1
|
Zeng H, Tang L, Huang L, Yang N, Chen X, Peng X, Chen Z, Guo J, Weng J, Guo T. A novel multi-functional PVA- alginate hydrogel with dynamic bond crosslinking for infected wound repair. Carbohydr Polym 2025; 362:123636. [PMID: 40409832 DOI: 10.1016/j.carbpol.2025.123636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/25/2025]
Abstract
The development of multifunctional antibacterial hydrogel dressings with enhanced mechanical properties and biological activity is essential for advancing wound healing strategies. In this study, we report the design and synthesis of a novel multifunctional hydrogel (PVA-Alg/FP), developed by integrating Fe3+, protocatechualdehyde (PA), polyvinyl alcohol (PVA), and sodium alginate (Alg). The hydrogel was crosslinked via multiple dynamic bonds and hydrogen bonds, avoiding the use of toxic crosslinking agents and eliminating the need for additional modification or purification steps. This approach enables the straightforward and efficient preparation of the hydrogel. The resulting hydrogel exhibits outstanding mechanical properties, with a tensile strength of 88.2 kPa. More importantly, compared with conventional PVA-Alg hydrogels crosslinked by glutaraldehyde or epichlorohydrin, our PVA-Alg/FP hydrogel demonstrates a diverse range of functional characteristics, including a high self-healing efficiency of 87.4 % within 10 min, as well as plasticity, ductility, adhesion, Deferoxamine mesylate (DFO)-responsive removal, and near-infrared (NIR) photothermal properties. Additionally, it demonstrates outstanding biocompatibility and a broad spectrum of biological activities, including antioxidant, anti-inflammatory, and antibacterial effects, as well as promoting cell migration. Furthermore, the hydrogel accelerates full-thickness skin wound healing in a Staphylococcus aureus(S.aureus)-infected rat model, providing compelling evidence of its potential as a therapeutic material for infection-induced wounds.
Collapse
Affiliation(s)
- Huanghe Zeng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Lingling Tang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Li Huang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Na Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xingyue Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xi Peng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhengxian Chen
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jianxiu Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Tailin Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
2
|
Raj A, Sharmin S, Jannat S, Ahmed S, Ihsan AB. Innovative approaches in bioadhesive design: A comprehensive review of crosslinking methods and mechanical performance. BIOMATERIALS ADVANCES 2025; 173:214287. [PMID: 40112674 DOI: 10.1016/j.bioadv.2025.214287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
In biomedical applications, bioadhesives have become a game-changer, offering novel approaches to tissue engineering, surgical adhesion, and wound healing. This comprehensive review paper provides a thorough analysis of bioadhesives and their categorization according to application site and crosslinking process, bonding efficacy, and mechanical characteristics. The use of bioadhesives to stop bleeding and seal leaks is also covered in the review. The article delves into the various crosslinking techniques used in bioadhesives, including chemical, physical, and hybrid approaches. It emphasizes on how these mechanisms control the adhesive's elasticity, durability, and structural integrity. In addition, the review looks at the mechanical strength of bioadhesives, taking important characteristics like shear strength, toughness, elasticity, and tensile strength into account. It is highlighted how important bioadhesives are to the life sciences because they drive innovation and interdisciplinary cooperation, address present healthcare issues, and create new avenues for therapeutic development. The paper also explores some vital characteristics of bioadhesives that, when strategically combined with one another, improve their efficacy and usefulness in a variety of surgical and medical applications. The analysis concludes by examining nature-inspired adhesives, including those based on geckos, mussels, and tannic acid, and their unique bonding mechanisms and potential for use in advanced biomedical applications.
Collapse
Affiliation(s)
- Asef Raj
- Department of Pharmaceutical Chemistry, University of Dhaka, Bangladesh; School of Pharmacy, BRAC University, Bangladesh
| | | | - Safrin Jannat
- Department of Pharmacy, International Islamic University Chattogram, Bangladesh
| | - Saika Ahmed
- Department of Chemistry, University of Dhaka, Bangladesh
| | - Abu Bin Ihsan
- Department of Pharmacy, Faculty of Life Science, Eastern University, Dhaka, Bangladesh.
| |
Collapse
|
3
|
Tang S, Feng K, Yang R, Cheng Y, Chen M, Zhang H, Shi N, Wei Z, Ren H, Ma Y. Multifunctional Adhesive Hydrogels: From Design to Biomedical Applications. Adv Healthc Mater 2025; 14:e2403734. [PMID: 39604246 DOI: 10.1002/adhm.202403734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Adhesive hydrogels characterized by structural properties similar to the extracellular matrix, excellent biocompatibility, controlled degradation, and tunable mechanical properties have demonstrated significant potential in biomedical applications, including tissue engineering, biosensors, and drug delivery systems. These hydrogels exhibit remarkable adhesion to target substrates and can be rationally engineered to meet specific requirements. In recent decades, adhesive hydrogels have experienced significant advancements driven by the introduction of numerous multifunctional design strategies. This review initially summarizes the chemical bond-based design strategies for tissue adhesion, encompassing static covalent bonds, dynamic covalent bonds, and non-covalent interactions. Subsequently, the multiple functionalities imparted by these diverse design strategies, including highly stretchable and tough performances, responsiveness to microenvironments, anti-freezing/heating properties, conductivity, antibacterial activity, and hemostatic properties are discussed. In addition, recent advances in the biomedical applications of adhesive hydrogels, focusing on tissue repair, drug delivery, medical devices, and wearable sensors are reviewed. Finally, the current challenges are highlighted and future trends in this rapidly evolving field are discussed.
Collapse
Affiliation(s)
- Shaoxin Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Keru Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Rui Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yang Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Meiyue Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
4
|
Wang X, Wang H, Liu X, Zhang Y, Li J, Liu H, Feng J, Jiang W, Liu L, Chen Y, Li X, Zhao L, Guan J, Zhang Y. Self-adhesion conductive cardiac patch based on methoxytriethylene glycol-functionalized graphene effectively improves cardiac function after myocardial infarction. J Adv Res 2024:S2090-1232(24)00545-9. [PMID: 39566818 DOI: 10.1016/j.jare.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION Abnormal electrical activity of the heart following myocardial infarction (MI) may lead to heart failure or sudden cardiac death. Graphene-based conductive hydrogels can simulate the microenvironment of myocardial tissue and improve cardiac function post-MI. However, existing methods for preparing graphene and its derivatives suffer from drawbacks such as low purity, complex processes, and unclear structures, which limiting their biological applications. OBJECTIVES We propose an optimized synthetic route for synthesizing methoxytriethylene glycol-functionalized graphene (TEG-GR) with a defined structure. The aim of this study is to establish a novel self-adhesion conductive cardiac patch based on TEG-GR for protecting cardiac function after MI. METHODS We optimized π-extension polymerization (APEX) reaction to synthesize TEG-GR. TEG-GR was incorporated into dopamine-modified gelatin (GelDA) to construct conductive cardiac patch (TEG-GR/GelDA). We validated the function of TEG-GR/GelDA cardiac patch in rat models of MI, and explored the mechanism of TEG-GR/GelDA cardiac patch by RNA sequencing and molecular biology experiments. RESULTS Methoxytriethylene glycol side chain endowed graphene with low immunogenicity and superior biological properties without compromising conductivity. In rats, transplantation of TEG-GR/GelDA cardiac patch onto the infarcted area of heart could more effectively enhance ejection fraction, attenuate collagen deposition, shorten QRS interval and increase vessel density at 28 days post-treatment, compared to non-conductive cardiac patch. Transcriptome analysis indicated that TEG-GR/GelDA cardiac patch could improve cardiac function by maintaining gap junction, promoting angiogenesis, and suppressing cardiomyocytes apoptosis. CONCLUSION The precision synthesis of polymer with defined functional group expands the application of graphene in biomedical field, and the novel cardiac patch can be a promising candidate for treating MI.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Hao Wang
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yuan Zhang
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiamin Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Heng Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Jing Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Wenqian Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Ling Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Yongchao Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Xiaohan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Limin Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Jing Guan
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
5
|
Lin X, Huang Z, Huang H, Fang Y, Weng Y, Wang Z, Zhao H, Liu H. A tough Janus poly(vinyl alcohol)-based hydrogel for wound closure and anti postoperative adhesion. Acta Biomater 2024; 188:103-116. [PMID: 39243837 DOI: 10.1016/j.actbio.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Traditional adhesive hydrogels perform well in tissue adhesion but they fail to prevent postoperative tissue adhesion. To address this challenge, a biodegradable Janus adhesive hydrogel (J-AH) was designed and fabricated by the assembly of three different functional layers including anti-adhesive layer, reinforceable layer, and wet tissue adhesive layer. Each layer of J-AH serves a specific function: the top zwitterionic polymeric anti-adhesive layer shows superior resistance to cell/protein and tissue adhesion; the middle poly(vinyl alcohol)/tannic acid reinforceable matrix layer endows the hydrogel with good mechanical toughness of ∼2.700 MJ/m3; the bottom poly(acrylic acid)/polyethyleneimine adhesive layer imparts tough adhesion (∼382.93 J/m2 of interfacial toughness) to wet tissues. In the rat liver and femoral injury models, J-AH could firmly adhere to the bleeding tissues to seal the wounds and exhibit impressive hemostatic efficiency. Moreover, in the in vivo adhesion/anti-adhesion assay of J-AH between the defected cecum and peritoneal walls, the top anti-adhesive layer can effectively inhibit undesired postoperative abdominal adhesion and inflammatory reaction. Therefore, this research may present a new strategy for the design of advanced bio-absorbable Janus adhesive hydrogels with multi-functions including tissue adhesion, anti-postoperative adhesion and biodegradation. STATEMENT OF SIGNIFICANCE: Despite many adhesive hydrogels with tough tissue adhesion capability have been reported, their proclivity for undesired postoperative adhesion remains a serious problem. The postoperative adhesion may lead to major complications and even endanger the lives of patients. The injectable hydrogels can cover the irregular wound and suppress the formation of postoperative adhesion. However, due to the lack of adhesive properties with tissue, it is difficult for the hydrogels to maintain on the wound surface, resulting in poor anti-postoperative adhesion effect. Herein, we design a Janus adhesive hydrogel (J-AH). J-AH integrates together robust wet tissue adhesion and anti-postoperative adhesion. Therefore, this research may present a new strategy for the design of advanced bio-absorbable Janus adhesive hydrogels.
Collapse
Affiliation(s)
- Xiaojin Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Zongxuan Huang
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine (900TH Hospital of Joint Logistics Support Force), Fuzhou 35025, China
| | - Hongjian Huang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Zhengchao Wang
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Hu Zhao
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine (900TH Hospital of Joint Logistics Support Force), Fuzhou 35025, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China; Fujian-Taiwan Science and Technology Cooperation Base of Biomedical, Materials and Tissue Engineering, Fujian 350007, China; Engineering Research Center of Industrial Biocatalysis, Fujian 350007, China.
| |
Collapse
|
6
|
Yu C, Qiu Y, Yao F, Wang C, Li J. Chemically Programmed Hydrogels for Spatiotemporal Modulation of the Cardiac Pathological Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404264. [PMID: 38830198 DOI: 10.1002/adma.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
After myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia-hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment-modulated hydrogels with precise targeting, spatiotemporal control, and on-demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen-generating, antioxidant, anti-inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.
Collapse
Affiliation(s)
- Chaojie Yu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| | - Changyong Wang
- Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
7
|
Yu W, Zhang X, Gu M, Wang J, Zhang Y, Zhang W, Yuan WE. Bioactive Nanofiber-Hydrogel Composite Regulates Regenerative Microenvironment for Skeletal Muscle Regeneration after Volumetric Muscle Loss. Adv Healthc Mater 2024; 13:e2304087. [PMID: 38531346 DOI: 10.1002/adhm.202304087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Volumetric muscle loss (VML) is a severe form of muscle trauma that exceeds the regenerative capacity of skeletal muscle tissue, leading to substantial functional impairment. The abnormal immune response and excessive reactive oxygen species (ROS) accumulation hinder muscle regeneration following VML. Here, an interfacial cross-linked hydrogel-poly(ε-caprolactone) nanofiber composite, that incorporates both biophysical and biochemical cues to modulate the immune and ROS microenvironment for enhanced VML repair, is engineered. The interfacial cross-linking is achieved through a Michael addition between catechol and thiol groups. The resultant composite exhibits enhanced mechanical strength without sacrificing porosity. Moreover, it mitigates oxidative stress and promotes macrophage polarization toward a pro-regenerative phenotype, both in vitro and in a mouse VML model. 4 weeks post-implantation, mice implanted with the composite show improved grip strength and walking performance, along with increased muscle fiber diameter, enhanced angiogenesis, and more nerve innervation compared to control mice. Collectively, these results suggest that the interfacial cross-linked nanofiber-hydrogel composite could serve as a cell-free and drug-free strategy for augmenting muscle regeneration by modulating the oxidative stress and immune microenvironment at the VML site.
Collapse
Affiliation(s)
- Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Xiangqi Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Muge Gu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Jiayu Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Yihui Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Wenkai Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| |
Collapse
|
8
|
Yang R, Zhang X, Chen B, Yan Q, Yin J, Luan S. Tunable backbone-degradable robust tissue adhesives via in situ radical ring-opening polymerization. Nat Commun 2023; 14:6063. [PMID: 37770451 PMCID: PMC10539349 DOI: 10.1038/s41467-023-41610-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Adhesives with both robust adhesion and tunable degradability are clinically and ecologically vital, but their fabrication remains a formidable challenge. Here we propose an in situ radical ring-opening polymerization (rROP) strategy to design a backbone-degradable robust adhesive (BDRA) in physiological environment. The hydrophobic cyclic ketene acetal and hydrophilic acrylate monomer mixture of the BDRA precursor allows it to effectively wet and penetrate substrates, subsequently forming a deep covalently interpenetrating network with a degradable backbone via redox-initiated in situ rROP. The resulting BDRAs show good adhesion strength on diverse materials and tissues (e.g., wet bone >16 MPa, and porcine skin >150 kPa), higher than that of commercial cyanoacrylate superglue (~4 MPa and 56 kPa). Moreover, the BDRAs have enhanced tunable degradability, mechanical modulus (100 kPa-10 GPa) and setting time (seconds-hours), and have good biocompatibility in vitro and in vivo. This family of BDRAs expands the scope of medical adhesive applications and offers an easy and environmentally friendly approach for engineering.
Collapse
Affiliation(s)
- Ran Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Binggang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Qiuyan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
9
|
Montazerian H, Hassani Najafabadi A, Davoodi E, Seyedmahmoud R, Haghniaz R, Baidya A, Gao W, Annabi N, Khademhosseini A, Weiss PS. Poly-Catecholic Functionalization of Biomolecules for Rapid Gelation, Robust Injectable Bioadhesion, and Near-Infrared Responsiveness. Adv Healthc Mater 2023; 12:e2203404. [PMID: 36843210 DOI: 10.1002/adhm.202203404] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 02/28/2023]
Abstract
Mussel-inspired catechol-functionalization of degradable natural biomaterials has garnered significant interest as an approach to achieve bioadhesion for sutureless wound closure. However, conjugation capacity in standard coupling reactions, such as carbodiimide chemistry, is limited by low yield and lack of abundant conjugation sites. Here, a simple oxidative polymerization step before conjugation of catechol-carrying molecules (i.e., 3,4-dihydroxy-l-phenylalanine, l-DOPA) as a potential approach to amplify catechol function in bioadhesion of natural gelatin biomaterials is proposed. Solutions of gelatin modified with poly(l-DOPA) moieties (GelDOPA) are characterized by faster physical gelation and increased viscosity, providing better wound control on double-curved tissue surfaces compared to those of l-DOPA-conjugated gelatin. Physical hydrogels treated topically with low concentrations of NaIO4 solutions are crosslinked on-demand via through-thickness diffusion. Poly(l-DOPA) conjugates enhance crosslinking density compared to l-DOPA conjugated gelatin, resulting in lower swelling and enhanced cohesion in physiological conditions. Together with cohesion, more robust bioadhesion at body temperature is achieved by poly(l-DOPA) conjugates, exceeding those of commercial sealants. Further, poly(l-DOPA) motifs introduced photothermal responsiveness via near-infrared (NIR) irradiation for controlled drug release and potential applications in photothermal therapy. The above functionalities, along with antibacterial activity, render the proposed approach an effective biomaterial design strategy for wound closure applications.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | | | - Elham Davoodi
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
10
|
Qiao J, Jiang Y, Ren Z, Tang K. Protocatechualdehyde-ferric iron tricomplex embedded gelatin hydrogel with adhesive, antioxidant and photothermal antibacterial capacities for infected wound healing promotion. Int J Biol Macromol 2023:125029. [PMID: 37244333 DOI: 10.1016/j.ijbiomac.2023.125029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Because of the indiscriminate use of antibiotics and the increasing threat of drug-resist bacteria, there is an urgent need to develop novel antibacterial strategies to combat infected wounds. In this work, stable tricomplex molecules (PA@Fe) assembled by protocatechualdehyde (PA) and ferric iron (Fe) were successfully synthesized and then embedded in the gelatin matrix to obtain a series of Gel-PA@Fe hydrogels. The embedded PA@Fe served as a crosslinker to improve the mechanical, adhesive and antioxidant properties of hydrogels through coordination bonds (catechol-Fe) and dynamic Schiff base bonds, meanwhile acting as a photothermal agent to convert near-infrared (NIR) light into heat to kill bacteria effectively. Importantly, in vivo evaluation through an infected full-thickness skin wound mice model revealed that Gel-PA@Fe hydrogel developed collagen deposition, and accelerated reconstruction of wound closure, indicating great potential of Gel-PA@Fe hydrogel in promoting the healing process of infected full-thickness wounds.
Collapse
Affiliation(s)
- Jialu Qiao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongchao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhitao Ren
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Zhang W, Zeng L, Yu H, He Z, Huang C, Li C, Nie Y, Li L, Zhou F, Liu B, Zhang Y, Yao Z, Zhang W, Qin L, Chen D, He Q, Lai Y. Injectable spontaneous hydrogen-releasing hydrogel for long-lasting alleviation of osteoarthritis. Acta Biomater 2023; 158:163-177. [PMID: 36596433 DOI: 10.1016/j.actbio.2022.12.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
Excessive production of reactive oxygen species (ROS) amplifies pro-inflammatory pathways and exacerbates immune responses, and is a key factor in the progression of osteoarthritis (OA). Therapeutic hydrogen gas (H2) with antioxidative and anti-inflammatory effects, has a potential for OA alleviation, but the targeted delivery and sustained release of H2 are still challenging. Herein, we develop an injectable calcium boride nanosheets (CBN) loaded hydrogel platform (CBN@GelDA hydrogel) as a high-payload and sustainable H2 precursor for OA treatment. The CBN@GelDA hydrogel could maintain constant physiological pH conditions which further promotes more H2 release than the CBN alone and lasts more than one week. The biocompatibility of this hydrogel with macrophages and chondrocytes is effectively enhanced. The experiments show that the CBN@GelDA hydrogel holds the ROS scavenging ability, reducing the expression of related inflammatory cytokines, lessening M1 macrophages but stimulating M2 phenotype, and thereby decreasing chondrocyte apoptosis, which facilitates to breaking of the vicious circle of OA progression. Furthermore, a single-time injection of the CBN@GelDA hydrogel markedly reduces joint destruction in OA rats. From what has been discussed above, this injectable spontaneous H2-releasing hydrogel is promising for OA treatment. STATEMENT OF SIGNIFICANCE: Oxidative stress and inflammation play the key role in the occurrence and development of osteoarthritis (OA). The system of a hydrogel loaded with H2 precursor calcium boride nanosheet (CBN), which is the first to use as an H2 precursor, integrates superior injectable and biocompatible of hydrogel and the selection of antioxidant properties of H2. This system can improve H2 release behavior and achieve a single injection into the articular cavity to alleviate the progression of OA in rats. This study of the combination of a convenient long-acting injectable hydrogel and a safe therapeutic gas is of great value for improving the quality of life of clinical patients.
Collapse
Affiliation(s)
- Wenjing Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingting Zeng
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Yu
- Faculty of Pharmaceutical Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ziheng He
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuishan Huang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cairong Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyi Nie
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Long Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Zhou
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ben Liu
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuantao Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhenyu Yao
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Di Chen
- Faculty of Pharmaceutical Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qianjun He
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Engineering Laboratory of Biomaterials Additive Manufacturing, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Cheng H, Yu Q, Chen Q, Feng L, Zhao W, Zhao C. Biomass-derived ultrafast cross-linked hydrogels with double dynamic bonds for hemostasis and wound healing. Biomater Sci 2023; 11:931-948. [PMID: 36537166 DOI: 10.1039/d2bm00907b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developing novel hemostatic materials with accelerating wound healing functions has raised widespread attention recently. To adapt to irregular and incompressible wounds, we fabricated a series of biomass-derived ultrafast cross-linked adhesive hydrogels with adjustable gelation time and injectable properties through Schiff-base and ionic coordinate bonds among catechol-conjugated gelatin (GelDA), dialdehyde cellulose nanocrystals (DACNCs), calcium ions (Ca2+) and ferric iron (Fe3+). The fast-gelling hydrogels possess adjustable gelation time and mechanical properties by altering the contents of DACNCs and Fe3+. With double-dynamic-bond crosslinking, the hydrogels are endowed with the desired self-healing and injectable performance compared to gelatin-based hydrogels without DACNCs. Additionally, the hydrogels present enhanced adhesiveness, NIR responsiveness and antibacterial activity with the introduction of catechol groups and the formation of catechol-Fe complexes. Both in vitro and in vivo hemostatic assays and degradation experiments confirm that the hydrogels achieve rapid hemostasis and display fantastic biodegradability. As demonstrated by a rat full-thickness skin defect model, the hydrogels with multifunctionality remarkably accelerate the regeneration of wound tissues. Thus, the ultrafast cross-linked hydrogels are potentially valuable as hemostatic materials for wound healing applications in the biomedical field.
Collapse
Affiliation(s)
- Huitong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Qiao Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Qin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China. .,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China. .,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
13
|
Yu J, Qin Y, Yang Y, Zhao X, Zhang Z, Zhang Q, Su Y, Zhang Y, Cheng Y. Robust hydrogel adhesives for emergency rescue and gastric perforation repair. Bioact Mater 2023; 19:703-716. [PMID: 35633902 PMCID: PMC9117276 DOI: 10.1016/j.bioactmat.2022.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 01/06/2023] Open
Abstract
Development of biocompatible hydrogel adhesives with robust tissue adhesion to realize instant hemorrhage control and injury sealing, especially for emergency rescue and tissue repair, is still challenging. Herein, we report a potent hydrogel adhesive by free radical polymerization of N-acryloyl aspartic acid (AASP) in a facile and straightforward way. Through delicate adjustment of steric hindrance, the synergistic effect between interface interactions and cohesion energy can be achieved in PAASP hydrogel verified by X-ray photoelectron spectroscopy (XPS) analysis and simulation calculation compared to poly (N-acryloyl glutamic acid) (PAGLU) and poly (N-acryloyl amidomalonic acid) (PAAMI) hydrogels. The adhesion strength of the PAASP hydrogel could reach 120 kPa to firmly seal the broken organs to withstand the external force with persistent stability under physiological conditions, and rapid hemostasis in different hemorrhage models on mice is achieved using PAASP hydrogel as physical barrier. Furthermore, the paper-based Fe3+ transfer printing method is applied to construct PAASP-based Janus hydrogel patch with both adhesive and non-adhesive surfaces, by which simultaneous wound healing and postoperative anti-adhesion can be realized in gastric perforation model on mice. This advanced hydrogel may show vast potential as bio-adhesives for emergency rescue and tissue/organ repair. The hydrogel with good mechanical properties and adhesiveness is designed. The hydrogel adhesive can act as physical barrier for emergency rescue. The Janus hydrogel can realize efficient gastric perforation repair on mice.
Collapse
|
14
|
Yang W, Xuan C, Liu X, Zhang Q, Wu K, Bian L, Shi X. A sandwiched patch toward leakage-free and anti-postoperative tissue adhesion sealing of intestinal injuries. Bioact Mater 2022; 24:112-123. [PMID: 36582344 PMCID: PMC9760658 DOI: 10.1016/j.bioactmat.2022.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Ideal repair of intestinal injury requires a combination of leakage-free sealing and postoperative antiadhesion. However, neither conventional hand-sewn closures nor existing bioglues/patches can achieve such a combination. To this end, we develop a sandwiched patch composed of an inner adhesive and an outer antiadhesive layer that are topologically linked together through a reinforced interlayer. The inner adhesive layer tightly and instantly adheres to the wound sites via -NHS chemistry; the outer antiadhesive layer can inhibit cell and protein fouling based on the zwitterion structure; and the interlayer enhances the bulk resilience of the patch under excessive deformation. This complementary trilayer patch (TLP) possesses a unique combination of instant wet adhesion, high mechanical strength, and biological inertness. Both rat and pig models demonstrate that the sandwiched TLP can effectively seal intestinal injuries and inhibit undesired postoperative tissue adhesion. The study provides valuable insight into the design of multifunctional bioadhesives to enhance the treatment efficacy of intestinal injuries.
Collapse
Affiliation(s)
- Wei Yang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chengkai Xuan
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China,Guangzhou Soonheal Medical Technology. Co, Ltd, Guangzhou, 510230, China
| | - Xuemin Liu
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qiang Zhang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Liming Bian
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China,Corresponding author. National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China,Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
15
|
Ke X, Tang S, Wang H, Cai Y, Dong Z, Li M, Yang J, Xu X, Luo J, Li J. Natural Small Biological Molecule Based Supramolecular Bioadhesives with Innate Photothermal Antibacterial Capability for Nonpressing Hemostasis and Effective Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53546-53557. [PMID: 36399156 DOI: 10.1021/acsami.2c17415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bioadhesives with immediate wound closure, efficient hemostasis, and antibacterial properties that can well integrate with tissue are urgently needed in wound management. Natural small biological molecule based bioadhesives hold great promise for manipulating wound healing by taking advantage of integrated functionalities, synthetic simplification, and accuracy, cost efficiency and biosafety. Herein, a natural small biological molecule based bioadhesive, composed of natural small biological molecules (α-lipoic acid and tannic acid) and a small amount of ferric chloride, was prepared via an extremely simple and green route for wound management. In this system, covalent and noncovalent interactions between each component resulted in the self-healing supramolecular bioadhesive. It possessed appropriate wet-tissue adhesion, efficient nonpressing hemostasis and free radical scavenging abilities. More importantly, the interaction between tannic acid and Fe3+ endowed the bioadhesive with innate and steady photothermal activity, which showed excellent photothermal bactericidal activity to both E. coli and S. aureus. The bioadhesive promoted wound healing for linear and circular wounds in vivo, especially for infectious wounds under near-infrared (NIR) irradiation. This bioadhesive will have promising value as a safe and effective antimicrobial adhesive for infectious wound management.
Collapse
Affiliation(s)
- Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang550025, P.R. China
| | - Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Yusong Cai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Mingjing Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Med-X Center for Materials, Sichuan University, Chengdu610065, P.R. China
| |
Collapse
|
16
|
Montazerian H, Davoodi E, Baidya A, Badv M, Haghniaz R, Dalili A, Milani AS, Hoorfar M, Annabi N, Khademhosseini A, Weiss PS. Bio-macromolecular design roadmap towards tough bioadhesives. Chem Soc Rev 2022; 51:9127-9173. [PMID: 36269075 PMCID: PMC9810209 DOI: 10.1039/d2cs00618a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Emerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions. This Review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. We discuss a library of materials and methods to introduce toughness and adhesion to biomaterials. Intrinsically tough and elastic polymers are leveraged primarily by introducing strong but dynamic inter- and intramolecular interactions either through polymer chain design or using crosslink regulating additives. In addition, many efforts have been made to promote underwater adhesion via covalent/noncovalent bonds, or through micro/macro-interlock mechanisms at the tissue interfaces. The materials settings and functional additives for this purpose and the related characterization methods are reviewed. Measurements and reporting needs for fair comparisons of different materials and their properties are discussed. Finally, future directions and further research opportunities for developing tough bioadhesive surgical sealants are highlighted.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Arash Dalili
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- School of Engineering and Computer Science, University of Victoria, Victoria, British Columbia V8P 3E6, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
17
|
Xu K, Wu X, Zhang X, Xing M. Bridging wounds: tissue adhesives' essential mechanisms, synthesis and characterization, bioinspired adhesives and future perspectives. BURNS & TRAUMA 2022; 10:tkac033. [PMID: 36225327 PMCID: PMC9548443 DOI: 10.1093/burnst/tkac033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/29/2022] [Indexed: 11/05/2022]
Abstract
Bioadhesives act as a bridge in wound closure by forming an effective interface to protect against liquid and gas leakage and aid the stoppage of bleeding. To their credit, tissue adhesives have made an indelible impact on almost all wound-related surgeries. Their unique properties include minimal damage to tissues, low chance of infection, ease of use and short wound-closure time. In contrast, classic closures, like suturing and stapling, exhibit potential additional complications with long operation times and undesirable inflammatory responses. Although tremendous progress has been made in the development of tissue adhesives, they are not yet ideal. Therefore, highlighting and summarizing existing adhesive designs and synthesis, and comparing the different products will contribute to future development. This review first provides a summary of current commercial traditional tissue adhesives. Then, based on adhesion interaction mechanisms, the tissue adhesives are categorized into three main types: adhesive patches that bind molecularly with tissue, tissue-stitching adhesives based on pre-polymer or precursor solutions, and bioinspired or biomimetic tissue adhesives. Their specific adhesion mechanisms, properties and related applications are discussed. The adhesion mechanisms of commercial traditional adhesives as well as their limitations and shortcomings are also reviewed. Finally, we also discuss the future perspectives of tissue adhesives.
Collapse
Affiliation(s)
- Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xiaozhuo Wu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xingying Zhang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | |
Collapse
|
18
|
Hou C, Chang YF, Yao X. Supramolecular Adhesive Materials with Antimicrobial Activity for Emerging Biomedical Applications. Pharmaceutics 2022; 14:1616. [PMID: 36015240 PMCID: PMC9414438 DOI: 10.3390/pharmaceutics14081616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
Traditional adhesives or glues such as cyanoacrylates, fibrin glue, polyethylene glycol, and their derivatives have been widely used in biomedical fields. However, they still suffer from numerous limitations, including the mechanical mismatch with biological tissues, weak adhesion on wet surfaces, biological incompatibility, and incapability of integrating desired multifunction. In addition to adaptive mechanical and adhesion properties, adhesive biomaterials should be able to integrate multiple functions such as stimuli-responsiveness, control-releasing of small or macromolecular therapeutic molecules, hosting of various cells, and programmable degradation to fulfill the requirements in the specific biological systems. Therefore, rational molecular engineering and structural designs are required to facilitate the development of functional adhesive materials. This review summarizes and analyzes the current supramolecular design strategies of representative adhesive materials, serving as a general guide for researchers seeking to develop novel adhesive materials for biomedical applications.
Collapse
Affiliation(s)
- Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China;
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China;
| |
Collapse
|
19
|
Ye H, Xian Y, Li S, Zhang C, Wu D. In situ forming injectable γ-poly(glutamic acid)/PEG adhesive hydrogels for hemorrhage control. Biomater Sci 2022; 10:4218-4227. [PMID: 35748430 DOI: 10.1039/d2bm00525e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rapidly in situ forming adhesive hydrogels are promising candidates for efficient hemostasis due to their easy administration and minimal invasion. However, development of biocompatible and high-performance hemostatic hydrogels without any additional toxic agents remains a challenge. Herein, a series of novel injectable adhesive hydrogels based on N-hydroxysuccinimide (NHS) modified γ-poly(glutamic acid) (γPGA-NHS) and tetra-armed poly(ethylene glycol) amine (Tetra-PEG-NH2) were developed. Among all samples, PGA10-PEG15 and PGA10-PEG20 hydrogels with higher PEG contents exhibited rapid gelation time (<20 s), strong mechanical strength (compression modulus up to ∼75 kPa), good adhesive properties (∼15 kPa), and satisfactory burst pressure (∼18-20 kPa). As a result, PGA10-PEG15 and PGA10-PEG20 hydrogels showed a remarkable reduction in hemostasis time and blood loss compared with gauze and fibrin glue. More importantly, the PGA10-PEG20 hydrogel was also successfully used to seal femoral arterial trauma. Subcutaneous implantation experiments indicated a good biocompatibility of the hydrogels in vivo. All these results strongly support that the developed PGA-PEG hydrogels could serve as promising hemostatic agents in emergency and clinical situations.
Collapse
Affiliation(s)
- Huijun Ye
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| | - Yiwen Xian
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| | - Shurong Li
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| | - Chong Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District 518055, Shenzhen, Guangdong Province, Peoples Republic of China.
| |
Collapse
|
20
|
Ma X, Bian Q, Hu J, Gao J. Stem from nature: Bioinspired adhesive formulations for wound healing. J Control Release 2022; 345:292-305. [DOI: 10.1016/j.jconrel.2022.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 12/27/2022]
|
21
|
Hou M, Wang X, Yue O, Zheng M, Zhang H, Liu X. Development of a multifunctional injectable temperature-sensitive gelatin-based adhesive double-network hydrogel. BIOMATERIALS ADVANCES 2022; 134:112556. [PMID: 35525757 DOI: 10.1016/j.msec.2021.112556] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Gelatin-based bioadhesives are suitable for the treatment of wounds due to their inherent biocompatibility, lack of immunogenicity, and potential for modification. However, common limitations with such adhesives include their adhesive strength and versatility. In the present study, a multifunctional injectable temperature-sensitive gelatin-based adhesive double-network hydrogel (DNGel) was engineered using facile dual-syringe methodology. An integrative crosslinking strategy utilized the complexation of catechol-Fe3+ and NIPAAm-methacryloyl. As anticipated, the DNGel exhibited multifunctional therapeutic properties, namely temperature-sensitivity, mechanical flexibility, good adhesive strength, injectability, self-healing capability, antibacterial activity, and the capability to enable hemostasis and wound healing. The bioinspired dynamic double-network was stabilized by a number of molecular interactions between components in the DNGel, providing multifunctional therapeutic performance. In addition, comprehensive in vitro and in vivo testing confirmed that the adhesive hydrogel exhibited effective antihemorrhagic properties and accelerated wound healing by the promotion of revascularization, representing considerable potential as a next-generation multifunctional smart adhesive patch.
Collapse
Affiliation(s)
- Mengdi Hou
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Wei Yang District, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Xuechuan Wang
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China.
| | - Ouyang Yue
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Wei Yang District, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Manhui Zheng
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Huijie Zhang
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China
| | - Xinhua Liu
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Weiyang District, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Weiyang District, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
22
|
Xie M, Zheng Z, Pu S, Jia Y, Wang L, Chen Y. Macroporous Adhesive Nano‐Enabled Hydrogels Generated from Air‐in‐Water Emulsions. Macromol Biosci 2022; 22:e2100491. [DOI: 10.1002/mabi.202100491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Manshan Xie
- School of Biomedical Science and Engineering South China University of Technology Guangzhou 511442 China
| | - Zhiwen Zheng
- School of Materials Science and Engineering South China University of Technology Guangzhou 510641 China
- National Engineering Research Centre for Tissue Restoration and Reconstruction School of Material Science and Engineering South China University of Technology Guangzhou 510640 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
| | - Shiheng Pu
- School of Materials Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Yong‐Guang Jia
- School of Materials Science and Engineering South China University of Technology Guangzhou 510641 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
| | - Lin Wang
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Yunhua Chen
- School of Materials Science and Engineering South China University of Technology Guangzhou 510641 China
- National Engineering Research Centre for Tissue Restoration and Reconstruction School of Material Science and Engineering South China University of Technology Guangzhou 510640 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| |
Collapse
|
23
|
Zheng K, Gu Q, Zhou D, Zhou M, Zhang L. Recent progress in surgical adhesives for biomedical applications. SMART MATERIALS IN MEDICINE 2022; 3:41-65. [DOI: 10.1016/j.smaim.2021.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Baghdasarian S, Saleh B, Baidya A, Kim H, Ghovvati M, Sani ES, Haghniaz R, Madhu S, Kanelli M, Noshadi I, Annabi N. Engineering a naturally derived hemostatic sealant for sealing internal organs. Mater Today Bio 2022; 13:100199. [PMID: 35028556 PMCID: PMC8741525 DOI: 10.1016/j.mtbio.2021.100199] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022] Open
Abstract
Controlling bleeding from a raptured tissue, especially during the surgeries, is essentially important. Particularly for soft and dynamic internal organs where use of sutures, staples, or wires is limited, treatments with hemostatic adhesives have proven to be beneficial. However, major drawbacks with clinically used hemostats include lack of adhesion to wet tissue and poor mechanics. In view of these, herein, we engineered a double-crosslinked sealant which showed excellent hemostasis (comparable to existing commercial hemostat) without compromising its wet tissue adhesion. Mechanistically, the engineered hydrogel controlled the bleeding through its wound-sealing capability and inherent chemical activity. This mussel-inspired hemostatic adhesive hydrogel, named gelatin methacryloyl-catechol (GelMAC), contained covalently functionalized catechol and methacrylate moieties and showed excellent biocompatibility both in vitro and in vivo. Hemostatic property of GelMAC hydrogel was initially demonstrated with an in vitro blood clotting assay, which showed significantly reduced clotting time compared to the clinically used hemostat, Surgicel®. This was further assessed with an in vivo liver bleeding test in rats where GelMAC hydrogel closed the incision rapidly and initiated blood coagulation even faster than Surgicel®. The engineered GelMAC hydrogel-based seaalant with excellent hemostatic property and tissue adhesion can be utilized for controlling bleeding and sealing of soft internal organs.
Collapse
Affiliation(s)
- Sevana Baghdasarian
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Bahram Saleh
- Department of Chemical Engineering Northeastern University, Boston, MA, 02115, USA
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Hanjun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Reihaneh Haghniaz
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Shashank Madhu
- Department of Chemical Engineering Northeastern University, Boston, MA, 02115, USA
| | - Maria Kanelli
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, 15780, Greece
| | - Iman Noshadi
- Department of Bioengineering, University of California, Riverside, 92507, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
25
|
Fu H, Yu C, Li X, Bao H, Zhang B, Chen Z, Zhang Z. Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility. J Mater Chem B 2021; 9:10003-10014. [PMID: 34874044 DOI: 10.1039/d1tb01914g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Injectable hydrogels have aroused ever-increasing interest for their cell/biomaterial delivery ability through minimally invasive procedures. Nevertheless, it is still a challenge to simply fabricate natural biopolymer-based injectable hydrogels possessing satisfactory mechanical properties, bioadhesion, and cell delivery ability. Herein, we describe a facile dual crosslinking (DC) strategy for preparing extracellular matrix (ECM) mimetic hydrogels with desirable comprehensive performance. The chondroitin sulfate (CS)- and gelatin (Gel)-based single crosslinked (SC) hydrogels were first developed via reversible borate ester bonds, and further strengthened through the Michael-addition crosslinking reaction or visible-light initiated photopolymerization with thiol-containing polyethylene glycol (PEG) crosslinkers. The dynamic SC hydrogels showed good injectability, pH-sensitive gel-sol transformation, and self-adhesion ability to various biological tissues such as skin, liver, and intervertebral disc. The mechanically tough DC hydrogels displayed tunable stiffness, and resilience to compression load (up to 90% strain) owing to the effective energy dissipation mechanism. The formed DC hydrogels after subcutaneous injection well integrated with surrounding tissues and exhibited fast self-recovery properties. Moreover, the photoencapsulation of human mesenchymal stem cells (hMSCs) within the developed DC hydrogels was achieved and has been proved to be biocompatible, highlighting the great potential of the photopolymerized DC hydrogels in cell delivery and three-dimensional (3D) cell culture. This biomimetic, mechanically resilient, adhesive, and cytocompatible injectable DC hydrogel could serve as a promising candidate for tissue engineering.
Collapse
Affiliation(s)
- Han Fu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China. .,University of Chinese Academy of Sciences, 19(A) Yuquan Road, Beijing 100049, China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaodi Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Hongying Bao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Bo Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhongjin Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
26
|
Yang B, Liang C, Chen D, Cheng F, Zhang Y, Wang S, Shu J, Huang X, Wang J, Xia K, Ying L, Shi K, Wang C, Wang X, Li F, Zhao Q, Chen Q. A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Bioact Mater 2021; 15:103-119. [PMID: 35386356 PMCID: PMC8941182 DOI: 10.1016/j.bioactmat.2021.11.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
The current effective method for treatment of spinal cord injury (SCI) is to reconstruct the biological microenvironment by filling the injured cavity area and increasing neuronal differentiation of neural stem cells (NSCs) to repair SCI. However, the method is characterized by several challenges including irregular wounds, and mechanical and electrical mismatch of the material-tissue interface. In the current study, a unique and facile agarose/gelatin/polypyrrole (Aga/Gel/PPy, AGP3) hydrogel with similar conductivity and modulus as the spinal cord was developed by altering the concentration of Aga and PPy. The gelation occurred through non-covalent interactions, and the physically crosslinked features made the AGP3 hydrogels injectable. In vitro cultures showed that AGP3 hydrogel exhibited excellent biocompatibility, and promoted differentiation of NSCs toward neurons whereas it inhibited over-proliferation of astrocytes. The in vivo implanted AGP3 hydrogel completely covered the tissue defects and reduced injured cavity areas. In vivo studies further showed that the AGP3 hydrogel provided a biocompatible microenvironment for promoting endogenous neurogenesis rather than glial fibrosis formation, resulting in significant functional recovery. RNA sequencing analysis further indicated that AGP3 hydrogel significantly modulated expression of neurogenesis-related genes through intracellular Ca2+ signaling cascades. Overall, this supramolecular strategy produces AGP3 hydrogel that can be used as favorable biomaterials for SCI repair by filling the cavity and imitating the physiological properties of the spinal cord. A facile strategy was developed to fabricate AGP3 hydrogel satisfying physiological requirements. AGP3 hydrogel promoted the differentiation of NSCs into neurons in vitro. AGP3 hydrogel could activate endogenous neurogenesis to repair spinal cord injury. AGP3 hydrogel modulated expression of neurogenesis-related genes in vitro.
Collapse
|
27
|
Costa PM, Learmonth DA, Gomes DB, Cautela MP, Oliveira ACN, Andrade R, Espregueira-Mendes J, Veloso TR, Cunha CB, Sousa RA. Mussel-Inspired Catechol Functionalisation as a Strategy to Enhance Biomaterial Adhesion: A Systematic Review. Polymers (Basel) 2021; 13:polym13193317. [PMID: 34641133 PMCID: PMC8513061 DOI: 10.3390/polym13193317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Biomaterials have long been explored in regenerative medicine strategies for the repair or replacement of damaged organs and tissues, due to their biocompatibility, versatile physicochemical properties and tuneable mechanical cues capable of matching those of native tissues. However, poor adhesion under wet conditions (such as those found in tissues) has thus far limited their wider application. Indeed, despite its favourable physicochemical properties, facile gelation and biocompatibility, gellan gum (GG)-based hydrogels lack the tissue adhesiveness required for effective clinical use. Aiming at assessing whether substitution of GG by dopamine (DA) could be a suitable approach to overcome this problem, database searches were conducted on PubMed® and Embase® up to 2 March 2021, for studies using biomaterials covalently modified with a catechol-containing substituent conferring improved adhesion properties. In this regard, a total of 47 reports (out of 700 manuscripts, ~6.7%) were found to comply with the search/selection criteria, the majority of which (34/47, ~72%) were describing the modification of natural polymers, such as chitosan (11/47, ~23%) and hyaluronic acid (6/47, ~13%); conjugation of dopamine (as catechol “donor”) via carbodiimide coupling chemistry was also predominant. Importantly, modification with DA did not impact the biocompatibility and mechanical properties of the biomaterials and resulting hydrogels. Overall, there is ample evidence in the literature that the bioinspired substitution of polymers of natural and synthetic origin by DA or other catechol moieties greatly improves adhesion to biological tissues (and other inorganic surfaces).
Collapse
Affiliation(s)
- Pedro M. Costa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
- Correspondence: ; Tel.: +351–253–165–230
| | - David A. Learmonth
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - David B. Gomes
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Mafalda P. Cautela
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Ana C. N. Oliveira
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre-FIFA Medical Centre of Excellence, 4350-415 Porto, Portugal; (R.A.); (J.E.-M.)
- Dom Henrique Research Centre, 4350-415 Porto, Portugal
- Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre-FIFA Medical Centre of Excellence, 4350-415 Porto, Portugal; (R.A.); (J.E.-M.)
- Dom Henrique Research Centre, 4350-415 Porto, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Tiago R. Veloso
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Cristiana B. Cunha
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Rui A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| |
Collapse
|
28
|
Duan W, Bian X, Bu Y. Applications of Bioadhesives: A Mini Review. Front Bioeng Biotechnol 2021; 9:716035. [PMID: 34540814 PMCID: PMC8446440 DOI: 10.3389/fbioe.2021.716035] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Bioadhesives have demonstrated their superiority in clinical applications as tissue adhesives, hemostats, and tissue sealants. Because of the intrinsic stickiness, the applications have been expanded to various areas, such as functional wound dressing, factor delivery vehicles, and even medical device fixation. While many literature works discussed the mechanism of bioadhesives, few of them specifically summarized the applications of bioadhesives. To fill in the blanks, this review covers recent research articles and focuses precisely on the applications of bioadhesives which can be generally classified as follows: 1) wound closure, 2) sealing leakage, and 3) immobilization, including those already in the clinic and those showing great potential in the clinic. It is expected that this article will provide a whole picture on bioadhesives' applications and lead to innovations in the application of bioadhesives in new fields.
Collapse
Affiliation(s)
- Wanglin Duan
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Institute of Medical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xiangbing Bian
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yazhong Bu
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Institute of Medical Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
29
|
Gasek N, Park HE, Uriarte JJ, Uhl FE, Pouliot RA, Riveron A, Moss T, Phillips Z, Louie J, Sharma I, Mohammed B, Dearborn J, Lee PC, Jensen T, Garner J, Finck C, Weiss DJ. Development of alginate and gelatin-based pleural and tracheal sealants. Acta Biomater 2021; 131:222-235. [PMID: 34245891 DOI: 10.1016/j.actbio.2021.06.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 01/11/2023]
Abstract
Pleural and tracheal injuries remain significant problems, and an easy to use, effective pleural or tracheal sealant would be a significant advance. The major challenges are requirements for adherence, high strength and elasticity, dynamic durability, appropriate biodegradability, and lack of cell or systemic toxicity. We designed and evaluated two sealant materials comprised respectively of alginate methacrylate and of gelatin methacryloyl, each functionalized by conjugation with dopamine HCl. Both compounds are cross-linked into easily applied as pre-formed hydrogel patches or as in situ hydrogels formed at the wound site utilizing FDA-approved photo-initiators and oxidants. Material testing demonstrates appropriate adhesiveness, tensile strength, burst pressure, and elasticity with no significant cell toxicity in vitro assessments. Air-leak was absent after sealant application to experimentally-induced injuries in ex-vivo rat lung and tracheal models and in ex vivo pig lungs. Sustained repair of experimentally-induced pleural injury was observed for up to one month in vivo rat models and for up to 2 weeks in vivo rat tracheal injury models without obvious air leak or obvious toxicities. The alginate-based sealant worked best in a pre-formed hydrogel patch whereas the gelatin-based sealant worked best in an in situ formed hydrogel at the wound site thus providing two potential approaches. These studies provide a platform for further pre-clinical and potential clinical investigations. STATEMENT OF SIGNIFICANCE: Pneumothorax and pleural effusions resulting from trauma and a range of lung diseases and critical illnesses can result in lung collapse that can be immediately life-threatening or result in chronic leaking (bronchopleural fistula) that is currently difficult to manage. This leads to significantly increased morbidity, mortality, hospital stays, health care costs, and other complications. We have developed sealants originating from alginate and gelatin biomaterials, each functionalized by methacryloylation and by dopamine conjugation to have desired mechanical characteristics for use in pleural and tracheal injuries. The sealants are easily applied, non-cytotoxic, and perform well in vitro and in vivo model systems of lung and tracheal injuries. These initial proof of concept investigations provide a platform for further studies.
Collapse
Affiliation(s)
- Nathan Gasek
- Department of Medicine, University of Vermont, Burlington, VT, USA; University of Connecticut School of Medicine, Farmington CT, USA
| | - Heon E Park
- Department of Medicine, University of Vermont, Burlington, VT, USA; Department of Mechanical Engineering, University of Vermont, Burlington VT, USA; Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Juan J Uriarte
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Franziska E Uhl
- Department of Medicine, University of Vermont, Burlington, VT, USA; Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Robert A Pouliot
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Tovah Moss
- Department of Surgery, University of Vermont, Burlington, VT, USA
| | - Zachary Phillips
- Department of Surgery, University of Vermont, Burlington, VT, USA
| | - Jessica Louie
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Ishna Sharma
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | | | - Jacob Dearborn
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Patrick C Lee
- Department of Mechanical Engineering, University of Vermont, Burlington VT, USA; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Todd Jensen
- Department of Surgery, Connecticut Children's Hospital, Hartford, CT, Department of Pediatrics, University of Connecticut School of Medicine, Farmington CT, USA
| | | | - Christine Finck
- Department of Surgery, Connecticut Children's Hospital, Hartford, CT, Department of Pediatrics, University of Connecticut School of Medicine, Farmington CT, USA
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
30
|
Montazerian H, Baidya A, Haghniaz R, Davoodi E, Ahadian S, Annabi N, Khademhosseini A, Weiss PS. Stretchable and Bioadhesive Gelatin Methacryloyl-Based Hydrogels Enabled by in Situ Dopamine Polymerization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40290-40301. [PMID: 34410697 DOI: 10.1021/acsami.1c10048] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hydrogel patches with high toughness, stretchability, and adhesive properties are critical to healthcare applications including wound dressings and wearable devices. Gelatin methacryloyl (GelMA) provides a highly biocompatible and accessible hydrogel platform. However, low tissue adhesion and poor mechanical properties of cross-linked GelMA patches (i.e., brittleness and low stretchability) have been major obstacles to their application for sealing and repair of wounds. Here, we show that adding dopamine (DA) moieties in larger quantities than those of conjugated counterparts to the GelMA prepolymer solution followed by alkaline DA oxidation could result in robust mechanical and adhesive properties in GelMA-based hydrogels. In this way, cross-linked patches with ∼140% stretchability and ∼19 000 J/m3 toughness, which correspond to ∼5.7 and ∼3.3× improvement, respectively, compared to that of GelMA controls, were obtained. The DA oxidization in the prepolymer solution was found to play an important role in activating adhesive properties of cross-linked GelMA patches (∼4.0 and ∼6.9× increase in adhesion force under tensile and shear modes, respectively) due to the presence of reactive oxidized quinone species. We further conducted a parametric study on the factors such as UV light parameters, the photoinitiator type (i.e., lithium phenyl-2,4,6-trimethylbenzoylphosphinate, LAP, versus 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone, Irgacure 2959), and alkaline DA oxidation to tune the cross-linking density and thereby hydrogel compliance for better adhesive properties. The superior adhesion performance of the resulting hydrogel along with in vitro cytocompatibility demonstrated its potential for use in skin-attachable substrates.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
31
|
|
32
|
Liu X, Liu Y, Du J, Li X, Yu J, Ding B. Breathable, stretchable and adhesive nanofibrous hydrogels as wound dressing materials. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
|
34
|
Liang Y, Li Z, Huang Y, Yu R, Guo B. Dual-Dynamic-Bond Cross-Linked Antibacterial Adhesive Hydrogel Sealants with On-Demand Removability for Post-Wound-Closure and Infected Wound Healing. ACS NANO 2021; 15:7078-7093. [PMID: 33764740 DOI: 10.1021/acsnano.1c00204] [Citation(s) in RCA: 594] [Impact Index Per Article: 148.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The design and development of a smart bioadhesive hydrogel sealant with self-healing and excellent antibacterial activity to achieve high wound closure effectiveness and post-wound-closure care is highly desirable in clinical applications. In this work, a series of adhesive antioxidant antibacterial self-healing hydrogels with promising traits were designed through dual-dynamic-bond cross-linking among ferric iron (Fe), protocatechualdehyde (PA) containing catechol and aldehyde groups and quaternized chitosan (QCS) to enable the closure of skin incisions and promotion of methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. The dual-dynamic-bond cross-linking of a pH-sensitive coordinate bond (catechol-Fe) and dynamic Schiff base bonds with reversible breakage and re-formation equips the hydrogel with excellent autonomous healing and on-demand dissolution or removal properties. Additionally, the hydrogel presents injectability, good biocompatibility and antibacterial activity, multifunctional adhesiveness, and hemostasis as well as NIR responsiveness. The in vivo evaluation in a rat skin incision model and infected full-thickness skin wound model revealed the high wound closure effectiveness and post-wound-closure care of the smart hydrogels, demonstrating its great potential in dealing with skin incisions and infected full-thickness skin wounds.
Collapse
Affiliation(s)
- Yuqing Liang
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenlong Li
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Huang
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rui Yu
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
35
|
Abstract
Polymeric tissue adhesives provide versatile materials for wound management and are widely used in a variety of medical settings ranging from minor to life-threatening tissue injuries. Compared to the traditional methods of wound closure (i.e., suturing and stapling), they are relatively easy to use, enable rapid application, and introduce minimal tissue damage. Furthermore, they can act as hemostats to control bleeding and provide a tissue-healing environment at the wound site. Despite their numerous current applications, tissue adhesives still face several limitations and unresolved challenges (e.g., weak adhesion strength and poor mechanical properties) that limit their use, leaving ample room for future improvements. Successful development of next-generation adhesives will likely require a holistic understanding of the chemical and physical properties of the tissue-adhesive interface, fundamental mechanisms of tissue adhesion, and requirements for specific clinical applications. In this review, we discuss a set of rational guidelines for design of adhesives, recent progress in the field along with examples of commercially available adhesives and those under development, tissue-specific considerations, and finally potential functions for future adhesives. Advances in tissue adhesives will open new avenues for wound care and potentially provide potent therapeutics for various medical applications.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| |
Collapse
|
36
|
Zhang X, Ma Z, Ke Y, Xia Y, Xu X, Liu J, Gong Y, Shi Q, Yin J. An injectable serotonin–chondroitin sulfate hydrogel for bio-inspired hemostatic adhesives with high wound healing capability. MATERIALS ADVANCES 2021; 2:5150-5159. [DOI: 10.1039/d1ma00137j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
An injectable hydrogel inspired by platelet clotting mediators is developed based on natural components of the human body including serotonin and chondroitin sulfate, which exhibits improved hemostatic performance and wound healing capability.
Collapse
Affiliation(s)
- Xingxia Zhang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiaodong Xu
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin
- P. R. China
| | - Jingchuan Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yumei Gong
- School of Textile and Material Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
37
|
Thi PL, Lee Y, Tran DL, Hoang Thi TT, Park KM, Park KD. Calcium peroxide-mediated in situ formation of multifunctional hydrogels with enhanced mesenchymal stem cell behaviors and antibacterial properties. J Mater Chem B 2020; 8:11033-11043. [PMID: 33196075 DOI: 10.1039/d0tb02119a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Injectable hydrogels can serve as therapeutic vehicles and implants for the treatment of various diseases as well as for tissue repair/regeneration. In particular, the horseradish peroxidase (HRP) and hydrogen peroxide (H2O2)-catalyzed hydrogelation system has attracted much attention, due to its ease of handling and controllable gel properties. In this study, we introduce calcium peroxide (CaO2) as a H2O2-generating reagent to gradually supply a radical source for the HRP-catalyzed crosslinking reaction. This novel therapy can create stiff hydrogels without compromising the cytocompatibility of the hydrogels due to the use of initially high concentrations of H2O2. The physico-chemical properties of the hydrogels can be controlled by varying the concentrations of HRP and CaO2. In addition, the controlled and sustained release of bioactive molecules, including H2O2, O2, and Ca2+ ions, from the hydrogels could stimulate the cellular behaviors (attachment, migration, and differentiation) of human mesenchymal stem cells. Moreover, the hydrogels exhibited killing efficacy against both Gram-negative and Gram-positive bacteria, dependent on the H2O2 and Ca2+ release amounts. These positive results suggest that hydrogels formed by HRP/CaO2 can be used as potential matrices for a wide range of biomedical applications, such as bone regeneration and infection treatment.
Collapse
Affiliation(s)
- Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 16499, Republic of Korea.
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 16499, Republic of Korea.
| | - Dieu Linh Tran
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 16499, Republic of Korea.
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Kyung Min Park
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon 16499, Republic of Korea.
| |
Collapse
|
38
|
Pourshahrestani S, Zeimaran E, Kadri NA, Mutlu N, Boccaccini AR. Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Adv Healthc Mater 2020; 9:e2000905. [PMID: 32940025 DOI: 10.1002/adhm.202000905] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Broad interest in developing new hemostatic technologies arises from unmet needs in mitigating uncontrolled hemorrhage in emergency, surgical, and battlefield settings. Although a variety of hemostats, sealants, and adhesives are available, development of ideal hemostatic compositions that offer a range of remarkable properties including capability to effectively and immediately manage bleeding, excellent mechanical properties, biocompatibility, biodegradability, antibacterial effect, and strong tissue adhesion properties, under wet and dynamic conditions, still remains a challenge. Benefiting from tunable mechanical properties, high porosity, biocompatibility, injectability and ease of handling, polymeric hydrogels with outstanding hemostatic properties have been receiving increasing attention over the past several years. In this review, after shedding light on hemostasis and wound healing processes, the most recent progresses in hydrogel systems engineered from natural and synthetic polymers for hemostatic applications are discussed based on a comprehensive literature review. Most studies described used in vivo models with accessible and compressible wounds to assess the hemostatic performance of hydrogels. The challenges that need to be tackled to accelerate the translation of these novel hemostatic hydrogel systems to clinical practice are emphasized and future directions for research in the field are presented.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Ehsan Zeimaran
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Nurshen Mutlu
- FunGlass – Centre for Functional and Surface Functionalized Glass Alexander Dubcek University of Trencin Trencin 911 50 Slovakia
| | - Aldo R. Boccaccini
- Institute of Biomaterials Department of Materials Science and Engineering University of Erlangen‐Nuremberg Erlangen 91058 Germany
| |
Collapse
|
39
|
Ren J, Yin X, Chen Y, Chen Y, Su H, Wang K, Zhang L, Zhu J, Zhang C. Alginate hydrogel-coated syringe needles for rapid haemostasis of vessel and viscera puncture. Biomaterials 2020; 249:120019. [DOI: 10.1016/j.biomaterials.2020.120019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/03/2023]
|
40
|
Nishiguchi A, Taguchi T. A Thixotropic, Cell-Infiltrative Nanocellulose Hydrogel That Promotes in Vivo Tissue Remodeling. ACS Biomater Sci Eng 2020; 6:946-958. [PMID: 33464861 DOI: 10.1021/acsbiomaterials.9b01549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Injectable gels have been used in minimally invasive surgery for tissue regeneration and treatment of inflammatory diseases. However, polymeric hydrogels often fail in cell infiltration, because of the presence of dense, cross-linked molecular networks and a lack of bioactivity, which causes delayed tissue remodeling. Here, we report a thixotropic, cell-infiltrative hydrogel of biofunctionalized nanocellulose that topologically enhances cell infiltration and biochemically upregulates cellular activity for the promotion of tissue remodeling. Biodegradable, sulfonated nanocellulose forms a nanofibrous hydrogel, mimicking cellular microenvironments through cross-linking between nanocellulose and gelatin. Resulting nanocellulose hydrogels showed thixotropy, allowing for single syringe injection. Nanofiber-based hydrogels possess high molecular permeability, which is due to nanoporous structures. Sulfonate groups on nanocellulose increase protein adsorption and induce cellular extension in vitro. Highly sulfonated nanocellulose hydrogels enhanced cell infiltration and vascularization upon implantation into rats. Macrophage polarization to M2 was observed in nanocellulose hydrogels, which may be involved in tissue remodeling. Injectable, biofunctionalized nanocellulose gels have enormous potential as artificial biomatrices to heal inflammatory diseases through manipulation of the immune system and promotion of tissue remodeling.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
41
|
Wu T, Cui C, Huang Y, Liu Y, Fan C, Han X, Yang Y, Xu Z, Liu B, Fan G, Liu W. Coadministration of an Adhesive Conductive Hydrogel Patch and an Injectable Hydrogel to Treat Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2039-2048. [PMID: 31859471 DOI: 10.1021/acsami.9b17907] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past decade, tissue-engineering strategies, mainly involving injectable hydrogels and epicardial biomaterial patches, have been pursued to treat myocardial infarction. However, only limited therapeutic efficacy is achieved with a single means. Here, a combined therapy approach is proposed, that is, the coadministration of a conductive hydrogel patch and injectable hydrogel to the infarcted myocardium. The self-adhesive conductive hydrogel patch is fabricated based on Fe3+-induced ionic coordination between dopamine-gelatin (GelDA) conjugates and dopamine-functionalized polypyrrole (DA-PPy), which form a homogeneous network. The injectable and cleavable hydrogel is formed in situ via a Schiff base reaction between oxidized sodium hyaluronic acid (HA-CHO) and hydrazided hyaluronic acid (HHA). Compared with a single-mode system, injecting the HA-CHO/HHA hydrogel intramyocardially followed by painting a conductive GelDA/DA-PPy hydrogel patch on the heart surface results in a more pronounced improvement of the cardiac function in terms of echocardiographical, histological, and angiogenic outcomes.
Collapse
Affiliation(s)
- Tengling Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Medical Experiment Center , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Chuanchuan Fan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Xiaoxu Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Yang Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Ziyang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Bo Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Medical Experiment Center , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| |
Collapse
|
42
|
Han N, Xu Z, Cui C, Li Y, Zhang D, Xiao M, Fan C, Wu T, Yang J, Liu W. A Fe3+-crosslinked pyrogallol-tethered gelatin adhesive hydrogel with antibacterial activity for wound healing. Biomater Sci 2020; 8:3164-3172. [DOI: 10.1039/d0bm00188k] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A tunicate-inspired gelatin-based hydrogel prepared by a simple mixing method, exhibits strong adhesion and antibacterial capacity, and facilitates wound healing.
Collapse
|
43
|
Xu J, Liu Y, Hsu SH. Hydrogels Based on Schiff Base Linkages for Biomedical Applications. Molecules 2019; 24:E3005. [PMID: 31430954 PMCID: PMC6720009 DOI: 10.3390/molecules24163005] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 01/06/2023] Open
Abstract
Schiff base, an important family of reaction in click chemistry, has received significant attention in the formation of self-healing hydrogels in recent years. Schiff base reversibly reacts even in mild conditions, which allows hydrogels with self-healing ability to recover their structures and functions after damages. Moreover, pH-sensitivity of the Schiff base offers the hydrogels response to biologically relevant stimuli. Different types of Schiff base can provide the hydrogels with tunable mechanical properties and chemical stabilities. In this review, we summarized the design and preparation of hydrogels based on various types of Schiff base linkages, as well as the biomedical applications of hydrogels in drug delivery, tissue regeneration, wound healing, tissue adhesives, bioprinting, and biosensors.
Collapse
Affiliation(s)
- Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
| | - Yi Liu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan.
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli 35053, Taiwan.
| |
Collapse
|
44
|
Nishiguchi A, Sasaki F, Maeda H, Kabayama M, Ido A, Taguchi T. Multifunctional Hydrophobized Microparticles for Accelerated Wound Healing after Endoscopic Submucosal Dissection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901566. [PMID: 31304670 DOI: 10.1002/smll.201901566] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/26/2019] [Indexed: 05/22/2023]
Abstract
Endoscopic submucosal dissection (ESD) provides strong therapeutic benefits for early gastrointestinal cancer as a minimally invasive treatment. However, there is currently no reliable treatment to prevent scar contracture resulting from ESD which may lead to cicatricial stricture. Herein, a multifunctional colloidal wound dressing to promote tissue regeneration after ESD is demonstrated. This sprayable wound dressing, composed of hydrophobized microparticles, exhibits the multifunctionality necessary for wound healing including tissue adhesiveness, blood coagulation, re-epithelialization, angiogenesis, and controlled inflammation based on hydrophobic interaction with biological systems. An in vivo feasibility study using swine gastric ESD models reveals that this colloidal wound dressing suppresses fibrosis and accelerates wound healing. Multifunctional colloidal and sprayable wound dressings have an enormous therapeutic potential for use in a wide range of biomedical applications including accelerated wound healing after ESD, prevention of perforation, and the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Fumisato Sasaki
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hidehito Maeda
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masayuki Kabayama
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tetsushi Taguchi
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
45
|
Li F, Zhang G, Wang Z, Jiang H, Yan S, Zhang L, Li H. Strong Wet Adhesion of Tough Transparent Nanocomposite Hydrogels for Fast Tunable Focus Lenses. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15071-15078. [PMID: 30938504 DOI: 10.1021/acsami.9b02556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tough hydrogel adhesives that can bond strongly to wet surfaces have shown great potential in various applications. However, it still remains a challenge to develop the adhered hydrogels integrated with strong wet adhesion, high transparency, exceptional mechanical properties, and fast self-recovery. Herein, tough nanocomposite hydrogels demonstrating high tensile strength, high transparency, and fast self-recovery are reported. The strong wet adhesion between two tough hydrogel films can be realized by introducing chemical bridging across the hydrogel-hydrogel interface, while the interfacial adhesion energy and shearing adhesion strength are up to 2216 J m-2 and 385 N m-1, respectively. The strong adhesion and superior toughness of our hydrogels enable their reassembly capability to produce stretchable sealed balloons that can endure high air pressure without leakage. Most interestingly, the combination of excellent sealability and high transparency also allows our hydrogel balloons to turn into hydraulically driven fast tunable focus convex lenses, which is first reported here for hydrogel lenses. The hydrogel adhesives may open up the door to develop soft sealed containers and intelligent optical devices.
Collapse
Affiliation(s)
- Feibo Li
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Gongzheng Zhang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Zhaoshuo Wang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Haoyang Jiang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Shuang Yan
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Li Zhang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Huanjun Li
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
46
|
Liu Y, Cheong NG S, Yu J, Tsai WB. Modification and crosslinking of gelatin-based biomaterials as tissue adhesives. Colloids Surf B Biointerfaces 2019; 174:316-323. [DOI: 10.1016/j.colsurfb.2018.10.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/29/2018] [Accepted: 10/27/2018] [Indexed: 11/29/2022]
|
47
|
Bian S, Zheng Z, Liu Y, Ruan C, Pan H, Zhao X. A shear-thinning adhesive hydrogel reinforced by photo-initiated crosslinking as a fit-to-shape tissue sealant. J Mater Chem B 2019; 7:6488-6499. [DOI: 10.1039/c9tb01521c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A fit-to-shape sealant enhanced by photo-initiated crosslinking treated a wound with a nonplanar complex contour rapidly and effectively.
Collapse
Affiliation(s)
- Shaoquan Bian
- Research Center for Human Tissue and Organs Degeneration
- Institute Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Zhiqiang Zheng
- Research Center for Human Tissue and Organs Degeneration
- Institute Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Yuan Liu
- Research Center for Human Tissue and Organs Degeneration
- Institute Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration
- Institute Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration
- Institute Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Xiaoli Zhao
- Research Center for Human Tissue and Organs Degeneration
- Institute Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| |
Collapse
|
48
|
Chen W, Kretzschmann A, Tian W, Wu S. Nonlinear Supramolecular Polymers for Therapeutic Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wenzhuo Chen
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions; Shanxi Key Laboratory of Macromolecular Science and Technology; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Annika Kretzschmann
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions; Shanxi Key Laboratory of Macromolecular Science and Technology; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Si Wu
- Hefei National Laboratory for Physical Sciences at the Microscale; CAS Key Laboratory of Soft Matter Chemistry; Anhui Key Laboratory of Optoelectronic Science and Technology; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
49
|
Liang S, Zhang Y, Wang H, Xu Z, Chen J, Bao R, Tan B, Cui Y, Fan G, Wang W, Wang W, Liu W. Paintable and Rapidly Bondable Conductive Hydrogels as Therapeutic Cardiac Patches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704235. [PMID: 29687502 DOI: 10.1002/adma.201704235] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/02/2018] [Indexed: 06/08/2023]
Abstract
In recent years, cardiac patches have been developed for the treatment of myocardial infarction. However, the fixation approaches onto the tissue through suture or phototriggered reaction inevitably cause new tissue damage. Herein, a paintable hydrogel is constructed based on Fe3+ -triggered simultaneous polymerization of covalently linked pyrrole and dopamine in the hyperbranched chains where the in situ formed conductive polypyrrole also uniquely serves to crosslink network. This conductive and adhesive hydrogel can be conveniently painted as a patch onto the heart surface without adverse liquid leakage. The functional patch whose conductivity is equivalent to that of normal myocardium is strongly bonded to the beating heart within 4 weeks, accordingly efficiently boosting the transmission of electrophysiological signals. Eventually, the reconstruction of cardiac function and revascularization of the infarct myocardium are remarkably improved. The translatable suture-free strategy reported in this work is promising to address the human clinical challenges in cardiac tissue engineering.
Collapse
Affiliation(s)
- Shuang Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Yinyu Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Hongbo Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Ziyang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Jingrui Chen
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P. R. China
| | - Rui Bao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Baoyu Tan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Yuanlu Cui
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P. R. China
| | - Guanwei Fan
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P. R. China
| | - Wenxin Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Wei Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
50
|
Wang D, Zhang J, He Y, Li W, Li S, Fu X, Tian M, Zhou Y, Yao Z. Large Area, Highly Transparent, and Mechanically Stable Adhesive Films with Tunable Refractive Indices. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dan Wang
- School of Chemistry and Environmental Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Jianfu Zhang
- School of Chemistry and Environmental Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Yuanyuan He
- School of Chemistry and Environmental Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Wenfei Li
- School of Chemistry and Environmental Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Shitao Li
- School of Optics and Electric Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Xiuhua Fu
- School of Optics and Electric Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Ming Tian
- School of Optics and Electric Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Yang Zhou
- School of Optics and Electric Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Zhanhai Yao
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|