1
|
Chen T, Jiang X, Qiang S, Pang J, Aissa FA, Li W, Xiong C, Ni Y, Tian X. Construction of cellulose-based dual-gradient heterogeneous bilayer membranes with optimized directional moisture transport property for enhancing moisture-electricity generation. Int J Biol Macromol 2025; 307:142060. [PMID: 40101835 DOI: 10.1016/j.ijbiomac.2025.142060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/21/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Moisture-electricity generation (MEG) offers a promising strategy for sustainable energy conversion by harvesting ambient moisture to generate electricity. However, cellulose-based MEGs (CMEGs) are limited by inefficient proton migration and disordered moisture transport. To address these issues, we propose a dual-gradient heterogeneous bilayer cellulose-based membrane (CA@CF/CANPF) for Bi-CMEGs. The pore size gradient regulates water adsorption and diffusion, effectively guiding directional transport within the membrane, while the gradient of oxygen-containing functional groups improves hydrophilicity and facilitates ion exchange, accelerating proton migration. This Bi-CMEGs design achieves an open-circuit voltage of approximately 665.2 mV, a short-circuit current of 11.2 μA/cm2 and an effective power density of 1.24 μW/cm2, demonstrating excellent adaptability and stability across varied temperature and humidity conditions. Compared to recent advancements in CMEGs, the dual-gradient structure significantly enhances moisture transport and proton migration, overcoming key efficiency and scalability limitations. Notably, an amplified voltage of approximately 2516.7 mV is achieved by integrating the Bi-CMEG units in series, which is sufficient to directly power an LED for over 6 h under typical laboratory conditions. This work emphasizes the dual-gradient structure of Bi-CMEG, providing an efficient and unique design concept for sustainable cellulose-based moisture-electricity generation devices.
Collapse
Affiliation(s)
- Ting Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Sheng Qiang
- Patent Examination Cooperation Jiangsu Center of the Patent Office, CNIPA, Suzhou 215163, China
| | - Jiaxing Pang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Fatima Ait Aissa
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Chuanyin Xiong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Xiuzhi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Wei X, He D, Yang Y, Geng Z, Shi M, Jia Z, Wang J, Zhao T, Chen N. Enhancing the Performance of Fluorinated Graphdiyne Moisture Cells via Hard Acid-Base Coordination of Aluminum Ions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419706. [PMID: 40018839 DOI: 10.1002/adma.202419706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/09/2025] [Indexed: 03/01/2025]
Abstract
Moisture-enabled electric generators (MEGs) are emerging as a transformative energy technology, capable of directly converting ambient moisture into electrical energy without producing pollutants or harmful emissions. However, the widespread application of MEGs is hindered by challenges such as intermittent output and low current densities, which limit power density and prevent large-scale integration. Here, a novel moisture cell based on Al ion-F coordination-specifically, a fluorinated graphdiyne (FGDY) Al-ion moisture cell (FGDY AlMC) is introduced. This new moisture cell achieves an exceptionally high mass-specific power density of 371.36 µW g-¹, stable output (0.65 V for 15 h), and broad applicability across varying humid environments. Density functional theory (DFT) calculations reveal that the large-pore molecular structure of FGDY significantly reduces the diffusion barriers for Al ions compared to other 2D carbon materials. Furthermore, the F atoms as "hard base" on FGDY effectively coordinate with "hard acid" Al ions, enhancing ionic conductivity, accelerating ion migration, and promoting the generation of a higher number of mobile cations. These combined advantages lead to a marked improvement in the performance of the FGDY AlMC. These findings position Al ion coordinated FGDY as a highly promising candidate for the development of high-performance MEG active materials.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063000, China
| | - Danyang He
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ya'nan Yang
- School of Materials Science and Engineering, Harbin Institute of Technology (Weihai), Weihai, 264209, China
| | - Zhide Geng
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mengfan Shi
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China
| | - Zhiyu Jia
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063000, China
| | - Jiaqi Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Tianchang Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Nan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063000, China
| |
Collapse
|
3
|
Zhang H, Qin L, Zhou Y, Huang G, Cai H, Sha J. High-Performance and Anti-Freezing Moisture-Electric Generator Combining Ion-Exchange Membrane and Ionic Hydrogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410609. [PMID: 39723742 DOI: 10.1002/smll.202410609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Moisture-electric generators (MEGs), which convert moisture chemical potential energy into electrical power, are attracting increasing attention as clean energy harvesting and conversion technologies. However, existing devices suffer from inadequate moisture trapping, intermittent electric output, suboptimal performance at low relative humidity (RH), and limited ion separation efficiency. This study designs an ionic hydrogel MEG capable of continuously generating energy with enhanced selective ion transport and sustained ion-to-electron current conversion at low RH by integrating an ion-exchange membrane (IEM-MEG). A single IEM-MEG exhibits a maximum open-circuit voltage (VOC) of 0.815 V and a short-circuit current (ISC) of 101 µA at 80% RH. Even at a low RH of 10%, a stable VOC of 0.43 V and ISC of 11 µA can be generated. Moreover, the antifreeze performance of the device is improved by adding LiCl, which significantly expands its operational range in low-temperature environments. Finally, a simple series-parallel connection of six IEM-MEGs can yield an enhanced VOC of 4.8 V and a ISC of ≈0.6 mA, and the scalable units can directly power commercial electronics. This study provides new insights into the design of MEGs that will advance the development of green energy conversion technologies in the future.
Collapse
Affiliation(s)
- Hanxiao Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Liling Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yuyan Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Guiyun Huang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Hui Cai
- China National Pulp and Paper Research Institute Co., Ltd, Beijing, 100102, P. R. China
| | - Jiulong Sha
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
4
|
Yu F, Wang L, Yang X, Yang Y, Li X, Gao Y, Jiang Y, Jiang K, Lü W, Sun X, Li D. Moisture-Electric Generators Working in Subzero Environments Based on Laser-Engraved Hygroscopic Hydrogel Arrays. ACS NANO 2025; 19:3807-3817. [PMID: 39810602 DOI: 10.1021/acsnano.4c14996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Moisture-electric generators (MEGs) generate power by adsorbing water from the air. However, their performance at low temperatures is hindered due to icing. In the present work, MEG arrays are developed by laser engraving techniques and a modulated low-temperature hydrogel as the absorbent material. LTH effectively captures moisture and maintains ion dissociation and migration even at subzero temperatures. Based on the double electric layer pseudocapacitance model, the oscillating circuit theory is introduced to explain the effects of moisture absorption, evaporation, and ion migration on the output current of the MEG, and the circuit calculations are matched with the experimental results. Molecular dynamics simulations indicate that LTH's low-temperature stability results from preferential hydrogen bonding between glycerol molecules and H2O, which disrupts H2O-H2O hydrogen bonds and slows water crystallization. A single MEG unit (0.25 cm2) can produce up to ∼0.8 V and ∼21.2 μW/cm2 at room temperature, and at -35 °C with 16% RH, it generates ∼0.58 V and ∼14.35 μA. MEG realizes the following applications: MEG successfully drives electronic devices in snow; arrays of 16 MEGs can power portable electronics, and 384 MEGs can achieve up to 210 V; MEG absorbs moisture in water and drives LEDs by blowing up; MEG has a flexible wearable nature; MEG is used for respiratory monitoring and photoelectric sensors.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Liying Wang
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Xijia Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Yue Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Xuesong Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Yang Gao
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Yi Jiang
- School of Science, Changchun Institute of Technology, Changchun 130012, China
| | - Ke Jiang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education and School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Xiaojuan Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Dabing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| |
Collapse
|
5
|
Arrieta A, Nuñez de la Rosa YE, Pestana S. Cashew Nut Shell Waste Derived Graphene Oxide. Molecules 2024; 29:4168. [PMID: 39275016 PMCID: PMC11397352 DOI: 10.3390/molecules29174168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
The particular properties of graphene oxide (GO) make it a material with great technological potential, so it is of great interest to find renewable and eco-friendly sources to satisfy its future demand sustainably. Recently, agricultural waste has been identified as a potential raw material source for producing carbonaceous materials. This study explores the potential of cashew nut shell (CNS), a typically discarded by-product, as a renewable source for graphene oxide synthesis. Initially, deoiled cashew nut shells (DCNS) were submitted to pyrolysis to produce a carbonaceous material (Py-DCNS), with process optimization conducted through response surface methodology. Optimal conditions were identified as a pyrolysis temperature of 950 °C and a time of 1.8 h, yielding 29.09% Py-DCNS with an estimated purity of 82.55%, which increased to 91.9% post-washing. Using a modified Hummers method, the Py-DCNS was subsequently transformed into graphene oxide (GO-DCNS). Structural and functional analyses were carried out using FTIR spectroscopy, revealing the successful generation of GO-DCNS with characteristic oxygen-containing functional groups. Raman spectroscopy confirmed the formation of defects and layer separations in GO-DCNS compared to Py-DCNS, indicative of effective oxidation. The thermogravimetric analysis demonstrated distinct thermal decomposition stages for GO-DCNS, aligning with the expected behavior for graphene oxide. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) further corroborated the morphological and compositional transformation from DCNS to GO-DCNS, showcasing reduced particle size, increased porosity, and significant oxygen functional groups. The results underscore the viability of cashew nut shells as a sustainable precursor for graphene oxide production, offering an environmentally friendly alternative to conventional methods. This innovative approach addresses the waste management issue associated with cashew nut shells and contributes to developing high-value carbon materials with broad technological applications.
Collapse
Affiliation(s)
- Alvaro Arrieta
- Department of Biology and Chemistry, Universidad de Sucre, Sincelejo 700001, Colombia
| | - Yamid E Nuñez de la Rosa
- Faculty of Engineering and Basic Sciences, Fundación Universitaria Los Libertadores, Bogotá 111221, Colombia
| | - Samuel Pestana
- Department of Biology and Chemistry, Universidad de Sucre, Sincelejo 700001, Colombia
| |
Collapse
|
6
|
Zang S, Chen J, Yamauchi Y, Sharshir SW, Huang H, Yun J, Wang L, Wang C, Lin X, Melhi S, Kim M, Yuan Z. Moisture Power Generation: From Material Selection to Device Structure Optimization. ACS NANO 2024. [PMID: 39052842 DOI: 10.1021/acsnano.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Moisture power generation (MPG) technology, producing clean and sustainable energy from a humid environment, has drawn significant attention and research efforts in recent years as a means of easing the energy crisis. Despite the rapid progress, MPG technology still faces numerous challenges with the most significant one being the low power-generating performance of individual MPG devices. In this review, we introduce the background and underlying principles of MPG technology while thoroughly explaining how the selection of suitable materials (carbons, polymers, inorganic salts, etc.) and the optimization of the device structure (pore structure, moisture gradient structure, functional group gradient structure, and electrode structure) can address the existing and anticipated challenges. Furthermore, this review highlights the major scientific and engineering hurdles on the way to advancing MPG technology and offers potential insights for the development of high-performance MPG systems.
Collapse
Affiliation(s)
- Shuo Zang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junbo Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Swellam W Sharshir
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Hongqiang Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juhua Yun
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwei Wang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Chong Wang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangfeng Lin
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Saad Melhi
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Minjun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Tiwari A, Sharma SK, Borah A, Yella A. Manipulating the Crystallization of Tin Halide Perovskites for Efficient Moisture-to-Electricity Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36272-36280. [PMID: 38978170 DOI: 10.1021/acsami.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Manipulating the crystallization of perovskite in thin films is essential for the fabrication of any thin-film-based devices. Fabricating tin-based perovskite films from solution poses difficulties because tin tends to crystallize faster than the commonly used lead perovskite. To achieve optimal device performance in solar cells, the preferred method involves depositing tin perovskite under inert conditions using dimethyl sulfoxide (DMSO), which effectively retards the formation of the tin-bromine network, which is crucial for perovskite assembly. We found that under ambient conditions, a DMSO-based tin perovskite salt solution resulted in the formation of a two-phase system, SnBr4(DMSO)2 and MABr, whereas a dimethylformamide-based solution resulted in the formation of vacancy-ordered double perovskite MA2SnBr6. Humidity is known to solvate MABr to form the solvated ions, and so we used the two-phase system for the application in moisture to electricity conversion. The importance of the presence of the scaffold can be seen with the negligible power output from the vacancy-ordered double perovskite obtained with MA2SnBr6. We have fabricated a device with two-phase system that can generate an open-circuit potential of 520 mV and a short-circuit current density of 30.625 μA/cm2 at 85% RH. Also, the device charges a 10 μF capacitor from 150 mV at 51% RH to 500 mV at 85% RH in 6 s at a rate of 52.5 mV/s. Moreover, the output can be scaled by connecting devices in series and parallel configurations. A 527 nm green LED was powered by connecting five devices in series at 75% RH. This indicates a potential for utilizing these moisture-to-electricity conversion devices in powering low-energy requirement devices.
Collapse
Affiliation(s)
- Abinash Tiwari
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology, Bombay 400076, India
| | - Sumit Kumar Sharma
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology, Bombay 400076, India
| | - Aditya Borah
- Jengraimukh College, Majuli, Assam 785105, India
| | - Aswani Yella
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology, Bombay 400076, India
- Department of Metallurgical Engineering and Material Science, Indian Institute of Technology, Bombay 400076, India
| |
Collapse
|
8
|
Yang S, Zhang L, Mao J, Guo J, Chai Y, Hao J, Chen W, Tao X. Green moisture-electric generator based on supramolecular hydrogel with tens of milliamp electricity toward practical applications. Nat Commun 2024; 15:3329. [PMID: 38637511 PMCID: PMC11026426 DOI: 10.1038/s41467-024-47652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Moisture-electric generators (MEGs) has emerged as promising green technology to achieve carbon neutrality in next-generation energy suppliers, especially combined with ecofriendly materials. Hitherto, challenges remain for MEGs as direct power source in practical applications due to low and intermittent electric output. Here we design a green MEG with high direct-current electricity by introducing polyvinyl alcohol-sodium alginate-based supramolecular hydrogel as active material. A single unit can generate an improved power density of ca. 0.11 mW cm-2, a milliamp-scale short-circuit current density of ca. 1.31 mA cm-2 and an open-circuit voltage of ca. 1.30 V. Such excellent electricity is mainly attributed to enhanced moisture absorption and remained water gradient to initiate ample ions transport within hydrogel by theoretical calculation and experiments. Notably, an enlarged current of ca. 65 mA is achieved by a parallel-integrated MEG bank. The scalable MEGs can directly power many commercial electronics in real-life scenarios, such as charging smart watch, illuminating a household bulb, driving a digital clock for one month. This work provides new insight into constructing green, high-performance and scalable energy source for Internet-of-Things and wearable applications.
Collapse
Affiliation(s)
- Su Yang
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, P. R. China
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Lei Zhang
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Jianfeng Mao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Jianmiao Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Wei Chen
- National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, P. R. China
| | - Xiaoming Tao
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, P. R. China.
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, P. R. China.
| |
Collapse
|
9
|
Fan K, Zhou S, Xie L, Jia S, Zhao L, Liu X, Liang K, Jiang L, Kong B. Interfacial Assembly of 2D Graphene-Derived Ion Channels for Water-Based Green Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307849. [PMID: 37873917 DOI: 10.1002/adma.202307849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Indexed: 10/25/2023]
Abstract
The utilization of sustained and green energy is believed to alleviate increasing menace of global environmental concerns and energy dilemma. Interfacial assembly of 2D graphene-derived ion channels (2D-GDICs) with tunable ion/fluid transport behavior enables efficient harvesting of renewable green energy from ubiquitous water, especially for osmotic energy harvesting. In this review, various interfacial assembly strategies for fabricating diverse 2D-GDICs are summarized and their ion transport properties are discussed. This review analyzes how particular structure and charge density/distribution of 2D-GDIC can be modulated to minimize internal resistance of ion/fluid transport and enhance energy conversion efficiency, and highlights stimuli-responsive functions and stability of 2D-GDIC and further examines the possibility of integrating 2D-GDIC with other energy conversion systems. Notably, the presented preparation and applications of 2D-GDIC also inspire and guide other 2D materials to fabricate sophisticated ion channels for targeted applications. Finally, potential challenges in this field is analyzed and a prospect to future developments toward high-performance or large-scale real-word applications is offered.
Collapse
Affiliation(s)
- Kun Fan
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shenli Jia
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lihua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lei Jiang
- Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Shandong Research Institute, Fudan University, Shandong, 250103, China
| |
Collapse
|
10
|
Xu T, Ding X, Cheng H, Han G, Qu L. Moisture-Enabled Electricity from Hygroscopic Materials: A New Type of Clean Energy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209661. [PMID: 36657097 DOI: 10.1002/adma.202209661] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/14/2023] [Indexed: 05/12/2023]
Abstract
Water utilization is accompanied with the development of human beings, whereas gaseous moisture is usually regarded as an underexploited resource. The advances of highly efficient hygroscopic materials endow atmospheric water harvesting as an intriguing solution to convert moisture into clean water. The discovery of hygroelectricity, which refers to the charge buildup at a material surface dependent on humidity, and the following moisture-enabled electric generation (MEG) realizes energy conversion and directly outputs electricity. Much progress has been made since then to optimize MEG performance, pushing forward the applications of MEG into a practical level. Herein, the evolvement and development of MEG are systematically summarized in a chronological order. The optimization strategies of MEG are discussed and comprehensively evaluated. Then, the latest applications of MEG are presented, including high-performance powering units and self-powered devices. In the end, a perspective on the future development of MEG is given for inspiring more researchers into this promising area.
Collapse
Affiliation(s)
- Tong Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoteng Ding
- College of Life Sciences, Qingdao University, Qingdao, 266071, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Gaoyi Han
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 237016, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Yang Y, Wang J, Wang Z, Shao C, Han Y, Wang Y, Liu X, Sun X, Wang L, Li Y, Guo Q, Wu W, Chen N, Qu L. Moisture-Electric-Moisture-Sensitive Heterostructure Triggered Proton Hopping for Quality-Enhancing Moist-Electric Generator. NANO-MICRO LETTERS 2023; 16:56. [PMID: 38108916 PMCID: PMC10728039 DOI: 10.1007/s40820-023-01260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/21/2023] [Indexed: 12/19/2023]
Abstract
Moisture-enabled electricity (ME) is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression. However, ME can be unreliable in numerous applications due to its sluggish response to moisture, thus sacrificing the value of fast energy harvesting and highly accurate information representation. Here, by constructing a moisture-electric-moisture-sensitive (ME-MS) heterostructure, we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO, which modulates the heterostructure built-in interfacial potential, enables quick response (0.435 s), an unprecedented ultra-fast response rate of 972.4 mV s-1, and a durable electrical signal output for 8 h without any attenuation. Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator, which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.
Collapse
Affiliation(s)
- Ya'nan Yang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Jiaqi Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zhe Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Changxiang Shao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yuyang Han
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Ying Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xiaoting Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Xiaotong Sun
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Liru Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Qiang Guo
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Wenpeng Wu
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China
| | - Nan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, People's Republic of China.
| | - Liangti Qu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
12
|
Maity D, Fussenegger M. An Efficient Ambient-Moisture-Driven Wearable Electrical Power Generator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300750. [PMID: 37203294 PMCID: PMC10401086 DOI: 10.1002/advs.202300750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/03/2023] [Indexed: 05/20/2023]
Abstract
Existing devices for generating electrical power from water vapor in ambient air require high levels of relative humidity (RH), cannot operate for prolonged periods, and provide insufficient output for most practical applications. Here a heterogeneous moisture-driven electrical power generator (MODEG) is developed in the form of a free-standing bilayer of polyelectrolyte films, one consisting of a hygroscopic matrix of graphene oxide(GO)/polyaniline(PANI) [(GO)PANI] and the other consisting of poly(diallyldimethylammonium chloride)(PDDA)-modified fluorinated Nafion (F-Nafion (PDDA)). One MODEG unit (1 cm2 ) can deliver a stable open-circuit output of 0.9 V at 8 µA for more than 10 h with a matching external load. The device works over a wide range of temperature (-20 to +50 °C) and relative humidity (30% to 95% RH). It is shown that series and parallel combinations of MODEG units can directly supply sufficient power to drive commercial electronic devices such as light bulbs, supercapacitors, circuit boards, and screen displays. The (GO)PANI:F-Nafion (PDDA) hybrid film is embedded in a mask to harvest the energy from exhaled water vapor in human breath under real-life conditions. The device could consistently generate 450-600 mV during usual breathing, and provides sufficient power to drive medical devices, wearables, and emergency communication.
Collapse
Affiliation(s)
- Debasis Maity
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland
| |
Collapse
|
13
|
Abstract
In recent years, excessive exploitation and rapid population growth have posed numerous challenges. The climate crisis is deepening because of the unabated use of fossil fuels and the ascendance of greenhouse gas levels, so there is still an urgent need to seek different clean energy sources and electricity generating methods with the purpose of adjusting energy structures and solving environmental problems. In the ubiquitous hydrologic cycle, at least 60 petawatts (1015 W) energy can be supplied, but little of it has yet been utilized. Nowadays, hydrovoltaic intelligence has emerged and exhibited an ecofriendly concept of electricity generation compared with traditional methods with the rise of nanoscience and nanomaterials. Hence, it provides the prospect of upgrading the mode of water energy use, constructing a renewable energy industry, and alleviating environmental issues. In this review, starting by introducing different types of hydrovoltaic effect mechanisms─energy harvesting based on drawing potential of liquids; energy harvesting based on water evaporation, and energy harvesting based on moisture adsorption─we summarize the fabrication processes, material classifications, intelligent applications, and representative advances in detail. Moreover, the future development trends of hydrovoltaic intelligence and the challenges for improvement in electrical output are further discussed.
Collapse
Affiliation(s)
- Luomin Wang
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Weifeng Zhang
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
14
|
Zhao K, Lee JW, Yu ZG, Jiang W, Oh JW, Kim G, Han H, Kim Y, Lee K, Lee S, Kim H, Kim T, Lee CE, Lee H, Jang J, Park JW, Zhang YW, Park C. Humidity-Tolerant Moisture-Driven Energy Generator with MXene Aerogel-Organohydrogel Bilayer. ACS NANO 2023; 17:5472-5485. [PMID: 36779414 DOI: 10.1021/acsnano.2c10747] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Free-standing and film-type moisture-driven energy generators (MEGs) that harness the preferential interaction of ionized moisture with hydrophilic materials are interesting because of their wearability and portability without needing a water container. However, most such MEGs work in limited humidity conditions, which provide a substantial moisture gradient. Herein, we present a high-performance MEG with sustainable power-production capability in a wide range of environments. The bilayer-based device comprises a negatively surface-charged, hydrophilic MXene (Ti3C2Tx) aerogel and polyacrylamide (PAM) ionic hydrogel. The preferential selection on the MXene aerogel of positive charges supplied from the salts and water in the hydrogel is predicted by the first-principle simulation, which results in a high electric output in a wide relative humidity range from 20% to 95%. Furthermore, by replacing the hydrogel with an organohydrogel of PAM that has excellent water retention and structural stability, a device with long-term electricity generation is realized for more than 15 days in a broad temperature range (from -20 to 80 °C). Our MXene aerogel MEGs connected in series supply sufficient power for commercial electronic components in various outdoor environments. Moreover, an MXene aerogel MEG works as a self-powered sensor for recognizing finger bending and facial expression.
Collapse
Affiliation(s)
- Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Jae Won Lee
- Department of Materials Science and Engineering, Kangwon National University, Samcheok 25913, Korea
| | - Zhi Gen Yu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Jin Woo Oh
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Gwanho Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Hyowon Han
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Yeonji Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Taebin Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Chang Eun Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Hyeokjung Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Jihye Jang
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Jong Woong Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
15
|
Yang K, Cai W, Lan M, Ye Y, Tang Z, Guo Q, Weng M. Multi-responsive and programmable actuators made with nacre-inspired graphene oxide-bacterial cellulose film. SOFT MATTER 2022; 18:9057-9068. [PMID: 36416498 DOI: 10.1039/d2sm01380k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, graphene oxide (GO)-based multi-responsive actuators have attracted great interest due to their board application in soft robots, artificial muscles, and intelligent mechanics. However, most GO-based actuators suffer from low mechanical strength. Inspired by the natural nacre, a graphene oxide-bacterial cellulose (GO-BC) film with a "brick and mortar" structure is constructed. Compared with the pure GO film, the tensile strength of the GO-BC film is increased by about 2 times. Benefiting from the rich oxygen-containing functional groups of GO sheets and BC nanofibers, the cracked GO-BC films can be pasted together with the help of water, which can be used to construct GO-BC films with multi-dimensional complex structures. Subsequently, a GO-BC/polymer actuator capable of responding to various stimuli is successfully developed through a complementary strategy of "active layer and inert layer". Further, based on the water-assisted pasting properties of GO-BC films, a series of GO-BC/polymer actuators with 3D complex deformations can be fabricated by pasting together two or more GO-BC/polymer actuators. Finally, the potential applications of multi-response GO-BC/polymer actuators in flexible robots, artificial muscles, and smart devices are demonstrated through a series of applications such as bionic sunflowers, octopus-inspired soft tentacles, and smart curtains.
Collapse
Affiliation(s)
- Kaihuai Yang
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian 350007, China.
| | - Wanling Cai
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian 350007, China.
| | - Minli Lan
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian 350007, China.
| | - Yuanji Ye
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Zhendong Tang
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| |
Collapse
|
16
|
Guan P, Zhu R, Hu G, Patterson R, Chen F, Liu C, Zhang S, Feng Z, Jiang Y, Wan T, Hu L, Li M, Xu Z, Xu H, Han Z, Chu D. Recent Development of Moisture-Enabled-Electric Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204603. [PMID: 36135971 DOI: 10.1002/smll.202204603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Power generation by converting energy from the ambient environment has been considered a promising strategy for developing decentralized electrification systems to complement the electricity supply for daily use. Wet gases, such as water evaporation or moisture in the atmosphere, can be utilized as a tremendous source of electricity by emerging power generation devices, that is, moisture-enabled-electric nanogenerators (MEENGs). As a promising technology, MEENGs provided a novel manner to generate electricity by harvesting energy from moisture, originating from the interactions between water molecules and hydrophilic functional groups. Though the remarkable progress of MEENGs has been achieved, a systematic review in this specific area is urgently needed to summarize previous works and provide sharp points to further develop low-cost and high-performing MEENGs through overcoming current limitations. Herein, the working mechanisms of MEENGs reported so far are comprehensively compared. Subsequently, a systematic summary of the materials selection and fabrication methods for currently reported MEENG construction is presented. Then, the improvement strategies and development directions of MEENG are provided. At last, the demonstrations of the applications assembled with MEENGs are extracted. This work aims to pave the way for the further MEENGs to break through the performance limitations and promote the popularization of future micron electronic self-powered equipment.
Collapse
Affiliation(s)
- Peiyuan Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Renbo Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Guangyu Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Robert Patterson
- Australian Centre for Advanced Photovoltaics, School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Fandi Chen
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Chao Liu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Shuo Zhang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Ziheng Feng
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yue Jiang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Mengyao Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Zhemi Xu
- Chemistry and Material Engineering College, Beijing Technology and Business University, Beijing, 100048, China
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, South Australia, 5095, Australia
| | - Zhaojun Han
- School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
17
|
Eun J, Jeon S. Performance Enhancement of Moisture-driven Power Generators by Photofragmentation of Inorganic Salt Particles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45289-45295. [PMID: 36173290 DOI: 10.1021/acsami.2c10922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We developed a novel method based on the photofragmentation of inorganic salt particles for improving the moisture-electric energy transformation performance of a moisture-driven power generator (MPG). Infrared laser irradiation on cellulose nanofiber films (CNFs) prepared by a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation of bleached pulp induced a photothermal conversion of CNFs to porous graphitic carbon films (GCFs) with the catalyst-derived Na2O2 particles. Since the laser beam was focused on the top surface of CNF, the gradients of the photothermal conversion of CNFs and Na2O2 concentration were created along the thickness direction. Subsequent irradiation with ultraviolet (UV) light induced the photofragmentation of the micrometer-sized Na2O2 particles into smaller ones, which increased the surface area of the salt particles in contact with the GCFs and consequently increased the number of effective dissociable charge carriers. When the GCF was exposed to moisture, the dissociated sodium ions migrated along the preformed concentration gradient, producing continuous outputs of current and voltage. At 90% relative humidity, the maximum voltage and current density outputs of the MPG increased from 0.91 V and 18.7 μA/cm2 before UV irradiation to 1.10 V and 56.2 μA/cm2 after UV irradiation, respectively. Additionally, we demonstrated that a green light-emitting diode could be turned on without capacitors or rectifiers during normal breathing while wearing a face mask with three GCF arrays attached (each 3 mm × 3 mm × 0.1 mm in size).
Collapse
Affiliation(s)
- Jakyung Eun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk, Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, 37673 Gyeongbuk, Republic of Korea
| |
Collapse
|
18
|
Yang C, Wang H, Yang J, Yao H, He T, Bai J, Guang T, Cheng H, Yan J, Qu L. A Machine-Learning-Enhanced Simultaneous and Multimodal Sensor Based on Moist-Electric Powered Graphene Oxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205249. [PMID: 36007144 DOI: 10.1002/adma.202205249] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous multimodal monitoring can greatly perceive intricately multiple stimuli, which is important for the understanding and development of a future human-machine fusion world. However, the integrated multisensor networks with cumbersome structure, huge power consumption, and complex preparation process have heavily restricted practical applications. Herein, a graphene oxide single-component multimodal sensor (GO-MS) is developed, which enables simultaneous monitoring of multiple environmental stimuli by a single unit with unique moist-electric self-power supply. This GO-MS can generate a sustainable moist-electric potential by spontaneously adsorbing water molecules in air, which has a characteristic response behavior when exposed to different stimuli. As a result, the simultaneous monitoring and decoupling of the changes of temperature, humidity, pressure, and light intensity are achieved by this single GO-MS with machine-learning (ML) assistance. Of practical importance, a moist-electric-powered human-machine interaction wristband based on GO-MS is constructed to monitor pulse signals, body temperature, and sweating in a multidimensional manner, as well as gestures and sign language commanding communication. This ML-empowered moist-electric GO-MS provides a new platform for the development of self-powered single-component multimodal sensors, showing great potential for applications in the fields of health detection, artificial electronic skin, and the Internet-of-Things.
Collapse
Affiliation(s)
- Ce Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiyan Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiawei Yang
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Houze Yao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Tiancheng He
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiaxin Bai
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianlei Guang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianfeng Yan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry & State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
19
|
Owida HA, Al-Ayyad M, Al-Nabulsi JI. Emerging Development of Auto-Charging Sensors for Respiration Monitoring. Int J Biomater 2022; 2022:7098989. [PMID: 36071953 PMCID: PMC9444417 DOI: 10.1155/2022/7098989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the development of biomedical monitoring systems, including respiration monitoring systems, has been accelerated. Wearable and implantable medical devices are becoming increasingly important in the diagnosis and management of disease and illness. Respiration can be monitored using a variety of biosensors and systems. Auto-charged sensors have a number of advantages, including low cost, ease of preparation, design flexibility, and a wide range of applications. It is possible to use the auto-charged sensors to directly convert mechanical energy from the airflow into electricity. The ability to monitor and diagnose one's own health is a major goal of auto-charged sensors and systems. Respiratory disease model output signals have not been thoroughly investigated and clearly understood. As a result, figuring out their exact interrelationship is a difficult and important research question. This review summarized recent developments in auto-charged respiratory sensors and systems in terms of their device principle, output property, detecting index, and so on. Researchers with an interest in auto-charged sensors can use the information presented here to better understand the difficulties and opportunities that lie ahead.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Muhammad Al-Ayyad
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Jamal I. Al-Nabulsi
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
20
|
Zhao HY, Yu MY, Liu J, Li X, Min P, Yu ZZ. Efficient Preconstruction of Three-Dimensional Graphene Networks for Thermally Conductive Polymer Composites. NANO-MICRO LETTERS 2022; 14:129. [PMID: 35699797 PMCID: PMC9198159 DOI: 10.1007/s40820-022-00878-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/13/2022] [Indexed: 06/02/2023]
Abstract
Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation. Featured by its exceptional thermal conductivity, graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management. Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities. Compared with conventional composite fabrications by directly mixing graphene with polymers, preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances, enabling high manufacturing flexibility and controllability. In this review, we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites. Subsequently, we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications. Finally, our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites.
Collapse
Affiliation(s)
- Hao-Yu Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Ming-Yuan Yu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Ji Liu
- School of Chemistry, CRANN and AMBER, Trinity College Dublin, Dublin, Ireland.
| | - Xiaofeng Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Peng Min
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
21
|
Sohn A, Zhang Y, Chakraborty A, Yu C. Sustainable power generation via hydro-electrochemical effects. NANOSCALE 2022; 14:4188-4194. [PMID: 35234234 DOI: 10.1039/d1nr07748a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent efforts towards energy scavenging with eco-friendly methods and abundant water look very promising for powering wearables and distributed electronics. However, the time duration of electricity generation is typically too short, and the current level is not sufficient to meet the required threshold for the proper operation of electronics despite the relatively large voltage. This work newly introduced an electrochemical method in combination with hydro-effects in order to extend the energy scavenging time and boost the current. Our device consists of corroded porous steel electrodes whose corrosion overpotential was lowered when the water concentration was increased and vice versa. Then a potential difference was created between two electrodes, generating electricity via the hydro-electrochemical method up to an open-circuit voltage of 750 mV and a short-circuit current of 90 μA cm-2. Furthermore, electricity was continuously generated for more than 1500 minutes by slow water diffusion against gravity from the bottom electrode. Lastly, we demonstrated that our hydro-electrochemical power generators successfully operated electronics, showing the feasibility of offering electrical power for sufficiently long time periods in practice.
Collapse
Affiliation(s)
- Ahrum Sohn
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Yufan Zhang
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Anirban Chakraborty
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Choongho Yu
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
22
|
Fu C, Lin J, Tang Z, Chen L, Huang F, Kong F, Ni Y, Huang L. Design of asymmetric-adhesion lignin reinforced hydrogels with anti-interference for strain sensing and moist air induced electricity generator. Int J Biol Macromol 2022; 201:104-110. [PMID: 34998868 DOI: 10.1016/j.ijbiomac.2021.12.157] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023]
Abstract
Flexible hydrogels with integration of excellent mechanical and electrical properties are well suited for applications as wearable electronic sensors, and others. Self-adhesion is an important feature of wearable sensors. However, the usual isotropic- adhesion hydrogels have the drawback of poor anti-interference, which negatively affects their applications. In this study, we developed asymmetric-adhesion and tough lignin reinforced hydrogels in a facile two-step process: 1) PAA hydrogels, with lignin as the binder and conductive filler, were first prepared; 2) the asymmetric-adhesion property was imparted to lignin reinforced hydrogel by simple soaking of the top portion of the hydrogel in CaCl2 solution. The as-obtained asymmetric-adhesion lignin reinforced hydrogel was assembled into a wearable sensor, which shows excellent anti-interference and accurate and stable collections of sensing signals, with its gauge factor (GF) of 2.51 (in the strain range of 0-51.5%). In addition, the tough hydrogel is capable of generating electricity upon moist air sweeping through it, showing excellent energy conversion capabilities, with open-circuit voltage of as high as 306.6 mV. These results provided new prospects for the application of polyelectrolyte hydrogel materials in the fields of wet-to-electric conversion and wearable electronic sensors.
Collapse
Affiliation(s)
- Chenglong Fu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Junkang Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiwei Tang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Fang Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China.
| | - Yonghao Ni
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
23
|
Tang J, Zhao Y, Wang M, Wang D, Yang X, Hao R, Wang M, Wang Y, He H, Xin JH, Zheng S. Circadian humidity fluctuation induced capillary flow for sustainable mobile energy. Nat Commun 2022; 13:1291. [PMID: 35277510 PMCID: PMC8917138 DOI: 10.1038/s41467-022-28998-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/23/2022] [Indexed: 11/09/2022] Open
Abstract
Circadian humidity fluctuation is an important factor that affects human life all over the world. Here we show that spherical cap-shaped ionic liquid drops sitting on nanowire array are able to continuously output electricity when exposed to outdoor air, which we attribute to the daily humidity fluctuation induced directional capillary flow. Specifically, ionic liquid drops could absorb/desorb water around the liquid/vapor interface and swell/shrink depending on air humidity fluctuation. While pinning of the drop by nanowire array suppresses advancing/receding of triple-phase contact line. To maintain the surface tension-regulated spherical cap profile, inward/outward flow arises for removing excess fluid from the edge or filling the perimeter with fluid from center. This moisture absorption/desorption-caused capillary flow is confirmed by in-situ microscope imaging. We conduct further research to reveal how environmental humidity affects flow rate and power generation performance. To further illustrate feasibility of our strategy, we combine the generators to light up a red diode and LCD screen. All these results present the great potential of tiny humidity fluctuation as an easily accessible anytime-and-anywhere small-scale green energy resource. Droplet generators convert mechanical movements of droplets into small-scale electricity. Here, Tang et al. report a humidity-driven power generator by utilizing daily humidity fluctuation in atmosphere enabling continuous generation of electricity upon moisture absorption and desorption cycles.
Collapse
|
24
|
Bai J, Huang Y, Wang H, Guang T, Liao Q, Cheng H, Deng S, Li Q, Shuai Z, Qu L. Sunlight-Coordinated High-Performance Moisture Power in Natural Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103897. [PMID: 34965320 DOI: 10.1002/adma.202103897] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/31/2021] [Indexed: 05/24/2023]
Abstract
It is a challenge to spontaneously harvest multiple clean sources from the environment for upgraded energy-converting systems. The ubiquitous moisture and sunlight in nature are attractive for sustainable power generation especially. A high-performance light-coordinated "moist-electric generator" (LMEG) based on the rational combination of a polyelectrolyte and a phytochrome is herein developed. By spontaneous adsorption of gaseous water molecules and simultaneous exposure to sunlight, a piece of 1 cm2 composite film offers an open-circuit voltage of 0.92 V and a considerable short-circuit current density of up to 1.55 mA cm-2 . This record-high current density is about two orders of magnitude improvement over that of most conventional moisture-enabled systems, which is caused by moisture-induced charge separation accompanied with photoexcited carrier migration, as confirmed by a dynamic Monte Carlo device simulation. Flexible devices with customizable size are available for large-scale integration to effectively work under a wide range of relative humidity (about 20-100%), temperature (10-80 °C), and light intensity (30-200 mW cm-2 ). The wearable and portable LMEGs provide ample power supply in natural conditions for indoor and outdoor electricity-consuming systems. This work opens a novel avenue to develop sustainable power generation through collecting multiple types of natural energy by a single hybrid harvester.
Collapse
Affiliation(s)
- Jiaxin Bai
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yaxin Huang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haiyan Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianlei Guang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qihua Liao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Huhu Cheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shanhao Deng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qikai Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhigang Shuai
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liangti Qu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
25
|
A facile ultrasensitive detection of MC-LR toxin via a real-time assembled aptasensor of plasmonic graphene oxide. Talanta 2022; 236:122864. [PMID: 34635246 DOI: 10.1016/j.talanta.2021.122864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Real time controllable assembling/aptasensing approach via plasmonic graphene oxide (GO) nanocomposites has been firstly proven to simultaneously give tuning of micro-nano structure of plasmonic GO and ultrasensitive detection of MC-LR toxin. In order to fabricate the assembly, a high-quality hollow triangular nanoplate AgClAu:p-GO (HTNP AgClAu:p-GO) can act as a template; furthermore, we combine DNA-hybridization with biotin-strepavidin binding protocol for tuning the HTNP AgClAu:p-GO assemblies from networks to laminar structure, and simultaneously loading Raman reporters into the assemblies. The dynamic assembling process can be utilized as a real time SERS aptasensor for detecting MC-LR due to ratiometric introduction of MC-LR toxin inhibiting formation of plasmonic p-GO assembly via toxin/aptamer bioconjugation and causing reverse alteration of SERS signal for giving ultrasensitive SERS detection of MC-LR. A detection limit of 6.3pM with a wide linear range from 10pM to 5 nM can be achieved. When the aptasensor has been applied in real samples, the real time assembling/aptasensing approach shows recoveries from 98% to 103% with relative standard deviation (RSD) lower than 3%, expecting that one-step nanofabrication and sensing strategy can be extended to in-field test of environmental contaminants.
Collapse
|
26
|
Zheng S, Tang J, Lv D, Wang M, Yang X, Hou C, Yi B, Lu G, Hao R, Wang M, Wang Y, He H, Yao X. Continuous Energy Harvesting from Ubiquitous Humidity Gradients using Liquid-Infused Nanofluidics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106410. [PMID: 34715720 DOI: 10.1002/adma.202106410] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Indexed: 05/24/2023]
Abstract
Humidity-based power generation that converts internal energy of water molecules into electricity is an emerging approach for harvesting clean energy from nature. Here it is proposed that intrinsic gradient within a humidity field near sweating surfaces, such as rivers, soil, or animal skin, is a promising power resource when integrated with liquid-infused nanofluidics. Specifically, capillary-stabilized ionic liquid (IL, Omim+ Cl- ) film is exposed to the above humidity field to create a sustained transmembrane water-content difference, which enables asymmetric ion-diffusion across the nanoconfined fluidics, facilitating long-term electricity generation with the power density of ≈12.11 µW cm-2 . This high record is attributed to the nanoconfined IL that integrates van der Waals and electrostatic interactions to block movement of Omim+ clusters while allowing for directional diffusion of moisture-liberated Cl+ . This humidity gradient triggers large ion-diffusion flux for power generation indicates great potential of sweating surfaces considering that most of the earth is covered by water or soil.
Collapse
Affiliation(s)
- Shuang Zheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jiayue Tang
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Mi Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Yang
- Beihang University, Beijing, 100191, China
| | - Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Bo Yi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Gang Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ruiran Hao
- School of environmental engineering, Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
| | - Mingzhan Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Dai J, Li L, Shi B, Li Z. Recent progress of self-powered respiration monitoring systems. Biosens Bioelectron 2021; 194:113609. [PMID: 34509719 DOI: 10.1016/j.bios.2021.113609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022]
Abstract
Wearable and implantable medical devices are playing more and more key roles in disease diagnosis and health management. Various biosensors and systems have been used for respiration monitoring. Among them, self-powered sensors have some special characteristics such as low-cost, easy preparation, highly designable, and diversified. The respiratory airflow can drive the self-powered sensors directly to convert mechanical energy of the airflow into electricity. One of the major goals of the self-powered sensors and systems is realizing health monitoring and diagnosis. The relationship between the output signals and the models of respiratory diseases has not been studied deeply and clearly. Therefore, how to find an accurate relationship between them is a challenging and significant research topic. This review summarized the recent progress of the self-powered respiratory sensors and systems from aspects of device principle, output property, detecting index and so on. The challenges and perspectives have also been discussed for reference to the researchers who are interested in the field of self-powered sensors.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, 530004, Nanning, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
| | - Linlin Li
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, 530004, Nanning, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China
| | - Bojing Shi
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Zhou Li
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, 530004, Nanning, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 101400, Beijing, China.
| |
Collapse
|
28
|
Zhang Y, MohebbiPour A, Mao J, Mao J, Ni Y. Lignin reinforced hydrogels with multi-functional sensing and moist-electric generating applications. Int J Biol Macromol 2021; 193:941-947. [PMID: 34743988 DOI: 10.1016/j.ijbiomac.2021.10.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022]
Abstract
Hydrogels, including PVA hydrogels, have numerous applications in many fields; however, their poor mechanical strength limits their utilization potential. Lignin, the most abundant aromatic biopolymer in nature from lignocellulosic biomass, is presently under-utilized. Herein, we used lignin to improve strength and impart pH-responsive properties of PVA hydrogel. The lignin reinforced PVA (LRP) hydrogel has a maximum storage modulus of 83.1 kPa, which is much higher than the PVA hydrogel. The LRP hydrogel exhibits great ionic conductivity, mechanical properties, and strain-sensitivity even at -30 °C. The LRP hydrogel is subsequently applied for a moisture-induced electric generator, which delivers a voltage output of 226.6 mV from moisture flow. The eco-friendly, pH responsive, high antifreezing, ionic conductive, strain sensitive, and moist-electric generating hydrogels have potential applications in many fields, including biomedicine, flexible electrodes, pH-responsive switch, strain sensor, and next-generation self-powered device systems.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, PR China; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Atosa MohebbiPour
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Jincheng Mao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, PR China.
| | - Jinhua Mao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, PR China.
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
29
|
Guan W, Guo Y, Yu G. Carbon Materials for Solar Water Evaporation and Desalination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007176. [PMID: 34096179 DOI: 10.1002/smll.202007176] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Indexed: 05/27/2023]
Abstract
Seawater desalination is viewed as a promising solution to world freshwater scarcity. Solar assisted desalination is proposed to overcome the high energy consumption in current desalination technologies, as it uses abundant and sustainable solar energy as the only energy input. Interfacial solar vapor generation (SVG) has attracted considerable research interest due to its high energy conversion efficiency, simple implementation, and cost-effectiveness. Among all the candidate materials for solar evaporators, carbon-based materials stand out due to their intrinsic high solar absorption, highly tunable structure, easy preparation, low cost, and earth-abundancy. In this review, the recent progress on carbon-based materials for the development of interfacial SVG is summarized. First, a brief introduction to the basic design principles of the interfacial SVG system is presented. Then, recent efforts in carbon-based solar evaporators, from artificial structures to bioinspired configurations, focusing on their structure-function relationship are highlighted. Strategies for designing antisalt-fouling desalination systems are also summarized. Last, the challenges and opportunities of carbon-based materials for solar evaporation technology are elaborated.
Collapse
Affiliation(s)
- Weixin Guan
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Youhong Guo
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Guihua Yu
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
30
|
Colossal thermo-hydro-electrochemical voltage generation for self-sustainable operation of electronics. Nat Commun 2021; 12:5269. [PMID: 34489432 PMCID: PMC8421453 DOI: 10.1038/s41467-021-25606-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Thermoelectrics are suited to converting dissipated heat into electricity for operating electronics, but the small voltage (~0.1 mV K−1) from the Seebeck effect has been one of the major hurdles in practical implementation. Here an approach with thermo-hydro-electrochemical effects can generate a large thermal-to-electrical energy conversion factor (TtoE factor), −87 mV K−1 with low-cost carbon steel electrodes and a solid-state polyelectrolyte made of polyaniline and polystyrene sulfonate (PANI:PSS). We discovered that the thermo-diffusion of water in PANI:PSS under a temperature gradient induced less (or more) water on the hotter (or colder) side, raising (or lowering) the corrosion overpotential in the hotter (or colder) side and thereby generating output power between the electrodes. Our findings are expected to facilitate subsequent research for further increasing the TtoE factor and utilizing dissipated thermal energy. Thermoelectrics are suited to converting dissipated heat into electricity for operating electronics but limited by the small voltage from the Seebeck effect. Here, the authors report a thermo-hydro-electrochemical hybrid device with −87 mV K−1.
Collapse
|
31
|
Wang H, Sun Y, He T, Huang Y, Cheng H, Li C, Xie D, Yang P, Zhang Y, Qu L. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. NATURE NANOTECHNOLOGY 2021; 16:811-819. [PMID: 33903750 DOI: 10.1038/s41565-021-00903-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 03/12/2021] [Indexed: 05/10/2023]
Abstract
Environmentally adaptive power generation is attractive for the development of next-generation energy sources. Here we develop a heterogeneous moisture-enabled electric generator (HMEG) based on a bilayer of polyelectrolyte films. Through the spontaneous adsorption of water molecules in air and induced diffusion of oppositely charged ions, one single HMEG unit can produce a high voltage of ~0.95 V at low (25%) relative humidity (RH), and even jump to 1.38 V at 85% RH. A sequentially aligned stacking strategy is created for large-scale integration of HMEG units, to offer a voltage of more than 1,000 V under ambient conditions (25% RH, 25 °C). Using origami assembly, a small section of folded HMEGs renders an output of up to 43 V cm-3. Such integration devices supply sufficient power to illuminate a lamp bulb of 10 W, to drive a dynamic electronic ink screen and to control the gate voltage for a self-powered field effect transistor.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Yilin Sun
- Institute of Microelectronics, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, P. R. China
| | - Tiancheng He
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Yaxin Huang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China.
| | - Chun Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China
| | - Dan Xie
- Institute of Microelectronics, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, P. R. China
| | - Pengfei Yang
- Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, P. R. China
| | - Yanfeng Zhang
- Center for Nanochemistry, Academy for Advanced Interdisciplinary Studies, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry and State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China.
| |
Collapse
|
32
|
Solvent-induced electrochemistry at an electrically asymmetric carbon Janus particle. Nat Commun 2021; 12:3415. [PMID: 34099639 PMCID: PMC8184849 DOI: 10.1038/s41467-021-23038-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/29/2021] [Indexed: 12/04/2022] Open
Abstract
Chemical doping through heteroatom substitution is often used to control the Fermi level of semiconductor materials. Doping also occurs when surface adsorbed molecules modify the Fermi level of low dimensional materials such as carbon nanotubes. A gradient in dopant concentration, and hence the chemical potential, across such a material generates usable electrical current. This opens up the possibility of creating asymmetric catalytic particles capable of generating voltage from a surrounding solvent that imposes such a gradient, enabling electrochemical transformations. In this work, we report that symmetry-broken carbon particles comprised of high surface area single-walled carbon nanotube networks can effectively convert exothermic solvent adsorption into usable electrical potential, turning over electrochemical redox processes in situ with no external power supply. The results from ferrocene oxidation and the selective electro-oxidation of alcohols underscore the potential of solvent powered electrocatalytic particles to extend electrochemical transformation to various environments. Chemical doping of low dimensional materials by surface adsorbed molecules has proven to be a source of electrical energy. Here, the authors find that asymmetric particles consisting of carbon nanotubes can drive electrochemical reactions by electrical potential generated from solvent adsorption.
Collapse
|
33
|
Wang Y, Hu X, Liu Y, Li Y, Lan T, Wang C, Liu Y, Yuan D, Cao X, He H, Zhou L, Liu Z, Chew JW. Assembly of three-dimensional ultralight poly(amidoxime)/graphene oxide nanoribbons aerogel for efficient removal of uranium(VI) from water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142686. [PMID: 33071143 DOI: 10.1016/j.scitotenv.2020.142686] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Assembling graphene oxide nanoribbons (GONRs) into three-dimensional (3D) materials with controllable and desired structure is an effective way to expand their structural features and enable their practical applications. In this work, an ultralight 3D porous amidoxime functionalized graphene oxide nanoribbons aerogel (PAO/GONRs-A) was prepared via solvothermal polymerization method using acrylonitrile as monomer and GONRs as solid matrices for selective separation of uranium(VI) from water samples. The PAO/GONRs-A possessed a high nitrogen content (13.5%), low density (8.5 mg cm-3), and large specific surface area (494.9 m2 g-1), and presented an excellent high adsorption capacity of uranium, with a maximum capacity of 2.475 mmol g-1 at a pH of 4.5, and maximum uranium-selectivity of 65.23% at a pH of 3.0. The results of adsorption experiments showed that U(VI) adsorption on PAO/GONRs-A was a pH-dependent, spontaneous and endothermic process, which was better fitted to the pseudo-second-order kinetic model and Langmuir isotherm model. Both X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations revealed that U(VI) adsorption on PAO/GONRs-A mainly did rely on the amidoxime groups anchored on the aerogel while UO2(PAO)2(H2O)3 was dominant after interaction of uranyl with PAO/GONRs-A. Therefore, as a candidate adsorbent, PAO/GONRs-A has a high potential for the removal of uranium from aqueous solutions.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Xuewen Hu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Yuting Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Yang Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
| | - Changfu Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Yan Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Dingzhong Yuan
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Xiaogang Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Houjun He
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Limin Zhou
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Zhirong Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
34
|
Shi J, Wang Z, Tao Y, Xu H, Zhao X, Lin Y, Liu Y. Self-Powered Memristive Systems for Storage and Neuromorphic Computing. Front Neurosci 2021; 15:662457. [PMID: 33867930 PMCID: PMC8044301 DOI: 10.3389/fnins.2021.662457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
A neuromorphic computing chip that can imitate the human brain’s ability to process multiple types of data simultaneously could fundamentally innovate and improve the von-neumann computer architecture, which has been criticized. Memristive devices are among the best hardware units for building neuromorphic intelligence systems due to the fact that they operate at an inherent low voltage, use multi-bit storage, and are cost-effective to manufacture. However, as a passive device, the memristor cell needs external energy to operate, resulting in high power consumption and complicated circuit structure. Recently, an emerging self-powered memristive system, which mainly consists of a memristor and an electric nanogenerator, had the potential to perfectly solve the above problems. It has attracted great interest due to the advantages of its power-free operations. In this review, we give a systematic description of self-powered memristive systems from storage to neuromorphic computing. The review also proves a perspective on the application of artificial intelligence with the self-powered memristive system.
Collapse
Affiliation(s)
- Jiajuan Shi
- Key Laboratory for Ultraviolet Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, China
| | - Zhongqiang Wang
- Key Laboratory for Ultraviolet Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, China
| | - Ye Tao
- Key Laboratory for Ultraviolet Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, China.,School of Science, Changchun University of Science and Technology, Changchun, China
| | - Haiyang Xu
- Key Laboratory for Ultraviolet Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, China
| | - Xiaoning Zhao
- Key Laboratory for Ultraviolet Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, China
| | - Ya Lin
- Key Laboratory for Ultraviolet Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, China
| | - Yichun Liu
- Key Laboratory for Ultraviolet Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, China
| |
Collapse
|
35
|
Li Y, He H, Liu Z, Lai Z, Wang Y. A facile method for preparing three-dimensional graphene nanoribbons aerogel for uranium(VI) and thorium(IV) adsorption. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07619-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Shen D, Duley WW, Peng P, Xiao M, Feng J, Liu L, Zou G, Zhou YN. Moisture-Enabled Electricity Generation: From Physics and Materials to Self-Powered Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003722. [PMID: 33185944 DOI: 10.1002/adma.202003722] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/11/2020] [Indexed: 05/24/2023]
Abstract
The exploration of the utilization of sustainable, green energy represents one way in which it is possible to ameliorate the growing threat of the global environmental issues and the crisis in energy. Moisture, which is ubiquitous on Earth, contains a vast reservoir of low-grade energy in the form of gaseous water molecules and water droplets. It has now been found that a number of functionalized materials can generate electricity directly from their interaction with moisture. This suggests that electrical energy can be harvested from atmospheric moisture and enables the creation of a new range of self-powered devices. Herein, the basic mechanisms of moisture-induced electricity generation are discussed, the recent advances in materials (including carbon nanoparticles, graphene materials, metal oxide nanomaterials, biofibers, and polymers) for harvesting electrical energy from moisture are summarized, and some strategies for improving energy conversion efficiency and output power in these devices are provided. The potential applications of moisture electrical generators in self-powered electronics, healthcare, security, information storage, artificial intelligence, and Internet-of-things are also discussed. Some remaining challenges are also considered, together with a number of suggestions for potential new developments of this emerging technology.
Collapse
Affiliation(s)
- Daozhi Shen
- Institute for Quantum Computing, Department of Chemistry, Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Walter W Duley
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Peng Peng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P. R. China
| | - Ming Xiao
- Centre for Advanced Materials Joining, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Jiayun Feng
- Centre for Advanced Materials Joining, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lei Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, P. R. China
| | - Guisheng Zou
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, P. R. China
| | - Y Norman Zhou
- Centre for Advanced Materials Joining, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
37
|
Huang L, Xu S, Wang Z, Xue K, Su J, Song Y, Chen S, Zhu C, Tang BZ, Ye R. Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask. ACS NANO 2020; 14:12045-12053. [PMID: 32790338 DOI: 10.1021/acsnano.0c05330] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wearing face masks has been widely recommended to contain respiratory virus diseases, yet the improper use of masks poses a threat of jeopardizing the protection effect. We here identified the bacteria viability on common face masks and found that the majority of bacteria (90%) remain alive after 8 h. Using laser-induced graphene (LIG), the inhibition rate improves to ∼81%. Combined with the photothermal effect, 99.998% bacterial killing efficiency could be attained within 10 min. For aerosolized bacteria, LIG also showed superior antibacterial capacity. The LIG can be converted from a diversity of carbon precursors including biomaterials, which eases the supply stress and environmental pressure amid an outbreak. In addition, self-reporting of mask conditions is feasible using the moisture-induced electricity from gradient graphene. Our results improve the safe use of masks and benefit the environment.
Collapse
Affiliation(s)
- Libei Huang
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Siyu Xu
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Zhaoyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jianjun Su
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Yun Song
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- SCUT-HKUST Joint Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Tianhe Qu, Guangzhou 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, 999077, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong, China
| |
Collapse
|
38
|
Kim CH, Kim TH. Graphene Hybrid Materials for Controlling Cellular Microenvironments. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4008. [PMID: 32927729 PMCID: PMC7559936 DOI: 10.3390/ma13184008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Cellular microenvironments are known as key factors controlling various cell functions, including adhesion, growth, migration, differentiation, and apoptosis. Many materials, including proteins, polymers, and metal hybrid composites, are reportedly effective in regulating cellular microenvironments, mostly via reshaping and manipulating cell morphologies, which ultimately affect cytoskeletal dynamics and related genetic behaviors. Recently, graphene and its derivatives have emerged as promising materials in biomedical research owing to their biocompatible properties as well as unique physicochemical characteristics. In this review, we will highlight and discuss recent studies reporting the regulation of the cellular microenvironment, with particular focus on the use of graphene derivatives or graphene hybrid materials to effectively control stem cell differentiation and cancer cell functions and behaviors. We hope that this review will accelerate research on the use of graphene derivatives to regulate various cellular microenvironments, which will ultimately be useful for both cancer therapy and stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea;
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea;
- Integrative Research Centre for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
39
|
Tu M, Lu H, Luo S, Peng H, Li S, Ke Y, Yuan S, Huang W, Jie W, Hao J. Reversible Transformation between Bipolar Memory Switching and Bidirectional Threshold Switching in 2D Layered K-Birnessite Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24133-24140. [PMID: 32369346 DOI: 10.1021/acsami.0c04872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Birnessite-related manganese dioxides (MnO2) have recently been studied owing to their diverse low-dimensional layered structures and potential applications in energy devices. The birnessite MnO2 possesses a layered structure with edge-shared MnO6 octahedra layer stacked with interlayer of cations. The unique layered structure may provide some distinct electrical properties for the 2D layered nanosheets. In this work, layered K-birnessite MnO2 samples are synthesized by a hydrothermal method. The resistive switching (RS) devices based on single K-birnessite MnO2 nanosheets are fabricated by transferring the nanosheets onto SiO2/Si substrates through a facile and feasible method of mechanical exfoliation. The device exhibits nonvolatile memory switching (MS) behaviors with high current ON/OFF ratio of ∼2 × 105. And more importantly, reversible transformation between the nonvolatile MS and volatile threshold switching (TS) can be achieved in the single layered nanosheet through tuning the magnitude of compliance current (Icc). To be more specific, a relatively high Icc (1 mA) can trigger the nonvolatile MS behaviors, while a relatively low Icc (≤100 μA) can generate volatile TS characteristics. This work not only demonstrates the memristor based on single birnessite-related MnO2 nanosheet, but also offers an insight into understanding the complex resistive switching types and relevant physical mechanisms of the 2D layered oxide nanosheets.
Collapse
Affiliation(s)
- Meilin Tu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Haipeng Lu
- National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Songwen Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Hao Peng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shangdong Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yizhen Ke
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shuoguo Yuan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong China
| | - Wen Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wenjing Jie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong China
| |
Collapse
|
40
|
Ren Z, Zhou G, Wei S. Multilevel resistive switching memory behaviors arising from ion diffusion and photoelectron transfer in α-Fe 2O 3 nano-island arrays. Phys Chem Chem Phys 2020; 22:2743-2747. [PMID: 31984390 DOI: 10.1039/c9cp06392g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resistive switching (RS) memory behaviors are observed in an Ag|α-Fe2O3|Ti device after operating under an ultralow bias voltage of ±0.1 V. An SET voltage of ∼20 mV is obtained under illumination. Multilevel RS memory is realized under photoelectric signal control. The separation and fast transfer of hole-electron pairs are responsible for the enhanced RS memory under illumination.
Collapse
Affiliation(s)
- Zhijun Ren
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Guangdong Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China. and School of Artificial Intelligence, Southwest University, Chongqing, 400715, China and School of Materials and Energy, Southwest University, Chongqing, 400715, China and School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
| | - Shiqiang Wei
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
41
|
Abstract
The exploration of green and clean energy could solve the increasingly serious problems of environmental pollution and energy crisis on the Earth. Moist air is ubiquitous around the world, which particulalrly has huge chemical potential energy because of the gaseous state of the water molecules. Recently, our group demonstrated direct electricity generation by the interactions between moisture and various functional materials, which opened a window for the utilization of moisture power. This has led to an upsurge in studies on moist-electric generation (MEG). In this minireview, we provide a brief and systematic discussion on MEG from its working mechanism to practical applications and, the recent progress in advanced materials. The current challenges and the potential trends in MEG are also outlined to guide the design and synthesis of high-performance MEG devices in the future.
Collapse
Affiliation(s)
- Jiaxin Bai
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China.
| | | | | | | |
Collapse
|
42
|
Xue J, Gao Z, Xiao L. The Application of Stimuli-Sensitive Actuators Based on Graphene Materials. Front Chem 2019; 7:803. [PMID: 31921756 PMCID: PMC6914738 DOI: 10.3389/fchem.2019.00803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Abstract
Graphene-based materials that can spontaneously response to external stimulations have triggered rapidly increasing research interest for developing smart devices due to their excellent electrical, mechanical and thermal properties. The specific behaviors as bending, curling, and swing are benefit for designing and fabricating the smart actuation system. In this minireview, we overview and summarize some of the recent advancements of stimuli-responsive actuators based on graphene materials. The external stimulus usually is as electrical, electrochemical, humid, photonic, and thermal. The advancement and industrialization of graphene preparation technology would push forward the rapid progress of graphene-based actuators and broaden their application including smart sensors, robots, artificial muscles, intelligent switch, and so on.
Collapse
Affiliation(s)
| | - Zhaoshun Gao
- Interdisciplinary Research Center, Institute of Electrical Engineering, Chinese Academy of Science, Beijing, China
| | | |
Collapse
|
43
|
Dong Y, Wang J, Guo X, Yang S, Ozen MO, Chen P, Liu X, Du W, Xiao F, Demirci U, Liu BF. Multi-stimuli-responsive programmable biomimetic actuator. Nat Commun 2019; 10:4087. [PMID: 31501430 PMCID: PMC6733902 DOI: 10.1038/s41467-019-12044-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 11/25/2022] Open
Abstract
Untethered small actuators have various applications in multiple fields. However, existing small-scale actuators are very limited in their intractability with their surroundings, respond to only a single type of stimulus and are unable to achieve programmable structural changes under different stimuli. Here, we present a multiresponsive patternable actuator that can respond to humidity, temperature and light, via programmable structural changes. This capability is uniquely achieved by a fast and facile method that was used to fabricate a smart actuator with precise patterning on a graphene oxide film by hydrogel microstamping. The programmable actuator can mimic the claw of a hawk to grab a block, crawl like an inchworm, and twine around and grab the rachis of a flower based on their geometry. Similar to the large- and small-scale robots that are used to study locomotion mechanics, these small-scale actuators can be employed to study movement and biological and living organisms. Untethered small actuators have various applications but existing small-scale actuators are limited in their response to different stimuli. Here, we present a multiresponsive patternable actuator that can respond to humidity, temperature and light, via programmable structural changes.
Collapse
Affiliation(s)
- Yue Dong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jie Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology School of Medicine Stanford University, Palo Alto, CA, 94304, USA
| | - Xukui Guo
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shanshan Yang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mehmet Ozgun Ozen
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology School of Medicine Stanford University, Palo Alto, CA, 94304, USA
| | - Peng Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fei Xiao
- School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology School of Medicine Stanford University, Palo Alto, CA, 94304, USA.
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
44
|
Li L, Chen Z, Hao M, Wang S, Sun F, Zhao Z, Zhang T. Moisture-Driven Power Generation for Multifunctional Flexible Sensing Systems. NANO LETTERS 2019; 19:5544-5552. [PMID: 31348665 DOI: 10.1021/acs.nanolett.9b02081] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Flexible self-powered multifunctional sensing systems provide a promising direction for the development of wearable electronics. Although increased efforts have been devoted to developing self-powered integrated devices, the development of flexible and adaptable sensing systems with miniaturized stable power supplies is highly desirable yet greatly challenging. Herein, an ambient moisture-induced self-powered wearable sensing system was fabricated by integrating a porous polydopamine layer with a hydroxy group gradient (called g-PDA) based moisture-enabled power generator and a flexible pressure sensor. Due to the large amount of gradient-distributed free cations (H+) and locally confined anions produced in wide electrode spaces during hydration of the thin porous g-PDA film, the moisture-induced potential and effective output power density of the g-PDA-based power generator rapidly reaches up to 0.52 V and 0.246 mW cm-2, respectively. Importantly, the voltage output within 120 s only has 6% change, and a continuously open-circuit voltage can be maintained after 1900 s of attenuation, which is a breakthrough for the duration of humidity generation. Finally, a self-powered wearable multifunctional sensing system has been demonstrated to be able to provide real-time monitoring of human physiological signals, without an external power supply, which opens new opportunities for future self-powered multifunctional sensing systems.
Collapse
Affiliation(s)
- Lianhui Li
- i-Lab, Laboratory of Multifunctional Nanomaterials and Smart Systems , Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) , 398 Ruoshui Road , Suzhou 215123 , P.R. China
| | - Zhigang Chen
- i-Lab, Laboratory of Multifunctional Nanomaterials and Smart Systems , Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) , 398 Ruoshui Road , Suzhou 215123 , P.R. China
| | - Mingming Hao
- i-Lab, Laboratory of Multifunctional Nanomaterials and Smart Systems , Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) , 398 Ruoshui Road , Suzhou 215123 , P.R. China
| | - Shuqi Wang
- i-Lab, Laboratory of Multifunctional Nanomaterials and Smart Systems , Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) , 398 Ruoshui Road , Suzhou 215123 , P.R. China
| | - Fuqin Sun
- i-Lab, Laboratory of Multifunctional Nanomaterials and Smart Systems , Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) , 398 Ruoshui Road , Suzhou 215123 , P.R. China
| | - Zhigang Zhao
- i-Lab, Laboratory of Multifunctional Nanomaterials and Smart Systems , Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) , 398 Ruoshui Road , Suzhou 215123 , P.R. China
| | - Ting Zhang
- i-Lab, Laboratory of Multifunctional Nanomaterials and Smart Systems , Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) , 398 Ruoshui Road , Suzhou 215123 , P.R. China
| |
Collapse
|
45
|
Lee S, Jang H, Lee H, Yoon D, Jeon S. Direct Fabrication of a Moisture-Driven Power Generator by Laser-Induced Graphitization with a Gradual Defocusing Method. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26970-26975. [PMID: 31273986 DOI: 10.1021/acsami.9b08056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A CO2 laser was employed to create a rectangle (4 × 2 mm2) of a conductive graphitic carbon layer (GCL) directly on a cellulose substrate. By tilting the substrate while keeping the laser power constant, the laser power density was gradually changed while scanning in the direction of the long side of the rectangle, due to deviation of the laser focus. As the laser beam defocus distance increased, the laser intensity at the substrate decreased, and the oxygen-to-carbon ratio (O/C) of the GCL increased. Upon exposing the GCL substrate to water vapor, the hydrogen-containing groups (carboxyl and hydroxyl groups) in the GCL were hydrolyzed, and a density gradient of hydrogen ions was induced due to the preformed O/C gradient. The resulting voltage and current outputs reached 0.23 V and 0.4 μA/cm2, respectively, at 70% relative humidity. Additionally, it was demonstrated that the electricity obtained during breathing could turn on a green light-emitting diode operating at an onset potential of 2 V when an array of the GCLs was attached to a filter mask.
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Pohang , Gyeongbuk 37673 , Republic of Korea
| | - Hansol Jang
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Pohang , Gyeongbuk 37673 , Republic of Korea
| | - Hansol Lee
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Pohang , Gyeongbuk 37673 , Republic of Korea
| | - Dongho Yoon
- R&D Center , KUK IL Paper Mfg Co., Ltd ., Baekok-daero 563 , Yongin , Cheoin-gu 17128 , Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro , Pohang , Gyeongbuk 37673 , Republic of Korea
| |
Collapse
|
46
|
Li JH, Guo YD, Zeng HL, Mou XY, Yan XH. Edge-modulated dual spin-filter effect in zigzag-shaped buckling Ag 2S nanoribbons. Phys Chem Chem Phys 2019; 21:15623-15629. [PMID: 31268445 DOI: 10.1039/c9cp02521a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlike MoS2, single-layered Ag2S nanoribbons (Ag2SNRs) exhibit a nonmetal-shrouded and a zigzag-shaped buckling structure and possess two distinct edges, S- or Ag-terminated ones. By performing first principle calculations, the spin-dependent electron transport of Ag2SNRs in a ferromagnetic state has been investigated. It is found that the SS- and AgAg-terminated Ag2SNRs exhibit semi-metallic characteristics, but with opposite spin-polarized directions. And AgS-terminated ones show metallic characteristics, but with completely spin-unpolarized transmission. That is to say, all three states, i.e., spin up polarized, spin down polarized and spin unpolarized ones, could be achieved by modulating the edge geometry. Further analysis shows that, the spatial separation on edges of the energy states with different spins around EF is responsible for the switch in the three states. The system could operate as a dual spin-filter, and the direction of the spin polarization can be switched by the edge morphology. Furthermore, calculations show that such a phenomenon is robust to the width of the ribbon and strain, showing great application potential.
Collapse
Affiliation(s)
- Jian-Hua Li
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yan-Dong Guo
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. and College of Natural Science, Nanjing University of Posts and Telecommunications, Nanjing 210046, China and Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China and New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing, 210023, Jiangsu, China
| | - Hong-Li Zeng
- College of Natural Science, Nanjing University of Posts and Telecommunications, Nanjing 210046, China and Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China
| | - Xin-Yi Mou
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Xiao-Hong Yan
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. and Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, China and College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China and School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
47
|
Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced Carbon for Flexible and Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801072. [PMID: 30300444 DOI: 10.1002/adma.201801072] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/26/2018] [Indexed: 05/19/2023]
Abstract
Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next-generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural-biomaterial-derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high-performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon-based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Chunya Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Kailun Xia
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhe Yin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
48
|
Yang C, Huang Y, Cheng H, Jiang L, Qu L. Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805705. [PMID: 30444018 DOI: 10.1002/adma.201805705] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/04/2018] [Indexed: 06/09/2023]
Abstract
Moisture-triggered electricity generation has attracted much attention because of the effective utilization of the water-molecule diffusion process widely existing in atmosphere. However, the monotonous and rigid structures of previously developed generators have heavily restricted their applications in complex and highly deformable working conditions. Herein, by a rational configuration design with a versatile laser processing strategy, graphene-based hygroelectric generators (GHEGs) of sophisticated architectures with diversified functions such as rollable, stretchable, and even multidimensional transformation are achieved for the first time. More importantly, a wide range of 3D deformable generators that can automatically assemble and transform from planar geometries into spacial architectures are also successfully fabricated, including cubic boxes, pyramids, Miura-ori, and footballs. These GHEGs demonstrate excellent electricity-generation performance in curling and elongating states. The generated voltages are easily up to 1.5 V under humidity variation in atmosphere, powering a variety of commercial electronic components. These deformable GHEGs can be applied on complicated surfaces, human bodies, and many more beyond those demonstrated in this work.
Collapse
Affiliation(s)
- Ce Yang
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yaxin Huang
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lan Jiang
- Laser Micro/Nano-Fabrication Laboratory, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liangti Qu
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
49
|
Zhou G, Sun B, Ren Z, Wang L, Xu C, Wu B, Li P, Yao Y, Duan S. Resistive switching behaviors and memory logic functions in single MnOx nanorod modulated by moisture. Chem Commun (Camb) 2019; 55:9915-9918. [DOI: 10.1039/c9cc04069b] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reversion between resistor and memristor and memory logic functions induced by moisture.
Collapse
Affiliation(s)
- Guangdong Zhou
- School of Science
- Guizhou institute of Technology
- Guiyang 55003
- China
- School of Artificial Intelligence
| | - Bai Sun
- School of Physical Science and Technology
- Southwest Jiaotong University
- Chengdu
- China
| | - Zhijun Ren
- School of Science
- Guizhou institute of Technology
- Guiyang 55003
- China
| | - Lidan Wang
- School of Physical Science and Technology
- Southwest Jiaotong University
- Chengdu
- China
| | - Cunyun Xu
- School of Artificial Intelligence
- Southwest University
- Chongqing 400715
- China
| | - Bo Wu
- School of Physics and Electronic Science
- Zunyi Normal College
- China
| | - Ping Li
- School of Physics and Electronic Science
- Zunyi Normal College
- China
| | - Yanqing Yao
- School of Artificial Intelligence
- Southwest University
- Chongqing 400715
- China
| | - Shukai Duan
- School of Artificial Intelligence
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
50
|
Mao S, Sun B, Yu T, Mao W, Zhu S, Ni Y, Wang H, Zhao Y, Chen Y. pH-Modulated memristive behavior based on an edible garlic-constructed bio-electronic device. NEW J CHEM 2019. [DOI: 10.1039/c9nj02433f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new type of memristive memory device with an edible garlic-constructed Ag/garlic/fluorine-doped SnO2(FTO) structure for analog neuromorphic sensor applications was designed.
Collapse
Affiliation(s)
- Shuangsuo Mao
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Bai Sun
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Tian Yu
- College of Physical Science and Technology
- Sichuan University
- Chengdu 610064
- China
| | - Weiwei Mao
- School of Science
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- China
| | - Shouhui Zhu
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yuxiang Ni
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Hongyan Wang
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yong Zhao
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Yuanzheng Chen
- School of Physical Science and Technology
- Superconductivity and New Energy R&D Center (SNERDC)
- Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|