstract
Cancer is a highly intelligent system of cells, that works together with the body to thrive and subsequently overwhelm the host in order for its survival. Therefore, treatment regimens should be equally competent to outsmart these cells. Unfortunately, it is not the case with current therapeutic practices, the reason why it is still one of the most deadly adversaries and an imposing challenge to healthcare practitioners and researchers alike. With rapid nanotechnological interventions in the medical arena, the amalgamation of diagnostic and therapeutic functionalities into a single platform, theranostics provides a never before experienced hope of enhancing diagnostic accuracy and therapeutic efficiency. Additionally, the ability of these nanotheranostic agents to perform their actions on-demand, i.e. can be controlled by external stimulus such as light, magnetic field, sound waves and radiation has cemented their position as next generation anti-cancer candidates. Numerous reports exist of such stimuli-responsive theranostic nanomaterials against cancer, but few have broken through to clinical trials, let alone clinical practice. This review sheds light on the pros and cons of a few such theranostic nanomaterials, especially inorganic nanomaterials which do not require any additional chemical moieties to initiate the stimulus. The review will primarily focus on preclinical and clinical trial approved theranostic agents alone, describing their success or failure in the respective stages.
Collapse
Affiliation(s)
- Sheikh Mohamed M
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan
| | | | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan.
| | - Sakthi Kumar D
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan.
| |
Collapse
|
32
|
Li L, Liao M, Chen Y, Shan B, Li M. Surface-enhanced Raman spectroscopy (SERS) nanoprobes for ratiometric detection of cancer cells. J Mater Chem B 2019; 7:815-822. [DOI: 10.1039/c8tb02828a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A surface-enhanced Raman spectroscopic strategy is developed for ratiometric detection of cancer cells by quantifying the expression ratio of extracellular biomarkers.
Collapse
Affiliation(s)
- Linhu Li
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University
- Changsha
- China
| | - Mengling Liao
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University
- Changsha
- China
| | - Yingfan Chen
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University
- Changsha
- China
| | - Beibei Shan
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University
- Changsha
- China
| | - Ming Li
- School of Materials Science and Engineering, State Key Laboratory for Power Metallurgy, Central South University
- Changsha
- China
| |
Collapse
|
33
|
Kim QH, Shin D, Park J, Weitz DA, Jhe W. Initial growth dynamics of 10 nm nanobubbles in the graphene liquid cell. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0925-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractThe unexpected long lifetime of nanobubble against the large Laplace pressure is one of the important issues in nanobubble research and a few models have been proposed to explain it. Most studies, however, have been focused on the observation of relatively large nanobubbles over 100 nm and are limited to the equilibrium state phenomena. The study on the sub-100 nm sized nanobubble is still lacking due to the limitation of imaging methods which overcomes the optical resolution limit. Here, we demonstrate the observation of growth dynamics of 10 nm nanobubbles confined in the graphene liquid cell using transmission electron microscopy (TEM). We modified the classical diffusion theory by considering the finite size of the confined system of graphene liquid cell (GLC), successfully describing the temporal growth of nanobubble. Our study shows that the growth of nanobubble is determined by the gas oversaturation, which is affected by the size of GLC.
Collapse
|
34
|
Hou S, Chen S, Dong Y, Gao S, Zhu B, Lu Q. Biodegradable Cyclomatrix Polyphosphazene Nanoparticles: A Novel pH-Responsive Drug Self-Framed Delivery System. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25983-25993. [PMID: 30014692 DOI: 10.1021/acsami.8b06114] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Traditional drug delivery systems suffer from low drug-loading and relatively weak therapeutic efficacy, therefore, development of new drug delivery systems with high-efficiency has become more urgent. In this report, a novel-innovative drug delivery strategy, namely drug self-framed delivery system (DSFDS), is prepared via using anticancer drugs as polymer frame without using any carriers. The drug molecules (exemplified by doxorubicin) containing more than two nucleophilic functional groups (diols/diamines) directly reacted with hexachlorocyclotriphosphazene via mild precipitation polycondensation under ambient conditions, forming biocompatible drug self-framed delivery nanoparticles. Because of the covalent bonding of the drug molecules, DSFD nanoparticles (DSFDs) with super high drug-loading were stable in the circulation during delivery. However, sustained release of drug in the acidic environment within cells endowed DSFDs with long-term anticancer therapeutic efficacy. This strategy is applicable for diverse hydrophilic and hydrophobic drugs and may be a new platform for designing high drug-loading and release-controllable drug delivery systems.
Collapse
Affiliation(s)
- Shenglei Hou
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Shuangshuang Chen
- School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Yuan Dong
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Su Gao
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Bangshang Zhu
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qinghua Lu
- School of Chemical Science and Engineering, The State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
35
|
Mi FL, Wang LF, Chu PY, Peng SL, Feng CL, Lai YJ, Li JN, Lin YH. Active Tumor-Targeted co-Delivery of Epigallocatechin Gallate and Doxorubicin in Nanoparticles for Combination Gastric Cancer Therapy. ACS Biomater Sci Eng 2018; 4:2847-2859. [DOI: 10.1021/acsbiomaterials.8b00242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, Graduate Institute of Medical Sciences, Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan first Road, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, 100 Tzyou first Road, Kaohsiung 807, Taiwan
| | | | | | - Chun-Lung Feng
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, 91 Hsueh-Shih Road, Taichung 404, Taiwan
| | | | | | | |
Collapse
|
36
|
Wang L, Wu J, Hu Y, Hu C, Pan Y, Yu Q, Chen H. Using porous magnetic iron oxide nanomaterials as a facile photoporation nanoplatform for macromolecular delivery. J Mater Chem B 2018; 6:4427-4436. [PMID: 32254660 DOI: 10.1039/c8tb01026a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular delivery of exogenous macromolecules such as functional proteins, antibodies, polysaccharides and nucleic acids into living cells for biomedical applications is of great interest. Even though great efforts have been devoted to this task, universal delivery systems that provide excellent intracellular delivery performance combined with easy cell recovery are urgently needed. Magnetic iron oxide nanoparticles show promising potential for various biomedical applications because of their advantages such as high biocompatibility and cost-effectiveness. Herein, a new facile platform for macromolecular delivery was developed based on the photothermal properties of porous magnetic iron oxide nanoparticles (P-MNPs). The near-infrared radiation (NIR) absorption behavior of P-MNPs remarkably facilitates the delivery of macromolecules into cells while maintaining high cell viability. Furthermore, the assistance of polycationic polyethylenimine improves the efficiency of DNA delivery. Most importantly, the cells could be easily recovered after macromolecular delivery by trypsinization, which is of great significance for further practical application of the delivery system. The facile and cost-effective platform proposed in this work provides a new avenue for the utilization of P-MNPs in macromolecular delivery.
Collapse
Affiliation(s)
- Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ogunyankin MO, Shin JE, Lapotko DO, Ferry VE, Zasadzinski JA. Optimizing the NIR Fluence Threshold for Nanobubble Generation by Controlled Synthesis of 10 - 40 nm Hollow Gold Nanoshells. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1705272. [PMID: 31467502 DOI: 10.1002/adfm.v28.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The laser fluence to trigger nanobubbles around hollow gold nanoshells (HGN) with near infrared light was examined through systematic modification of HGN size, localized surface plasmon resonance (LSPR), HGN concentration, and surface coverage. Improved temperature control during silver template synthesis provided monodisperse, silver templates as small as 9 nm. 10 nm HGN with < 2 nm shell thickness were prepared from these templates with a range of surface plasmon resonances from 600 - 900 nm. The fluence of picosecond near infrared (NIR) pulses to induce transient vapor nanobubbles decreased with HGN size at a fixed LSPR wavelength, unlike solid gold nanoparticles of similar dimensions that require an increased fluence with decreasing size. Nanobubble generation causes the HGN to melt with a blue shift of the LSPR. The nanobubble threshold fluence increases as the irradiation wavelength moves off the nanoshell LSPR. Surface treatment did not influence the threshold fluence. The threshold fluence increased with decreasing HGN concentration, suggesting that light localization through multiple scattering plays a role. The nanobubble threshold to rupture liposomes is 4 times smaller for 10 nm than for 40 nm HGN at a given LSPR, allowing us to use HGN size, LSPR, laser wavelength and fluence to control nanobubble generation.
Collapse
Affiliation(s)
- Maria O Ogunyankin
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Jeong Eun Shin
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Dmitri O Lapotko
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Vivian E Ferry
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Joseph A Zasadzinski
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| |
Collapse
|
38
|
Ogunyankin MO, Shin JE, Lapotko DO, Ferry VE, Zasadzinski JA. Optimizing the NIR Fluence Threshold for Nanobubble Generation by Controlled Synthesis of 10 - 40 nm Hollow Gold Nanoshells. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1705272. [PMID: 31467502 PMCID: PMC6715300 DOI: 10.1002/adfm.201705272] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The laser fluence to trigger nanobubbles around hollow gold nanoshells (HGN) with near infrared light was examined through systematic modification of HGN size, localized surface plasmon resonance (LSPR), HGN concentration, and surface coverage. Improved temperature control during silver template synthesis provided monodisperse, silver templates as small as 9 nm. 10 nm HGN with < 2 nm shell thickness were prepared from these templates with a range of surface plasmon resonances from 600 - 900 nm. The fluence of picosecond near infrared (NIR) pulses to induce transient vapor nanobubbles decreased with HGN size at a fixed LSPR wavelength, unlike solid gold nanoparticles of similar dimensions that require an increased fluence with decreasing size. Nanobubble generation causes the HGN to melt with a blue shift of the LSPR. The nanobubble threshold fluence increases as the irradiation wavelength moves off the nanoshell LSPR. Surface treatment did not influence the threshold fluence. The threshold fluence increased with decreasing HGN concentration, suggesting that light localization through multiple scattering plays a role. The nanobubble threshold to rupture liposomes is 4 times smaller for 10 nm than for 40 nm HGN at a given LSPR, allowing us to use HGN size, LSPR, laser wavelength and fluence to control nanobubble generation.
Collapse
Affiliation(s)
- Maria O Ogunyankin
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Jeong Eun Shin
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Dmitri O Lapotko
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Vivian E Ferry
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| | - Joseph A Zasadzinski
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455
| |
Collapse
|
39
|
Saklayen N, Kalies S, Madrid M, Nuzzo V, Huber M, Shen W, Sinanan-Singh J, Heinemann D, Heisterkamp A, Mazur E. Analysis of poration-induced changes in cells from laser-activated plasmonic substrates. BIOMEDICAL OPTICS EXPRESS 2017; 8:4756-4771. [PMID: 29082100 PMCID: PMC5654815 DOI: 10.1364/boe.8.004756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Laser-exposed plasmonic substrates permeabilize the plasma membrane of cells when in close contact to deliver cell-impermeable cargo. While studies have determined the cargo delivery efficiency and viability of laser-exposed plasmonic substrates, morphological changes in a cell have not been quantified. We porated myoblast C2C12 cells on a plasmonic pyramid array using a 532-nm laser with 850-ps pulse length and time-lapse fluorescence imaging to quantify cellular changes. We obtain a poration efficiency of 80%, viability of 90%, and a pore radius of 20 nm. We quantified area changes in the plasma membrane attached to the substrate (10% decrease), nucleus (5 - 10% decrease), and cytoplasm (5 - 10% decrease) over 1 h after laser treatment. Cytoskeleton fibers show a change of 50% in the alignment, or coherency, of fibers, which stabilizes after 10 mins. We investigate structural and morphological changes due to the poration process to enable the safe development of this technique for therapeutic applications.
Collapse
Affiliation(s)
- Nabiha Saklayen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Co-first authors
| | - Stefan Kalies
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institut für Quantenoptik, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover, Germany
- Co-first authors
| | - Marinna Madrid
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | - Marinus Huber
- Department of Physics, Ludwig Maximilian University of Munich, 80539 Munich, Germany
| | - Weilu Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Jasmine Sinanan-Singh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Dag Heinemann
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Alexander Heisterkamp
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institut für Quantenoptik, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover, Germany
- Co-last authors
| | - Eric Mazur
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Co-last authors
| |
Collapse
|
40
|
Xie Y, Zhao C. An optothermally generated surface bubble and its applications. NANOSCALE 2017; 9:6622-6631. [PMID: 28485456 DOI: 10.1039/c7nr01360d] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Under laser illumination, a solid-state surface or nanostructure can turn into a micro/nano heating source with the so-called optothermal effect. This effect allows for non-invasive control of heat at the micro/nanoscale. In the presence of a liquid, a surface bubble can be generated on top of the solid surface or nanostructure at a temperature much higher than the boiling point of the liquid. The high temperature and the fluid flow associated with the optothermally generated surface bubble enable many intriguing applications, ranging from the micro/nano-manipulation of fluids, particles, cells, and light to the synthesis of micro/nano-structures under ambient conditions. In this review article, we present the fundamentals, recent developments, and future perspectives in this emerging field.
Collapse
Affiliation(s)
- Yuliang Xie
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
41
|
Saklayen N, Huber M, Madrid M, Nuzzo V, Vulis DI, Shen W, Nelson J, McClelland AA, Heisterkamp A, Mazur E. Intracellular Delivery Using Nanosecond-Laser Excitation of Large-Area Plasmonic Substrates. ACS NANO 2017; 11:3671-3680. [PMID: 28291329 DOI: 10.1021/acsnano.6b08162] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Efficiently delivering functional cargo to millions of cells on the time scale of minutes will revolutionize gene therapy, drug discovery, and high-throughput screening. Recent studies of intracellular delivery with thermoplasmonic structured surfaces show promising results but in most cases require time- or cost-intensive fabrication or lead to unreproducible surfaces. We designed and fabricated large-area (14 × 14 mm), photolithography-based, template-stripped plasmonic substrates that are nanosecond laser-activated to form transient pores in cells for cargo entry. We optimized fabrication to produce plasmonic structures that are ultrasmooth and precisely patterned over large areas. We used flow cytometry to characterize the delivery efficiency of cargos ranging in size from 0.6 to 2000 kDa to cells (up to 95% for the smallest molecule) and viability of cells (up to 98%). This technique offers a throughput of 50000 cells/min, which can be scaled up as necessary. This technique is also cost-effective as each large-area photolithography substrate can be used to deliver cargo to millions of cells, and switching to a nanosecond laser makes the setup cheaper and easier to use. The approach we present offers additional desirable features: spatial selectivity, reproducibility, minimal residual fragments, and cost-effective fabrication. This research supports the development of safer genetic and viral disease therapies as well as research tools for fundamental biological research that rely on effectively delivering molecules to millions of living cells.
Collapse
Affiliation(s)
| | - Marinus Huber
- Department of Physics, Ludwig Maximilian University of Munich , 80539 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sneider A, VanDyke D, Paliwal S, Rai P. Remotely Triggered Nano-Theranostics For Cancer Applications. Nanotheranostics 2017; 1:1-22. [PMID: 28191450 PMCID: PMC5298883 DOI: 10.7150/ntno.17109] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/16/2016] [Indexed: 01/02/2023] Open
Abstract
Nanotechnology has enabled the development of smart theranostic platforms that can concurrently diagnose disease, start primary treatment, monitor response, and, if required, initiate secondary treatments. Recent in vivo experiments demonstrate the promise of using theranostics in the clinic. In this paper, we review the use of remotely triggered theranostic nanoparticles for cancer applications, focusing heavily on advances in the past five years. Remote triggering mechanisms covered include photodynamic, photothermal, phototriggered chemotherapeutic release, ultrasound, electro-thermal, magneto-thermal, X-ray, and radiofrequency therapies. Each section includes a brief overview of the triggering mechanism and summarizes the variety of nanoparticles employed in each method. Emphasis in each category is placed on nano-theranostics with in vivo success. Some of the nanotheranostic platforms highlighted include photoactivatable multi-inhibitor nanoliposomes, plasmonic nanobubbles, reduced graphene oxide-iron oxide nanoparticles, photoswitching nanoparticles, multispectral optoacoustic tomography using indocyanine green, low temperature sensitive liposomes, and receptor-targeted iron oxide nanoparticles loaded with gemcitabine. The studies reviewed here provide strong evidence that the field of nanotheranostics is rapidly evolving. Such nanoplatforms may soon enable unique advances in the clinical management of cancer. However, reproducibility in the synthesis procedures of such "smart" platforms that lend themselves to easy scale-up in their manufacturing, as well as the development of new and improved models of cancer that are more predictive of human responses, need to happen soon for this field to make a rapid clinical impact.
Collapse
Affiliation(s)
| | | | | | - Prakash Rai
- ✉ Corresponding author: Prakash Rai, Phone 978-934-4971,
| |
Collapse
|
43
|
Yao C, Wang P, Li X, Hu X, Hou J, Wang L, Zhang F. Near-Infrared-Triggered Azobenzene-Liposome/Upconversion Nanoparticle Hybrid Vesicles for Remotely Controlled Drug Delivery to Overcome Cancer Multidrug Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9341-9348. [PMID: 27578301 DOI: 10.1002/adma.201503799] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 07/22/2016] [Indexed: 05/21/2023]
Abstract
Overcoming multidrug resistance is achieved by developing a novel drugdelivery-system paradigm based on azobenzene liposome and phosphatidylcholine-modified upconversion nanoparticle (UCNP) hybrid vesicles for controlled drug release using a nearinfrared (NIR) laser. Upon 980 nm light irradiation, the reversible photoisomerization of the azobenzene derivatives by simultaneous UV and visible light emitted from the UCNPs makes it possible to realize NIR-triggered release of the chemotherapeutic drug doxorubicin.
Collapse
Affiliation(s)
- Chi Yao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Peiyuan Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaomin Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaoyu Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Junli Hou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Leyong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
44
|
Guo X, Wang L, Wei X, Zhou S. Polymer-based drug delivery systems for cancer treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28252] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xing Guo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Lin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Xiao Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| |
Collapse
|
45
|
Yang G, Liu J, Wu Y, Feng L, Liu Z. Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Cheng T, Liu J, Ren J, Huang F, Ou H, Ding Y, Zhang Y, Ma R, An Y, Liu J, Shi L. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance. Theranostics 2016; 6:1277-92. [PMID: 27375779 PMCID: PMC4924499 DOI: 10.7150/thno.15133] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/04/2016] [Indexed: 01/19/2023] Open
Abstract
Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance.
Collapse
Affiliation(s)
- Tangjian Cheng
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Jinjian Liu
- 2. Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Jie Ren
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Fan Huang
- 2. Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Hanlin Ou
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yuxun Ding
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yumin Zhang
- 2. Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Rujiang Ma
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yingli An
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Jianfeng Liu
- 2. Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Linqi Shi
- 1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, P.R. China
- 3. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
47
|
Lukianova-Hleb EY, Yvon ES, Shpall EJ, Lapotko DO. All-in-one processing of heterogeneous human cell grafts for gene and cell therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16012. [PMID: 27006970 PMCID: PMC4793805 DOI: 10.1038/mtm.2016.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
Abstract
Current cell processing technologies for gene and cell therapies are often slow, expensive, labor intensive and are compromised by high cell losses and poor selectivity thus limiting the efficacy and availability of clinical cell therapies. We employ cell-specific on-demand mechanical intracellular impact from laser pulse-activated plasmonic nanobubbles (PNB) to process heterogeneous human cell grafts ex vivo with dual simultaneous functionality, the high cell type specificity, efficacy and processing rate for transfection of target CD3+ cells and elimination of subsets of unwanted CD25+ cells. The developed bulk flow PNB system selectively processed human cells at a rate of up to 100 million cell/minute, providing simultaneous transfection of CD3+ cells with the therapeutic gene (FKBP12(V36)-p30Caspase9) with the efficacy of 77% and viability 95% (versus 12 and 60%, respectively, for standard electroporation) and elimination of CD25+ cells with 99% efficacy. PNB flow technology can unite and replace several methodologies in an all-in-one universal ex vivo simultaneous procedure to precisely and rapidly prepare a cell graft for therapy. PNB’s can process various cell systems including cord blood, stem cells, and bone marrow.
Collapse
Affiliation(s)
| | - Eric S Yvon
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center , Houston, Texas, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center , Houston, Texas, USA
| | - Dmitri O Lapotko
- Department of BioSciences, Rice University , Houston, Texas, USA
| |
Collapse
|
48
|
Lukianova-Hleb EY, Kim YS, Aryasomayajula B, Boulikas T, Phan J, Hung MC, Torchilin VP, O'Neill BE, Lapotko DO. Safety and efficacy of quadrapeutics versus chemoradiation in head and neck carcinoma xenograft model. Am J Cancer Res 2015; 5:3534-3547. [PMID: 26885444 PMCID: PMC4731629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023] Open
Abstract
Chemoradiation is the strongest anti-tumor therapy but in resistant unresectable cancers it often lacks safety and efficacy. We compared our recently developed cell-level combination approach, quadrapeutics, to chemoradiation therapy to establish pre-clinical data for its biodistribution, safety and efficacy in head and neck squamous cell carcinoma (HNSCC), as a clinically challenging aggressive and resistant cancer. In vitro and in vivo models of four carcinomas were treated with standard chemoradiation and quadrapeutics using identical drug and radiation doses. We applied liposomal cisplatin or doxorubicin, colloidal gold, near-infrared laser pulses and radiation, all at low safe doses. The final evaluation used a xenograft model of HNSCC. Quadrapeutics enhanced standard chemoradiation in vitro by reducing head and neck cancer cell proliferation by 1000-fold, inhibiting tumor growth in vivo by 34-fold and improving animal survival by 5-fold, and reducing the side effects to a negligible level. In quadrapeutics, we observed an "inversion" of the drug efficacy of two standard drugs: doxorubicin, a low efficacy drug for the cancers studied, was two times more efficient than cisplatin, the first choice drug in clinic for HNSCC. The radical therapeutic gain of quadrapeutics resulted from the intracellular synergy of the four components employed which we administered in a specific sequence, while the reduction in the toxicity was due to the low doses of all four components. The biodistribution, safety and efficacy data for quadrapeutics in HNSCC ensure its high translational potential and justify the possibility of clinical trials.
Collapse
Affiliation(s)
| | - Yoo-Shin Kim
- Department of Translational Imaging, Houston Methodist Research Institute Houston, TX 77030, USA
| | - Bhawani Aryasomayajula
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University Boston, MA 02115, USA
| | | | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer CenterHouston, Texas 77030, USA; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical UniversityTaichung, Taiwan
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University Boston, MA 02115, USA
| | - Brian E O'Neill
- Department of Translational Imaging, Houston Methodist Research Institute Houston, TX 77030, USA
| | - Dmitri O Lapotko
- Department of BioSciences at Rice, Rice University Houston, TX 77005, USA
| |
Collapse
|
49
|
Bergeron E, Boutopoulos C, Martel R, Torres A, Rodriguez C, Niskanen J, Lebrun JJ, Winnik FM, Sapieha P, Meunier M. Cell-specific optoporation with near-infrared ultrafast laser and functionalized gold nanoparticles. NANOSCALE 2015; 7:17836-47. [PMID: 26459958 DOI: 10.1039/c5nr05650k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS-PEG-NHS) conjugated to monoclonal antibodies per nm(2) and 5 μM HS-PEG (5 kDa) were colloidally stable in cell culture medium containing serum proteins. These AuNPs attached mostly as single particles 115 times more to targeted CD44(+) MDA-MB-231 and CD44(+) ARPE-19 cells than to non-targeted CD44(-) 661W cells. Optimally functionalized AuNPs enhanced the fs laser (800 nm, 80-100 mJ cm(-2) at 250 Hz or 60-80 mJ cm(-2) at 500 Hz) to selectively perforate targeted cells without affecting surrounding non-targeted cells in co-culture. This novel highly versatile treatment paradigm can be adapted to target and perforate other cell populations by adapting to desired biomarkers. Since living biological tissues absorb energy very weakly in the NIR range, the developed non-invasive tool may provide a safe, cost-effective clinically relevant approach to ablate pathologically deregulated cells and limit complications associated with surgical interventions.
Collapse
Affiliation(s)
- Eric Bergeron
- Laser Processing and Plasmonics Laboratory, Department of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succursale Centre-ville, Montreal, QC H3C 3A7, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Xuan Yang
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | | | - Bo Pang
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | | | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|