1
|
Cao B, Dong J, Wang Z, Wang L. Large-Scale Non-Adiabatic Dynamics Simulation Based on Machine Learning Hamiltonian and Force Field: The Case of Charge Transport in Monolayer MoS 2. J Phys Chem Lett 2025; 16:4907-4920. [PMID: 40346030 DOI: 10.1021/acs.jpclett.5c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
We present an efficient and reliable large-scale non-adiabatic dynamics simulation method based on machine learning Hamiltonian and force field. The quasi-diabatic Hamiltonian network (DHNet) is trained in the Wannier basis based on well-designed translation and rotation invariant structural descriptors, which can effectively capture both local and nonlocal environmental information. Using the representative two-dimensional transition metal dichalcogenide MoS2 as an illustration, we show that density functional theory (DFT) calculations of only ten structures are sufficient to generate the training set for DHNet due to the high efficiency of Wannier analysis and orbital classification in sampling the interorbital couplings. DHNet demonstrates good transferability, thus enabling direct construction of the electronic Hamiltonian matrices for large systems. Compared with direct DFT calculations, DHNet significantly reduces the computational cost by about 5 orders of magnitude. By combining DHNet with the DeePMD machine learning force field, we successfully simulate electron transport in monolayer MoS2 with up to 3675 atoms and 13475 electronic levels by using a state-of-the-art surface hopping method. The electron mobility is calculated to be 110 cm2/(V s), which is in good agreement with the extensive experimental results in the range of 3-200 cm2/(V s) during 2013-2023. Due to the high performance, the proposed DHNet and large-scale non-adiabatic dynamics methods have great potential to be applied to study charge carrier dynamics in a wide range of material systems.
Collapse
Affiliation(s)
- Bichuan Cao
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiawei Dong
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zedong Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Katiyar AK, Ahn JH. Strain-Engineered 2D Materials: Challenges, Opportunities, and Future Perspectives. SMALL METHODS 2025; 9:e2401404. [PMID: 39623800 DOI: 10.1002/smtd.202401404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/20/2024] [Indexed: 03/22/2025]
Abstract
Strain engineering is a powerful strategy that can strongly influence and tune the intrinsic characteristics of materials by incorporating lattice deformations. Due to atomically thin thickness, 2D materials are excellent candidates for strain engineering as they possess inherent mechanical flexibility and stretchability, which allow them to withstand large strains. The application of strain affects the atomic arrangement in the lattice of 2D material, which modify the electronic band structure. It subsequently tunes the electrical and optical characteristics, thereby enhances the performance and functionalities of the fabricated devices. Recent advances in strain engineering strategies for large-area flexible devices fabricated with 2D materials enable dynamic modulation of device performance. This perspective provides an overview of the strain engineering approaches employed so far for straining 2D materials, reviewing their advantages and disadvantages. The effect of various strains (uniaxial, biaxial, hydrostatic) on the characteristics of 2D material is also discussed, with a particular emphasis on electronic and optical properties. The strain-inducing methods employed for large-area device applications based on 2D materials are summarized. In addition, the future perspectives of strain engineering in functional devices, along with the associated challenges and potential solutions, are also outlined.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
3
|
Katiyar AK, Choi J, Ahn JH. Recent advances in CMOS-compatible synthesis and integration of 2D materials. NANO CONVERGENCE 2025; 12:11. [PMID: 39954210 PMCID: PMC11829894 DOI: 10.1186/s40580-025-00478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
The upcoming generation of functional electronics in the era of artificial intelligence, and IoT requires extensive data storage and processing, necessitating further device miniaturization. Conventional Si CMOS technology is struggling to enhance integration density beyond a certain limit to uphold Moore's law, primarily due to performance degradation at smaller dimensions caused by various physical effects, including surface scattering, quantum tunneling, and other short-channel effects. The two-dimensional materials have emerged as highly promising alternatives, which exhibit excellent electrical and mechanical properties at atomically thin thicknesses and show exceptional potential for future CMOS technology. This review article presents the chronological progress made in the development of two-dimensional materials-based CMOS devices with comprehensively discussing the advancements made in material production, device development, associated challenges, and the strategies to address these issues. The future prospects for the use of two-dimensional materials in functional CMOS circuitry are outlooked, highlighting key opportunities and challenges toward industrial adaptation.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jonggyu Choi
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Zhuo F, Ding Z, Yang X, Chu F, Liu Y, Gao Z, Jin H, Dong S, Wang X, Luo J. Advanced Morphological and Material Engineering for High-Performance Interfacial Iontronic Pressure Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413141. [PMID: 39840613 PMCID: PMC11848549 DOI: 10.1002/advs.202413141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/12/2024] [Indexed: 01/23/2025]
Abstract
High-performance flexible pressure sensors are crucial for applications such as wearable electronics, interactive systems, and healthcare technologies. Among these, iontronic pressure sensors have garnered particular attention due to their superior sensitivity, enabled by the giant capacitance variation of the electric double layer (EDL) at the ionic-electronic interface under deformation. Key advancements, such as incorporating microstructures into ionic layers and employing diverse materials, have significantly improved sensor properties like sensitivity, accuracy, stability, and response time. This review highlights advancements in flexible EDL pressure sensors, focusing on structural designs and material engineering. These strategies are tailored to optimize key metrics such as sensitivity, detection limit, linearity, stability, response speed, hysteresis, transparency, wearability, selectivity, and multifunctionality. Key fabrication techniques, including micropatterning and externally assisted methods, are reviewed, along with strategies for sensor comparison and guidelines for selecting appropriate sensors. Emerging applications in healthcare, environmental and aerodynamic sensing, human-machine interaction, robotics, and machine learning-assisted intelligent sensing are explored. Finally, this review discusses the challenges and future directions for advancing EDL-based pressure sensors.
Collapse
Affiliation(s)
- Fengling Zhuo
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| | - Zhi Ding
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Xi Yang
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| | - Fengjian Chu
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
| | - Yulu Liu
- Research Institute of Medical and Biological EngineeringNingbo UniversityNingbo315211China
| | - Zhuoqing Gao
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| | - Hao Jin
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| | - Shurong Dong
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| | - Xiaozhi Wang
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| | - Jikui Luo
- College of Information Science and Electronic EngineeringZhejiang UniversityHangzhou310027China
- International Joint Innovation CenterZhejiang UniversityHaining314400China
| |
Collapse
|
5
|
Kim D, Kwon YA, So Y, Kim YJ, Park SW, Park H, Hwang J, Park J, Kim C, Won JC, Cho JH, Kim YH. Water-Borne Fluorinated Polyimide Dielectric for Large-Area IGZO Transistors and Logic Gates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68328-68335. [PMID: 39589351 DOI: 10.1021/acsami.4c14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Thin-film transistors offer excellent and uniform electrical properties over large areas, making them a promising option for various future electronic devices. Polyimide dielectrics are already widely used in various electronic devices because of their exceptional dielectric properties, thermal stability, and desirable mechanical flexibility, which make them suitable for harsh environments. However, the current research on polyimide dielectric materials has certain limitations, such as the use of toxic solvents, high-temperature processes, and deficient coating properties. Herein, we introduce an aromatic polyimide dielectric, which exhibits excellent electrical properties even when processed at a low temperature of 250 °C using environmentally friendly water-based "one-step" polymerization. Despite its thin thickness of <200 nm, the water-borne fluorinated polyimide dielectric material demonstrates stable insulating properties over a wide range of electric fields and achieves a high breakdown voltage of over 4.5 MV cm-1. Furthermore, we successfully achieved a large-area coating of uniform dielectric layers with no pinholes using only water as a solvent and a simple solution process without any additional processing steps. These results demonstrate that the water-borne polyimide gated indium-gallium-zinc oxide transistor exhibits excellent and stable device performance. Moreover, we used the transistor to successfully demonstrate various logic gates (NOT, NAND, and NOR). Overall, this study provides guidelines for the eco-friendly and sustainable use of water-borne polyimide dielectric materials with high electrical performance and large-processing window advantages.
Collapse
Affiliation(s)
- Dongkyu Kim
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
| | - Yonghyun Albert Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yujin So
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young-Jun Kim
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
| | - Sang Woo Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyunjin Park
- Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jeonguk Hwang
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
| | - Jongmin Park
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Jong Chan Won
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
- Chemical Convergence Materials and Processes, KRICT School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yun Ho Kim
- Advanced Functional Polymers Center, KRICT, Daejeon 34114, Republic of Korea
- Chemical Convergence Materials and Processes, KRICT School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Lv L, Dong W, Li D, Liang Q, Wang P, Zhao C, Luo Z, Zhang C, Huang X, Zheng S, Cui Y, Zhou J, Gao Y. Synthesis of Ultrathin FeS Nanosheets via Chemical Vapor Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402182. [PMID: 39161191 DOI: 10.1002/smll.202402182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Fe-based 2D materials exhibit rich chemical compositions and structures, which may imply many unique physical properties and promising applications. However, achieving controllable preparation of ultrathin non-layered FeS crystal on SiO2/Si substrate remains a challenge. Herein, the influence of temperature and molecular sieves is reported on the synthesis of ultrathin FeS nanosheets with a thickness as low as 2.3 nm by molecular sieves-assisted chemical vapor deposition (CVD). The grown FeS nanosheets exhibit a non-layered hexagonal NiAs structure and belong to the P63/mmc space group. The inverted symmetry broken structure is confirmed by the angle-resolved second harmonic generation (SHG) test. In particular, the 2D FeS nanosheets exhibit exceptional metallic behavior, with conductivity up to 1.63 × 106 S m-1 at 300 K for an 8 nm thick sample, which is higher than that of reported 2D metallic materials. This work provides a significant contribution to the synthesis and characterization of 2D non-layered Fe-based materials.
Collapse
Affiliation(s)
- Lu Lv
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Weikang Dong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Dian Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Qingrong Liang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Ping Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Chunyu Zhao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Zhaokai Luo
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Chengyu Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiangwei Huang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Shoujun Zheng
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Yuanyuan Cui
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Jiadong Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 10081, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China
| |
Collapse
|
7
|
Li Q, Liu L, Zhang Q, Kimura H, Hou C, Li F, Xie X, Sun X, Zhang J, Wu N, Du W, Zhang X. Heterogeneous interfaces in 3D interconnected networks of flower-like 1T/2H Molybdenum disulfide nanosheets and carbon-fibers boosts superior EM wave absorption. J Colloid Interface Sci 2024; 671:67-77. [PMID: 38788425 DOI: 10.1016/j.jcis.2024.05.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
With the wide application of electromagnetic waves in national defense, communication, navigation and home appliances, the electromagnetic pollution problem is becoming more and more prominent. Therefore, high-performance, and low-density composite wave-absorbing materials have attracted much attention. In this paper, three-dimensional (3D) network structures of flower-like 1T/2H Molybdenum disulfide nanosheets anchored to carbon fibers (1T/2H MoS2/CNFs) were prepared by electrostatic spinning technique and calcination process. The morphology and electromagnetic wave absorption properties were tuned by changing the content of flower-like MoS2. The optimized 1T/2H MoS2/CNFs composite exhibits superior electromagnetic wave absorption with minimum reflection (RLmin) of -42.26 dB and effective absorption bandwidth (EAB) of 6.48 GHz at 2.5 mm. Multi-facts contribute to the super performance. First, the uniquely designed nanosheet and 3D interconnected networks leads to multiple reflection and scattering of electromagnetic waves, which promotes the attenuation of electromagnetic waves. Second, the propriate content of CNFs and MoS2 with different phase regulates its impedance matching characteristic. Third, Numerous heterogeneous interfaces existed between CNFs and MoS2, 1T and 2H MoS2 phase results in interface polarization. Besides, the 1T/2H MoS2 rich in defects induces defect polarization, improving the dielectric loss. Furthermore, the electromagnetic wave absorption performance was proved via radar reflectance cross section simulation. This work illustrates 1T/2H MoS2/CNFs is a promising material for electromagnetic absorption with wide bandwidth, strong absorption, low density, and high thermal stability.
Collapse
Affiliation(s)
- Qiuyu Li
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, Shandong 264005, China
| | - Liyuan Liu
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, Shandong 264005, China
| | - Qi Zhang
- Shandong Institute of Scientific and Technical Information, Shandong 250000, China
| | - Hideo Kimura
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, Shandong 264005, China
| | - Chuanxin Hou
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, Shandong 264005, China.
| | - Fushan Li
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, Shandong 264005, China
| | - Xiubo Xie
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, Shandong 264005, China
| | - Xueqin Sun
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, Shandong 264005, China
| | - Jing Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Nannan Wu
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Wei Du
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, Shandong 264005, China; Shandong University of Aeronautics, 391 Huanghe Fifth Road, Binzhou, Shandong 256600, China.
| | - Xiaoyu Zhang
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai, Shandong 264005, China.
| |
Collapse
|
8
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
9
|
Kim J, Hong J, Park K, Lee S, Hoang AT, Pak S, Zhao H, Ji S, Yang S, Chung CK, Yang S, Ahn JH. Injectable 2D Material-Based Sensor Array for Minimally Invasive Neural Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400261. [PMID: 38741451 DOI: 10.1002/adma.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Intracranial implants for diagnosis and treatment of brain diseases have been developed over the past few decades. However, the platform of conventional implantable devices still relies on invasive probes and bulky sensors in conjunction with large-area craniotomy and provides only limited biometric information. Here, an implantable multi-modal sensor array that can be injected through a small hole in the skull and inherently spread out for conformal contact with the cortical surface is reported. The injectable sensor array, composed of graphene multi-channel electrodes for neural recording and electrical stimulation and MoS2-based sensors for monitoring intracranial temperature and pressure, is designed based on a mesh structure whose elastic restoring force enables the contracted device to spread out. It is demonstrated that the sensor array injected into a rabbit's head can detect epileptic discharges on the surface of the cortex and mitigate it by electrical stimulation while monitoring both intracranial temperature and pressure. This method provides good potential for implanting a variety of functional devices via minimally invasive surgery.
Collapse
Affiliation(s)
- Jejung Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyungtai Park
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sangwon Lee
- gBrain Inc., Incheon, 21984, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sojeong Pak
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Huilin Zhao
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungchil Yang
- Department of Nanobioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sunggu Yang
- gBrain Inc., Incheon, 21984, Republic of Korea
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
10
|
Cheng Z, Jia X, Han B, Li M, Xu W, Li Y, Gao P, Dai L. P/N-Type Conversion of 2D MoTe 2 Controlled by Top Gate Engineering for Logic Circuits. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36539-36546. [PMID: 38973165 DOI: 10.1021/acsami.4c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) are regarded as promising materials for next-generation logic circuits. Top gate field-effect transistors (FETs) have independent gate control ability and can be fabricated directly on TMDC materials without a transfer process. Therefore, it has the merits of device reliability and complementary metal-oxide semiconductor (CMOS) process compatibility, which are demanded in practical circuit-level integration. However, the fabrication of the top gate FET involves depositing an insulating dielectric layer and a gate electrode in sequence on the TMDC channel material, which may affect the device performance. Insightfully investigating the influences of different top-gate-deposition methods on the electrical properties of the TMDC channel and further harnessing these influences to realize a homogeneous CMOS device on an identical 2D TMDC platform are with practice significance. In this work, p/n-type controllable top gate FET arrays based on 2H-MoTe2 are fabricated by using different top-gate-deposition methods. The electron-beam evaporation (EBE) of top metal gate exhibits an obvious n-doping effect on the 2H-MoTe2 channel and converts it from p-type to n-type, whereas the thermal evaporation of top gate affects little to the channel. High-resolution transmission electron microscopy (HR-TEM) analysis reveals that the high-energy metal atoms from the EBE process can penetrate through the 30 nm gate dielectric layers (including 10 nm Al2O3 seeding layer), leading to multiple atomic defects in both MoTe2 and the interface between MoTe2 and Al2O3. Furthermore, by utilizing the top gate engineering, a large-scale double-top-gate MoTe2 homogeneous CMOS inverter array is fabricated. The CMOS inverters exhibit clear logic swing, negligible hysteresis, and high device yield (∼93%), indicating high device reliability and stability. Notably, the fabrication process is facile, free from transfer procedure, and compatible with traditional silicon technology. This work promotes the application of 2D TMDCs in nanoelectronics integration.
Collapse
Affiliation(s)
- Zhixuan Cheng
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xionghui Jia
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Bo Han
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Minglai Li
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Wanjin Xu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Yanping Li
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Gao
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Lun Dai
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Beijing 100871, China
| |
Collapse
|
11
|
Du J, Han Q, Chen A. A liquid metal/polypyrrole electrospun TPU composite conductive network for highly sensitive strain sensing in human motion monitoring. J Mater Chem B 2024; 12:4655-4665. [PMID: 38646701 DOI: 10.1039/d3tb02394j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Developing soft wearable sensors with high sensitivity, low cost, and a wide monitoring range is crucial for monitoring human health. Despite advances in strain sensor technology, achieving high sensitivity and a wide operating range in a single device remains a major challenge in its design and preparation. Herein, a liquid metal (LM) is innovatively ultrasonically anchored to the gaps and surfaces of thermoplastic polyurethane (TPU) electrospun fibers, and then a conductive pathway is constructed through polypyrrole (PPy) self-polymerization to prepare a composite film. The strain sensor developed by ultrasonic anchoring and original polymerization technology shows a high strain coefficient (GF = 4.36 at 12.5% strain) and a low detection limit (less than 1% strain). Importantly, this sensor can monitor joint motion and subtle skin deformations in real time. In addition, the integration of strain sensors and N95 masks enables real-time monitoring of human respiration.
Collapse
Affiliation(s)
- Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China.
| | - Qinghui Han
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China.
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China.
| |
Collapse
|
12
|
Janićijević Ž, Huang T, Bojórquez DIS, Tonmoy TH, Pané S, Makarov D, Baraban L. Design and Development of Transient Sensing Devices for Healthcare Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307232. [PMID: 38484201 PMCID: PMC11132064 DOI: 10.1002/advs.202307232] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Indexed: 05/29/2024]
Abstract
With the ever-growing requirements in the healthcare sector aimed at personalized diagnostics and treatment, continuous and real-time monitoring of relevant parameters is gaining significant traction. In many applications, health status monitoring may be carried out by dedicated wearable or implantable sensing devices only within a defined period and followed by sensor removal without additional risks for the patient. At the same time, disposal of the increasing number of conventional portable electronic devices with short life cycles raises serious environmental concerns due to the dangerous accumulation of electronic and chemical waste. An attractive solution to address these complex and contradictory demands is offered by biodegradable sensing devices. Such devices may be able to perform required tests within a programmed period and then disappear by safe resorption in the body or harmless degradation in the environment. This work critically assesses the design and development concepts related to biodegradable and bioresorbable sensors for healthcare applications. Different aspects are comprehensively addressed, from fundamental material properties and sensing principles to application-tailored designs, fabrication techniques, and device implementations. The emerging approaches spanning the last 5 years are emphasized and a broad insight into the most important challenges and future perspectives of biodegradable sensors in healthcare are provided.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Tao Huang
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | | | - Taufhik Hossain Tonmoy
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Salvador Pané
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZürichZürich8092Switzerland
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| |
Collapse
|
13
|
Radatović B, Çakıroğlu O, Jadriško V, Frisenda R, Senkić A, Vujičić N, Kralj M, Petrović M, Castellanos-Gomez A. Strain-Enhanced Large-Area Monolayer MoS 2 Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15596-15604. [PMID: 38500411 PMCID: PMC10982932 DOI: 10.1021/acsami.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
In this study, we show a direct correlation between the applied mechanical strain and an increase in monolayer MoS2 photoresponsivity. This shows that tensile strain can improve the efficiency of monolayer MoS2 photodetectors. The observed high photocurrent and extended response time in our devices are indicative that devices are predominantly governed by photogating mechanisms, which become more prominent with applied tensile strain. Furthermore, we have demonstrated that a nonencapsulated MoS2 monolayer can be used in strain-based devices for many cycles and extensive periods of time, showing endurance under ambient conditions without loss of functionality. Such robustness emphasizes the potential of MoS2 for further functionalization and utilization of different flexible sensors.
Collapse
Affiliation(s)
- Borna Radatović
- Center
for Advanced Laser Techniques, Institute
of Physics, Bijenička 46, 10000 Zagreb, Croatia
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain
| | - Onur Çakıroğlu
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain
| | - Valentino Jadriško
- Center
for Advanced Laser Techniques, Institute
of Physics, Bijenička 46, 10000 Zagreb, Croatia
- Physics
Department, Politecnico di Milano, 20133 Milan, Italy
| | | | - Ana Senkić
- Center
for Advanced Laser Techniques, Institute
of Physics, Bijenička 46, 10000 Zagreb, Croatia
| | - Nataša Vujičić
- Center
for Advanced Laser Techniques, Institute
of Physics, Bijenička 46, 10000 Zagreb, Croatia
| | - Marko Kralj
- Center
for Advanced Laser Techniques, Institute
of Physics, Bijenička 46, 10000 Zagreb, Croatia
| | - Marin Petrović
- Center
for Advanced Laser Techniques, Institute
of Physics, Bijenička 46, 10000 Zagreb, Croatia
| | - Andres Castellanos-Gomez
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain
| |
Collapse
|
14
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Xi J, Yang H, Li X, Wei R, Zhang T, Dong L, Yang Z, Yuan Z, Sun J, Hua Q. Recent Advances in Tactile Sensory Systems: Mechanisms, Fabrication, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:465. [PMID: 38470794 DOI: 10.3390/nano14050465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Flexible electronics is a cutting-edge field that has paved the way for artificial tactile systems that mimic biological functions of sensing mechanical stimuli. These systems have an immense potential to enhance human-machine interactions (HMIs). However, tactile sensing still faces formidable challenges in delivering precise and nuanced feedback, such as achieving a high sensitivity to emulate human touch, coping with environmental variability, and devising algorithms that can effectively interpret tactile data for meaningful interactions in diverse contexts. In this review, we summarize the recent advances of tactile sensory systems, such as piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. We also review the state-of-the-art fabrication techniques for artificial tactile sensors. Next, we focus on the potential applications of HMIs, such as intelligent robotics, wearable devices, prosthetics, and medical healthcare. Finally, we conclude with the challenges and future development trends of tactile sensors.
Collapse
Affiliation(s)
- Jianguo Xi
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Huaiwen Yang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Xinyu Li
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Ruilai Wei
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
| | - Taiping Zhang
- Tianfu Xinglong Lake Laboratory, Chengdu 610299, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenjun Yang
- Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei 230011, China
| | - Zuqing Yuan
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
| | - Junlu Sun
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qilin Hua
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
- Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
16
|
Tu X, Fang L, Zhang H, Wang Z, Chen C, Wang L, He W, Liu H, Wang P. Performance-Enhanced Flexible Self-Powered Tactile Sensor Arrays Based on Lotus Root-Derived Porous Carbon for Real-Time Human-Machine Interaction of the Robotic Snake. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9333-9342. [PMID: 38345015 DOI: 10.1021/acsami.3c18714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Flexible tactile sensors play an important role in the development of wearable electronics and human-machine interaction (HMI) systems. However, poor sensing abilities, an indispensable external energy supply, and limited material selection have significantly constrained their advancement. Herein, a self-powered flexible triboelectric sensor (TES) is proposed by integrating lotus-root-derived porous carbon (PC) into polydimethylsiloxane (PDMS). Owing to the superior charge capturing capability of PC, the PDMS/PC (PPC)-based TES exhibits an open-circuit voltage (Voc) of 22.8 V when it is periodically patted by skin at the pressure of 2 N and the frequency of 1 Hz, which is 5 times higher than that of a pristine PDMS-based TES. Furthermore, the as-prepared self-powered TES exhibits a high sensitivity of 3.24 V kPa-1 below 15 kPa for detecting human motion signals, such as finger clicks, joint bends, etc. Last but not the least, after the assembly of a PPC-based TES array and construction of an HMI system, the robotic snake can be controlled remotely by recognizing finger touching signals. This work shows broad potential applications for the self-powered TES in the fields of intelligent robotics, flexible electronics, disaster relief, and intelligence spying.
Collapse
Affiliation(s)
- Xinbo Tu
- School of Materials Science and Engineering, Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei, Anhui 230601, China
| | - Lin Fang
- School of Materials Science and Engineering, Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei, Anhui 230601, China
| | - Haonan Zhang
- School of Materials Science and Engineering, Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei, Anhui 230601, China
| | - Zixun Wang
- School of Materials Science and Engineering, Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei, Anhui 230601, China
| | - Chen Chen
- School of Materials Science and Engineering, Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei, Anhui 230601, China
| | - Longsen Wang
- School of Materials Science and Engineering, Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei, Anhui 230601, China
| | - Wen He
- School of Materials Science and Engineering, Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei, Anhui 230601, China
| | - Huawang Liu
- College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Peihong Wang
- School of Materials Science and Engineering, Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei, Anhui 230601, China
- Hubei Key Laboratory of Electric Manufacturing and Packaging Integration (Wuhan University), Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
17
|
Alboteanu G, Ya'akobovitz A. Exceptionally large fracture strength and stretchability of 2D ReS 2 and ReSe 2. NANOSCALE 2024; 16:3454-3461. [PMID: 38112027 DOI: 10.1039/d3nr03670g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Two-dimensional rhenium disulfide (ReS2) and rhenium diselenide (ReSe2) have gained popularity due to their outstanding optoelectronic properties. However, their mechanical behavior has not been investigated experimentally and many of their mechanical parameters are still unexplored. Here we conducted atomic force microscopy (AFM) indentation experiments and extracted their Young's moduli and found that it is thickness-independent. In addition, we found that both materials are capable of sustaining large pretension. Importantly, fracture tests showed that these materials exhibit exceptionally large fracture strength (32.9 ± 2.4 GPa and 27.7 ± 3.9 GPa for ReS2 and ReSe2, respectively) and stretchability (up to 24.2% for ReS2 and 23.0% for ReSe2). Therefore, this study shows the superior mechanical properties of ReS2 and ReSe2. Thus, it will open the path for their future integration into advanced applications that will benefit from their outstanding mechanical durability and attractive optoelectronic properties, such as flexible photodetectors, stretchable photonic devices, and strain-engineered electronics.
Collapse
Affiliation(s)
- Guy Alboteanu
- Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Israel.
| | - Assaf Ya'akobovitz
- Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
18
|
Hu J, Dong M. Recent advances in two-dimensional nanomaterials for sustainable wearable electronic devices. J Nanobiotechnology 2024; 22:63. [PMID: 38360734 PMCID: PMC10870598 DOI: 10.1186/s12951-023-02274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 02/17/2024] Open
Abstract
The widespread adoption of smart terminals has significantly boosted the market potential for wearable electronic devices. Two-dimensional (2D) nanomaterials show great promise for flexible, wearable electronics of next-generation electronic materials and have potential in energy, optoelectronics, and electronics. First, this review focuses on the importance of functionalization/defects in 2D nanomaterials, a discussion of different kinds of 2D materials for wearable devices, and the overall structure-property relationship of 2D materials. Then, in this comprehensive review, we delve into the burgeoning realm of emerging applications for 2D nanomaterial-based flexible wearable electronics, spanning diverse domains such as energy, medical health, and displays. A meticulous exploration is presented, elucidating the intricate processes involved in tailoring material properties for specific applications. Each research direction is dissected, offering insightful perspectives and dialectical evaluations that illuminate future trajectories and inspire fruitful investigations in this rapidly evolving field.
Collapse
Affiliation(s)
- Jing Hu
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
19
|
Bao R, Wang S, Liu X, Tu K, Liu J, Huang X, Liu C, Zhou P, Liu S. Neuromorphic electro-stimulation based on atomically thin semiconductor for damage-free inflammation inhibition. Nat Commun 2024; 15:1327. [PMID: 38351088 PMCID: PMC10864345 DOI: 10.1038/s41467-024-45590-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Inflammation, caused by accumulation of inflammatory cytokines from immunocytes, is prevalent in a variety of diseases. Electro-stimulation emerges as a promising candidate for inflammatory inhibition. Although electroacupuncture is free from surgical injury, it faces the challenges of imprecise pathways/current spikes, and insufficiently defined mechanisms, while non-optimal pathway or spike would require high current amplitude, which makes electro-stimulation usually accompanied by damage and complications. Here, we propose a neuromorphic electro-stimulation based on atomically thin semiconductor floating-gate memory interdigital circuit. Direct stimulation is achieved by wrapping sympathetic chain with flexible electrodes and floating-gate memory are programmable to fire bionic spikes, thus minimizing nerve damage. A substantial decrease (73.5%) in inflammatory cytokine IL-6 occurred, which also enabled better efficacy than commercial stimulator at record-low currents with damage-free to sympathetic neurons. Additionally, using transgenic mice, the anti-inflammation effect is determined by β2 adrenergic signaling from myeloid cell lineage (monocytes/macrophages and granulocytes).
Collapse
Affiliation(s)
- Rong Bao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuiyuan Wang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
| | - Xiaoxian Liu
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Kejun Tu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong university, Shanghai, 200240, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong university, Shanghai, 200240, China
| | - Xiaohe Huang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Chunsen Liu
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peng Zhou
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
| | - Shen Liu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
20
|
Kim H, Zhao HL, van der Zande AM. Stretchable Thin-Film Transistors Based on Wrinkled Graphene and MoS 2 Heterostructures. NANO LETTERS 2024; 24:1454-1461. [PMID: 38214495 DOI: 10.1021/acs.nanolett.3c05091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Two-dimensional (2D) materials are outstanding candidates for stretchable electronics, but a significant challenge is their heterogeneous integration into stretchable geometries on soft substrates. Here, we demonstrate a strategy for stretchable thin film transistors (2D S-TFT) based on wrinkled heterostructures on elastomer substrates where 2D materials formed the gate, source, drain, and channel and characterized them with Raman spectroscopy and transport measurements. The 2D S-TFTs had initial mobility of 4.9 ± 0.7 cm2/(V s). The wrinkling reduced the strain transferred into the 2D materials by a factor of 50, allowing a substrate stretch of up to 23% that could be cycled thousands of times without electrical degradation. The stretch did not alter the mobility but did lead to strain-induced threshold voltage shifts by ΔVT = -1.9 V. These 2D S-TFTs form the foundation for stretchable integrated circuits and enable investigations of the impact of heterogeneous strain on electron transport.
Collapse
Affiliation(s)
- Hyunchul Kim
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - He Lin Zhao
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arend M van der Zande
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Lab, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nano Technology Lab, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
22
|
Lee GS, Kim JG, Kim JT, Lee CW, Cha S, Choi GB, Lim J, Padmajan Sasikala S, Kim SO. 2D Materials Beyond Post-AI Era: Smart Fibers, Soft Robotics, and Single Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307689. [PMID: 37777874 DOI: 10.1002/adma.202307689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Recent consecutive discoveries of various 2D materials have triggered significant scientific and technological interests owing to their exceptional material properties, originally stemming from 2D confined geometry. Ever-expanding library of 2D materials can provide ideal solutions to critical challenges facing in current technological trend of the fourth industrial revolution. Moreover, chemical modification of 2D materials to customize their physical/chemical properties can satisfy the broad spectrum of different specific requirements across diverse application areas. This review focuses on three particular emerging application areas of 2D materials: smart fibers, soft robotics, and single atom catalysts (SACs), which hold immense potentials for academic and technological advancements in the post-artificial intelligence (AI) era. Smart fibers showcase unconventional functionalities including healthcare/environmental monitoring, energy storage/harvesting, and antipathogenic protection in the forms of wearable fibers and textiles. Soft robotics aligns with future trend to overcome longstanding limitations of hard-material based mechanics by introducing soft actuators and sensors. SACs are widely useful in energy storage/conversion and environmental management, principally contributing to low carbon footprint for sustainable post-AI era. Significance and unique values of 2D materials in these emerging applications are highlighted, where the research group has devoted research efforts for more than a decade.
Collapse
Affiliation(s)
- Gang San Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Jin Goo Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Jun Tae Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Chan Woo Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sujin Cha
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Go Bong Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Joonwon Lim
- Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suchithra Padmajan Sasikala
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
- Materials Creation, Seoul, 06179, Republic of Korea
| |
Collapse
|
23
|
Sadaf MUK, Sakib NU, Pannone A, Ravichandran H, Das S. A bio-inspired visuotactile neuron for multisensory integration. Nat Commun 2023; 14:5729. [PMID: 37714853 PMCID: PMC10504285 DOI: 10.1038/s41467-023-40686-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 09/17/2023] Open
Abstract
Multisensory integration is a salient feature of the brain which enables better and faster responses in comparison to unisensory integration, especially when the unisensory cues are weak. Specialized neurons that receive convergent input from two or more sensory modalities are responsible for such multisensory integration. Solid-state devices that can emulate the response of these multisensory neurons can advance neuromorphic computing and bridge the gap between artificial and natural intelligence. Here, we introduce an artificial visuotactile neuron based on the integration of a photosensitive monolayer MoS2 memtransistor and a triboelectric tactile sensor which minutely captures the three essential features of multisensory integration, namely, super-additive response, inverse effectiveness effect, and temporal congruency. We have also realized a circuit which can encode visuotactile information into digital spiking events, with probability of spiking determined by the strength of the visual and tactile cues. We believe that our comprehensive demonstration of bio-inspired and multisensory visuotactile neuron and spike encoding circuitry will advance the field of neuromorphic computing, which has thus far primarily focused on unisensory intelligence and information processing.
Collapse
Affiliation(s)
| | - Najam U Sakib
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | - Andrew Pannone
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | | | - Saptarshi Das
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA.
- Electrical Engineering, Penn State University, University Park, PA, 16802, USA.
- Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA.
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
24
|
Won D, Bang J, Choi SH, Pyun KR, Jeong S, Lee Y, Ko SH. Transparent Electronics for Wearable Electronics Application. Chem Rev 2023; 123:9982-10078. [PMID: 37542724 PMCID: PMC10452793 DOI: 10.1021/acs.chemrev.3c00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/07/2023]
Abstract
Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.
Collapse
Affiliation(s)
- Daeyeon Won
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seok Hwan Choi
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyung Rok Pyun
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Youngseok Lee
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute
of Engineering Research/Institute of Advanced Machinery and Design
(SNU-IAMD), Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
25
|
Taleei T, Nazem-Zadeh MR, Amiri M, Keliris GA. EEG-based functional connectivity for tactile roughness discrimination. Cogn Neurodyn 2023; 17:921-940. [PMID: 37522039 PMCID: PMC10374498 DOI: 10.1007/s11571-022-09876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/26/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022] Open
Abstract
Tactile sensation and perception involve cooperation between different parts of the brain. Roughness discrimination is an important phase of texture recognition. In this study, we investigated how different roughness levels would influence the brain network characteristics. We recorded EEG signals from nine right-handed healthy subjects who underwent touching three surfaces with different levels of roughness. The experiment was separately repeated in 108 trials for each hand for both static and dynamic touch. For estimation of the functional connectivity between brain regions, the phase lag index method was employed. Frequency-specific connectivity patterns were observed in the ipsilateral and contralateral hemispheres to the hand of interest, for delta, theta, alpha, and beta frequency bands under the study. A number of connections were identified to be in charge of discrimination between surfaces in both alpha and beta frequency bands for the left hand in static touch and for the right hand in dynamic touch. In addition, common connections were determined in both hands for all three roughness in alpha band for static touch and in theta band for dynamic touch. The common connections were identified for the smooth surface in beta band for static touch and in delta and alpha bands for dynamic touch. As observed for static touch in alpha band and for dynamic touch in theta band, the number of common connections between the two hands was decreased by increasing the surface roughness. The results of this research would extend the current knowledge about tactile information processing in the brain. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09876-1.
Collapse
Affiliation(s)
- Tahereh Taleei
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad-Reza Nazem-Zadeh
- Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
26
|
Pan J, Zhou X, Gong H, Lin Z, Xiang H, Liu X, Chen X, Li H, Liu T, Liu S. Covalently Functionalized MoS 2 Initiated Gelation of Hydrogels for Flexible Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466084 DOI: 10.1021/acsami.3c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Transition metal dichalcogenides (TMDs), with superior mechanical and electrical conductivity, are one of the most promising two-dimensional materials for creating a generation of intelligent and flexible electronic devices. However, due to the high van der Waals and electrostatic attraction, TMD nanomaterials tend to aggregate in dispersants to achieve a stable state, thus severely limiting their further applications. Surface chemical modification is a common strategy for improving the dispersity of TMD nanomaterials; however, there are still constraints such as limited functionalization methods, low grafting rate, and difficult practice application. Thus, it is challenging to develop innovative surface modification systems. Herein, we covalently modify an olefin molecule on surface-inert MoS2, and the modified MoS2 can be used as not only a catalyst for hydrogel polymerization, but also a cross-linker in the hydrogel network. Specifically, allyl is covalently grafted onto chemically exfoliated MoS2, and this modified MoS2 can be uniformly dispersed in polar solvents (such as acetone, N,N-dimethylformamide, and ethanol), remaining stable for more than 2 weeks. The allyl-modified MoS2 can catalyze the polymerization of polyacrylamide hydrogel and then integrate in the network, which increases the tensile strength of the composite hydrogel. The flexible sensor based on the composite hydrogel exhibits an ideal operating range of 600% and a quick response time of 150 ms. At the same time, the flexible device can also track the massive axial stretching movements of human joints, making it a reliable option for the next wave of wearable sensing technology.
Collapse
Affiliation(s)
- Jia Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xionglin Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Huimin Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P. R. China
| | - Haiyan Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xiao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xuli Chen
- College of Materials Science and Engineering, Hunan University, South Lushan Road, Changsha 410082, Hunan, P. R. China
| | - Huimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P. R. China
| | - Song Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| |
Collapse
|
27
|
Somphonsane R, Chiawchan T, Bootsa-ard W, Ramamoorthy H. CVD Synthesis of MoS 2 Using a Direct MoO 2 Precursor: A Study on the Effects of Growth Temperature on Precursor Diffusion and Morphology Evolutions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4817. [PMID: 37445130 PMCID: PMC10343541 DOI: 10.3390/ma16134817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
In this study, the influence of growth temperature variation on the synthesis of MoS2 using a direct MoO2 precursor was investigated. The research showed that the growth temperature had a strong impact on the resulting morphologies. Below 650 °C, no nucleation or growth of MoS2 occurred. The optimal growth temperature for producing continuous MoS2 films without intermediate-state formation was approximately 760 °C. However, when the growth temperatures exceeded 800 °C, a transition from pure MoS2 to predominantly intermediate states was observed. This was attributed to enhanced diffusion of the precursor at higher temperatures, which reduced the local S:Mo ratio. The diffusion equation was analyzed, showing how the diffusion coefficient, diffusion length, and concentration gradients varied with temperature, consistent with the experimental observations. This study also investigated the impact of increasing the MoO2 precursor amount, resulting in the formation of multilayer MoS2 domains at the outermost growth zones. These findings provide valuable insights into the growth criteria for the effective synthesis of clean and large-area MoS2, thereby facilitating its application in semiconductors and related industries.
Collapse
Affiliation(s)
- Ratchanok Somphonsane
- Department of Physics, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (R.S.); (T.C.); (W.B.-a.)
- Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Tinna Chiawchan
- Department of Physics, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (R.S.); (T.C.); (W.B.-a.)
| | - Waraporn Bootsa-ard
- Department of Physics, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (R.S.); (T.C.); (W.B.-a.)
| | - Harihara Ramamoorthy
- Department of Electronics Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
28
|
Jiang D, Li Y, Li Z, Yang Z, Xia Z, Fu P, Zhang Y, Du F. High-Performance MoS 2/SWCNT Composite Films for a Flexible Thermoelectric Power Generator. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37312394 DOI: 10.1021/acsami.3c04596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-walled carbon nanotube (SWCNT)-based thermoelectric materials have been extensively studied in the field of flexible wearable devices due to their high flexibility and excellent electrical conductivity (σ). However, poor Seebeck coefficient (S) and high thermal conductivity limit their thermoelectric application. In this work, free-standing MoS2/SWCNT composite films with improved thermoelectric performance were fabricated by doping SWCNTs with MoS2 nanosheets. The results demonstrated that the energy filtering effect at the MoS2/SWCNT interface increased the S of composites. In addition, the σ of composites was also improved due to the reason that S-π interaction between MoS2 and SWCNTs made good contact between MoS2 and SWCNTs and improved carrier transport. Finally, the obtained MoS2/SWCNT showed a maximum power factor of 131.9 ± 4.5 μW m-1 K-2 at room temperature with a σ of 680 ± 6.7 S cm-1 and an S of 44.0 ± 1.7 μV K-1 at a MoS2/SWCNT mass ratio of 15:100. As a demonstration, a thermoelectric device composed of three pairs of p-n junctions was prepared, which exhibited a maximum output power of 0.43 μW at a temperature gradient of 50 K. Therefore, this work offers a simple method of enhancing the thermoelectric properties of SWCNT-based materials.
Collapse
Affiliation(s)
- Duo Jiang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yi Li
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zan Li
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhaohua Yang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhixiang Xia
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ping Fu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yunfei Zhang
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Feipeng Du
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
29
|
Lian JJ, Guo WT, Sun QJ. Emerging Functional Polymer Composites for Tactile Sensing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4310. [PMID: 37374494 DOI: 10.3390/ma16124310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
In recent years, extensive research has been conducted on the development of high-performance flexible tactile sensors, pursuing the next generation of highly intelligent electronics with diverse potential applications in self-powered wearable sensors, human-machine interactions, electronic skin, and soft robotics. Among the most promising materials that have emerged in this context are functional polymer composites (FPCs), which exhibit exceptional mechanical and electrical properties, enabling them to be excellent candidates for tactile sensors. Herein, this review provides a comprehensive overview of recent advances in FPCs-based tactile sensors, including the fundamental principle, the necessary property parameter, the unique device structure, and the fabrication process of different types of tactile sensors. Examples of FPCs are elaborated with a focus on miniaturization, self-healing, self-cleaning, integration, biodegradation, and neural control. Furthermore, the applications of FPC-based tactile sensors in tactile perception, human-machine interaction, and healthcare are further described. Finally, the existing limitations and technical challenges for FPCs-based tactile sensors are briefly discussed, offering potential avenues for the development of electronic products.
Collapse
Affiliation(s)
- Jia-Jin Lian
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen-Tao Guo
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qi-Jun Sun
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
30
|
Zhu Y, Li J, Kim J, Li S, Zhao Y, Bahari J, Eliahoo P, Li G, Kawakita S, Haghniaz R, Gao X, Falcone N, Ermis M, Kang H, Liu H, Kim H, Tabish T, Yu H, Li B, Akbari M, Emaminejad S, Khademhosseini A. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials 2023; 296:122075. [PMID: 36931103 PMCID: PMC10085866 DOI: 10.1016/j.biomaterials.2023.122075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Payam Eliahoo
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA, 90007, United States
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China; Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hao Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - HanJun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Tanveer Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Department of Manufacturing Systems Engineering and Management, California State University, Northridge, CA, 91330, United States
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States; Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, Center for Biomedical Research, University of Victoria, Victoria, BC V8P 2C5, Canada
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab, Department of Electrical and Computer Engineering, and Materials Science and Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States.
| |
Collapse
|
31
|
Guo D, Guo P, Ren L, Yao Y, Wang W, Jia M, Wang Y, Wang L, Wang ZL, Zhai J. Silicon flexoelectronic transistors. SCIENCE ADVANCES 2023; 9:eadd3310. [PMID: 36897950 PMCID: PMC10005167 DOI: 10.1126/sciadv.add3310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is extraordinarily challenging to implement adaptive and seamless interactions between mechanical triggering and current silicon technology for tunable electronics, human-machine interfaces, and micro/nanoelectromechanical systems. Here, we report Si flexoelectronic transistors (SFTs) that can innovatively convert applied mechanical actuations into electrical control signals and achieve directly electromechanical function. Using the strain gradient-induced flexoelectric polarization field in Si as a "gate," the metal-semiconductor interfacial Schottky barriers' heights and the channel width of SFT can be substantially modulated, resulting in tunable electronic transports with specific characteristics. Such SFTs and corresponding perception system can not only create a high strain sensitivity but also identify where the mechanical force is applied. These findings provide an in-depth understanding about the mechanism of interface gating and channel width gating in flexoelectronics and develop highly sensitive silicon-based strain sensors, which has great potential to construct the next-generation silicon electromechanical nanodevices and nanosystems.
Collapse
Affiliation(s)
- Di Guo
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Pengwen Guo
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lele Ren
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuan Yao
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Wei Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengmeng Jia
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yulong Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Longfei Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Corresponding author. (L.W.); (Z.L.W.); (J.Z.)
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Georgia Institute of Technology, Atlanta, GA 30332, USA
- Corresponding author. (L.W.); (Z.L.W.); (J.Z.)
| | - Junyi Zhai
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Corresponding author. (L.W.); (Z.L.W.); (J.Z.)
| |
Collapse
|
32
|
Qi Y, Sadi MA, Hu D, Zheng M, Wu Z, Jiang Y, Chen YP. Recent Progress in Strain Engineering on Van der Waals 2D Materials: Tunable Electrical, Electrochemical, Magnetic, and Optical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205714. [PMID: 35950446 DOI: 10.1002/adma.202205714] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Strain engineering is a promising way to tune the electrical, electrochemical, magnetic, and optical properties of 2D materials, with the potential to achieve high-performance 2D-material-based devices ultimately. This review discusses the experimental and theoretical results from recent advances in the strain engineering of 2D materials. Some novel methods to induce strain are summarized and then the tunable electrical and optical/optoelectronic properties of 2D materials via strain engineering are highlighted, including particularly the previously less-discussed strain tuning of superconducting, magnetic, and electrochemical properties. Also, future perspectives of strain engineering are given for its potential applications in functional devices. The state of the survey presents the ever-increasing advantages and popularity of strain engineering for tuning properties of 2D materials. Suggestions and insights for further research and applications in optical, electronic, and spintronic devices are provided.
Collapse
Affiliation(s)
- Yaping Qi
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Av. Wai Long, Macao SAR, China
| | - Mohammad A Sadi
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Dan Hu
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Av. Wai Long, Macao SAR, China
| | - Ming Zheng
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhenping Wu
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Yucheng Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Yong P Chen
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Av. Wai Long, Macao SAR, China
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Physics and Astronomy and Birck Nanotechnology Center and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
- Institute of Physics and Astronomy and Villum Center for Hybrid Quantum Materials and Devices, Aarhus University, Aarhus-C, 8000, Denmark
| |
Collapse
|
33
|
Zhao X, Zhang X, Chen R, Lang H, Peng Y. Flexible Tuning of Friction on Atomically Thin Graphene. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10315-10323. [PMID: 36755369 DOI: 10.1021/acsami.3c00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The tuning of flexible microscale friction is desirable for the reliability of wearable electronic devices, tactile sensors, and flexible gears. Here, the tuning of friction of atomically thin graphene on a flexible polydimethylsiloxane (PDMS) substrate was obtained with the elastic modulus using a 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) self-assembly monolayers (SAMs)-modified microsphere probe with the diameter of 5 μm at the microscale. The friction can be tuned at a large scale with the difference in the elastic modulus of PDMS and thickness of graphene. The hydrophobic property of the FDTS SAMs-modified probe decreased friction by reducing interfacial adhesion and preventing the effect of capillary interaction; thus, the friction decreased with the increase in the elastic modulus of the PDMS substrate due to decreasing indentation depth and thus the interfacial contact area; and also, the enhanced out-of-plane stiffness effectively decreased the interfacial contact quality with the increase of the thickness of graphene. The flexible tuning of friction on graphene was further verified by the theoretical calculation from the aspects of the friction arising from the normal and lateral deformation around the contacting area. This work is meaningful for promoting the design and reliability of flexible micro-devices.
Collapse
Affiliation(s)
- Xiuhua Zhao
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Xiushuo Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Ruling Chen
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Haojie Lang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Yitian Peng
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
- Shanghai Collaborative Innovation Center for High Performance Fiber Composites, Donghua University, Shanghai 201620, China
| |
Collapse
|
34
|
Li W, Xu M, Gao J, Zhang X, Huang H, Zhao R, Zhu X, Yang Y, Luo L, Chen M, Ji H, Zheng L, Wang X, Huang W. Large-Scale Ultra-Robust MoS 2 Patterns Directly Synthesized on Polymer Substrate for Flexible Sensing Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207447. [PMID: 36353895 DOI: 10.1002/adma.202207447] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Synthesis of large-area patterned MoS2 is considered the principle base for realizing high-performance MoS2 -based flexible electronic devices. Patterning and transferring MoS2 films to target flexible substrates, however, require conventional multi-step photolithography patterning and transferring process, despite tremendous progress in the facilitation of practical applications. Herein, an approach to directly synthesize large-scale MoS2 patterns that combines inkjet printing and thermal annealing is reported. An optimal precursor ink is prepared that can deposit arbitrary patterns on polyimide films. By introducing a gas atmosphere of argon/hydrogen (Ar/H2 ), thermal treatment at 350 °C enables an in situ decomposition and crystallization in the patterned precursors and, consequently, results in the formation of MoS2 . Without complicated processes, patterned MoS2 is obtained directly on polymer substrate, exhibiting superior mechanical flexibility and durability (≈2% variation in resistance over 10,000 bending cycles), as well as excellent chemical stability, which is attributed to the generated continuous and thin microstructures, as well as their strong adhesion with the substrate. As a step further, this approach is employed to manufacture various flexible sensing devices that are insensitive to body motions and moisture, including temperature sensors and biopotential sensing systems for real-time, continuously monitoring skin temperature, electrocardiography, and electromyography signals.
Collapse
Affiliation(s)
- Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jiuwei Gao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xiaoshan Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - He Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Ruoqing Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xigang Zhu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yabao Yang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Lei Luo
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Mengdi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hongjia Ji
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
35
|
Chen X, Zhang D, Luan H, Yang C, Yan W, Liu W. Flexible Pressure Sensors Based on Molybdenum Disulfide/Hydroxyethyl Cellulose/Polyurethane Sponge for Motion Detection and Speech Recognition Using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2043-2053. [PMID: 36571453 DOI: 10.1021/acsami.2c16730] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible pressure sensors with excellent performance have broad application potential in wearable devices, motion monitoring, and human-computer interaction. In this paper, a flexible pressure sensor with a porous structure is proposed by coating molybdenum disulfide (MoS2) and hydroxyethyl cellulose (HEC) on a polyurethane (PU) sponge skeleton. The obtained sensor has excellent sensitivity (0.746 kPa-1), a wide detection range (250 kPa), fast response (120 ms), and outstanding repeatability over 2000 cycles. It is proven that the sensor can realize human motion detection and distinguish the touch of varying strength. In addition, a pressure sensing array was fabricated to reflect the pressure distribution and recognize the writing of Arabic numerals. Finally, the sensor performs speech detection through throat muscle movements, and high-accuracy (97.14%) speech recognition for seven words was achieved by a machine learning algorithm based on the support vector machine (SVM). This work provides an opportunity to fabricate simple flexible pressure sensors with potential applications in next-generation electronic skin, health detection, and intelligent robotics.
Collapse
Affiliation(s)
- Xiaoya Chen
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongzhi Zhang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Huixin Luan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chunqing Yang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Weiyu Yan
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenzhe Liu
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
36
|
Subbulakshmi Radhakrishnan S, Dodda A, Das S. An All-in-One Bioinspired Neural Network. ACS NANO 2022; 16:20100-20115. [PMID: 36378680 DOI: 10.1021/acsnano.2c02172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In spite of recent advancements in artificial neural networks (ANNs), the energy efficiency, multifunctionality, adaptability, and integrated nature of biological neural networks remain largely unimitated by hardware neuromorphic computing systems. Here, we exploit optoelectronic, computing, and programmable memory devices based on emerging two-dimensional (2D) layered materials such as MoS2 to demonstrate a monolithically integrated, multipixel, and "all-in-one" bioinspired neural network (BNN) capable of sensing, encoding, learning, forgetting, and inferring at minuscule energy expenditure. We also demonstrate learning adaptability and simulate learning challenges under specific synaptic conditions to mimic biological learning. Our findings highlight the potential of in-memory computing and sensing based on emerging 2D materials, devices, and integrated circuits to not only overcome the bottleneck of von Neumann computing in conventional CMOS designs but also to aid in eliminating the peripheral components necessary for competing technologies such as memristors.
Collapse
Affiliation(s)
- Shiva Subbulakshmi Radhakrishnan
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania16802, United States
| | - Akhil Dodda
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania16802, United States
| | - Saptarshi Das
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania16802, United States
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania16802, United States
- Department of Electrical Engineering and Computer Science, Pennsylvania State University, University Park, Pennsylvania16802, United States
| |
Collapse
|
37
|
Subbulakshmi Radhakrishnan S, Chakrabarti S, Sen D, Das M, Schranghamer TF, Sebastian A, Das S. A Sparse and Spike-Timing-Based Adaptive Photoencoder for Augmenting Machine Vision for Spiking Neural Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202535. [PMID: 35674268 DOI: 10.1002/adma.202202535] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The representation of external stimuli in the form of action potentials or spikes constitutes the basis of energy efficient neural computation that emerging spiking neural networks (SNNs) aspire to imitate. With recent evidence suggesting that information in the brain is more often represented by explicit firing times of the neurons rather than mean firing rates, it is imperative to develop novel hardware that can accelerate sparse and spike-timing-based encoding. Here a medium-scale integrated circuit composed of two cascaded three-stage inverters and one XOR logic gate fabricated using a total of 21 memtransistors based on photosensitive 2D monolayer MoS2 for spike-timing-based encoding of visual information, is introduced. It is shown that different illumination intensities can be encoded into sparse spiking with time-to-first-spike representing the illumination information, that is, higher intensities invoke earlier spikes and vice versa. In addition, non-volatile and analog programmability in the photoencoder is exploited for adaptive photoencoding that allows expedited spiking under scotopic (low-light) and deferred spiking under photopic (bright-light) conditions, respectively. Finally, low energy expenditure of less than 1 µJ by the 2D-memtransistor-based photoencoder highlights the benefits of in-sensor and bioinspired design that can be transformative for the acceleration of SNNs.
Collapse
Affiliation(s)
| | - Shakya Chakrabarti
- Electrical Engineering and Computer Science, Penn State University, University Park, PA, 16802, USA
| | - Dipanjan Sen
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | - Mayukh Das
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | - Thomas F Schranghamer
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | - Amritanand Sebastian
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | - Saptarshi Das
- Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
- Electrical Engineering and Computer Science, Penn State University, University Park, PA, 16802, USA
- Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
| |
Collapse
|
38
|
2D Materials towards sensing technology: From fundamentals to applications. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Jang H, Sel K, Kim E, Kim S, Yang X, Kang S, Ha KH, Wang R, Rao Y, Jafari R, Lu N. Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nat Commun 2022; 13:6604. [PMID: 36329038 PMCID: PMC9633646 DOI: 10.1038/s41467-022-34406-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022] Open
Abstract
Electrodermal activity (EDA) is a popular index of mental stress. State-of-the-art EDA sensors suffer from obstructiveness on the palm or low signal fidelity off the palm. Our previous invention of sub-micron-thin imperceptible graphene e-tattoos (GET) is ideal for unobstructive EDA sensing on the palm. However, robust electrical connection between ultrathin devices and rigid circuit boards is a long missing component for ambulatory use. To minimize the well-known strain concentration at their interfaces, we propose heterogeneous serpentine ribbons (HSPR), which refer to a GET serpentine partially overlapping with a gold serpentine without added adhesive. A fifty-fold strain reduction in HSPR vs. heterogeneous straight ribbons (HSTR) has been discovered and understood. The combination of HSPR and a soft interlayer between the GET and an EDA wristband enabled ambulatory EDA monitoring on the palm in free-living conditions. A newly developed EDA event selection policy leveraging unbiased selection of phasic events validated our GET EDA sensor against gold standards.
Collapse
Affiliation(s)
- Hongwoo Jang
- grid.89336.370000 0004 1936 9924Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kaan Sel
- grid.264756.40000 0004 4687 2082Department of Electrical and Computer Engineering at Texas A&M University, College Station, TX 77843 USA
| | - Eunbin Kim
- grid.89336.370000 0004 1936 9924Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | - Sangjun Kim
- grid.89336.370000 0004 1936 9924Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Xiangxing Yang
- grid.89336.370000 0004 1936 9924Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Seungmin Kang
- grid.89336.370000 0004 1936 9924Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kyoung-Ho Ha
- grid.89336.370000 0004 1936 9924Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Rebecca Wang
- grid.89336.370000 0004 1936 9924Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712 USA
| | - Yifan Rao
- grid.89336.370000 0004 1936 9924Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712 USA
| | - Roozbeh Jafari
- grid.264756.40000 0004 4687 2082Department of Electrical and Computer Engineering at Texas A&M University, College Station, TX 77843 USA ,grid.264756.40000 0004 4687 2082Department of Biomedical Engineering at Texas A&M University, College Station, TX 77843 USA ,grid.264756.40000 0004 4687 2082Department of Computer Science and Engineering at Texas A&M University, College Station, TX 77843 USA
| | - Nanshu Lu
- grid.89336.370000 0004 1936 9924Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
40
|
Datye IM, Daus A, Grady RW, Brenner K, Vaziri S, Pop E. Strain-Enhanced Mobility of Monolayer MoS 2. NANO LETTERS 2022; 22:8052-8059. [PMID: 36198070 DOI: 10.1021/acs.nanolett.2c01707] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Strain engineering is an important method for tuning the properties of semiconductors and has been used to improve the mobility of silicon transistors for several decades. Recently, theoretical studies have predicted that strain can also improve the mobility of two-dimensional (2D) semiconductors, e.g., by reducing intervalley scattering or lowering effective masses. Here, we experimentally show strain-enhanced electron mobility in monolayer MoS2 transistors with uniaxial tensile strain, on flexible substrates. The on-state current and mobility are nearly doubled with tensile strain up to 0.7%, and devices return to their initial state after release of the strain. We also show a gate-voltage-dependent gauge factor up to 200 for monolayer MoS2, which is higher than previous values reported for sub-1 nm thin piezoresistive films. These results demonstrate the importance of strain engineering 2D semiconductors for performance enhancements in integrated circuits, or for applications such as flexible strain sensors.
Collapse
Affiliation(s)
- Isha M Datye
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alwin Daus
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ryan W Grady
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kevin Brenner
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sam Vaziri
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Eric Pop
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Precourt Institute for Energy, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
41
|
Yao S, Yu J, Jiang X, Xu J, Lan K, Yao Z. Fabrication and Experimental Validation of a Sensitive and Robust Tactile Sensing Array with a Micro-Structured Porous Dielectric Layer. MICROMACHINES 2022; 13:mi13101724. [PMID: 36296076 PMCID: PMC9608838 DOI: 10.3390/mi13101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/02/2023]
Abstract
The development of pressure sensors of high sensitivity and stable robustness over a broad range is indispensable for the future progress of electronic skin applicable to the detection of normal and shear pressures of various dynamic human motions. Herein, we present a flexible capacitive tactile sensing array that incorporates a porous dielectric layer with micro-patterned structures on the surface to enable the sensitive detection of normal and shear pressures. The proposed sensing array showed great pressure-sensing performance in the experiments, with a broad sensing range from several kPa to 150 kPa of normal pressure and 20 kPa of shear pressure. Sensitivities of 0.54%/kPa at 10 kPa and below, 0.45%/kPa between 10 kPa and 80 kPa, and 0.12%/kPa at 80 kPa and above were achieved for normal pressures. Meanwhile, for shear pressures, sensitivities up to 1.14%/kPa and 1.08%/kPa in x and y directions, respectively, and below 10 kPa, 0.73%/kPa, and 0.75%/kPa under shear pressure over 10 kPa were also validated. The performance of the finger-attached sensing array was also demonstrated, demonstrating which was a potential electronic skin to use in all kinds of wearable devices, including prosthetic hands, surgical robots, and other pressure monitoring systems.
Collapse
Affiliation(s)
- Shengjie Yao
- Key Laboratory of Air-Driven Equipment of Zhejiang Province, Quzhou University, Quzhou 324000, China
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jianping Yu
- Key Laboratory of Air-Driven Equipment of Zhejiang Province, Quzhou University, Quzhou 324000, China
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaoliang Jiang
- Key Laboratory of Air-Driven Equipment of Zhejiang Province, Quzhou University, Quzhou 324000, China
| | - Junfei Xu
- Key Laboratory of Air-Driven Equipment of Zhejiang Province, Quzhou University, Quzhou 324000, China
| | - Kun Lan
- Key Laboratory of Air-Driven Equipment of Zhejiang Province, Quzhou University, Quzhou 324000, China
| | - Zhehe Yao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
42
|
Liu Y, Li S, Xiao S, Du K. Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Rahman S, Lu Y. Nano-engineering and nano-manufacturing in 2D materials: marvels of nanotechnology. NANOSCALE HORIZONS 2022; 7:849-872. [PMID: 35758316 DOI: 10.1039/d2nh00226d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional materials have attracted significant interest and investigation since the marvellous discovery of graphene. Due to their unique physical, mechanical and optical properties, van der Waals (vdW) materials possess extraordinary potential for application in future optoelectronics devices. Nano-engineering and nano-manufacturing in the atomically thin regime has further opened multifarious avenues to explore novel physical properties. Among them, moiré heterostructures, strain engineering and substrate manipulation have created numerous exotic and topological phenomena such as unconventional superconductivity, orbital magnetism, flexible nanoelectronics and highly efficient photovoltaics. This review comprehensively summarizes the three most influential techniques of nano-engineering in 2D materials. The latest development in the marvels of moiré structures in vdW materials is discussed; in addition, topological structures in layered materials and substrate engineering on the nanoscale are thoroughly scrutinized to highlight their significance in micro- and nano-devices. Finally, we conclude with remarks on challenges and possible future directions in the rapidly expanding field of nanotechnology and nanomaterial.
Collapse
Affiliation(s)
- Sharidya Rahman
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia.
- ARC Centre for Quantum Computation and Communication Technology, Department of Quantum Science, School of Engineering, The Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
44
|
The era of nano-bionic: 2D materials for wearable and implantable body sensors. Adv Drug Deliv Rev 2022; 186:114315. [PMID: 35513130 DOI: 10.1016/j.addr.2022.114315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022]
Abstract
Nano-bionics have the potential of revolutionizing modern medicine. Among nano-bionic devices, body sensors allow to monitor in real-time the health of patients, to achieve personalized medicine, and even to restore or enhance human functions. The advent of two-dimensional (2D) materials is facilitating the manufacturing of miniaturized and ultrathin bioelectronics, that can be easily integrated in the human body. Their unique electronic properties allow to efficiently transduce physical and chemical stimuli into electric current. Their flexibility and nanometric thickness facilitate the adaption and adhesion to human body. The low opacity permits to obtain transparent devices. The good cellular adhesion and reduced cytotoxicity are advantageous for the integration of the devices in vivo. Herein we review the latest and more significant examples of 2D material-based sensors for health monitoring, describing their architectures, sensing mechanisms, advantages and, as well, the challenges and drawbacks that hampers their translation into commercial clinical devices.
Collapse
|
45
|
Lee DH, Lee EK, Kim CH, Yun HJ, Kim YJ, Yoo H. Blended Polymer Dry Electrodes for Reliable Electrocardiogram and Electromyogram Measurements and Their Eco-Friendly Disposal Led by Degradability in Hot Water. Polymers (Basel) 2022; 14:polym14132586. [PMID: 35808632 PMCID: PMC9269162 DOI: 10.3390/polym14132586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
To increase the human lifespan, healthcare monitoring devices that diagnose diseases and check body conditions have attracted considerable interest. Commercial AgCl-based wet electrodes with the advantages of high conductivity and strong adaptability to human skin are considered the most frequently used electrode material for healthcare monitoring. However, commercial AgCl-based wet electrodes, when exposed for a long period, cause an evaporation of organic solvents, which could reduce the signal-to-noise ratio of biosignals and stimulate human skin. In this context, we demonstrate a dry electrode for a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based blended polymer electrode using a combination of PEDOT:PSS, waterborne polyurethane (WPU) and ethylene glycol (EG) that could be reused for a long period of time to detect electrocardiography (ECG) and electromyography (EMG). Both ECG and EMG are reliably detected by the wireless real-time monitoring system. In particular, the proposed dry electrode detects biosignals without deterioration for over 2 weeks. Additionally, a double layer of a polyimide (PI) substrate and fluorinated polymer CYTOP induces the strong waterproof characteristics of external liquids for the proposed dry electrodes, having a low surface energy of 14.49 mN/m. In addition, the proposed electrode has excellent degradability in water; it dissolves in hot water at 60 °C.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea; (D.H.L.); (C.H.K.)
| | - Eun Kwang Lee
- Department of Chemical Engineering, Pukyong National University (PKNU), Busan 48513, Korea;
| | - Chae Hyun Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea; (D.H.L.); (C.H.K.)
| | - Hyung Joong Yun
- Advance Nano Research Group, Korea Basic Science Institute (KBSI), Daejeon 34126, Korea;
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea; (D.H.L.); (C.H.K.)
- Correspondence: (Y.-J.K.); (H.Y.)
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea; (D.H.L.); (C.H.K.)
- Correspondence: (Y.-J.K.); (H.Y.)
| |
Collapse
|
46
|
All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat Commun 2022; 13:3587. [PMID: 35739100 PMCID: PMC9226122 DOI: 10.1038/s41467-022-31148-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/31/2022] [Indexed: 11/15/2022] Open
Abstract
In the emerging era of the internet of things (IoT), ubiquitous sensors continuously collect, consume, store, and communicate a huge volume of information which is becoming increasingly vulnerable to theft and misuse. Modern software cryptosystems require extensive computational infrastructure for implementing ciphering algorithms, making them difficult to be adopted by IoT edge sensors that operate with limited hardware resources and at low energy budgets. Here we propose and experimentally demonstrate an “all-in-one” 8 × 8 array of robust, low-power, and bio-inspired crypto engines monolithically integrated with IoT edge sensors based on two-dimensional (2D) memtransistors. Each engine comprises five 2D memtransistors to accomplish sensing and encoding functionalities. The ciphered information is shown to be secure from an eavesdropper with finite resources and access to deep neural networks. Our hardware platform consists of a total of 320 fully integrated monolayer MoS2-based memtransistors and consumes energy in the range of hundreds of picojoules and offers near-sensor security. Internet of things (IoT) sensors can collect, store and communicate large volumes of information, which require effective security measures. Here, the authors report the realization of low-power edge sensors based on photosensitive and programmable 2D memtransistors, integrating sensing, storage and encryption functionalities.
Collapse
|
47
|
Park S, Song J, Kim TK, Choi KH, Hyeong SK, Ahn M, Kim HR, Bae S, Lee SK, Hong BH. Photothermally Crumpled MoS 2 Film as an Omnidirectionally Stretchable Platform. SMALL METHODS 2022; 6:e2200116. [PMID: 35460198 DOI: 10.1002/smtd.202200116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Molybdenum disulfide (MoS2 ) is considered a fascinating material for next-generation semiconducting applications due to its outstanding mechanical stability and direct transition characteristics comparable to silicon. However, its application to stretchable platforms still is a challenging issue in wearable logic devices and sensors with noble form-factors required for future industry. Here, an omnidirectionally stretchable MoS2 platform with laser-induced strained structures is demonstrated. The laser patterning induces the pyrolysis of MoS2 precursors as well as the weak adhesion between Si and SiO2 layers. The photothermal expansion of the Si layer results in the crumpling of SiO2 and MoS2 layers and the field-effect transistors with the crumpled MoS2 are found to be suitable for strain sensor applications. The electrical performance of the crumpled MoS2 depends on the degree of stretching, showing the stable omnidirectional stretchability up to 8% with approximately four times higher saturation current than its initial state. This platform is expected to be applied to future electronic devices, sensors, and so on.
Collapse
Affiliation(s)
- Seoungwoong Park
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, South Korea
| | - Jaekwang Song
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, South Korea
| | - Tae Kyung Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, South Korea
| | - Kwang-Hun Choi
- Department of Materials Science and Engineering, Seoul National University, 1-Gwanak-ro, Seoul, 08826, Republic of Korea
| | - Seok-Ki Hyeong
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Minchul Ahn
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, South Korea
| | - Hwa Rang Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, South Korea
- Graphene Square Inc., Suwon, Gyeonggi, 16229, South Korea
| | - Sukang Bae
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Seoung-Ki Lee
- School of Materials Science and Engineering, Pusan National University, 2, Busandaehak-ro-63-beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, South Korea
- Graphene Square Inc., Suwon, Gyeonggi, 16229, South Korea
| |
Collapse
|
48
|
Gao Y, Xiao T, Li Q, Chen Y, Qiu X, Liu J, Bian Y, Xuan F. Flexible microstructured pressure sensors: design, fabrication and applications. NANOTECHNOLOGY 2022; 33. [PMID: 35439735 DOI: 10.1088/1361-6528/ac6812] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/18/2022] [Indexed: 05/07/2023]
Abstract
In recent years, flexible pressure sensors have caused widespread concern for their extensive applications in human activity and health monitoring, robotics and prosthesis, as well as human-machine interface. Flexible pressure sensors in these applications are required to have a high sensitivity, large detective limit, linear response, fast response time, and mechanical stability. The mechanisms of capacitive, piezoresistive, and piezoelectric pressure sensors and the strategies to improve their performance are introduced. Sensing layers with microstructures have shown capability to significantly improve the performances of pressure sensors. Various fabrication methods for these structures are reviewed in terms of their pros and cons. Besides, the interference caused by environmental stimuli and internal stress from different directions leads to the infidelity of the signal transmission. Therefore, the anti-interference ability of flexible pressure sensors is highly desired. Several potential applications for flexible pressure sensors are also briefly discussed. Last, we conclude the future challenges for facilely fabricating flexible pressure sensors with high performance and anti-interference ability.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Pressure Systems and Safety of MOE, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ting Xiao
- Key Laboratory of Pressure Systems and Safety of MOE, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qi Li
- Key Laboratory of Pressure Systems and Safety of MOE, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yang Chen
- Key Laboratory of Pressure Systems and Safety of MOE, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xunlin Qiu
- Key Laboratory of Pressure Systems and Safety of MOE, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jiawen Liu
- Key Laboratory of Pressure Systems and Safety of MOE, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yuqing Bian
- Key Laboratory of Pressure Systems and Safety of MOE, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Fuzhen Xuan
- Key Laboratory of Pressure Systems and Safety of MOE, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
49
|
Lin JC, Liatsis P, Alexandridis P. Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2059673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jui-Chi Lin
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Panos Liatsis
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
| | - Paschalis Alexandridis
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| |
Collapse
|
50
|
Zhao L, Liang Y, Cai X, Du J, Wang X, Liu X, Wang M, Wei Z, Zhang J, Zhang Q. Engineering Near-Infrared Light Emission in Mechanically Exfoliated InSe Platelets through Hydrostatic Pressure for Multicolor Microlasing. NANO LETTERS 2022; 22:3840-3847. [PMID: 35500126 DOI: 10.1021/acs.nanolett.2c01127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
γ-indium selenide (InSe) is a van der Waals semiconductor and holds great potentials for low-energy-consumption electronic and optoelectronic devices. Herein, we investigated the hydrostatic pressure engineered near-infrared (NIR) light emission of mechanically exfoliated γ-InSe crystals using the diamond anvil cell (DAC) technique. A record-wide spectral tuning range of 185 nm and a large linear pressure coefficient of 40 nm GPa-1 were achieved for spontaneous emissions, leading to ultrabroadband microlasing spectrally ranging from 1022 to 911 nm. This high emission tunability can be attributed to the compression of the soft intralayer In-Se bonds under high pressure, which suppressed the band gap shrinkage by increasing the interlayer interaction. Furthermore, two band gap crossovers of valence (direct-to-indirect) and conduction bands were resolved at approximately 4.0 and 7.0 GPa, respectively, resulting in pressure-sensitive emission lifetime and intensity. These findings pave the pathways for pressure-sensitive InSe-based NIR light sources, sensors and so on.
Collapse
Affiliation(s)
- Liyun Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yin Liang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xinghong Cai
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jiaxing Du
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiaoting Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Min Wang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Jun Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|