1
|
Guan Y, Wen J, Niu H, Zhai J, Dang Y, Guan J. Targeted delivery of engineered adipose-derived stem cell secretome to promote cardiac repair after myocardial infarction. J Control Release 2025; 383:113765. [PMID: 40274072 PMCID: PMC12145236 DOI: 10.1016/j.jconrel.2025.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Stem cell secretome offers a promising alternative to stem cell transplantation for treating myocardial infarction (MI). However, its clinical application faces two major challenges: how to enhance the levels of growth factors within the secretome to promote cardiac cell survival and vascularization, and how to efficiently deliver the secretome to the infarcted heart during the acute MI phase without risking rupture of the weakened myocardium. To address these challenges, we upregulated angiogenic growth factors in the secretome from adipose-derived stem cells (ADSC-secretome) by conditioning the cells under hypoxia and with insulin-like growth factor 1 (IGF-1). Our results show that exposure to 1 % O₂ condition significantly increased the expression of VEGF, bFGF, and PDGF-BB compared to 5 % O₂ condition. Co-treatment with IGF-1 further elevated the levels of these growth factors and, notably, reduced the secretion of pro-inflammatory cytokines such as TNFα, IL-1β, and IL-6 from the ADSCs. To rapidly and specifically deliver the secretome to the infarcted heart during acute MI, we encapsulated it within ischemia-targeting nanoparticles. These nanoparticles, designed for intravenous injection, preferentially accumulated in the infarcted region. The treatment significantly improved cardiac cell survival, tissue vascularization, and cardiac function. These findings suggest that ADSC secretome, enriched with angiogenic growth factors, holds strong potential for facilitating cardiac repair following MI.
Collapse
Affiliation(s)
- Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jiaxing Wen
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jin Zhai
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
2
|
Abhirami N, Sudhina S, Chandran A, Chandran M, Ayyappan JP. Targeted delivery of peptide functionalized nanoparticles for ameliorating myocardial infarction. Egypt Heart J 2025; 77:48. [PMID: 40407974 PMCID: PMC12102026 DOI: 10.1186/s43044-025-00644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 04/26/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI) continues to pose a significant global healthcare burden despite advances in treatment options and their effectiveness. The incidence, prevalence, and mortality rates associated with MI are rising, emphasizing the need for improved therapeutic strategies. Traditional invasive surgical methods, aimed at recanalizing blood flow to the coronary arteries, have proven insufficient in fully addressing the complexities of MI. This ongoing challenge necessitates the exploration of novel approaches to enhance treatment efficacy and outcomes for MI patients. MAIN TEXT One promising approach is the use of nanoparticle delivery systems for targeted therapy to the infarct site. When conventional methods fail to achieve adequate permeability and retention, nanoparticle strategies offer a potential solution. Functionalizing nanoparticles is a particularly effective technique, allowing these particles to conjugate with specific ligands. These ligands possess the intrinsic ability to selectively bind to receptors that are overexpressed or uniquely present at the infarct site, thereby conferring "smartness" to the nanoparticle constructs. This review delves into the various strategies employed in nanoparticle-ligand functionalization, highlighting the versatility and potential of these approaches. It provides a detailed cross section of several ligand classes, each with unique properties and binding affinities that make them suitable for targeted delivery in the context of MI. The focus is on identifying ligands that are either unique to the infarcted myocardium or significantly upregulated during MI, ensuring precise and efficient targeting of therapeutic agents. CONCLUSION In summary, while traditional surgical methods for restoring blood flow in MI patients remain important, they are not sufficient on their own. By leveraging the specificity of these ligands, nanoparticles can be directed precisely to the infarct site, enhancing the delivery and efficacy of therapeutic agents. This review underscores the need for continued research into nanoparticle-ligand functionalization strategies, aiming to improve outcomes for MI patients and reduce the global burden of this condition.
Collapse
Affiliation(s)
- N Abhirami
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695034, India
| | - S Sudhina
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695034, India
- Centre for Advanced Cancer Research, Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695034, India
| | - Akash Chandran
- Department of Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - Mahesh Chandran
- Department of Biotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - Janeesh Plakkal Ayyappan
- Translational Nanomedicine and Lifestyle Disease Research Laboratory, Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695034, India.
- Centre for Advanced Cancer Research, Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695034, India.
- Department of Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India.
- Department of Biotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
3
|
Guo T, Luo L, Wang L, Zhang F, Liu Y, Leng J. Smart Polymer Microspheres: Preparation, Microstructures, Stimuli-Responsive Properties, and Applications. ACS NANO 2025; 19:18003-18036. [PMID: 40331430 DOI: 10.1021/acsnano.5c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Smart polymer microspheres (SPMs) are a class of stimulus-responsive materials that undergo physical, chemical, or property changes in response to external stimuli, such as temperature, pH, light, and magnetic fields. In recent years, their diverse responsiveness and tunable structures have enabled broad applications in biomedicine, environmental protection, information encryption, and other fields. This study provides a detailed review of recent preparation methods of SPMs, focusing on physical methods such as emulsification-solvent evaporation, microfluidics, and electrostatic spraying as well as chemical approaches such as emulsion and precipitation polymerization. Meanwhile, different types of stimulus-responsive behaviors, such as temperature-, pH-, light-, and magnetic-responsiveness, are thoroughly examined. This study also explores the applications of SPMs in drug delivery, tissue engineering, and environmental monitoring, while discussing future technological challenges and development directions in this field.
Collapse
Affiliation(s)
- Tao Guo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Lan Luo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Linlin Wang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Yanju Liu
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology (HIT), No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| |
Collapse
|
4
|
Zhou L, Zhang TJ, Zhang L, Deng QY, Xia ZY, Chen SL, Cheng DB, Qiao ZY, Wang H. Stimuli-responsive peptide-based nanodrug delivery systems for tumor therapy. Chem Commun (Camb) 2025; 61:7384-7407. [PMID: 40293360 DOI: 10.1039/d5cc00950b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Compared to free chemotherapeutic drugs, nano-sized drug delivery systems exhibit enhanced therapeutic effects and reduced in vivo toxicity. Peptide-based drug delivery systems have garnered significant attention due to the advantageous properties of peptides, including their excellent biocompatibility, diverse side-chain functionalities, and ability to form stable secondary structures. Incorporating stimuli-responsive amino acid residues or specific responsive moieties within their side chains endows these peptide-based drug delivery systems with unique stimuli-responsive characteristics. In this review, we summarize recent advancements and mechanisms in peptide-based nanodrug delivery systems that are capable of responding to one or multiple stimuli as well as conclude with a concise overview of the challenges that lie ahead in this field.
Collapse
Affiliation(s)
- Lei Zhou
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Ting-Jie Zhang
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Lu Zhang
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Qiu-Ying Deng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhi-Yu Xia
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Si-Lin Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, Wuhan 430070, China.
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, Hubei, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| |
Collapse
|
5
|
Yousef DA, Abdalla MS, Elshopakey GE, Al-Olayan E, Abdel Moneim AE, Ramadan SS. Diosmin-loaded chitosan nanoparticles mitigate doxorubicin-evoked cardiotoxicity in rats by featuring oxidative imbalance mechanism, NF-κB, and Bcl-2/Bax pathways. Int J Biol Macromol 2025; 305:140991. [PMID: 39952491 DOI: 10.1016/j.ijbiomac.2025.140991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/12/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cardiotoxicity is doxorubicin's primary side effect. Its cardiac toxicity has been attributed to the generation of free radicals. The present work was designed to understand the potential underlying pathways behind the cardioprotective action of diosmin (Dio) and Dio-loaded chitosan nanoparticles (DCNPs) against doxorubicin (Dox)-mediated cardiotoxicity. Male rats were allocated into five groups: control, Dio (100 mg/kg), Dox (12 mg/kg), Dio + Dox (100 mg/kg + 12 mg/kg), and DCNPs+Dox (100 mg/kg DCNPs/orally+12 mg/kg Dox/IP). Notably, in response to Dox, a significant increase of cardiac biomarkers with a decrease in Na+/K+-ATPase activity was detected. The cardiac inflammatory and pro-apoptotic protein levels were elevated with decreased cardiac interleukin-10 and Bcl-2 levels when the rats were subjected to Dox. Also, the cardiac expression of the fibrotic marker MMP-9 was increased. Moreover, Dox raised malondialdehyde and nitric oxide levels, accompanied by minimizing antioxidant status. Also, Dox-treated rats showed cardiac histopathological impairment compared to the control. The oral administration of Dio or DCNPs enhanced the activity of antioxidant enzymes and diminished inflammatory cytokines and apoptotic markers in the Dox-exposed rats. In summary, these findings indicate that DCNPs exhibit significant cardioprotective effectiveness against Dox-mediated toxicity by suppressing various mechanisms, such as redox status, the NF-κB pathway, and apoptosis.
Collapse
Affiliation(s)
- Doaa A Yousef
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Mohga S Abdalla
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, 35516, Egypt; Department of Veterinary Diseases, Faculty of Veterinary Medicine, Delta University for Science and Technology, 35712 Gamasa, Egypt
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, P.O. Box: 64004, An Nasiriyah, Thi Qar, Iraq.
| | - Shimaa S Ramadan
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
6
|
Mesfin JM, Carrow KP, Chen A, Hopps MP, Holm JJ, Lyons QP, Nguyen MB, Hunter JD, Magassa A, Wong EG, Reimold K, Paleti SN, Gardner E, Thompson MP, Luo CG, Zhang X, Christman KL, Gianneschi NC. Protein-Like Polymers Targeting Keap1/Nrf2 as Therapeutics for Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417885. [PMID: 40277240 DOI: 10.1002/adma.202417885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/13/2025] [Indexed: 04/26/2025]
Abstract
Myocardial infarction (MI) results in oxidative stress to the myocardium and frequently leads to heart failure (HF). There is an unmet clinical need to develop therapeutics that address the inflammatory stress response and prevent negative left ventricular remodeling. Here, the Keap1/Nrf2 protein-protein interaction is specifically targeted, as Nrf2 activation is known to mitigate the inflammatory response following MI. This is achieved using a Nrf2-mimetic protein-like polymer (PLP) to inhibit the Keap1-Nrf2 interaction. The PLP platform technology provides stability in vivo, potent intracellular bioactivity, and multivalency leading to high avidity Keap1 binding. In vitro and in vivo assays to probe cellular activity and MI therapeutic utility are employed. These Keap1-inhibiting PLPs (Keap1i-PLPs) impart cytoprotection from oxidative stress via Nrf2 activation at sub-nanomolar concentrations in primary cardiomyocytes. Single-digit mg kg-1, single-dose, intravenous PLP administration significantly improves cardiac function in rats post-MI through immunomodulatory, anti-apoptotic, and angiogenic mechanisms. Thus Keap1i-PLPs disrupt key intracellular protein-protein interactions following intravenous, systemic administration in vivo. These results have broad implications not only for MI but also for other oxidative stress-driven diseases and conditions.
Collapse
Affiliation(s)
- Joshua M Mesfin
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Kendal P Carrow
- Medical Scientist Training Program, Department of Biomedical Engineering, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alexander Chen
- Program in Materials Science and Engineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Madeline P Hopps
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - JoJo J Holm
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Quincy P Lyons
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael B Nguyen
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jervaughn D Hunter
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Assa Magassa
- Department of Chemistry, Department of Materials Science & Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Elyse G Wong
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Kate Reimold
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Sriya N Paleti
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Emily Gardner
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Matthew P Thompson
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Colin G Luo
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Department of Materials Science & Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering, Program in Materials Science and Engineering, Sanford Consortium for Regenerative Medicine, Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, 92037, USA
| | - Nathan C Gianneschi
- Department of Biomedical Engineering, Department of Chemistry, Department of Materials Science & Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
7
|
Li X, Xu Z. Applications of Matrix Metalloproteinase-9-Related Nanomedicines in Tumors and Vascular Diseases. Pharmaceutics 2025; 17:479. [PMID: 40284474 PMCID: PMC12030376 DOI: 10.3390/pharmaceutics17040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is implicated in tumor progression and vascular diseases, contributing to angiogenesis, metastasis, and extracellular matrix degradation. This review comprehensively examines the relationship between MMP-9 and these pathologies, exploring the underlying molecular mechanisms and signaling pathways involved. Specifically, we discuss the contribution of MMP-9 to tumor epithelial-mesenchymal transition, angiogenesis, and metastasis, as well as its involvement in a spectrum of vascular diseases, including macrovascular, cerebrovascular, and ocular vascular diseases. This review focuses on recent advances in MMP-9-targeted nanomedicine strategies, highlighting the design and application of responsive nanoparticles for enhanced drug delivery. These nanotherapeutic strategies leverage MMP-9 overexpression to achieve targeted drug release, improved tumor penetration, and reduced systemic toxicity. We explore various nanoparticle platforms, such as liposomes and polymer nanoparticles, and discuss their mechanisms of action, including degradation, drug release, and targeting specificity. Finally, we address the challenges posed by the heterogeneity of MMP-9 expression and their implications for personalized therapies. Ultimately, this review underscores the diagnostic and therapeutic potential of MMP-9-targeted nanomedicines against tumors and vascular diseases.
Collapse
Affiliation(s)
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
8
|
Yang H, Li J, Song C, Li H, Luo Q, Chen M. Emerging Gene Therapy Based on Nanocarriers: A Promising Therapeutic Alternative for Cardiovascular Diseases and a Novel Strategy in Valvular Heart Disease. Int J Mol Sci 2025; 26:1743. [PMID: 40004206 PMCID: PMC11855571 DOI: 10.3390/ijms26041743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular disease remains a leading cause of global mortality, with many unresolved issues in current clinical treatment strategies despite years of extensive research. Due to the great progress in nanotechnology and gene therapy in recent years, the emerging gene therapy based on nanocarriers has provided a promising therapeutic alternative for cardiovascular diseases. This review outlines the status of nanocarriers as vectors in gene therapy for cardiovascular diseases, including coronary heart disease, pulmonary hypertension, hypertension, and valvular heart disease. It discusses challenges and future prospects, aiming to support emerging clinical treatments. This review is the first to summarize gene therapy using nanocarriers for valvular heart disease, highlighting their potential in targeting challenging tissues.
Collapse
Affiliation(s)
- Haoran Yang
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
| | - Junli Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengxiang Song
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
| | - Hongde Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
| | - Qiang Luo
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mao Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; (H.Y.); (J.L.); (C.S.)
- Department of Cardiology, West China Hospital, Sichuan University, No.37 Guoxue Street, Chengdu 610041, China
- Cardiac Structure and Function Research Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Long M, Wang L, Kang L, Liu D, Long T, Ding H, Duan Y, He H, Xu B, Gu N. Prussian Blue Nanozyme Featuring Enhanced Superoxide Dismutase-like Activity for Myocardial Ischemia Reperfusion Injury Treatment. ACS NANO 2025; 19:4561-4581. [PMID: 39835774 DOI: 10.1021/acsnano.4c14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The blood flow, when restored clinically following a myocardial infarction (MI), disrupts the physiological and metabolic equilibrium of the ischemic myocardial area, resulting in secondary damage termed myocardial ischemia-reperfusion injury (MIRI). Reactive oxygen species (ROS) generation and inflammatory reactions stand as primary culprits behind MIRI. Current strategies focusing on ROS-scavenging and anti-inflammatory actions have limited remission of MIRI. Prussian blue nanozyme (PBNz) exhibits multiple enzyme-like activities including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), which are beneficial for ROS clearance and fighting inflammation. Herein, a formulation of PBNz coated with polydextrose-sorbitol carboxymethyl ether (PBNz@PSC) was developed to enhance its efficacy, biocompatibility, and safety for the treatment of MIRI. PBNz@PSC not only showed enhanced SOD-like activity due to its polysaccharide attributes but also could passively target the damaged myocardium through the enhanced permeability and retention (EPR) effect. Both in vitro and in vivo studies have validated their excellent biocompatibility, safety, ROS-scavenging ability, and capacity to drive macrophage polarization from M1 toward M2, thereby diminishing the levels of IL-1β, IL-6, and TNF-α to combat inflammation. Consequently, PBNz@PSC can reverse ischemia reperfusion-induced myocardial injury, reduce coronary microvascular obstruction (MVO), and improve myocardial remodeling and cardiac function. Moreover, PBNz@PSC showed more pronounced therapeutic effects for MIRI than a clinical drug, sulfotanshinone IIA sodium. Notably, our findings revealed the possible mechanism of PBNz@PSC in treating MIRI, which mediated AMPK activation. In conclusion, this study presents a pioneering strategy for addressing MIRI, promising improved ischemia-reperfusion outcomes.
Collapse
Affiliation(s)
- Mengmeng Long
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lintao Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P. R. China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P. R. China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, P. R. China
| | - Dongfang Liu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210003, P. R. China
| | - Tingting Long
- Anqing Municipal Hospital, Anqing Medical Center of Anhui Medical University, AnQing 246003, P. R. China
| | - He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yifan Duan
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Hongliang He
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P. R. China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
10
|
Walter M, Weißbach H, Gembardt F, Halder S, Schorr K, Fleischmann D, Todorov V, Hugo C, Goepferich A. Long-term residence and efficacy of adenovirus-mimetic nanoparticles in renal target tissue. J Drug Target 2024; 32:1320-1332. [PMID: 39171543 DOI: 10.1080/1061186x.2024.2390628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
A major shortcoming in the treatment of mesangial cell-associated diseases such as IgA nephropathy, diabetic nephropathy, or lupus nephritis, which frequently progress to end-stage renal disease, is poor drug availability in the glomerular mesangium. Drug delivery via active targeting of nanoparticles, using ligands attached to the particle surface for target cell recognition to increase the biodistribution to the mesangium, is a promising strategy to overcome this hurdle. However, although several glomerular tissue targeting approaches have been described, so far no study has demonstrated the particles' ability to deliver sufficient drug amounts combined with an appropriate nanoparticle target retention time to trigger relevant biological effects in the mesangium. In our study, we encapsulated erastin, a ferroptosis-inducing model compound, into adenovirus-mimetic, mesangial cell-targeting nanoparticles, enabling the direct visualisation of biological effects through ferroptosis-dependent histological changes. By intravital microscopy and analysis of histological sections, we were not only able to localise the injected particles over 10 days within the target cells but also to demonstrate biological activity in the renal glomeruli. In conclusion, we have characterised adenovirus-mimetic nanoparticles as a highly suitable drug delivery platform for the treatment of mesangial cell-associated diseases and additionally provided the basis for a potential renal disease model.
Collapse
Affiliation(s)
- Melanie Walter
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Hannah Weißbach
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Florian Gembardt
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Sagor Halder
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Kathrin Schorr
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Vladimir Todorov
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health - School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Christian Hugo
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria, Germany
| |
Collapse
|
11
|
Li S, Li F, Wang Y, Li W, Wu J, Hu X, Tang T, Liu X. Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury: current strategies and future prospective. Drug Deliv 2024; 31:2298514. [PMID: 38147501 PMCID: PMC10763895 DOI: 10.1080/10717544.2023.2298514] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Acute myocardial infarction, characterized by high morbidity and mortality, has now become a serious health hazard for human beings. Conventional surgical interventions to restore blood flow can rapidly relieve acute myocardial ischemia, but the ensuing myocardial ischemia-reperfusion injury (MI/RI) and subsequent heart failure have become medical challenges that researchers have been trying to overcome. The pathogenesis of MI/RI involves several mechanisms, including overproduction of reactive oxygen species, abnormal mitochondrial function, calcium overload, and other factors that induce cell death and inflammatory responses. These mechanisms have led to the exploration of antioxidant and inflammation-modulating therapies, as well as the development of myocardial protective factors and stem cell therapies. However, the short half-life, low bioavailability, and lack of targeting of these drugs that modulate these pathological mechanisms, combined with liver and spleen sequestration and continuous washout of blood flow from myocardial sites, severely compromise the expected efficacy of clinical drugs. To address these issues, employing conventional nanocarriers and integrating them with contemporary biomimetic nanocarriers, which rely on passive targeting and active targeting through precise modifications, can effectively prolong the duration of therapeutic agents within the body, enhance their bioavailability, and augment their retention at the injured myocardium. Consequently, these approaches significantly enhance therapeutic effectiveness while minimizing toxic side effects. This article reviews current drug delivery systems used for MI/RI, aiming to offer a fresh perspective on treating this disease.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Fengmei Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Yan Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
12
|
Choudhury P, Kandula N, Kosuru R, Adena SKR. Nanomedicine: A great boon for cardiac regenerative medicine. Eur J Pharmacol 2024; 982:176969. [PMID: 39218342 DOI: 10.1016/j.ejphar.2024.176969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.
Collapse
Affiliation(s)
- Priyanka Choudhury
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nirupama Kandula
- Department of Microbiology, GSL Medical College, Rajahmahendravaram, Andhra Pradesh, 533296, India
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
13
|
Zhang B, Wang C, Guo M, Zhu F, Yu Z, Zhang W, Li W, Zhang Y, Tian W. Circadian Rhythm-Dependent Therapy by Composite Targeted Polyphenol Nanoparticles for Myocardial Ischemia-Reperfusion Injury. ACS NANO 2024; 18:28154-28169. [PMID: 39373010 DOI: 10.1021/acsnano.4c07690] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Myocardial ischemia-reperfusion (IR) injury is a severe rhythmic disease with a high prevalence in the early morning. IR injury has a significant circadian rhythm in reactive oxygen species (ROS) and inflammation levels. The development of rhythmic drugs has become a priority in myocardial IR injury. In this study, resveratrol (RES) and proanthocyanidins (OPC) were utilized to design nanoparticles (NPs), with hyaluronic acid (HA) as the core, grafted with MMP-targeting peptides to improve delivery to injured myocardial regions (HA-RES-OPC-MMP NPs). NPs significantly scavenged ROS, attenuated inflammation, and activated the rhythm gene. Notably, the difference in therapeutic effects on myocardial IR injury in mice at Zeitgeber time (ZT)1 and ZT13 confirms that NPs are rhythm-dependent drugs. At ZT13, echocardiographic and MRI confirm that IR injury in mice was not as severe as at ZT1, yet NPs were also less effective in treatment. Further, Per1/2 knockout mice confirmed the rhythm-dependent treatment of myocardial IR injury by NPs. Molecular studies have shown that rhythmic characteristics of inflammation and Sirt1 transcript levels are the main reasons for the different rhythmic therapeutic effects of NPs. Circadian rhythm-dependent treatment of HA-RES-OPC-MMP NPs has excellent potential for more precise treatment of myocardial IR injury in the future.
Collapse
Affiliation(s)
- Bosong Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Cao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Mingyue Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Fuxing Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhenqiang Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Wenxiang Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Wenyu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yijian Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
14
|
Ma B, Shi J, Zhang Y, Li Z, Yong H, Zhou YN, Liu S, A S, Zhou D. Enzymatically Activatable Polymers for Disease Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306358. [PMID: 37992728 DOI: 10.1002/adma.202306358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Indexed: 11/24/2023]
Abstract
The irregular expression or activity of enzymes in the human body leads to various pathological disorders and can therefore be used as an intrinsic trigger for more precise identification of disease foci and controlled release of diagnostics and therapeutics, leading to improved diagnostic accuracy, sensitivity, and therapeutic efficacy while reducing systemic toxicity. Advanced synthesis strategies enable the preparation of polymers with enzymatically activatable skeletons or side chains, while understanding enzymatically responsive mechanisms promotes rational incorporation of activatable units and predictions of the release profile of diagnostics and therapeutics, ultimately leading to promising applications in disease diagnosis and treatment with superior biocompatibility and efficiency. By overcoming the challenges, new opportunities will emerge to inspire researchers to develop more efficient, safer, and clinically reliable enzymatically activatable polymeric carriers as well as prodrugs.
Collapse
Affiliation(s)
- Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahao Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhe Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ya-Nan Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sigen A
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
15
|
Chen A, Mesfin JM, Gianneschi NC, Christman KL. Intravascularly Deliverable Biomaterial Platforms for Tissue Repair and Regeneration Post-Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300603. [PMID: 36989469 PMCID: PMC10539487 DOI: 10.1002/adma.202300603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Each year, nearly 19 million people die of cardiovascular disease with coronary heart disease and myocardial infarction (MI) as the leading cause of the progression of heart failure. Due to the high risk associated with surgical procedures, a variety of minimally invasive therapeutics aimed at tissue repair and regeneration are being developed. While biomaterials delivered via intramyocardial injection have shown promise, there are challenges associated with delivery in acute MI. In contrast, intravascularly injectable biomaterials are a desirable category of therapeutics due to their ability to be delivered immediately post-MI via less invasive methods. In addition to passive diffusion into the infarct, these biomaterials can be designed to target the molecular and cellular characteristics seen in MI pathophysiology, such as cells and proteins present in the ischemic myocardium, to reduce off-target localization. These injectable materials can also be stimuli-responsive through enzymes or chemical imbalances. This review outlines the natural and synthetic biomaterial designs that allow for retention and accumulation within the infarct via intravascular delivery, including intracoronary infusion and intravenous injection.
Collapse
Affiliation(s)
- Alexander Chen
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Joshua M. Mesfin
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Nathan C. Gianneschi
- Department of Chemistry and Biomedical Engineering, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Wen J, Guan Y, Niu H, Dang Y, Guan J. Targeting cardiac resident CCR2+ macrophage-secreted MCP-1 to attenuate inflammation after myocardial infarction. Acta Biomater 2024:S1742-7061(24)00469-0. [PMID: 39182804 PMCID: PMC11846964 DOI: 10.1016/j.actbio.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
After myocardial infarction (MI), cardiac resident CCR2+ macrophages release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in recruiting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. We hypothesized that neutralizing the MCP-1 secreted by cardiac resident CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes and their differentiation into macrophages. In this work, we developed nanoparticles that target the infarcted heart, specifically accumulating in the damaged area after intravenous (IV) administration, and docking onto CCR2+ macrophages. These nanoparticles were designed to slowly release an MCP-1 binding peptide, HSWRHFHTLGGG (HSW), which neutralizes the upregulated MCP-1. We showed that the HSW reduced monocyte migration, inhibited pro-inflammatory cytokine upregulation, and suppressed myofibroblast differentiation in vitro. After IV delivery, the released HSW significantly decreased monocyte recruitment and pro-inflammatory macrophage density, increased cardiac cell survival, attenuated cardiac fibrosis, and improved cardiac function. Taken together, our findings support the strategy of MCP-1 neutralization at the acute phase of MI as a promising way to alleviate post-MI inflammation. STATEMENT OF SIGNIFICANCE: After a myocardial infarction (MI), CCR2+ macrophages resident in the heart release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in attracting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. In this work, we tested the hypothesis that neutralizing the MCP-1 secreted by cardiac CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes.
Collapse
Affiliation(s)
- Jiaxing Wen
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Ya Guan
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Yu Dang
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Jianjun Guan
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA.
| |
Collapse
|
17
|
Buddhiraju HS, Yadav DN, Dey S, Eswar K, Padmakumar A, Rengan AK. Advances in Peptide-Decorated Targeted Drug Delivery: Exploring Therapeutic Potential and Nanocarrier Strategies. ACS APPLIED BIO MATERIALS 2024; 7:4879-4893. [PMID: 37996391 DOI: 10.1021/acsabm.3c00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Peptides are ideal biologicals for targeted drug delivery and have also been increasingly employed as theranostic tools in treating various diseases, including cancer, with minimal or no side effects. Owing to their receptor-specificity, peptide-mediated drug delivery aids in targeted drug delivery with better pharmacological biodistribution. Nanostructured self-assembled peptides and peptide-drug conjugates demonstrate enhanced stability and performance and captivating biological effects in comparison with conventional peptides. Moreover, they serve as valuable tools for establishing interfaces between drug carriers and biological systems, enabling the traversal of multiple biological barriers encountered by peptide-drug conjugates on their journeys to their intended targets. Peptide-based drugs play a pivotal role in the field of medicine and hold great promise for addressing a wide range of complex diseases such as cancer and autoimmune disorders. Nanotechnology has revolutionized the fields of medicine, biomedical engineering, biotechnology, and engineering sciences over the past two decades. With the help of nanotechnology, better delivery of peptides to the target site could be achieved by exploiting the small size, increased surface area, and passive targeting ability of the nanocarrier. Furthermore, nanocarriers also ensure safe delivery of the peptide moieties to the target site, protecting them from degradation. Nanobased peptide delivery systems would be of significant importance in the near future for the successful targeted and efficient delivery of peptides. This review focuses on peptide-drug conjugates and nanoparticle-mediated self-assembled peptide delivery systems in cancer therapeutics.
Collapse
Affiliation(s)
- Hima Sree Buddhiraju
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Ananya Padmakumar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| |
Collapse
|
18
|
Zhao K, Zeng Z, He Y, Zhao R, Niu J, Sun H, Li S, Dong J, Jing Z, Zhou J. Recent advances in targeted therapy for inflammatory vascular diseases. J Control Release 2024; 372:730-750. [PMID: 38945301 DOI: 10.1016/j.jconrel.2024.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Vascular diseases constitute a significant contributor to worldwide mortality rates, placing a substantial strain on healthcare systems and socio-economic aspects. They are closely associated with inflammatory responses, as sustained inflammation could impact endothelial function, the release of inflammatory mediators, and platelet activation, thus accelerating the progression of vascular diseases. Consequently, directing therapeutic efforts towards mitigating inflammation represents a crucial approach in the management of vascular diseases. Traditional anti-inflammatory medications may have extensive effects on multiple tissues and organs when absorbed through the bloodstream. Conversely, treatments targeting inflammatory vascular diseases, such as monoclonal antibodies, drug-eluting stents, and nano-drugs, can achieve more precise effects, including precise intervention, minimal non-specific effects, and prolonged efficacy. In addition, personalized therapy is an important development trend in targeted therapy for inflammatory vascular diseases. Leveraging advanced simulation algorithms and clinical trial data, treatment strategies are gradually being personalized based on patients' genetic, biomarker, and clinical profiles. It is expected that the application of precision medicine in the field of vascular diseases will have a broader future. In conclusion, targeting therapies offer enhanced safety and efficacy compared to conventional medications; investigating novel targeting therapies and promoting clinical transformation may be a promising direction in improving the prognosis of patients with inflammatory vascular diseases. This article reviews the pathogenesis of inflammatory vascular diseases and presents a comprehensive overview of the potential for targeted therapies in managing this condition.
Collapse
Affiliation(s)
- Kaiwen Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Zan Zeng
- Department of Vascular Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yuzhen He
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Rong Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jinzhu Niu
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Huiying Sun
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Shuangshuang Li
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jian Dong
- Department of Vascular Surgery, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zaiping Jing
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhou
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China; Department of Vascular Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai, China.
| |
Collapse
|
19
|
Li Y, Tuerhan M, Li B, Chen S, Wang Y, Zheng Y. RGD-modified ZIF-8 nanoparticles as a drug carrier for MR imaging and targeted drug delivery in myocardial infarction. Nanomedicine (Lond) 2024; 19:1585-1600. [PMID: 39011901 PMCID: PMC11389745 DOI: 10.1080/17435889.2024.2365623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: A multifunctional nanoplatform has been developed to enhance the targeting capability and biosafety of drug/siRNA for better diagnosis and treatment of myocardial infarction (MI).Materials & methods: The nanoplatform's chemical properties, biodistribution, cardiac magnetic resonance imaging (MRI) capabilities, therapeutic effects and biocompatibility were investigated.Results: The nanoplatform exhibited MI-targeting properties and pH-sensitivity, allowing for effective cardiac MRI and delivery of drugs to the infarcted myocardium. The GCD/Qt@ZIF-RGD demonstrated potential as a reliable MRI probe for MI diagnosis. Moreover, the GCD/si-SHP1/Qt@ZIF-RGD effectively suppressed SHP-1 expression, increased pro-angiogenesis gene expression and reduced cell apoptosis in HUVECs exposed to hypoxia/reoxygenation.Conclusion: Our newly developed multifunctional drug delivery system shows promise as a nanoplatform for both the diagnosis and treatment of MI.
Collapse
Affiliation(s)
- Yingxu Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Maisituremu Tuerhan
- Department of Pharmacology, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bing Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shuangling Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuji Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuanyuan Zheng
- Department of Pharmacology, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
20
|
Tesoro L, Hernandez I, Saura M, Badimón L, Zaragoza C. Novel cutting edge nano-strategies to address old long-standing complications in cardiovascular diseases. A comprehensive review. Eur J Clin Invest 2024; 54:e14208. [PMID: 38622800 DOI: 10.1111/eci.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Cardiovascular diseases (CVD) impact a substantial portion of the global population and represent a significant threat to experiencing life-threatening outcomes, such as atherosclerosis, myocardial infarction, stroke and heart failure. Despite remarkable progress in pharmacology and medical interventions, CVD persists as a major public health concern, and now ranks as the primary global cause of death and the highest consumer of global budgets. Ongoing research endeavours persist in seeking novel therapeutic avenues and interventions to deepen our understanding of CVD, enhance prevention measures, and refine treatment strategies. METHODS Nanotechnology applied to the development of new molecular probes with diagnostic and theranostic properties represents one of the greatest technological challenges in preclinical and clinical research. RESULTS The application of nanotechnology in cardiovascular medicine holds great promise for advancing our understanding of CVDs and revolutionizing their diagnosis and treatment strategies, ultimately improving patient care and outcomes. In addition, the capacity of drug encapsulation in nanoparticles has significantly bolstered their biological safety, bioavailability and solubility. In combination with imaging technologies, molecular imaging has emerged as a pivotal therapeutic tool, offering insight into the molecular events underlying disease and facilitating targeted treatment approaches. CONCLUSION Here, we present a comprehensive overview of the recent advancements in targeted nanoparticle approaches for diagnosing CVDs, encompassing molecular imaging techniques, underscoring the significant progress in theranostic, as a novel and promising therapeutic strategy.
Collapse
Affiliation(s)
- Laura Tesoro
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Ignacio Hernandez
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Marta Saura
- Unidad de Fisiología, Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Lina Badimón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular-Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carlos Zaragoza
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
21
|
Elsaygh J, Zaher A, Parikh MA, Frishman WH, Peterson SJ. Nanotechnology: The Future for Diagnostic and Therapeutic Intervention in Cardiovascular Diseases is Here. Cardiol Rev 2024:00045415-990000000-00281. [PMID: 38814069 DOI: 10.1097/crd.0000000000000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
With advances in technology and medicine over the last 3 decades, cardiovascular medicine has evolved tremendously. Nanotechnology provides a promising future in personalized precision medicine. In this review, we delve into the current and prospective applications of nanotechnology and nanoparticles in cardiology. Nanotechnology has allowed for point-of-care testing such as high-sensitivity troponins, as well as more precise cardiac imaging. This review is focused on 3 diseases within cardiology: coronary artery disease, heart failure, and valvular heart disease. The use of nanoparticles in coronary stents has shown success in preventing in-stent thrombosis, as well as using nanosized drug delivery medications to prevent neointimal proliferation in a way that spares systemic toxicity. In addition, by using nanoparticles as drug delivery systems, nanotechnology can be utilized in the delivery of goal-directed medical therapy in heart failure patients. It has also been shown to improve cell therapy in this patient population by helping in cell retention of grafts. Finally, the use of nanoparticles in the manufacturing of bioprosthetic valves provides a promising future for the longevity and success of cardiac valve repair and replacement.
Collapse
Affiliation(s)
- Jude Elsaygh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Anas Zaher
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Manish A Parikh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| | | | - Stephen J Peterson
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
22
|
Luo F, Li M, Chen Y, Song S, Yu H, Zhang P, Xiao C, Lv G, Chen X. Immunosuppressive enzyme-responsive nanoparticles for enhanced accumulation in liver allograft to overcome acute rejection. Biomaterials 2024; 306:122476. [PMID: 38266349 DOI: 10.1016/j.biomaterials.2024.122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Acute rejection is a life-threatening complication after liver transplantation. Immunosuppressants such as tacrolimus are used to inhibit acute rejection of liver grafts in clinic. However, inefficient intragraft accumulation may reduce the therapeutic outcomes of tacrolimus. Here, an enzyme-responsive nanoparticle is developed to selectively enhance the accumulation of tacrolimus in liver allograft through enzyme-induced aggregation to refine immunotherapeutic efficacy of tacrolimus. The nanoparticles are composed of amphiphilic tacrolimus prodrugs synthesized by covalently conjugating tacrolimus and matrix metalloproteinase 9 (MMP9)-cleavable peptide-containing methoxy poly (ethylene glycol) to poly (l-glutamic acid). Upon exposure to MMP9, which is overexpressed in rejected liver allografts, the nanoparticles undergo a morphological transition from spherical micellar nanoparticles to microscale aggregate-like scaffolds. Intravenous administration of MMP9-responsive nanoparticles into a rat model of acute liver graft rejection results in enhanced nanoparticle accumulation in allograft as compared to nonresponsive nanoparticles. Consequently, the MMP9-responsive nanoparticles significantly inhibit intragraft inflammatory cell infiltration and proliferation, maintain intragraft immunosuppressive environment, alleviate graft damage, improve liver allograft function, abate weight loss and prolong recipient survival. This work proves that morphology-switchable enzyme-responsive nanoparticles represent an innovative strategy for selectively enhancing intragraft accumulation of immunosuppressive agents to improve treatment of liver allograft rejection.
Collapse
Affiliation(s)
- Feixiang Luo
- General Surgery Center, Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Mingqian Li
- General Surgery Center, Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Yuguo Chen
- General Surgery Center, Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Shifei Song
- General Surgery Center, Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| | - Guoyue Lv
- General Surgery Center, Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| |
Collapse
|
23
|
Ullah A, Ullah M, Lim SI. Recent advancements in nanotechnology based drug delivery for the management of cardiovascular disease. Curr Probl Cardiol 2024; 49:102396. [PMID: 38266693 DOI: 10.1016/j.cpcardiol.2024.102396] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Cardiovascular diseases (CVDs) constitute a predominant cause of both global mortality and morbidity. To address the challenges in the early diagnosis and management of CVDs, there is growing interest in the field of nanotechnology and nanomaterials to develop innovative diagnostic and therapeutic approaches. This review focuses on the recent advancements in nanotechnology-based diagnostic techniques, including cardiac immunoassays (CIA), cardiac circulating biomarkers, cardiac exosomal biomarkers, and molecular Imaging (MOI). Moreover, the article delves into the exciting developments in nanoparticles (NPs), biomimetic NPs, nanofibers, nanogels, and nanopatchs for cardiovascular applications. And discuss how these nanoscale technologies can improve the precision, sensitivity, and speed of CVD diagnosis and management. While highlighting their vast potential, we also address the limitations and challenges that must be overcome to harness these innovations successfully. Furthermore, this review focuses on the emerging opportunities for personalized and effective cardiovascular care through the integration of nanotechnology, ultimately aiming to reduce the global burden of CVDs.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Engineering Bldg#1, Rm1108, Busan 48513, Republic of Korea
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Engineering Bldg#1, Rm1108, Busan 48513, Republic of Korea.
| |
Collapse
|
24
|
Zhang JJ, Xu QJ, Zhang Y, Zhou Q, Lv R, Chen Z, He W. Recent advances in nanocarriers for clinical platinum(II) anticancer drugs. Coord Chem Rev 2024; 505:215676. [DOI: 10.1016/j.ccr.2024.215676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Wang N, Chen L, Huang W, Gao Z, Jin M. Current Advances of Nanomaterial-Based Oral Drug Delivery for Colorectal Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:557. [PMID: 38607092 PMCID: PMC11013305 DOI: 10.3390/nano14070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor, and traditional treatments include surgical resection and radiotherapy. However, local recurrence, distal metastasis, and intestinal obstruction are significant problems. Oral nano-formulation is a promising treatment strategy for CRC. This study introduces physiological and environmental factors, the main challenges of CRC treatment, and the need for a novel oral colon-targeted drug delivery system (OCDDS). This study reviews the research progress of controlled-release, responsive, magnetic, targeted, and other oral nano-formulations in the direction of CRC treatment, in addition to the advantages of oral colon-targeted nano-formulations and concerns about the oral delivery of related therapeutic agents to inspire related research.
Collapse
Affiliation(s)
- Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
26
|
Yu J, Xu H, Wei J, Niu L, Zhu H, Jiang C. Bacteria-Targeting Nanoparticles with ROS-Responsive Antibiotic Release to Eradicate Biofilms and Drug-Resistant Bacteria in Endophthalmitis. Int J Nanomedicine 2024; 19:2939-2956. [PMID: 38529364 PMCID: PMC10962272 DOI: 10.2147/ijn.s433919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/10/2024] [Indexed: 03/27/2024] Open
Abstract
Background Bacterial endophthalmitis is an acute progressive visual threatening disease and one of the most important causes of blindness worldwide. Current treatments are unsatisfactory due to the emergence of drug-resistant bacteria and the formation of biofilm. Purpose The aim of our research was to construct a novel nano-delivery system with better antimicrobial and antibiofilm effects. Methods This study developed a novel antibiotic nanoparticle delivery system (MXF@UiO-UBI-PEGTK), which is composed of (i) moxifloxacin (MXF)-loaded UiO-66 nanoparticle as the core, (ii) bacteria-targeting peptide ubiquicidin (UBI29-41) immobilized on UiO-66, and (iii) ROS-responsive poly (ethylene glycol)-thioketal (PEG-TK) as the surface shell. Then the important properties of the newly developed delivery system, including biocompatibility, toxicity, release percentage, thermal stability, ability of targeting bacteria, and synergistic antibacterial effects on bacterial biofilms and endophthalmitis, were evaluated. Results In vitro, MXF@UiO-UBI-PEGTK exhibited significant antibiotic effects including the excellent antibiofilm property against Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus at high levels of ROS. Moreover, MXF@UiO-UBI-PEGTK demonstrated outstanding efficacy in treating bacterial endophthalmitis in vivo. Conclusion This novel nanoparticle delivery system with ROS-responsive and bacteria-targeted properties promotes the precise and effective release of drugs and has significant potential for clinical application of treating bacterial endophthalmitis.
Collapse
Affiliation(s)
- Jian Yu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, People’s Republic of China
| | - Huan Xu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, People’s Republic of China
| | - Jiaojiao Wei
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, People’s Republic of China
| | - Liangliang Niu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, People’s Republic of China
| | - Haohao Zhu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
- Department of Ophthalmology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chunhui Jiang
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, People’s Republic of China
| |
Collapse
|
27
|
Shao Y, Xu C, Zhu S, Wu J, Sun C, Huang S, Li G, Yang W, Zhang T, Ma XL, Du J, Li P, Xu FJ, Li Y. One Endothelium-Targeted Combined Nucleic Acid Delivery System for Myocardial Infarction Therapy. ACS NANO 2024; 18:8107-8124. [PMID: 38442075 DOI: 10.1021/acsnano.3c11661] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Acute myocardial infarction (MI) and ischemic heart disease are the leading causes of heart failure and mortality. Currently, research on MI treatment is focused on angiogenic and anti-inflammatory therapies. Although endothelial cells (ECs) are critical for triggering inflammation and angiogenesis, no approach has targeted them for the treatment of MI. In this study, we proposed a nonviral combined nucleic acid delivery system consisting of an EC-specific polycation (CRPPR-grafted ethanolamine-modified poly(glycidyl methacrylate), CPC) that can efficiently codeliver siR-ICAM1 and pCXCL12 for the treatment of MI. Animals treated with the combination therapy exhibited better cardiac function than those treated with each nucleic acid alone. In particular, the combination therapy of CPC/siR-ICAM1 and CPC/pCXCL12 significantly improved cardiac systolic function, anti-inflammatory responses, and angiogenesis compared to the control group. In conclusion, CPC-based combined gene delivery systems show impressive performance in the treatment of MI and provide a programmed strategy for the development of codelivery systems for various EC-related diseases.
Collapse
Affiliation(s)
- Yihui Shao
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jianing Wu
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Canghao Sun
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shan Huang
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Guoqi Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Weijie Yang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ting Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yulin Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
28
|
Hu N, Sun M, Lv N, Gao Y, Fu X, Xing D, Guo X, Zhai S, Zhang R. ROS-Suppression Nanoplatform Combined Activation of STAT3/Bcl-2 Pathway for Preventing Myocardial Infarction in Mice. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12188-12201. [PMID: 38288981 DOI: 10.1021/acsami.3c16735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Abstract
Myocardial infarction (MI) is the leading cause of death worldwide. The most effective way to treat myocardial infarction is to rescue ischemic cardiomyocytes. After an ischemic event, the overproduction of reactive oxygen species (ROS) is a key driver of myocardial injury. The produced ROS affects mitochondrial function and induces apoptosis in cardiomyocytes. This was accomplished by constructing platelet-membrane-encapsulated ROS-responsive drug-releasing nanoparticles (PMN@NIC-MalNPs) to deliver malonate and niclosamide (NIC). The results revealed that PMN@NIC-MalNPs degraded and released malonate and niclosamide in a high-level ROS microenvironment, effectively reducing the oxidative stress and apoptosis rate. By enhancing basal mitochondrial oxygen consumption rate (OCR), adenosine triphosphate (ATP) production, and spare respiratory capacity (SRC) in vitro, reduced the oxidative stress levels and restored mitochondrial function. In vivo studies revealed that the PMN@NIC-MalNPs improved cardiac dysfunction, inhibited succinate dehydrogenase (SDH) activity, increased ATP production, and reduced the myocardial infarct size in myocardial infarction model mice. Further, transcriptome analysis and Western blot revealed that PMN@NIC-MalNPs prevented apoptosis by activating the expressions of the signal transducer and activator of transcription 3 (STAT3) and Bcl-2, and inhibiting the expression of Bax. Thus, this study provides a novel therapeutic solution for treating myocardial infarction and predicting the viability of an antioxidant and antiapoptotic therapeutic solution in the treatment of myocardial injury.
Collapse
Affiliation(s)
- Nan Hu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430030, China
| | - Meng Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430030, China
- Cardiology Department, First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030032, China
| | - Nan Lv
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030032, China
| | - Yangyang Gao
- The First Clinical Medical College, Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, China
| | - Xiaohong Fu
- The First Clinical Medical College, Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, China
| | - Dayi Xing
- The First Clinical Medical College, Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, China
| | - Xiang Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430030, China
| | - Shaodong Zhai
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430030, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
29
|
Sun M, Hu N, Gao Y, Lv N, Fu X, Li Y, Zhai S, Zhang R. Platelet Membrane-Encapsulated Nanocomplexes Based on Profundity Scavenging ROS Strategy for Myocardial Infarction Therapy. Adv Healthc Mater 2024; 13:e2303101. [PMID: 38174837 DOI: 10.1002/adhm.202303101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/09/2023] [Indexed: 01/05/2024]
Abstract
Ischemia-induced myocardial injury has become a serious threat to human health, and its treatment remains a challenge. The occurrence of ischemic events leads to a burst release of reactive oxygen species (ROS), which triggers extensive oxidative damage and leads to dysfunctional autophagy, making it difficult for cells to maintain homeostasis. Antioxidants and modulation of autophagy have thus become promising strategies for the treatment of ischemic myocardial injury. This study proposes an antioxidant-activated autophagy therapeutic regimen based on combining melanin (Mel), an excellent antioxidant with metformin mimetic ploymetformin via electrostatic interactions, to obtain a nanocomplex (Met-Mel). The nanocomplex is finally encapsulated with platelet membranes (PMN) to construct a biomimetic nanoparticle (PMN@Met-Mel) capable of targeting injured myocardium. The prepared PMN@Met-Mel has good Mel loading capacity and optimal biosafety. It exhibits excellent antioxidant activity and autophagy activation, rapidly restoring mitochondrial function. Moreover, RNA sequencing (RNA-seq) analysis reveals that PMN@Met-Mel operates mechanistically by triggering the activation of the autophagy pathway. Subsequent in vivo experiments showcase promising cardioprotective effects of these nanoparticles. These discoveries present a newly devised nanoplatform with promising potential for the effective treatment of myocardial infarction.
Collapse
Affiliation(s)
- Meng Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Nan Hu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Yangyang Gao
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Nan Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaohong Fu
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Yafeng Li
- The Nephrology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Shaodong Zhai
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
30
|
Ter Mors B, Spieler V, Merino Asumendi E, Gantert B, Lühmann T, Meinel L. Bioresponsive Cytokine Delivery Responding to Matrix Metalloproteinases. ACS Biomater Sci Eng 2024; 10:29-37. [PMID: 37102329 DOI: 10.1021/acsbiomaterials.2c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cytokines are regulated in acute and chronic inflammation, including rheumatoid arthritis (RA) and myocardial infarction (MI). However, the dynamic windows within which cytokine activity/inhibition is desirable in RA and MI change timely and locally during the disease. Therefore, traditional, static delivery regimens are unlikely to meet the idiosyncrasy of these highly dynamic pathophysiological and individual processes. Responsive delivery systems and biomaterials, sensing surrogate markers of inflammation (i.e., matrix metalloproteinases - MMPs) and answering with drug release, may present drug activity at the right time, manner, and place. This article discusses MMPs as surrogate markers for disease activity in RA and MI to clock drug discharge to MMP concentration profiles from MMP-responsive drug delivery systems and biomaterials.
Collapse
Affiliation(s)
- Björn Ter Mors
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Valerie Spieler
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eduardo Merino Asumendi
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Benedikt Gantert
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| |
Collapse
|
31
|
Nair M, Chandra A, Krishnan A, Chandra A, Basha R, Orimoloye H, Raut S, Gayathri V, Mudgapalli VV, Vishwanatha JK. Protein and peptide nanoparticles for drug delivery applications. NANOSTRUCTURED MATERIALS FOR BIOMEDICAL APPLICATIONS 2024:339-404. [DOI: 10.1016/b978-0-323-90838-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Kopoleva E, Lebedev MD, Postovalova A, Rogova A, Fatkhutdinova L, Epifanovskaya O, Goncharenko AA, Kremleva AV, Domracheva N, Bukatin AS, Muslimov AR, Koroleva A, Zhizhin EV, Lepik KV, Timin AS, Peltek O, Zyuzin MV. One-Pot Synthesis of Affordable Redox-Responsive Drug Delivery System Based on Trithiocyanuric Acid Nanoparticles. NANO LETTERS 2023; 23:10811-10820. [PMID: 37988557 DOI: 10.1021/acs.nanolett.3c02933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Redox-responsive drug delivery systems present a promising avenue for drug delivery due to their ability to leverage the unique redox environment within tumor cells. In this work, we describe a facile and cost-effective one-pot synthesis method for a redox-responsive delivery system based on novel trithiocyanuric acid (TTCA) nanoparticles (NPs). We conduct a thorough investigation of the impact of various synthesis parameters on the morphology, stability, and loading capacity of these NPs. The great drug delivery potential of the system is further demonstrated in vitro and in vivo by using doxorubicin as a model drug. The developed TTCA-PEG NPs show great drug delivery efficiency with minimal toxicity on their own both in vivo and in vitro. The simplicity of this synthesis, along with the promising characteristics of TTCA-PEG NPs, paves the way for new opportunities in the further development of redox-responsive drug delivery systems based on TTCA.
Collapse
Affiliation(s)
- Elena Kopoleva
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| | - Maksim D Lebedev
- Ivanovo State University of Chemical and Technology, Ivanovo 153000, Russian Federation
| | - Alisa Postovalova
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| | - Anna Rogova
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| | - Landysh Fatkhutdinova
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| | - Olga Epifanovskaya
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg 191144, Russian Federation
| | | | - Arina V Kremleva
- Institute of Advanced Data Transfer Systems, ITMO University, St. Petersburg 191002, Russian Federation
| | - Nadezhda Domracheva
- Saint-Petersburg Chemical-Pharmaceutical University, St. Petersburg 197376, Russian Federation
| | - Anton S Bukatin
- Alferov University, St. Petersburg 194021, Russian Federation
- Institute for Analytical Instrumentation of the Russian Academy of Sciences, St. Petersburg 198095, Russian Federation
| | - Albert R Muslimov
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg 191144, Russian Federation
- Alferov University, St. Petersburg 194021, Russian Federation
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg 197341, Russian Federation
| | - Aleksandra Koroleva
- Saint Petersburg State University, St. Petersburg 199034, Russian Federation
| | - Evgeniy V Zhizhin
- Saint Petersburg State University, St. Petersburg 199034, Russian Federation
| | - Kirill V Lepik
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg 191144, Russian Federation
| | - Alexander S Timin
- Laboratory of nano- and microencapsulation of biologically active substances, Peter The Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russian Federation
| | - Oleksii Peltek
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russian Federation
| |
Collapse
|
33
|
Li X, Gao Y, Li H, Majoral JP, Shi X, Pich A. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. PROGRESS IN MATERIALS SCIENCE 2023; 140:101170. [DOI: 10.1016/j.pmatsci.2023.101170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Sullivan H, Liang Y, Worthington K, Luo C, Gianneschi NC, Christman KL. Enzyme-Responsive Nanoparticles for the Targeted Delivery of an MMP Inhibitor to Acute Myocardial Infarction. Biomacromolecules 2023; 24:4695-4704. [PMID: 37695847 PMCID: PMC10646957 DOI: 10.1021/acs.biomac.3c00421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Indexed: 09/13/2023]
Abstract
Herein, we have developed a drug-loaded matrix metalloproteinase (MMP)-responsive micellar nanoparticle (NP) intended for minimally invasive intravenous injection during the acute phase of myocardial infarction (MI) and prolonged retention in the heart for small-molecule drug delivery. Peptide-polymer amphiphiles (PPAs) bearing a small-molecule MMP inhibitor (MMPi), PD166793, were synthesized via ring-opening metathesis polymerization (ROMP) and formulated into spherical micelles by transitioning to aqueous solution. The resulting micellar NPs underwent MMP-induced aggregation, demonstrating enzyme responsiveness. Using a rat MI model, we observed that these NPs were capable of successfully extravasating into the infarcted region of the heart where they were retained due to the active, enzyme-mediated targeting, remaining detectable after 1 week post administration without increasing macrophage recruitment. Furthermore, in vitro studies show that these NPs demonstrated successful drug release following MMP treatment and maintained drug bioactivity as evidenced by comparable MMP inhibition to free MMPi. This work establishes a targeted NP platform for delivering small-molecule therapeutics to the heart after MI, opening possibilities for myocardial infarction treatment.
Collapse
Affiliation(s)
- Holly
L. Sullivan
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| | - Yifei Liang
- Department
of Chemistry, International Institute for Nanotechnology, Simpson-Querrey
Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Kendra Worthington
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| | - Colin Luo
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| | - Nathan C. Gianneschi
- Department
of Chemistry, International Institute for Nanotechnology, Simpson-Querrey
Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Departments
of Materials Science & Engineering, Biomedical Engineering and
Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry & Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Karen L. Christman
- Shu
Chien-Gene Lay Department of Bioengineering and the Sanford Consortium
for Regenerative Medicine, University of
California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
35
|
Yang L, Yang L, Lu K, Su N, Li X, Guo S, Xue S, Lian F, Feng C. 3D Chiral Self-Assembling Matrixes for Regulating Polarization of Macrophages and Enhance Repair of Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304627. [PMID: 37767946 PMCID: PMC10646248 DOI: 10.1002/advs.202304627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Indexed: 09/29/2023]
Abstract
The regulation of inflammatory response at the site of injury and macrophage immunotherapy is critical for tissue repair. Chiral self-assemblies are one of the most ubiquitous life cues, which is closely related to biological functions, life processes, and even the pathogenesis of diseases. However, the role of supramolecular chiral self-assemblies in the regulation of immune functions in the internal environment of tissues has not been fully explored yet. Herein, 3D supramolecular chiral self-assembling matrixes are prepared to regulate the polarization of macrophages and further enhance the repair of myocardial infarction (MI). Experiments studies show that M-type (left-handed) self-assembling matrixes significantly inhibit inflammation and promote damaged myocardium repair by upregulating M2 macrophage polarization and downstream immune signaling compared with P-type (right-handed), and R-type (non-chirality) self-assembling matrixes. Classical molecular dynamics (MD) simulation demonstrates that M-type self-assembling matrixes display higher stereo-affinity to cellular binding, which enhances the clustering of mechanosensitive integrin β1 (Itgβ1) and activates focal adhesion kinase (FAK) and Rho-associated protein kinase (ROCK), as well as downstream PI3K/Akt1/mTOR signaling axes to promote M2 polarization. This study of designing a 3D chiral self-assembling matrixes microenvironment suitable for regulating the polarization of macrophages will provide devise basis for immunotherapy with biomimetic materials.
Collapse
Affiliation(s)
- Lei Yang
- Department of Cardiovascular SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Li Yang
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Kongli Lu
- Department of Cardiovascular SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Nan Su
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Xueqin Li
- Department of Cardiovascular SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Shuoxiang Guo
- Department of Cardiovascular SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Song Xue
- Department of Cardiovascular SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Feng Lian
- Department of Cardiovascular SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| |
Collapse
|
36
|
Schiffmann N, Liang Y, Nemcovsky CE, Almogy M, Halperin-Sternfeld M, Gianneschi NC, Adler-Abramovich L, Rosen E. Enzyme-Responsive Nanoparticles for Dexamethasone Targeted Delivery to Treat Inflammation in Diabetes. Adv Healthc Mater 2023; 12:e2301053. [PMID: 37498238 DOI: 10.1002/adhm.202301053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Diabetes is a global epidemic accompanied by impaired wound healing and increased risk of persistent infections and resistance to standard treatments. Therefore, there is an immense need to develop novel methods to specifically target therapeutics to affected tissues and improve treatment efficacy. This study aims to use enzyme-responsive nanoparticles for the targeted delivery of an anti-inflammatory drug, dexamethasone, to treat inflammation in diabetes. These nanoparticles are assembled from fluorescently-labeled, dexamethasone-loaded peptide-polymer amphiphiles. The nanoparticles are injected in vivo, adjacent to labeled collagen membranes sub-periosteally implanted on the calvaria of diabetic rats. Following their implantation, collagen membrane resorption is linked to inflammation, especially in hyperglycemic individuals. The nanoparticles show strong and prolonged accumulation in inflamed tissue after undergoing a morphological switch into microscale aggregates. Significantly higher remaining collagen membrane area and less inflammatory cell infiltration are observed in responsive nanoparticles-treated rats, compared to control groups injected with free dexamethasone and non-responsive nanoparticles. These factors indicate improved therapeutic efficacy in inflammation reduction. These results demonstrate the potential use of enzyme-responsive nanoparticles as targeted delivery vehicles for the treatment of diabetic and other inflammatory wounds.
Collapse
Affiliation(s)
- Nathan Schiffmann
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yifei Liang
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Carlos E Nemcovsky
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michal Almogy
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eyal Rosen
- Department of Endodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
37
|
Trimaille T, Verrier B. Copolymer Micelles: A Focus on Recent Advances for Stimulus-Responsive Delivery of Proteins and Peptides. Pharmaceutics 2023; 15:2481. [PMID: 37896241 PMCID: PMC10609739 DOI: 10.3390/pharmaceutics15102481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Historically used for the delivery of hydrophobic drugs through core encapsulation, amphiphilic copolymer micelles have also more recently appeared as potent nano-systems to deliver protein and peptide therapeutics. In addition to ease and reproducibility of preparation, micelles are chemically versatile as hydrophobic/hydrophilic segments can be tuned to afford protein immobilization through different approaches, including non-covalent interactions (e.g., electrostatic, hydrophobic) and covalent conjugation, while generally maintaining protein biological activity. Similar to many other drugs, protein/peptide delivery is increasingly focused on stimuli-responsive nano-systems able to afford triggered and controlled release in time and space, thereby improving therapeutic efficacy and limiting side effects. This short review discusses advances in the design of such micelles over the past decade, with an emphasis on stimuli-responsive properties for optimized protein/peptide delivery.
Collapse
Affiliation(s)
- Thomas Trimaille
- Ingénierie des Matériaux Polymères, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, CEDEX, 69622 Villeurbanne, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5305, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France;
| |
Collapse
|
38
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
39
|
Nyandoro VO, Omolo CA, Ismail EA, Yong L, Govender T. Inflammation-responsive drug delivery nanosystems for treatment of bacterial-induced sepsis. Int J Pharm 2023; 644:123346. [PMID: 37633537 DOI: 10.1016/j.ijpharm.2023.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Sepsis, a complication of dysregulated host immune systemic response to an infection, is life threatening and causes multiple organ injuries. Sepsis is recognized by WHO as a big contributor to global morbidity and mortality. The heterogeneity in sepsis pathophysiology, antimicrobial resistance threat, the slowdown in the development of antimicrobials, and limitations of conventional dosage forms jeopardize the treatment of sepsis. Drug delivery nanosystems are promising tools to overcome some of these challenges. Among the drug delivery nanosystems, inflammation-responsive nanosystems have attracted considerable interest in sepsis treatment due to their ability to respond to specific stimuli in the sepsis microenvironment to release their payload in a precise, targeted, controlled, and rapid manner compared to non-responsive nanosystems. These nanosystems posit superior therapeutic potential to enhance sepsis treatment. This review critically evaluates the recent advances in the design of drug delivery nanosystems that are inflammation responsive and their potential in enhancing sepsis treatment. The sepsis microenvironment's unique features, such as acidic pH, upregulated receptors, overexpressed enzymes, and enhanced oxidative stress, that form the basis for their design have been adequately discussed. These inflammation-responsive nanosystems have been organized into five classes namely: Receptor-targeted nanosystems, pH-responsive nanosystems, redox-responsive nanosystems, enzyme-responsive nanosystems, and multi-responsive nanosystems. Studies under each class have been thematically grouped and discussed with an emphasis on the polymers used in their design, nanocarriers, key characterization, loaded actives, and key findings on drug release and therapeutic efficacy. Further, this information is concisely summarized into tables and supplemented by inserted figures. Additionally, this review adeptly points out the strengths and limitations of the studies and identifies research avenues that need to be explored. Finally, the challenges and future perspectives on these nanosystems have been thoughtfully highlighted.
Collapse
Affiliation(s)
- Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Chemistry and Pharmaceutics, School of Pharmacy, Kabarak University, Nakuru, Kenya
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, Nairobi, Kenya.
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Liu Yong
- Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), China
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
40
|
Wang Y, Li J, Han H, Huang H, Du H, Cheng L, Ma C, Cai Y, Li G, Tao J, Cheng P. Application of locally responsive design of biomaterials based on microenvironmental changes in myocardial infarction. iScience 2023; 26:107662. [PMID: 37670787 PMCID: PMC10475519 DOI: 10.1016/j.isci.2023.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Morbidity and mortality caused by acute myocardial infarction (AMI) are on the rise, posing a grave threat to the health of the general population. Up to now, interventional, surgical, and pharmaceutical therapies have been the main treatment methods for AMI. Effective and timely reperfusion therapy decreases mortality, but it cannot stimulate myocardial cell regeneration or reverse ventricular remodeling. Cell therapy, gene therapy, immunotherapy, anti-inflammatory therapy, and several other techniques are utilized by researchers to improve patients' prognosis. In recent years, biomaterials for AMI therapy have become a hot spot in medical care. Biomaterials furnish a microenvironment conducive to cell growth and deliver therapeutic factors that stimulate cell regeneration and differentiation. Biomaterials adapt to the complex microenvironment and respond to changes in local physical and biochemical conditions. Therefore, environmental factors and material properties must be taken into account when designing biomaterials for the treatment of AMI. This article will review the factors that need to be fully considered in the design of biological materials.
Collapse
Affiliation(s)
- Yiren Wang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Junlin Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hukui Han
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huihui Huang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huan Du
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Yongxiang Cai
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu 610072, China
| |
Collapse
|
41
|
Kar A, Gupta S, Matilal A, Kumar D, Sarkar S. Nanotherapeutics for the Myocardium: A Potential Alternative for Treating Cardiac Diseases. J Cardiovasc Pharmacol 2023; 82:180-188. [PMID: 37341530 DOI: 10.1097/fjc.0000000000001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/03/2023] [Indexed: 06/22/2023]
Abstract
ABSTRACT Cardiovascular diseases (CVDs) are the foremost cause of morbidity and mortality worldwide. Current clinical interventions include invasive approaches for progressed conditions and pharmacological assistance for initial stages, which has systemic side effects. Preventive, curative, diagnostic, and theranostic (therapeutic + diagnostic) approaches till date are not very useful in combating the ongoing CVD epidemic, which demands a promising efficient alternative approach. To combat the growing CVD outbreak globally, the ideal strategy is to make the therapeutic intervention least invasive and direct to the heart to reduce the bystander effects on other organs and increase the bioavailability of the therapeutics to the myocardium. The application of nanoscience and nanoparticle-mediated approaches have gained a lot of momentum because of their efficient passive and active myocardium targeting capability owing to their improved specificity and controlled release. This review provides extensive insight into the various types of nanoparticles available for CVDs, their mechanisms of targeting (eg, direct or indirect), and the utmost need for further development of bench-to-bedside cardiac tissue-based nanomedicines. Furthermore, the review aims to summarize the different ideas and methods of nanoparticle-mediated therapeutic approaches to the myocardium till date with present clinical trials and future perspectives. This review also reflects the potential of such nanoparticle-mediated tissue-targeted therapies to contribute to the sustainable development goals of good health and well-being.
Collapse
Affiliation(s)
- Abhik Kar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | | | | | | | | |
Collapse
|
42
|
Wang Z, Yang N, Hou Y, Li Y, Yin C, Yang E, Cao H, Hu G, Xue J, Yang J, Liao Z, Wang W, Sun D, Fan C, Zheng L. L-Arginine-Loaded Gold Nanocages Ameliorate Myocardial Ischemia/Reperfusion Injury by Promoting Nitric Oxide Production and Maintaining Mitochondrial Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302123. [PMID: 37449329 PMCID: PMC10502842 DOI: 10.1002/advs.202302123] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Reperfusion therapy is vital to patient survival after a heart attack but can cause myocardial ischemia/reperfusion injury (MI/RI). Nitric oxide (NO) can ameliorate MI/RI and is a key molecule for drug development. However, reactive oxygen species (ROS) can easily oxidize NO to peroxynitrite, which causes secondary cardiomyocyte damage. Herein, L-arginine-loaded selenium-coated gold nanocages (AAS) are designed, synthesized, and modified with PCM (WLSEAGPVVTVRALRGTGSW) to obtain AASP, which targets cardiomyocytes, exhibits increased cellular uptake, and improves photoacoustic imaging in vitro and in vivo. AASP significantly inhibits oxygen glucose deprivation/reoxygenation (OGD/R)-induced H9C2 cell cytotoxicity and apoptosis. Mechanistic investigation revealed that AASP improves mitochondrial membrane potential (MMP), restores ATP synthase activity, blocks ROS generation, and prevents NO oxidation, and NO blocks ROS release by regulating the closing of the mitochondrial permeability transition pore (mPTP). AASP administration in vivo improves myocardial function, inhibits myocardial apoptosis and fibrosis, and ultimately attenuates MI/RI in rats by maintaining mitochondrial function and regulating NO signaling. AASP shows good safety and biocompatibility in vivo. This findings confirm the rational design of AASP, which can provide effective treatment for MI/RI.
Collapse
Affiliation(s)
- Zekun Wang
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Nana Yang
- School of Bioscience and TechnologyWeifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular DiseasesWeifang Medical UniversityWeifang261053China
| | - Yajun Hou
- Department of NeurologySecond Affiliated HospitalShandong First Medical University & Shandong Academy of Medical SciencesTaianShandong271000China
| | - Yuqing Li
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Chenyang Yin
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Endong Yang
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Huanhuan Cao
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191China
| | - Gaofei Hu
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191China
| | - Jing Xue
- Department of NeurologyChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Jialei Yang
- Department of NeurologyChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Ziyu Liao
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Weiyun Wang
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Dongdong Sun
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Cundong Fan
- Department of NeurologySecond Affiliated HospitalShandong First Medical University & Shandong Academy of Medical SciencesTaianShandong271000China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191China
- Department of NeurologyChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| |
Collapse
|
43
|
Li B, Li Y, Chen S, Wang Y, Zheng Y. VEGF mimetic peptide-conjugated nanoparticles for magnetic resonance imaging and therapy of myocardial infarction. J Control Release 2023; 360:44-56. [PMID: 37330014 DOI: 10.1016/j.jconrel.2023.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
To reduce the mortality of myocardial infarction (MI), accurate detection of the infarct and appropriate prevention against ischemia/reperfusion (I/R) induced cardiac dysfunction are highly desired. Considering that vascular endothelial growth factor (VEGF) receptors are overexpressed in the infarcted heart and VEGF mimetic peptide QK binds specifically to VEGF receptors and activates vascularization, the PEG-QK-modified, gadolinium-doped carbon dots (GCD-PEG-QK) were formulated. This research aims to investigate the magnetic resonance imaging (MRI) capability of GCD-PEG-QK on myocardial infarct and their therapeutic effect on I/R-induced myocardial injury. These multifunctional nanoparticles exhibited good colloidal stability, excellent fluorescent and magnetic property, and satisfactory biocompatibility. Intravenous injection of GCD-PEG-QK nanoparticles post myocardial I/R displayed accurate MRI of the infarct, enhanced efficacy of QK peptide on pro-angiogenesis, and amelioration of cardiac fibrosis, remodeling and dysfunction, probably via the improvement on QK's in vivo stability and MI-targeting. Collectively, the data suggested that this theranostic nanomedicine can realize precise MRI and effective therapy for acute MI in a non-invasive manner.
Collapse
Affiliation(s)
- Bing Li
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| | - Yingxu Li
- Department of Pharmacology, Capital Medical University, Beijing 100069, China
| | - Shuangling Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
44
|
Adjei-Sowah E, Benoit DSW, Loiselle AE. Drug Delivery Approaches to Improve Tendon Healing. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:369-386. [PMID: 36888543 PMCID: PMC10442691 DOI: 10.1089/ten.teb.2022.0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 03/09/2023]
Abstract
Tendon injuries disrupt the transmission of forces from muscle to bone, leading to chronic pain, disability, and a large socioeconomic burden. Tendon injuries are prevalent; there are over 300,000 tendon repair procedures a year in the United States to address acute trauma or chronic tendinopathy. Successful restoration of function after tendon injury remains challenging clinically. Despite improvements in surgical and physical therapy techniques, the high complication rate of tendon repair procedures motivates the use of therapeutic interventions to augment healing. While many biological and tissue engineering approaches have attempted to promote scarless tendon healing, there is currently no standard clinical treatment to improve tendon healing. Moreover, the limited efficacy of systemic delivery of several promising therapeutic candidates highlights the need for tendon-specific drug delivery approaches to facilitate translation. This review article will synthesize the current state-of-the-art methods that have been used for tendon-targeted delivery through both systemic and local treatments, highlight emerging technologies used for tissue-specific drug delivery in other tissue systems, and outline future challenges and opportunities to enhance tendon healing through targeted drug delivery.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Cell Biology of Disease Program, University of Rochester, Rochester, New York, USA
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Materials Science Program, University of Rochester, Rochester, New York, USA
- Knight Campus Department of Bioengineering, University of Oregon, Eugene, Oregan, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Cell Biology of Disease Program, University of Rochester, Rochester, New York, USA
| |
Collapse
|
45
|
El-Husseiny HM, Mady EA, El-Dakroury WA, Doghish AS, Tanaka R. Stimuli-responsive hydrogels: smart state of-the-art platforms for cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1174075. [PMID: 37449088 PMCID: PMC10337592 DOI: 10.3389/fbioe.2023.1174075] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Biomedicine and tissue regeneration have made significant advancements recently, positively affecting the whole healthcare spectrum. This opened the way for them to develop their applications for revitalizing damaged tissues. Thus, their functionality will be restored. Cardiac tissue engineering (CTE) using curative procedures that combine biomolecules, biomimetic scaffolds, and cells plays a critical part in this path. Stimuli-responsive hydrogels (SRHs) are excellent three-dimensional (3D) biomaterials for tissue engineering (TE) and various biomedical applications. They can mimic the intrinsic tissues' physicochemical, mechanical, and biological characteristics in a variety of ways. They also provide for 3D setup, adequate aqueous conditions, and the mechanical consistency required for cell development. Furthermore, they function as competent delivery platforms for various biomolecules. Many natural and synthetic polymers were used to fabricate these intelligent platforms with innovative enhanced features and specialized capabilities that are appropriate for CTE applications. In the present review, different strategies employed for CTE were outlined. The light was shed on the limitations of the use of conventional hydrogels in CTE. Moreover, diverse types of SRHs, their characteristics, assembly and exploitation for CTE were discussed. To summarize, recent development in the construction of SRHs increases their potential to operate as intelligent, sophisticated systems in the reconstruction of degenerated cardiac tissues.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
46
|
Yang S, Wang M, Wang T, Sun M, Huang H, Shi X, Duan S, Wu Y, Zhu J, Liu F. Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Mater Today Bio 2023; 20:100644. [PMID: 37214549 PMCID: PMC10199221 DOI: 10.1016/j.mtbio.2023.100644] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023] Open
Abstract
Self-assembled short peptides have intrigued scientists due to the convenience of synthesis, good biocompatibility, low toxicity, inherent biodegradability and fast response to change in the physiological environment. Therefore, it is necessary to present a comprehensive summary of the recent advances in the last decade regarding the construction, route of administration and application of self-assembled short peptides based on the knowledge on their unique and specific ability of self-assembly. Herein, we firstly explored the molecular mechanisms of self-assembly of short peptides, such as non-modified amino acids, as well as Fmoc-modified, N-functionalized, and C-functionalized peptides. Next, cell penetration, fusion, and peptide targeting in peptide-based drug delivery were characterized. Then, the common administration routes and the potential pharmaceutical applications (drug delivery, antibacterial activity, stabilizers, imaging agents, and applications in bioengineering) of peptide drugs were respectively summarized. Last but not least, some general conclusions and future perspectives in the relevant fields were briefly listed. Although with certain challenges, great opportunities are offered by self-assembled short peptides to the fascinating area of drug development.
Collapse
Affiliation(s)
- Shihua Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Mingge Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Anus and Intestine Surgery, The First Hospital of Dalian Medical University, Dalian, 116000, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Ying Wu
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| |
Collapse
|
47
|
Liang Y, Sullivan HL, Carrow K, Mesfin JM, Korpanty J, Worthington K, Luo C, Christman KL, Gianneschi NC. Inflammation-Responsive Micellar Nanoparticles from Degradable Polyphosphoramidates for Targeted Delivery to Myocardial Infarction. J Am Chem Soc 2023; 145:11185-11194. [PMID: 37184379 PMCID: PMC11467961 DOI: 10.1021/jacs.3c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanoparticles that undergo a localized morphology change to target areas of inflammation have been previously developed but are limited by their lack of biodegradability. In this paper, we describe a low-ring-strain cyclic olefin monomer, 1,3-dimethyl-2-phenoxy-1,3,4,7-tetrahydro-1,3,2-diazaphosphepine 2-oxide (MePTDO), that rapidly polymerizes via ring-opening metathesis polymerization at room temperature to generate well-defined degradable polyphosphoramidates with high monomer conversion (>84%). Efficient MePTDO copolymerizations with norbornene-based monomers are demonstrated, including a norbornenyl monomer functionalized with a peptide substrate for inflammation-associated matrix metalloproteinases (MMPs). The resulting amphiphilic peptide brush copolymers self-assembled in aqueous solution to generate micellar nanoparticles (30 nm in diameter) which exhibit excellent cyto- and hemocompatibility and undergo MMP-induced assembly into micron-scale aggregates. As MMPs are upregulated in the heart postmyocardial infarction (MI), the MMP-responsive micelles were applied to target and accumulate in the infarcted heart following intravenous administration in a rat model of MI. These particles displayed a distinct biodistribution and clearance pattern in comparison to nondegradable analogues. Specifically, accumulation at the site of MI competed with elimination predominantly through the kidney rather than the liver. Together, these results suggest this as a promising new biodegradable platform for inflammation targeted delivery.
Collapse
Affiliation(s)
- Yifei Liang
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly L Sullivan
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Kendal Carrow
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua M Mesfin
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Kendra Worthington
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Colin Luo
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering and the Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California 92037, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92037, United States
| |
Collapse
|
48
|
Xiang K, Wu H, Liu Y, Wang S, Li X, Yang B, Zhang Y, Ma L, Lu G, He L, Ni Q, Zhang L. MOF-derived bimetallic nanozyme to catalyze ROS scavenging for protection of myocardial injury. Theranostics 2023; 13:2721-2733. [PMID: 37215581 PMCID: PMC10196836 DOI: 10.7150/thno.83543] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Myocardial injury triggers intense oxidative stress, inflammatory response, and cytokine release, which are essential for myocardial repair and remodeling. Excess reactive oxygen species (ROS) scavenging and inflammation elimination have long been considered to reverse myocardial injuries. However, the efficacy of traditional treatments (antioxidant, anti-inflammatory drugs and natural enzymes) is still poor due to their intrinsic defects such as unfavorable pharmacokinetics and bioavailability, low biological stability, and potential side effects. Nanozyme represents a candidate to effectively modulate redox homeostasis for the treatment of ROS related inflammation diseases. Methods: We develop an integrated bimetallic nanozyme derived from metal-organic framework (MOF) to eliminate ROS and alleviate inflammation. The bimetallic nanozyme (Cu-TCPP-Mn) is synthesized by embedding manganese and copper into the porphyrin followed by sonication, which could mimic the cascade activities of superoxide dismutase (SOD) and catalase (CAT) to transform oxygen radicals to hydrogen peroxide, followed by the catalysis of hydrogen peroxide into oxygen and water. Enzyme kinetic analysis and oxygen-production velocities analysis were performed to evaluate the enzymatic activities of Cu-TCPP-Mn. We also established myocardial infarction (MI) and myocardial ischemia-reperfusion (I/R) injury animal models to verify the ROS scavenging and anti-inflammation effect of Cu-TCPP-Mn. Results: As demonstrated by kinetic analysis and oxygen-production velocities analysis, Cu-TCPP-Mn nanozyme possesses good performance in both SOD- and CAT-like activities to achieve synergistic ROS scavenging effect and provide protection for myocardial injury. In both MI and I/R injury animal models, this bimetallic nanozyme represents a promising and reliable technology to protect the heart tissue from oxidative stress and inflammation-induced injury, and enables the myocardial function to recover from otherwise severe damage. Conclusions: This research provides a facile and applicable method to develop a bimetallic MOF nanozyme, which represents a promising alternative to the treatment of myocardial injuries.
Collapse
Affiliation(s)
- Kaiyan Xiang
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Haoguang Wu
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yu Liu
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Sheng Wang
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueling Li
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bowei Yang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yunming Zhang
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Long Ma
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Guangming Lu
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liangcan He
- School of Medicine and Health, Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001 China
| | - Qianqian Ni
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Longjiang Zhang
- Department of Diagnostic Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Marzaman ANF, Roska TP, Sartini S, Utami RN, Sulistiawati S, Enggi CK, Manggau MA, Rahman L, Shastri VP, Permana AD. Recent Advances in Pharmaceutical Approaches of Antimicrobial Agents for Selective Delivery in Various Administration Routes. Antibiotics (Basel) 2023; 12:822. [PMID: 37237725 PMCID: PMC10215767 DOI: 10.3390/antibiotics12050822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Globally, the increase of pathogenic bacteria with antibiotic-resistant characteristics has become a critical challenge in medical treatment. The misuse of conventional antibiotics to treat an infectious disease often results in increased resistance and a scarcity of effective antimicrobials to be used in the future against the organisms. Here, we discuss the rise of antimicrobial resistance (AMR) and the need to combat it through the discovery of new synthetic or naturally occurring antibacterial compounds, as well as insights into the application of various drug delivery approaches delivered via various routes compared to conventional delivery systems. AMR-related infectious diseases are also discussed, as is the efficiency of various delivery systems. Future considerations in developing highly effective antimicrobial delivery devices to address antibiotic resistance are also presented here, especially on the smart delivery system of antibiotics.
Collapse
Affiliation(s)
- Ardiyah Nurul Fitri Marzaman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Tri Puspita Roska
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sulistiawati Sulistiawati
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Cindy Kristina Enggi
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Marianti A. Manggau
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Venkatram Prasad Shastri
- Institute for Macromolecular Chemistry, Albert Ludwigs Universitat Freiburg, 79085 Freiburg, Germany;
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| |
Collapse
|
50
|
Zhou Y, Li Q, Wu Y, Li X, Zhou Y, Wang Z, Liang H, Ding F, Hong S, Steinmetz NF, Cai H. Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS NANO 2023; 17:8004-8025. [PMID: 37079378 DOI: 10.1021/acsnano.3c01452] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembly has emerged as an extensively used method for constructing biomaterials with sizes ranging from nanometers to micrometers. Peptides have been extensively investigated for self-assembly. They are widely applied owing to their desirable biocompatibility, biodegradability, and tunable architecture. The development of peptide-based nanoparticles often requires complex synthetic processes involving chemical modification and supramolecular self-assembly. Stimuli-responsive peptide nanoparticles, also termed "smart" nanoparticles, capable of conformational and chemical changes in response to stimuli, have emerged as a class of promising materials. These smart nanoparticles find a diverse range of biomedical applications, including drug delivery, diagnostics, and biosensors. Stimuli-responsive systems include external stimuli (such as light, temperature, ultrasound, and magnetic fields) and internal stimuli (such as pH, redox environment, salt concentration, and biomarkers), facilitating the generation of a library of self-assembled biomaterials for biomedical imaging and therapy. Thus, in this review, we mainly focus on peptide-based nanoparticles built by self-assembly strategy and systematically discuss their mechanisms in response to various stimuli. Furthermore, we summarize the diverse range of biomedical applications of peptide-based nanomaterials, including diagnosis and therapy, to demonstrate their potential for medical translation.
Collapse
Affiliation(s)
- Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ye Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xinyu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ya Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Zhu Wang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Hui Liang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Nicole F Steinmetz
- Department of NanoEngineering, Department of Biongineering, Department of Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Center for Engineering in Cancer, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| |
Collapse
|