1
|
Li X, Zhang J, Shi B, Li Y, Wang Y, Shuai K, Li Y, Ming G, Song T, Pei W, Sun B. Freestanding Transparent Organic-Inorganic Mesh E-Tattoo for Breathable Bioelectrical Membranes with Enhanced Capillary-Driven Adhesion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22337-22351. [PMID: 40189874 DOI: 10.1021/acsami.5c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The electronic tattoo (e-tattoo), a cutting-edge wearable sensor technology adhered to human skin, has garnered significant attention for its potential in brain-computer interfaces (BCIs) and routine health monitoring. Conventionally, flexible substrates with adhesion force on dewy surfaces pursue seamless contact with skin, employing compact airtight substrates, hindering air circulation between skin and the surrounding environment, and compromising long-term wearing comfort. To address these challenges, we have developed a freestanding transparent e-tattoo featuring flexible serpentine mesh bridges with a unique full-breathable multilayer structure. The mesh e-tattoo demonstrates remarkable ductility and air permeability while maintaining robust electronic properties, even after significant mechanical deformation. Furthermore, it exhibits an impressive visible-light transmittance of up to 95%, coupled with a low sheet resistance of 0.268 Ω sq-1, ensuring both optical clarity and electrical efficiency. By increasing the number of menisci between the mesh e-tattoo and the skin, the total adhesion force increases due to the cumulative capillary-driven effect. We also successfully demonstrated high-quality bioelectric signal collections. In particular, the controlling virtual reality (VR) objects using electrooculogram (EOG) signals collected by mesh e-tattoos were achieved to demonstrate their potential for human-computer interactions (HCIs). This freestanding transparent e-tattoo with a fully breathable mesh structure represents a significant advancement in flexible electrodes for bioelectrical signal monitoring applications.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Junyi Zhang
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P. R. China
| | - Bo Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yawen Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yanan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Kexiang Shuai
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P. R. China
| | - Yue Li
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, P. R. China
| | - Gege Ming
- Department of Biomedical Engineering, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Tao Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Weihua Pei
- Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Baoquan Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Macau Institute of Materials Science and Engineering, MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau 999078, P. R. China
| |
Collapse
|
2
|
Xu M, Zhang J, Dong C, Tang C, Hu F, Malliaras GG, Occhipinti LG. Simultaneous Isotropic Omnidirectional Hypersensitive Strain Sensing and Deep Learning-Assisted Direction Recognition in a Biomimetic Stretchable Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420322. [PMID: 39887745 PMCID: PMC12038543 DOI: 10.1002/adma.202420322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/26/2025] [Indexed: 02/01/2025]
Abstract
Omnidirectional strain sensing and direction recognition ability are features of the human tactile sense, essential to address the intricate and dynamic requirements of real-world applications. Most of the current strain sensors work by converting uniaxial strain into electrical signals, which restricts their use in environments with multiaxial strain. Here, the first device with simultaneous isotropic omnidirectional hypersensitive strain sensing and direction recognition (IOHSDR) capabilities is introduced. By mimicking the human fingers from three dimensions, the IOHSDR device realizes a novel heterogeneous substrate that incorporates the involute of a circle, resulting in isotropic behavior in the radial direction and anisotropic property in the involute direction for hypersensitive strain sensing. With the assistance of a deep learning-based model, the IOHSDR device accomplishes an impressive accuracy of 99.58% in recognizing 360° stretching directions. Additionally, it exhibits superior performance in the typical properties of stretchable strain sensors, with a gauge factor of 634.12, an ultralow detection limit of 0.01%, and outstanding durability exceeding 15 000 cycles. The demonstration of radial artery pulse and throat vibration applications highlights the IOHSDR's unique characteristics of isotropic omnidirectional sensing and precise direction detection unleashing new classes of wearable health monitoring devices.
Collapse
Affiliation(s)
- Muzi Xu
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Jiaqi Zhang
- Department of Electrical and Electronic EngineeringUniversity of Hong KongPokfulam RoadHong Kong SAR999077China
| | - Chaoqun Dong
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Chenyu Tang
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Fangxin Hu
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - George G. Malliaras
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Luigi G. Occhipinti
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
3
|
Zhang JR, Li A, Li XL, Chang Z, Han DD, Zhang YL. Bioinspired Sensor and Actuator Hybrid Pixel Array for Moisture/Temperature Mapping, Electrothermal Display and Programmable Deformation. NANO LETTERS 2025; 25:4586-4595. [PMID: 40047276 DOI: 10.1021/acs.nanolett.5c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Natural soft organisms with sophisticated perception and deformation abilities provide inspiration for developing flexible electronics. However, the development of flexible sensing and actuating hybrid systems remains a challenge. Herein, we report a bioinspired sensor and actuator hybrid pixel array (SA-HPA) that enables moisture/temperature mapping, electrothermal display, and programmable electrothermal deformation. The SA-HPA is fabricated by femtosecond laser patterning of Cu electrodes/circuits, controllable deposition of graphene, selective encapsulation, and liquid crystal elastomer integration. The versatile SA-HPA can work as a sensor array for temperature and moisture recognition, and the interference between them can be overcome by the selective encapsulation of adjacent pixels. Additionally, SA-HPAs can also serve as electrothermal pixels for programmable infrared display and actuation. As a proof-of-concept, a soft robotic system that enables active temperature and humidity sensing was demonstrated. We deem that the SA-HPA may provide a new paradigm for developing soft electronics.
Collapse
Affiliation(s)
- Jia-Rui Zhang
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ang Li
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xi-Lin Li
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130012, China
| | - Dong-Dong Han
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yong-Lai Zhang
- State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
4
|
Cui S, Han D, Chen G, Liu S, Xu Y, Yu Y, Peng L. Toward Stretchable Flexible Integrated Sensor Systems. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11397-11414. [PMID: 39644227 DOI: 10.1021/acsami.4c12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Skin-like flexible sensors hold great potential as the next generation of intelligent electronic devices owing to their broad applications in environmental monitoring, human-machine interfaces, the Internet of Things, and artificial intelligence. Flexible electronics inspired by human skin play a vital role in continuous and real-time health monitoring. This review summarizes recent progress in skin-mountable electronics developed by designing flexible electrodes and substrates into different structures, including serpentine, microcrack, wrinkle, and kirigami. Furthermore, this review briefly discusses advances in wearable integrated sensor systems that mimic the flexibility of human skin, as well as multisensing functions. In the future, innovations in stretchable integrated sensor systems will be crucial to develop next-generation intelligent skin-based sensors for practical applications such as medical diagnosis, treatment, and environment monitoring.
Collapse
Affiliation(s)
- Songya Cui
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Dongxue Han
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Guang Chen
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Shuting Liu
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Yuhong Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yufeng Yu
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Liang Peng
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
5
|
Yu R, Wu L, Yang Z, Wu J, Chen H, Pan S, Zhu M. Dynamic Liquid Metal-Microfiber Interlocking Enables Highly Conductive and Strain-insensitive Metastructured Fibers for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415268. [PMID: 39690796 DOI: 10.1002/adma.202415268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Stretchable fibers with high conductivity are vital components for smart textiles and wearable electronics. However, embedding solid conductive materials in polymers significantly reduces conductive pathways when stretched, causing a sharp drop in conductivity. Here, a stretchable metastructured fiber with dynamic liquid metal-microfiber interlocking interface is reported to realize highly conductive yet ultrastable conductance. The Cu-EGaIn mixture is partially embedded within the porous microfiber mat, thereby enabling its roll-up into a spiral-layered metastructured fiber with self-compensating conductive pathways. The metastructured fiber shows outstanding performance, including high conductivity of 1.5 × 106 S m-1, large stretchability up to 629%, and ultrastable conductance with only 16% relative resistance change at 100% strain, which far surpasses the theoretical value. Moreover, these fibers have served as versatile platforms for wearable temperature-visualizing electrothermal fiber heaters and fully stretchable smart sensing-display fabrics. This dynamic solid-liquid interfacial interlocking strategy is promising for stretchable electronics.
Collapse
Affiliation(s)
- Rouhui Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Liang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhonghua Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huifang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shaowu Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
6
|
Zhao S, Liu D, Yan F. Wearable Resistive-Type Stretchable Strain Sensors: Materials and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413929. [PMID: 39648537 DOI: 10.1002/adma.202413929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/01/2024] [Indexed: 12/10/2024]
Abstract
The rapid advancement of wearable electronics over recent decades has led to the development of stretchable strain sensors, which are essential for accurately detecting and monitoring mechanical deformations. These sensors have widespread applications, including movement detection, structural health monitoring, and human-machine interfaces. Resistive-type sensors have gained significant attention due to their simple design, ease of fabrication, and adaptability to different materials. Their performance, evaluated by metrics like stretchability and sensitivity, is influenced by the choice of strain-sensitive materials. This review offers a comprehensive comparison and evaluation of different materials used in resistive strain sensors, including metal and semiconductor films, low-dimensional materials, intrinsically conductive polymers, and gels. The review also highlights the latest applications of resistive strain sensors in motion detection, healthcare monitoring, and human-machine interfaces by examining device physics and material characteristics. This comparative analysis aims to support the selection, application, and development of resistive strain sensors tailored to specific applications.
Collapse
Affiliation(s)
- Sanqing Zhao
- Department of Applied Physics, Research Center for Organic Electronics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Dapeng Liu
- Department of Applied Physics, Research Center for Organic Electronics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Feng Yan
- Department of Applied Physics, Research Center for Organic Electronics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| |
Collapse
|
7
|
Wu Y, An C, Guo Y, Kang L, Wang Y, Wan H, Tang H, Ma Q, Yang C, Xu M, Zhao Y, Jiang N. Multiscale Structural Control by Matrix Engineering for Polydimethylsiloxane Filled Graphene Woven Fabric Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410148. [PMID: 39757495 DOI: 10.1002/smll.202410148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Elastomer cure shrinkage during composite fabrication often induces wrinkling in conductive networks, significantly affecting the performance of flexible strain sensors, yet the specific roles of such wrinkles are not fully understood. Herein, a highly sensitive polydimethylsiloxane-filled graphene woven fabric (PDMS-f-GWF) strain sensor by optimizing the PDMS cure shrinkage through careful adjustment of the base-to-curing-agent ratio is developed. This sensor achieves a gauge factor of ∼700 at 25% strain, which is over 6 times higher than sensors using commercially formulated PDMS. This enhanced sensing performance is attributed to multiscale structural control of the graphene network, enabled by precisely tuned cure shrinkage of PDMS. Using in situ scanning electron microscopy, X-ray scattering, and Raman spectroscopy, an optimized PDMS base-to-curing-agent ratio of 10:0.8 is show that enables interconnected structural changes from atomic to macroscopic scales, including larger "real" strain within the graphene lattice, enhanced flattening of graphene wrinkles, and increased crack density. These findings highlight the critical role of elastomer shrinkage in modulating the multiscale structure of conductive networks, offering new insights into matrix engineering strategies that advance the sensing performance of elastomer-based flexible strain sensors.
Collapse
Affiliation(s)
- Ying Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| | - Chao An
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yaru Guo
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Liying Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haixiao Wan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haijun Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qianyi Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ming Xu
- School of Materials Science and Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yixin Zhao
- Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology, Beijing, 100083, China
| | - Naisheng Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| |
Collapse
|
8
|
Shi W, Yang X, Lei L, Huang X, Lin J, Liang Q, Li W, Yang J. A high stretchability fiber based on a synergistic three-dimensional conductive network for wide-range strain sensing. NANOSCALE ADVANCES 2025; 7:517-523. [PMID: 39640005 PMCID: PMC11615956 DOI: 10.1039/d4na00770k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Fiber strain sensors are promising for constructing high-performance wearable electronic devices due to their light weight, high flexibility and excellent integration. However, the conductivity of most reported fiber strain sensors is severely degraded, following deformation upon stretching, and it is still a considerable challenge to achieve both high conductivity and stretchability. Herein, we have fabricated a fiber strain sensor with high conductivity and stretchability by integrating the AgNPs into the multi-walled carbon nanotube/graphene/thermoplastic polyurethane (MWCNT/GE/TPU) fiber. The tunneling-effect dominated MWCNT/GE layer bridges separated AgNP islands, endowing conductive fibers with the integrity of conductive pathways under large strain. By means of the synergistic effect of a three-dimensional conductive network, the fiber strain sensor of AgNPs/MWCNT/GE/TPU presents not only a high conductivity of 116 S m-1, but also a wide working range of up to 600% and excellent durability (8000 stretching-releasing cycles). Remarkably, benefiting from the crack propagation on the brittle AgNP layer, the fiber strain sensor exhibits a large resistance change in the strain range of 500-600%, and thus high sensitivity with a gauge factor of 545. This fiber strain sensor can monitor human physiological signals and body movement in real-time, including pulse and joint bending, which will contribute to the development of smart textiles and next-generation wearable devices.
Collapse
Affiliation(s)
- Wei Shi
- Health Management Research Institute, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences Nanning 530021 People's Republic of China
| | - Xing Yang
- Health Management Research Institute, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences Nanning 530021 People's Republic of China
| | - Langhuan Lei
- Health Management Research Institute, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences Nanning 530021 People's Republic of China
| | - Xiaozhi Huang
- Health Management Center, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences Nanning 530021 People's Republic of China
| | - Jiali Lin
- Health Management Research Institute, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences Nanning 530021 People's Republic of China
| | - Qiuyu Liang
- Health Management Research Institute, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences Nanning 530021 People's Republic of China
| | - Wei Li
- Health Management Center, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences Nanning 530021 People's Republic of China
| | - Jianrong Yang
- Health Management Research Institute, People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences Nanning 530021 People's Republic of China
| |
Collapse
|
9
|
Shao ZC, Jiang X, Zhang C, Wang T, Wang YR, Liu GQ, Huang ZY, Zhang YZ, Wu L, Hou ZH, Jiang H, Li Y, Yu SH. Plateau-Rayleigh Instability in Soft-Lattice Inorganic Solids. J Am Chem Soc 2024; 146:33774-33783. [PMID: 39574352 DOI: 10.1021/jacs.4c11866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Plateau-Rayleigh instability─a macroscopic phenomenon describing the volume-constant breakup of one-dimensional continuous fluids─has now been widely observed in adatoms, liquids, polymers, and liquid metals. This instability enables controlled wetting-dewetting behavior at fluid-solid interfaces and, thereby, the self-limited patterning into ordered structures. However, it has yet to be observed in conventional inorganic solids, as the rigid lattices restrict their "fluidity". Here, we report the general fluid-like Plateau-Rayleigh instability of silver-based chalcogenide semiconductors featuring soft-lattice ionic crystals. It enables postsynthetic morphing from conformal core-shell nanowires to periodically coaxial ones. We reveal that such self-limited reconstruction is thermodynamically driven by the surface energy and interface energy and kinetically favored by the high ionic diffusion coefficients of subnanoscale soft-lattice shells. The resulting periodic heterostructures can be topotactically transformed for epitaxial combinations of functional semiconductors free from the lattice-matching rule. This fluid-like behavior in soft inorganic solids thus offers routes toward sophisticated nanostructures and controllable patterning at all-inorganic solid-solid interfaces.
Collapse
Affiliation(s)
- Zhen-Chao Shao
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xianyun Jiang
- Key Laboratory of Precision and Intelligent Chemistry & Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chong Zhang
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Tianhao Wang
- Key Laboratory of Precision and Intelligent Chemistry & Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yan-Ru Wang
- The Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Qiang Liu
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zong-Ying Huang
- Institute of Innovative Materials (I2M), Department of Chemistry, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Zhuo Zhang
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Liang Wu
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Huai Hou
- Key Laboratory of Precision and Intelligent Chemistry & Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Huijun Jiang
- Key Laboratory of Precision and Intelligent Chemistry & Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yi Li
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shu-Hong Yu
- New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Innovative Materials (I2M), Department of Chemistry, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Chen Y, Feng T, Li C, Qin F. Comprehensive and Robust Anti-Jamming Dual-Electrode Pair Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406739. [PMID: 39501969 DOI: 10.1002/smll.202406739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/17/2024] [Indexed: 12/20/2024]
Abstract
Capacitive flexible sensors often encounter instability caused by temperature fluctuations, electromagnetic interference, stray capacitance effects, and signal noise induced by ubiquitous vibrations. The challenge lies in achieving comprehensive anti-jamming abilities while preserving a simplistic structure and manufacturing process. To tackle this dilemma, a straightforward and effective design is utilized to achieve comprehensive and robust anti-jamming properties in capacitive sensors. Electrospinning thermoplastic polyurethane (TPU) fiber mats soak with ionic liquid (IL) to create a co-continuous structure (TPU@IL) with high ionic conductivity and dielectric constant, which acts as the sensing units. The sensing mechanism of the TPU@IL with multiple electrode pairs encapsulated by polyethylene terephthalate (PET) is systematically elucidated. The optimal dual-electrode pair design for capacitive and resistive sensors, which have different sensitivities to temperature and stress, simultaneous realizes temperature-stress dual-mode sensing. Remarkably, the sensitivity curve of the TPU@IL/PET capacitive sensor exhibits an intriguing rarely reported S-shape with an adjustable step stress point. No liquid leakage even during extensive stress-strain cycling (>4000 cycles). Despite a slight compromise in sensitivity and response time, the TPU@IL/PET sensor demonstrates exceptional electromechanical stability, reliability, and powerful anti-jamming abilities against various interferences. A simple yet innovative sensor design enhances the performance and applicability of capacitive sensors in challenging environments.
Collapse
Affiliation(s)
- Yanlin Chen
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Tangfeng Feng
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Changfeng Li
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Faxiang Qin
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| |
Collapse
|
11
|
Ma X, Chen D, Qu Q, Liao S, Wang M, Wang H, Chen Z, Zhang T, Wang F, Liu Y. Directional Characteristic Enhancement of an Omnidirectional Detection Sensor Enabled by Strain Partitioning Effects in a Periodic Composite Hole Substrate. ACS Sens 2024; 9:5802-5814. [PMID: 39431947 DOI: 10.1021/acssensors.4c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
An omnidirectional stretchable strain sensor with high resolution is a critical component for motion detection and human-machine interaction. It is the current dominant solution to integrate several consistent units into the omnidirectional sensor based on a certain geometric structure. However, the excessive similarity in orientation characteristics among sensing units restricts orientation recognition due to their closely matched strain sensitivity. In this study, based on strain partition modulation (SPM), a sensitivity anisotropic amplification strategy is proposed for resistive strain sensors. The stress distribution of a sensitive conductive network is modulated by structural parameters of the customized periodic hole array introduced underneath the elastomer substrate. Meanwhile, the strain isolation structures are designed on both sides of the sensing unit for stress interference immune. The optimized sensors exhibit excellent sensitivity (19 for 0-80%; 109 for 80%-140%; 368 for 140%-200%), with nearly a 7-fold improvement in the 140%-200% interval compared to bare elastomer sensors. More importantly, a sensing array composed of multiple units with different hole configurations can highlight orientation characteristics with amplitude difference between channels reaching up to 29 times. For the 48-class strain-orientation decoupling task, the recognition rate of the sensitivity-differentiated layout sensor with the lightweight deep learning network is as high as 96.01%, superior to that of 85.7% for the sensitivity-consistent layout. Furthermore, the application of the sensor to the fitness field demonstrates an accurate recognition of the wrist flexion direction (98.4%) and spinal bending angle (83.4%). Looking forward, this methodology provides unique prospects for broader applications such as tactile sensors, soft robotics, and health monitoring technologies.
Collapse
Affiliation(s)
- Xingyu Ma
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Da Chen
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Quanlin Qu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shengmei Liao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Menghan Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hanning Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ziyue Chen
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Tong Zhang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fei Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yijian Liu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
12
|
Tang C, Zhang K, Yu S, Guan H, Cao M, Zhang K, Pan Y, Zhang S, Sun X, Peng H. All-Metal Flexible Fiber by Continuously Assembling Nanowires for High Electrical Conductivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405000. [PMID: 39152934 DOI: 10.1002/smll.202405000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Indexed: 08/19/2024]
Abstract
Fiber electronics booms as a new important field but is currently limited by the challenge of finding both highly flexible and conductive fiber electrodes. Here, all-metal fibers based on nanowires are discovered. Silver nanowires are continuously assembled into robust fibers by salt-induced aggregation and then firmly stabilized by plasmonic welding. The nanowire network structures provide them both high flexibility with moduli at the level of MPa and conductivities up to 106 S m-1. They also show excellent electrochemical properties such as low impedance and high electrochemically active surface area. Their stable chronic single-neuron recording is further demonstrated with good biocompatibility in vivo. These new fiber materials may provide more opportunities for the future development of fiber electronics.
Collapse
Affiliation(s)
- Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Kailin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Sihui Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Hang Guan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Mingjie Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Kun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - You Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Songlin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
13
|
Wang R, Qiu T, Zhang Y, Rein M, Stolyarov A, Zhang J, Seidel GD, Johnson BN, Wang A, Jia X. Fiber-based Miniature Strain Sensor with Fast Response and Low Hysteresis. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2403918. [PMID: 39712653 PMCID: PMC11661685 DOI: 10.1002/adfm.202403918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 12/24/2024]
Abstract
Flexible and stretchable strain sensors are in high demand in sports performance monitoring, structural health monitoring, and biomedical applications. However, existing stretchable soft sensors, primarily based on soft polymer materials, often suffer from drawbacks, including high hysteresis, low durability, and delayed response. To overcome these limitations, we introduced a stretchable miniature fiber sensor comprised of a stretchable core tightly coiled with parallel conductive wires. This fiber sensor is flexible and stretchable while exhibiting low hysteresis, a remarkable theoretical resolution of 0.015%, a response time of less than 30 milliseconds, and excellent stability after extensive cycling tests of over 16,000 cycles. To understand and predict the capacitive sensor response of the proposed sensor, an analytical expression was derived and proved to have good agreements with both experimental results and numerical simulation. The potential of the strain sensor as a wearable device is demonstrated by embedding it into belts, gloves, and knee protectors. Additionally, the sensor could extend its applications beyond wearable devices, as demonstrated by its integration into bladder and life safety rope monitoring systems. We envision our sensor can find applications in the field of sports performance evaluations, health care monitoring, and structural safety assessments.
Collapse
Affiliation(s)
- Ruixuan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Tong Qiu
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yujing Zhang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michael Rein
- Advanced Functional Fabrics of America, Cambridge, MA, 02139, USA
| | | | - Junru Zhang
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Gary D Seidel
- Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Anbo Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
14
|
Lu J, Zhu G, Wang S, Wu C, Qu X, Dong X, Pang H, Zhang Y. 3D Printed MXene-Based Wire Strain Sensors with Enhanced Sensitivity and Anisotropy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401565. [PMID: 38745539 DOI: 10.1002/smll.202401565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Stretchable strain sensors play a crucial role in intelligent wearable systems, serving as the interface between humans and environment by translating mechanical strains into electrical signals. Traditional fiber strain sensors with intrinsic uniform axial strain distribution face challenges in achieving high sensitivity and anisotropy. Moreover, existing micro/nano-structure designs often compromise stretchability and durability. To address these challenges, a novel approach of using 3D printing to fabricate MXene-based flexible sensors with tunable micro and macrostructures. Poly(tetrafluoroethylene) (PTFE) as a pore-inducing agent is added into 3D printable inks to achieve controllable microstructural modifications. In addition to microstructure tuning, 3D printing is employed for macrostructural design modifications, guided by finite element modeling (FEM) simulations. As a result, the 3D printed sensors exhibit heightened sensitivity and anisotropy, making them suitable for tracking static and dynamic displacement changes. The proposed approach presents an efficient and economically viable solution for standardized large-scale production of advanced wire strain sensors.
Collapse
Affiliation(s)
- Jingqi Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Shaolong Wang
- State Key Laboratory of Organic Electronics and Information Displays Institute of Advanced Materials (IAM) School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Chunjin Wu
- State Key Laboratory of Organic Electronics and Information Displays Institute of Advanced Materials (IAM) School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| |
Collapse
|
15
|
Zhang H, Zhu J, Yang Y, Liu Q, Xiong W, Yang X. Inductive Paper-Based Flexible Contact Force Sensor Utilizing Natural Micro-Nanostructures of Paper: Simplicity, Economy, and Eco-Friendliness. MICROMACHINES 2024; 15:890. [PMID: 39064401 PMCID: PMC11278913 DOI: 10.3390/mi15070890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Inductive contact force sensors, known for their high precision and anti-interference capabilities, hold significant potential applications in fields such as wearable and medical monitoring devices. Most of the current research on inductive contact force sensors employed novel nanomaterials as sensitive elements to enhance their sensitivity and other performance characteristics. However, sensors developed through such methods typically involve complex preparation processes, high costs, and difficulty in biodegradation, which limit their further development. This article introduces a new flexible inductive contact force sensor using paper as a sensitive element. Paper inherently possesses micro- and nanostructures on its surface and interior, enabling it to sensitively convert changes in contact force into changes in displacement, making it suitable for use as the sensor's sensitive element. Additionally, the advantages of paper also include its great flexibility, low cost, wide availability, and biodegradability. Performance testing on this flexible sensor showed good repeatability, hysteresis, sensitivity, and consistency. When used in experiments for monitoring human motion and respiration, this sensor also exhibited great detection performance. The proposed inductive paper-based flexible contact force sensor, with its simple structure, easy manufacturing process, cost-effectiveness, eco-friendliness, and good sensing performance, provides new insights into research for contact force sensors.
Collapse
Affiliation(s)
- Haozhe Zhang
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China; (H.Z.); (J.Z.); (Y.Y.); (Q.L.)
- Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China
- State Key Laboratory of Precision Space-Time Information Sensing Technology, Beijing 100084, China
| | - Junwen Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China; (H.Z.); (J.Z.); (Y.Y.); (Q.L.)
- Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China
- State Key Laboratory of Precision Space-Time Information Sensing Technology, Beijing 100084, China
| | - Yujia Yang
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China; (H.Z.); (J.Z.); (Y.Y.); (Q.L.)
- Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China
- State Key Laboratory of Precision Space-Time Information Sensing Technology, Beijing 100084, China
| | - Qiang Liu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China; (H.Z.); (J.Z.); (Y.Y.); (Q.L.)
- Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China
- State Key Laboratory of Precision Space-Time Information Sensing Technology, Beijing 100084, China
| | - Wei Xiong
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xing Yang
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China; (H.Z.); (J.Z.); (Y.Y.); (Q.L.)
- Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China
- State Key Laboratory of Precision Space-Time Information Sensing Technology, Beijing 100084, China
| |
Collapse
|
16
|
Yu R, Wang C, Du X, Bai X, Tong Y, Chen H, Sun X, Yang J, Matsuhisa N, Peng H, Zhu M, Pan S. In-situ forming ultra-mechanically sensitive materials for high-sensitivity stretchable fiber strain sensors. Natl Sci Rev 2024; 11:nwae158. [PMID: 38881574 PMCID: PMC11177883 DOI: 10.1093/nsr/nwae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 06/18/2024] Open
Abstract
Fiber electronics with flexible and weavable features can be easily integrated into textiles for wearable applications. However, due to small sizes and curved surfaces of fiber materials, it remains challenging to load robust active layers, thus hindering production of high-sensitivity fiber strain sensors. Herein, functional sensing materials are firmly anchored on the fiber surface in-situ through a hydrolytic condensation process. The anchoring sensing layer with robust interfacial adhesion is ultra-mechanically sensitive, which significantly improves the sensitivity of strain sensors due to the easy generation of microcracks during stretching. The resulting stretchable fiber sensors simultaneously possess an ultra-low strain detection limit of 0.05%, a high stretchability of 100%, and a high gauge factor of 433.6, giving 254-folds enhancement in sensitivity. Additionally, these fiber sensors are soft and lightweight, enabling them to be attached onto skin or woven into clothes for recording physiological signals, e.g. pulse wave velocity has been effectively obtained by them. As a demonstration, a fiber sensor-based wearable smart healthcare system is designed to monitor and transmit health status for timely intervention. This work presents an effective strategy for developing high-performance fiber strain sensors as well as other stretchable electronic devices.
Collapse
Affiliation(s)
- Rouhui Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Changxian Wang
- MOE Key Lab of Disaster Forecast and Control in Engineering, School of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China
| | - Xiangheng Du
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaowen Bai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongzhong Tong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huifang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Institute of Fiber Materials and Devices, Fudan University, Shanghai 200438, China
| | - Jing Yang
- Department of Cardiology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
| | - Naoji Matsuhisa
- Research Center for Advanced Science and Technology, and Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Institute of Fiber Materials and Devices, Fudan University, Shanghai 200438, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shaowu Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
17
|
Wang H, Li X, Wang X, Qin Y, Pan Y, Guo X. Somatosensory Electro-Thermal Actuator through the Laser-Induced Graphene Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310612. [PMID: 38087883 DOI: 10.1002/smll.202310612] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Indexed: 05/25/2024]
Abstract
The biological system realizes the unity of action and perception through the muscle tissue and nervous system. Correspondingly, artificial soft actuators realize the unity of sensing and actuating functions in a single functional material, which will have tremendous potential for developing intelligent and bionic soft robotics. This paper reports the design of a laser-induced graphene (LIG) electrothermal actuator with self-sensing capability. LIG, a functional material formed by a one-step direct-write lasing procedure under ambient air, is used as electrothermal conversion materials and piezoresistive sensing materials. By transferring LIG to a flexible silicone substrate, the design ability of the LIG-based actuator unit is enriched, along with an effectively improved sensing sensitivity. Through the integration of different types of well-designed LIG-based actuator units, the transformations from multidimensional precursors to 2D and 3D structures are realized. According to the piezoresistive effect of the LIG units during the deformation process, the visual synchronous deformation state feedback of the LIG-based actuator is proposed. The multimodal crawling soft robotics and the switchable electromagnetic shielding cloak serve as the demonstrations of the self-sensing LIG-based actuator, showing the advantage of the design in remote control of the soft robot without relying on the assistance of visual devices.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuyang Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyue Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yong Qin
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Pan
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaogang Guo
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
18
|
Lin Y, Mao J, Fan Q, Wang J. Fabricating multi-scale controllable PEDOT:PSS arrays via templated freezing assembly. SOFT MATTER 2024; 20:2394-2399. [PMID: 38376846 DOI: 10.1039/d3sm01651j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The fabrication of conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) into controllable hierarchical arrays is gaining increasing interest for various applications, e.g., bioelectronics, and regenerative medicine. Currently, solution-based print processing is the main methodology for fabricating PEDOT:PSS arrays. However, its constraints on crystallinity and polymer chain orientation often necessitate intricate post-processing procedures to enhance their material properties. Here, we report the precise control in the assembly of PEDOT:PSS to have customized arrays via a templated freezing assembly strategy (TFA). We can prepare centimeter-scale PEDOT:PSS patterns with tunable micro-morphology, nanofiber width, crystallinity, and polymer chain orientation. Importantly, the refined micro-morphologies endow good stretchability to the obtained arrays, and regulated crystallinity and polymer chain orientation directly lead to adjustable conductivity, ranging from 10-3 S cm-1 to 100 S cm-1. This strategy provides a novel avenue for fabricating conductive polymers into tailored electric devices, suggesting potential applications in flexible electronic devices and beyond.
Collapse
Affiliation(s)
- Yang Lin
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junqiang Mao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Qingrui Fan
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jianjun Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
19
|
Ai J, Wang Q, Li Z, Lu D, Liao S, Qiu Y, Xia X, Wei Q. Highly Stretchable and Fluorescent Visualizable Thermoplastic Polyurethane/Tetraphenylethylene Plied Yarn Strain Sensor with Heterogeneous and Cracked Structure for Human Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1428-1438. [PMID: 38150614 DOI: 10.1021/acsami.3c14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Smart wearable technology has been more and more widely used in monitoring and prewarning of human health and safety, while flexible yarn-based strain sensors have attracted extensive research interest due to their ability to withstand greater external strain and their significant application potential in real-time monitoring of human motion and health signals. Although several strain sensors based on yarn structures have been reported, it remains challenging to strike a balance between high sensitivity and wide strain ranges. At the same time, visual signal sensing is expected to be used in strain sensors thanks to its intuitiveness. In this work, thermoplastic polyurethane (TPU) and tetraphenylethylene (TPE) were wet-spun to fabricate flexible fluorescent fibers used as the substrate of the sensor, followed by the drop addition of polydimethylsiloxane (PDMS) beads and curing to produce a heterogeneous structure, which were further twisted into a plied yarn. Finally, a visualizable flexible yarn strain sensor based on solidified liquid beads and crack structure was obtained by loading polydopamine (PDA) and polypyrrole (PPy) in situ. The sensor exhibited high sensitivity (the GF value was 58.9 at the strain range of 143-184%), a wide working strain range (0-184%), a low monitoring limit (<0.1%), a fast response (58.82 ms), reliable responses at different frequencies, and excellent cycle durability (over 2000 cycles). At the same time, the yarn strain sensor also had excellent photothermal characteristics and a fluorescence crack visualization effect. These attractive advantages enabled yarn strain sensors to accurately monitor various human activities, showing great application potential in health monitoring, personalized medical diagnosis, and other aspects.
Collapse
Affiliation(s)
- Jingwen Ai
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, P. R. China
| | - Zhuquan Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Dongxing Lu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, P. R. China
| | - Yuyu Qiu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, P. R. China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, P. R. China
| |
Collapse
|
20
|
Tian Y, Zhang L, Li X, Yan M, Wang Y, Ma J, Wang Z. Compressible, anti-freezing, and ionic conductive cellulose/polyacrylic acid composite hydrogel prepared via AlCl 3/ZnCl 2 aqueous system as solvent and catalyst. Int J Biol Macromol 2023; 253:126550. [PMID: 37657569 DOI: 10.1016/j.ijbiomac.2023.126550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/03/2023]
Abstract
From the perspective of environmental sustainability, introducing cellulose into ionic conductive hydrogel is an inevitable trend for the development of flexible conductive materials. We report a double-network cellulose/polyacrylic acid (Cel/PAA) composite hydrogel based on the dissolving of cellulose by AlCl3/ZnCl2 aqueous system. The Cel/PAA composite hydrogel consists of rigid cellulose chains and flexible polyacrylic acid, which synergistically realize the improvement of the mechanical properties. The AlCl3/ZnCl2 aqueous system not only serves as the green solvent for cellulose, but also the Al3+ and Zn2+ metal ions can be served as a catalyst to activate the initiator for polymerization of acrylic acid. Compared with pure cellulose hydrogel, the compression strain of the Cel/PAA composite hydrogel was significantly improved to 80 %, and its conductivity increased by 28.1 %. In addition, its compression stress was enhanced over 2 times than pure PAA hydrogel. The Cel/PAA composite hydrogel exhibits excellent anti-freezing (-45 °C), weight retention (90 %), and conductivity (2.70 S/m) properties, still maintaining transparency and storage stability in the extreme environment. This work presents a facile strategy to develop an ionic conductive cellulose-based composite hydrogel with good conductivity and mechanical properties, which shows potential for the application fields of flexible sensors and 3D-printing functional materials.
Collapse
Affiliation(s)
- Yahui Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Youlong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
21
|
Ma J, Huo X, Yin J, Cai S, Pang K, Liu Y, Gao C, Xu Z. Axially Encoded Mechano-Metafiber Electronics by Local Strain Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305615. [PMID: 37821206 DOI: 10.1002/adma.202305615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Multimaterial integration, such as soft elastic and stiff components, exhibits rich deformation and functional behaviors to meet complex needs. Integrating multimaterials in the level of individual fiber is poised to maximize the functional design capacity of smart wearable electronic textiles, but remains unfulfilled. Here, this work continuously integrates stiff and soft elastic components into single fiber to fabricate encoded mechano-metafiber by programmable microfluidic sequence spinning (MSS). The sequences with programmable modulus feature the controllable localization of strain along metafiber length. The mechano-metafibers feature two essential nonlinear deformation modes, which are local strain amplification and retardation. This work extends the sequence-encoded metafiber into fiber networks to exhibit greatly enhanced strain amplification and retardation capability in cascades. Local strain engineering enables the design of highly sensitive strain sensors, stretchable fiber devices to protect brittle components and the fabrication of high-voltage supercapacitors as well as axial electroluminescent arrays. The approach allows the scalably design of multimaterial metafibers with programmable localized mechanical properties for woven metamaterials, smart textiles, and wearable electronics.
Collapse
Affiliation(s)
- Jingyu Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Xiaodan Huo
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310028, China
| | - Shengying Cai
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Kai Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, P. R. China
| |
Collapse
|
22
|
Ye W, Zhao L, Luo X, Guo J, Liu X. Perceptual Soft End-Effectors for Future Unmanned Agriculture. SENSORS (BASEL, SWITZERLAND) 2023; 23:7905. [PMID: 37765962 PMCID: PMC10537409 DOI: 10.3390/s23187905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
As consumers demand ever-higher quality standards for agricultural products, the inspection of such goods has become an integral component of the agricultural production process. Unfortunately, traditional testing methods necessitate the deployment of numerous bulky machines and cannot accurately determine the quality of produce prior to harvest. In recent years, with the advancement of soft robot technology, stretchable electronic technology, and material science, integrating flexible plant wearable sensors on soft end-effectors has been considered an attractive solution to these problems. This paper critically reviews soft end-effectors, selecting the appropriate drive mode according to the challenges and application scenarios in agriculture: electrically driven, fluid power, and smart material actuators. In addition, a presentation of various sensors installed on soft end-effectors specifically designed for agricultural applications is provided. These sensors include strain, temperature, humidity, and chemical sensors. Lastly, an in-depth analysis is conducted on the significance of implementing soft end-effectors in agriculture as well as the potential opportunities and challenges that will arise in the future.
Collapse
Affiliation(s)
- Weikang Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.Y.)
| | - Lin Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.Y.)
| | - Xuan Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.Y.)
| | - Junxian Guo
- College of Mechanical Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.Y.)
- College of Mechanical Engineering, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
23
|
Nazari P, Bäuerle R, Zimmermann J, Melzer C, Schwab C, Smith A, Kowalsky W, Aghassi-Hagmann J, Hernandez-Sosa G, Lemmer U. Piezoresistive Free-standing Microfiber Strain Sensor for High-resolution Battery Thickness Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212189. [PMID: 36872845 DOI: 10.1002/adma.202212189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Indexed: 05/26/2023]
Abstract
Highly sensitive microfiber strain sensors are promising for the detection of mechanical deformations in applications where limited space is available. In particular for in situ battery thickness monitoring where high resolution and low detection limit are key requirements. Herein, the realization of a highly sensitive strain sensor for in situ lithium-ion (Li-ion) battery thickness monitoring is presented. The compliant fiber-shaped sensor is fabricated by an upscalable wet-spinning method employing a composite of microspherical core-shell conductive particles embedded in an elastomer. The electrical resistance of the sensor changes under applied strain, exhibiting a high strain sensitivity and extremely low strain detection limit of 0.00005 with high durability of 10 000 cycles. To demonstrate the accuracy and ease of applicability of this sensor, the real-time thickness change of a Li-ion battery pouch cell is monitored during the charge and discharge cycles. This work introduces a promising approach with the least material complexity for soft microfiber strain gauges.
Collapse
Affiliation(s)
- Pariya Nazari
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
| | - Rainer Bäuerle
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
- Institute of High Frequency Technology, Technical University of Braunschweig, Universitätsplatz 2, 38106, Braunschweig, Germany
| | | | | | - Christopher Schwab
- Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anna Smith
- Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Kowalsky
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
- Institute of High Frequency Technology, Technical University of Braunschweig, Universitätsplatz 2, 38106, Braunschweig, Germany
| | - Jasmin Aghassi-Hagmann
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gerardo Hernandez-Sosa
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Uli Lemmer
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
- InnovationLab, Speyerer Str. 4, 69115, Heidelberg, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
24
|
Ma F, Li L, Jia C, He X, Li Q, Sun J, Jiang R, Lei Z, Liu ZH. All-solid-state Ti 3C 2T x neutral symmetric fiber supercapacitors with high energy density and wide temperature range. J Colloid Interface Sci 2023; 643:92-101. [PMID: 37054547 DOI: 10.1016/j.jcis.2023.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
All-solid-state Ti3C2Tx neutral symmetric fiber supercapacitors (PVA EGHG Ti3C2Tx FSCs) with high energy density and wide temperature range are constructed by using polyvinyl alcohol (PVA)-ethylene glycol hydrogel (EGHG)-sodium perchlorate (NaClO4) as electrolyte and separator, and Ti3C2Tx fiber as electrodes. Ti3C2Tx fiber is prepared using 130 mg mL-1 Ti3C2Tx nanosheet ink as an assembly unit in a coagulation bath of isopropyl alcohol (IPA) and distilled water with 5 wt% CaCl2 by a wet spinning method. The prepared Ti3C2Tx fiber exhibits a specific capacity of 385 F cm-3 and a capacitance retention of 94 % after 10,000 cycles in 1 M NaClO4 electrolyte. The assembled PVA EGHG Ti3C2Tx FSCs deliver a specific capacitance of 41 F cm-3, a volumetric energy density of 5 mWh cm-3, and a capacitance retention of 92 % after 500 times continuous bending. Furthermore, it shows good flexibility and excellent capacitance over a wide temperature range of -40 to 40 °C and maintains its electrochemical performance under varying degrees of bending. This study provides a viable strategy for designing and assembling all-solid-state neutral symmetric fiber supercapacitors with high energy density and wide temperature range.
Collapse
Affiliation(s)
- Fuquan Ma
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, PR China; Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Ling Li
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, PR China; Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Congying Jia
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, PR China; Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Xuexia He
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Qi Li
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Jie Sun
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Ruibin Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, PR China; Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, PR China; Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, PR China; Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, PR China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| |
Collapse
|
25
|
Zhao R, He Y, He Y, Li Z, Chen M, Zhou N, Tao G, Hou C. Dual-Mode Fiber Strain Sensor Based on Mechanochromic Photonic Crystal and Transparent Conductive Elastomer for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16063-16071. [PMID: 36917548 DOI: 10.1021/acsami.3c00419] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important component of wearable and stretchable strain sensors, dual-mode strain sensors can respond to deformation via optical/electrical dual-signal changes, which have important applications in human motion monitoring. However, realizing a fiber-shaped dual-mode strain sensor that can work stably in real life remains a challenge. Here, we design an interactive dual-mode fiber strain sensor with both mechanochromic and mechanoelectrical functions that can be applied to a variety of different environments. The dual-mode fiber is produced by coating a transparent elastic conductive layer onto photonic fiber composed of silica particles and elastic rubber. The sensor has visualized dynamic color change, a large strain range (0-80%), and a high sensitivity (1.90). Compared to other dual-mode strain sensors based on the photonic elastomer, our sensor exhibits a significant advantage in strain range. Most importantly, it can achieve reversible and stable optical/electrical dual-signal outputs in response to strain under various environmental conditions. As a wearable portable device, the dual-mode fiber strain sensor can be used for real-time monitoring of human motion, realizing the direct interaction between users and devices, and is expected to be used in fields such as smart wearable, human-machine interactions, and health monitoring.
Collapse
Affiliation(s)
- Ruolan Zhao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue He
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu He
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhangcheng Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Chen
- Sport and Health Initiative, Optical Valley Laboratory and Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ning Zhou
- Sport and Health Initiative, Optical Valley Laboratory and Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangming Tao
- Sport and Health Initiative, Optical Valley Laboratory and Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- The State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chong Hou
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Sport and Health Initiative, Optical Valley Laboratory and Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
26
|
Wang L, Yi Z, Zhao Y, Liu Y, Wang S. Stretchable conductors for stretchable field-effect transistors and functional circuits. Chem Soc Rev 2023; 52:795-835. [PMID: 36562312 DOI: 10.1039/d2cs00837h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretchable electronics have received intense attention due to their broad application prospects in many areas, and can withstand large deformations and form close contact with curved surfaces. Stretchable conductors are vital components of stretchable electronic devices used in wearables, soft robots, and human-machine interactions. Recent advances in stretchable conductors have motivated basic scientific and technological research efforts. Here, we outline and analyse the development of stretchable conductors in transistors and circuits, and examine advances in materials, device engineering, and preparation technologies. We divide the existing approaches to constructing stretchable transistors with stretchable conductors into the following two types: geometric engineering and intrinsic stretchability engineering. Finally, we consider the challenges and outlook in this field for delivering stretchable electronics.
Collapse
Affiliation(s)
- Liangjie Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Zhengran Yi
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yunqi Liu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Shuai Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China. .,School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
27
|
Park J, Kim DS, Yoon Y, Shanmugasundaram A, Lee DW. Crack-Based Sensor by Using the UV Curable Polyurethane-Acrylate Coated Film with V-Groove Arrays. MICROMACHINES 2022; 14:62. [PMID: 36677123 PMCID: PMC9862563 DOI: 10.3390/mi14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Over the years, several bare metal and crack-based strain sensors have been proposed for various fields of science and technology. However, due to their low gauge factor, metal-based strain sensors have limited practical applications. The crack-based strain sensor, on the other hand, demonstrated excellent sensitivity and a high gauge factor. However, the crack-based strain sensor exhibited non-linear behavior at low strains, severely limiting its real-time applications. Generally, the crack-based strain sensors are fabricated by generating cracks by bending a polymer film on which a metal layer has been deposited with a constant curvature. However, the random formation of cracks produces nonlinear behavior in the crack sensors. To overcome the limitations of the current state of the art, we propose a V-groove-based metal strain sensor for human motion monitoring and Morse code generation. The V-groove crack-based strain sensor is fabricated on polyurethane acrylate (PUA) using the modified photolithography technique. During the procedure, a V-groove pattern formed on the surface of the sensor, and a uniform crack formed over the entire surface by concentrating stress along the groove. To improve the sensitivity and selectivity of the sensor, we generated the cracks in a controlled direction. The proposed strain sensor exhibited high sensitivity and excellent fidelity compared to the other reported metal strain sensors. The gauge factor of the proposed V-groove-induced crack sensor is 10-fold higher than the gauge factor of the reported metal strain sensors. In addition, the fabricated V-groove-based strain sensor exhibited rapid response and recovery times. The practical feasibility of the proposed V-groove-induced crack-based strain sensor is demonstrated through human motion monitoring and the generation of Morse code. The proposed V-groove crack sensor can detect multiple motions in a variety of human activities and is anticipated to be utilized in several applications due to its high durability and reproducibility.
Collapse
Affiliation(s)
- Jongsung Park
- Department of Precision Mechanical Engineering, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Dong-Su Kim
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Youngsam Yoon
- Department of Electrical Engineering, Korea Military Academy, Seoul 01805, Republic of Korea
| | | | - Dong-Weon Lee
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
28
|
Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203808. [PMID: 36253094 PMCID: PMC9762321 DOI: 10.1002/advs.202203808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Wearables and bioelectronics rely on breathable interface devices with bioaffinity, biocompatibility, and smart functionality for interactions between beings and things and the surrounding environment. Elastic fibers/fabrics with mechanical adaptivity to various deformations and complex substrates, are promising to act as fillers, carriers, substrates, dressings, and scaffolds in the construction of biointerfaces for the human body, skins, organs, and plants, realizing functions such as energy exchange, sensing, perception, augmented virtuality, health monitoring, disease diagnosis, and intervention therapy. This review summarizes and highlights the latest breakthroughs of elastic fibers/fabrics for wearables and bioelectronics, aiming to offer insights into elasticity mechanisms, production methods, and electrical components integration strategies with fibers/fabrics, presenting a profile of elastic fibers/fabrics for energy management, sensors, e-skins, thermal management, personal protection, wound healing, biosensing, and drug delivery. The trans-disciplinary application of elastic fibers/fabrics from wearables to biomedicine provides important inspiration for technology transplantation and function integration to adapt different application systems. As a discussion platform, here the main challenges and possible solutions in the field are proposed, hopefully can provide guidance for promoting the development of elastic e-textiles in consideration of the trade-off between mechanical/electrical performance, industrial-scale production, diverse environmental adaptivity, and multiscenario on-spot applications.
Collapse
Affiliation(s)
- Yufan Zhang
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Jiahui Zhou
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Yue Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Desuo Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ken Tye Yong
- School of Biomedical EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| |
Collapse
|
29
|
Zhao L, Qiao J, Li F, Yuan D, Huang J, Wang M, Xu S. Laser-Patterned Hierarchical Aligned Micro-/Nanowire Network for Highly Sensitive Multidimensional Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48276-48284. [PMID: 36228148 DOI: 10.1021/acsami.2c14642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Flexible multidirectional strain sensors capable of simultaneously detecting strain amplitudes and directions have attracted tremendous interest. Herein, we propose a flexible multidirectional strain sensor based on a newly designed single-layer hierarchical aligned micro-/nanowire (HAMN) network. The HAMN network is efficiently fabricated using a one-step femtosecond laser patterning technology based on a modulated line-shaped beam. The anisotropic performance is attributed to the significantly different morphological changes caused by an inhomogeneous strain redistribution among the HAMN network. The fabricated strain sensor exhibits high sensitivity (gauge factor of 65 under 2.5% strain and 462 under larger strains), low response/recovery time (140 and 322 ms), and good stability (over 1000 cycles). Moreover, this single-layer strain sensor with high selectivity (gauge factor differences of ∼73 between orthogonal strains) is capable of distinguishing multidimensional strains and exhibits decoupled responses under low strains (<1%). Therefore, the strain sensors enable the precise monitoring of subtle movements, including radial pulses and wrist bending, and the rectification of pen-holding posture. Benefitting from these remarkable performances, the HAMN-based strain sensors show potential applications, including healthcare and complex human motion monitoring.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Jingyu Qiao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Fangmei Li
- School of Microelectronics, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Dandan Yuan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Jiaxu Huang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Min Wang
- School of Microelectronics, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Shaolin Xu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| |
Collapse
|
30
|
Jia J, Peng Y, Zha XJ, Ke K, Bao RY, Liu ZY, Yang MB, Yang W. Janus and Heteromodulus Elastomeric Fiber Mats Feature Regulable Stress Redistribution for Boosted Strain Sensing Performance. ACS NANO 2022; 16:16806-16815. [PMID: 36194701 DOI: 10.1021/acsnano.2c06482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wearable strain sensors have huge potential for applications in healthcare, human-machine interfacing, and augmented reality systems. However, the nonlinear response of the resistance signal to strain has caused considerable difficulty and complexity in data processing and signal transformation, thus impeding their practical applications severely. Herein, we propose a simple way to achieve linear and reproducible resistive signals responding to strain in a relatively wide strain range for flexible strain sensors, which is achieved via the fabrication of Janus and heteromodulus elastomeric fiber mats with micropatterns using microimprinting second processing technology. In detail, both isotropic and anisotropic fiber mats can turn into Janus fiber mats with periodical and heteromodulus micropatterns via controlling the fiber fusion and the diffusion of local macromolecular chains of thermoplastic elastomers. The Janus heterogeneous microstructure allows for stress redistribution upon stretching, thus leading to lower strain hysteresis and improved linearity of resistive signal. Moreover, tunable sensing performance can be achieved by tailoring the size of the micropatterns on the fiber mat surface and the fiber anisotropy. The Janus mat strain sensors with high signal linearity and good reproducibility have a very low strain detection limit, enabling potential applications in human-machine interfacing and intelligent control fields if combined with a wireless communication module.
Collapse
Affiliation(s)
- Jin Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiang-Jun Zha
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
31
|
Zhu T, Wu K, Xia Y, Yang C, Chen J, Wang Y, Zhang J, Pu X, Liu G, Sun J. Topological Gradients for Metal Film-Based Strain Sensors. NANO LETTERS 2022; 22:6637-6646. [PMID: 35931465 DOI: 10.1021/acs.nanolett.2c01967] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal film-based stretchable strain sensors hold great promise for applications in various domains, which require superior sensitivity-stretchability-cyclic stability synergy. However, the sensitivity-stretchability trade-off has been a long-standing dilemma and the metal film-based strain sensors usually suffer from weak cyclic durability, both of which significantly limit their practical applications. Here, we propose an extremely facile, low-cost and spontaneous strategy that incorporates topological gradients in metal film-based strain sensors, composed of intrinsic (grain size and interface) and extrinsic (film thickness and wrinkle) microstructures. The topological gradient strain sensor exhibits an ultrawide stretchability of 100% while simultaneously maintaining a high sensitivity at an optimal topological gradient of 4.5, due to the topological gradients-induced multistage film cracking. Additionally, it possesses a decent cyclic stability for >10 000 cycles between 0 and 40% strain enabled by the gradient-mixed metal/elastomer interfaces. It can monitor the full-range human activities from subtle pulse signals to vigorous joint movements.
Collapse
Affiliation(s)
- Ting Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yun Xia
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Chao Yang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, P.R. China
| | - Jiaorui Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xiong Pu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P.R. China
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
32
|
Zhou T, Yu Y, He B, Wang Z, Xiong T, Wang Z, Liu Y, Xin J, Qi M, Zhang H, Zhou X, Gao L, Cheng Q, Wei L. Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nat Commun 2022; 13:4564. [PMID: 35931719 PMCID: PMC9356020 DOI: 10.1038/s41467-022-32361-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Recent advances in MXene (Ti3C2Tx) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives.
Collapse
Affiliation(s)
- Tianzhu Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.,School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Yangzhe Yu
- School of Transportation Science and Engineering, Beihang University, Beijing, 100191, China
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ting Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiwu Xin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Miao Qi
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Liheng Gao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China. .,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
33
|
Cho H, Lee B, Jang D, Yoon J, Chung S, Hong Y. Recent progress in strain-engineered elastic platforms for stretchable thin-film devices. MATERIALS HORIZONS 2022; 9:2053-2075. [PMID: 35703019 DOI: 10.1039/d2mh00470d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strain-engineered elastic platforms that can efficiently distribute mechanical stress under deformation offer adjustable mechanical compliance for stretchable electronic systems. By fully exploiting strain-free regions that are favourable for fabricating thin-film devices and interconnecting with reliably stretchable conductors, various electronic systems can be integrated onto stretchable platforms with the assistance of strain engineering strategies. Over the last decade, applications of multifunctional stretchable thin-film devices simultaneously exhibiting superior electrical and mechanical performance have been demonstrated, shedding light on the realization of further reliable human-machine interfaces. This review highlights recent developments in enabling technologies for strain-engineered elastic platforms. In particular, representative approaches to realize strain-engineered substrates and stretchable interconnects in island-bridge configurations are introduced from the perspective of the material homogeneity and structural design of the substrate. State-of-the-art achievements in sophisticated stretchable electronic devices on strain-engineered elastic platforms are also presented, such as stretchable sensors, energy devices, thin-film transistors, and displays, and then, the challenges and outlook are discussed.
Collapse
Affiliation(s)
- Hyeon Cho
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea.
| | - Byeongmoon Lee
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Dongju Jang
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea.
| | - Jinsu Yoon
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea.
| | - Seungjun Chung
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Korea
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
34
|
Song K, Cho NK, Park K, Kim CS. Investigating Mechanical Behaviours of PDMS Films under Cyclic Loading. Polymers (Basel) 2022; 14:polym14122373. [PMID: 35745949 PMCID: PMC9230393 DOI: 10.3390/polym14122373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Polydimethylsiloxane (PDMS) is widely utilised as a substrate for wearable (stretchable) electronics where high fatigue resistance is required. Cyclic loadings cause the rearrangement of the basic molecular structure of polymer chains, which leads to changes in the mechanical properties of the PDMS structure. Accordingly, it is necessary to investigate reliable mechanical properties of PDMS considering both monotonic and cyclic loading conditions. This study aims to present the mechanical properties of PDMS films against both monotonic and cyclic loading. The effects of certain parameters, such as film thickness and magnitude of tensile strain, on mechanical properties are also investigated. The test results show that PDMS films have a constant monotonic elastic modulus regardless of the influence of thickness and tensile loading, whereas a cyclic elastic modulus changes depending on experimental parameters. Several material parameters, such as neo-Hookean, Mooney–Rivlin, the third-order Ogden model, and Yeoh, are defined to mimic the stress–strain behaviours of the PDMS films. Among them, it is confirmed that the third-order Ogden model is best suited for simulating the PDMS films over the entire tensile test range. This research makes contributions not only to understanding the mechanical behaviour of the PDMS films between the monotonic and the cycle loadings, but also through providing trustworthy hyperelastic material coefficients that enable the evaluation of the structural integrity of the PDMS films using the finite element technique.
Collapse
Affiliation(s)
- Kyu Song
- Department of Manufacturing Systems and Design Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Korea;
| | - Nak-Kyun Cho
- Department of Manufacturing Systems and Design Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Korea;
- Correspondence: authors:
| | - Keun Park
- Department of Mechanical Systems Design Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Korea;
| | - Chung-Soo Kim
- Advanced Forming Process R&D Group and 3D Printing Manufacturing Process Centre, Korea Institute of Industrial Technology (KITECH), Ulsan 31056, Korea;
| |
Collapse
|
35
|
Babu VJ, Anusha M, Sireesha M, Sundarrajan S, Abdul Haroon Rashid SSA, Kumar AS, Ramakrishna S. Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers (Basel) 2022; 14:2219. [PMID: 35683893 PMCID: PMC9182624 DOI: 10.3390/polym14112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
It has become a scientific obligation to unveil the underlying mechanisms and the fabrication methods behind wearable/stretchable strain sensors based on intelligent nanomaterials in order to explore their possible potential in the field of biomedical and healthcare applications. This report is based on an extensive literature survey of fabrication of stretchable strain sensors (SSS) based on nanomaterials in the fields of healthcare, sports, and entertainment. Although the evolution of wearable strain sensors (WSS) is rapidly progressing, it is still at a prototype phase and various challenges need to be addressed in the future in special regard to their fabrication protocols. The biocalamity of COVID-19 has brought a drastic change in humans' lifestyles and has negatively affected nations in all capacities. Social distancing has become a mandatory rule to practice in common places where humans interact with each other as a basic need. As social distancing cannot be ruled out as a measure to stop the spread of COVID-19 virus, wearable sensors could play a significant role in technologically impacting people's consciousness. This review article meticulously describes the role of wearable and strain sensors in achieving such objectives.
Collapse
Affiliation(s)
- Veluru Jagadeesh Babu
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Merum Anusha
- Department of Pharmacology, S V Medical College, Dr NTR University of Health Sciences, Vijayawada 517501, India;
| | - Merum Sireesha
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Subramanian Sundarrajan
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Syed Sulthan Alaudeen Abdul Haroon Rashid
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - A. Senthil Kumar
- Advanced Manufacturing Laboratory, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Seeram Ramakrishna
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| |
Collapse
|
36
|
Ji J, Zhang C, Yang S, Liu Y, Wang J, Shi Z. High Sensitivity and a Wide Sensing Range Flexible Strain Sensor Based on the V-Groove/Wrinkles Hierarchical Array. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24059-24066. [PMID: 35544950 DOI: 10.1021/acsami.2c04773] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible strain sensors occupying a large part of human body detection and wearable electronics, which have a wide sensing range and high sensitivity, are crucial in fully monitoring human motion signals. This study proposed a strategy to construct flexible strain sensors based on the V-groove/wrinkles hierarchical array. The V-groove array was prepared on a polydimethylsiloxane (PDMS) substrate through mold transfer printing. The gold film was sputtered on the prestretching PDMS substrate, and the V-groove/wrinkles hierarchical array was formed after strain release. Compared with the sensors based on single-scale wrinkle structures and a V-groove array, the fabricated strain sensor with the hierarchical array showed high sensitivity (maximum gauge factor up to 2,557.71) and a wide sensing range (up to 45%). In addition, the dynamic characteristics of the sensor were investigated in detail, indicating that the sensor had a fast response (less than 130 ms), a low detection limit (0.1% strain), and good stability (almost no performance loss after 10,000 cycles). In practical applications, the sensor was used to detect sizable physical motion and weak physiological signals, demonstrating great potential application value in human motion detection. This study could provide new ideas for preparing high-performance flexible strain sensors.
Collapse
Affiliation(s)
- Jin Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Chengpeng Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Shaohua Yang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yongzhi Liu
- Shandong Institute of Nonmetallic Materials, Jinan 250031, Shandong, China
| | - Jilai Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Zhenyu Shi
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
37
|
Reconfigurable, Stretchable Strain Sensor with the Localized Controlling of Substrate Modulus by Two-Phase Liquid Metal Cells. NANOMATERIALS 2022; 12:nano12050882. [PMID: 35269370 PMCID: PMC8912465 DOI: 10.3390/nano12050882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
Strain modulation based on the heterogeneous design of soft substrates is an effective method to improve the sensitivity of stretchable resistive strain sensors. In this study, a novel design for reconfigurable strain modulation in the soft substrate with two-phase liquid cells is proposed. The modulatory strain distribution induced by the reversible phase transition of the liquid metal provides reconfigurable strain sensing capabilities with multiple combinations of operating range and sensitivity. The effectiveness of our strategy is validated by theoretical simulations and experiments on a hybrid carbonous film-based resistive strain sensor. The strain sensor can be gradually switched between a highly sensitive one and a wide-range one by selectively controlling the phases of liquid metal in the cell array with a external heating source. The relative change of sensitivity and operating range reaches a maximum of 59% and 44%, respectively. This reversible heterogeneous design shows great potential to facilitate the fabrication of strain sensors and might play a promising role in the future applications of stretchable strain sensors.
Collapse
|
38
|
Liu Z, Zhu T, Wang J, Zheng Z, Li Y, Li J, Lai Y. Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. NANO-MICRO LETTERS 2022; 14:61. [PMID: 35165824 PMCID: PMC8844338 DOI: 10.1007/s40820-022-00806-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 05/09/2023]
Abstract
Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection, personal and public healthcare, future entertainment, man-machine interaction, artificial intelligence, and so forth. Much research has focused on fiber-based sensors due to the appealing performance of fibers, including processing flexibility, wearing comfortability, outstanding lifetime and serviceability, low-cost and large-scale capacity. Herein, we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors. We describe the approaches for preparing conductive fibers such as spinning, surface modification, and structural transformation. We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits. The applications toward motion detection, healthcare, man-machine interaction, future entertainment, and multifunctional sensing are summarized with typical examples. We finally critically analyze tough challenges and future remarks of fiber-based strain sensors, aiming to implement them in real applications.
Collapse
Affiliation(s)
- Zekun Liu
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Junru Wang
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zijian Zheng
- Institute of Textiles and Clothing, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Yi Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jiashen Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
39
|
Xiao J, Xiong Y, Chen J, Zhao S, Chen S, Xu B, Sheng B. Ultrasensitive and highly stretchable fibers with dual conductive microstructural sheaths for human motion and micro vibration sensing. NANOSCALE 2022; 14:1962-1970. [PMID: 35060589 DOI: 10.1039/d1nr08380e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conductive and stretchable fibers are important components of the increasingly popular wearable electronic devices as they meet the design requirements of excellent electrical conductivity, stretchability, and wearability. In this work, we developed a novel dual conductive-sheath fiber (DCSF) with a conductive sheath composed of a porous elastic conductive layer and cracked metal networks, thus achieving ultrahigh sensitivity under a large strain range. The core of the DCSF is made of thermoplastic polyurethane (TPU) elastic fiber wrapped in a porous stretchable conductive layer composed of carbon nanotubes (CNTs) and TPU. Next, a layer of gold film is deposited on the surface of the porous stretchable conductive layer by ion beam sputtering. Due to the fast response time of 184 ms and ultrahigh sensitivity in the 0-100% strain range (a gauge factor of 184.50 for a strain of 0-10%, 4.12 × 105 for 10%-30%, and 2.80 × 105 for 30%-100%) of the DCSF strain sensor, we successfully wove the fiber strain sensor into gloves and could realize the recognition of different hand gestures. Also the DCSF strain sensor can be applied to detect microvibrations efficiently. The demonstrated DCSF has potential applications in the development of smart wearable devices and micro vibration sensors.
Collapse
Affiliation(s)
- Jieyu Xiao
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Yan Xiong
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Juan Chen
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Shanshan Zhao
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Shangbi Chen
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
- Shanghai Aerospace Control Technology Institute, Shanghai, 200233, China
- Shanghai Xin Yue Lian Hui Electronic Technology Co. LTD, Shanghai, 200233, China
| | - Banglian Xu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Bin Sheng
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
40
|
Zhai W, Zhu J, Wang Z, Zhao Y, Zhan P, Wang S, Zheng G, Shao C, Dai K, Liu C, Shen C. Stretchable, Sensitive Strain Sensors with a Wide Workable Range and Low Detection Limit for Wearable Electronic Skins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4562-4570. [PMID: 35020359 DOI: 10.1021/acsami.1c18233] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the rapid development of wearable electronics, a multifunctional and flexible strain sensor is urgently required. Even though enormous progress has been achieved in designing high-performance strain sensors, the conflict between high sensitivity and a large workable range still restricts their further advance. Herein, a "point to point" conductive network is proposed to design and fabricate a carbon black/polyaniline nanoparticles/thermoplastic polyurethane film (CPUF). The designed structure renders CPUF composites with a wide sensitive range (up to 680% strain), highly sensitive response with a low detection limit of 0.03% strain, and high gauge factor (GF) of 3030.8, together with good sensing stability, fast response/recovery time (80 ms/95 ms), and good durability even after 10000 stretching/releasing cycles. CPUF composites are assembled as wearable strain sensors with the ability of precisely detecting full-range human motions and organic solvents, showing a potential application in human-machine interaction and environmental monitoring.
Collapse
Affiliation(s)
- Wei Zhai
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jingzhan Zhu
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ziqi Wang
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yi Zhao
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Pengfei Zhan
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Shuo Wang
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Guoqiang Zheng
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chunguang Shao
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kun Dai
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chuntai Liu
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Changyu Shen
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
41
|
Wang T, Cui Z, Liu Y, Lu D, Wang M, Wan C, Leow WR, Wang C, Pan L, Cao X, Huang Y, Liu Z, Tok AIY, Chen X. Mechanically Durable Memristor Arrays Based on a Discrete Structure Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106212. [PMID: 34738253 DOI: 10.1002/adma.202106212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Memristors constitute a promising functional component for information storage and in-memory computing in flexible and stretchable electronics including wearable devices, prosthetics, and soft robotics. Despite tremendous efforts made to adapt conventional rigid memristors to flexible and stretchable scenarios, stretchable and mechanical-damage-endurable memristors, which are critical for maintaining reliable functions under unexpected mechanical attack, have never been achieved. Here, the development of stretchable memristors with mechanical damage endurance based on a discrete structure design is reported. The memristors possess large stretchability (40%) and excellent deformability (half-fold), and retain stable performances under dynamic stretching and releasing. It is shown that the memristors maintain reliable functions and preserve information after extreme mechanical damage, including puncture (up to 100 times) and serious tearing situations (fully diagonally cut). The structural strategy offers new opportunities for next-generation stretchable memristors with mechanical damage endurance, which is vital to achieve reliable functions for flexible and stretchable electronics even in extreme and highly dynamic environments.
Collapse
Affiliation(s)
- Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zequn Cui
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Dingjie Lu
- Institute of High Performance Computing, Agency for Science Technology and Research, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wan Ru Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Changxian Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liang Pan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuangjian Liu
- Institute of High Performance Computing, Agency for Science Technology and Research, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Alfred Iing Yoong Tok
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
42
|
Madhavan R. Network crack-based high performance stretchable strain sensors for human activity and healthcare monitoring. NEW J CHEM 2022. [DOI: 10.1039/d2nj03297j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, high performance wearable and stretchable strain sensors are developed for human activity and healthcare monitoring, and wearable electronics.
Collapse
Affiliation(s)
- R. Madhavan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| |
Collapse
|
43
|
Huang J, Zeng J, Zhang X, Guo G, Liu R, Yan Z, Yin Y. Fatigue Resistant Aerogel/Hydrogel Nanostructured Hybrid for Highly Sensitive and Ultrabroad Pressure Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104706. [PMID: 34873837 DOI: 10.1002/smll.202104706] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Achieving high sensitivity over a broad pressure range remains a great challenge in designing piezoresistive pressure sensors due to the irreconcilable requirements in structural deformability against extremely high pressures and piezoresistive sensitivity to very low pressures. This work proposes a hybrid aerogel/hydrogel sensor by integrating a nanotube structured polypyrrole aerogel with a polyacrylamide (PAAm) hydrogel. The aerogel is composed of durable twined polypyrrole nanotubes fabricated through a sacrificial templating approach. Its electromechanical performance can be regulated by controlling the thickness of the tube shell. A thicker shell enhances the charge mobility between tube walls and thus expedites current responses, making it highly sensitive in detecting low pressure. Moreover, a nucleotide-doped PAAm hydrogel with a reversible noncovalent interaction network is harnessed as the flexible substrate to assemble the aerogel/hydrogel hybrid sensor and overcome sensing saturation under extreme pressures. This highly stretchable and self-healable hybrid polymer sensor exhibits linear response with high sensitivity (Smin > 1.1 kPa-1 ), ultrabroad sensing range (0.12-≈400 kPa), and stable sensing performance over 10 000 cycles at the pressure of 150 kPa, making it an ideal sensing device to monitor pressures from human physiological signals to significant stress exerted by vehicles.
Collapse
Affiliation(s)
- Jiankun Huang
- College of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East), Qingdao, 266580, China
| | - Jingbin Zeng
- College of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East), Qingdao, 266580, China
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xue Zhang
- College of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East), Qingdao, 266580, China
| | - Gengchen Guo
- College of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East), Qingdao, 266580, China
| | - Rui Liu
- College of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East), Qingdao, 266580, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zifeng Yan
- College of Science, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East), Qingdao, 266580, China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
44
|
Bettahar H, Harischandra PD, Zhou Q. Robotic Threading from a Gel-like Substance Based on Impedance Control With Force Tracking. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2021.3116697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Tan XC, Xu JD, Jian JM, Dun GH, Cui TR, Yang Y, Ren TL. Programmable Sensitivity Screening of Strain Sensors by Local Electrical and Mechanical Properties Coupling. ACS NANO 2021; 15:20590-20599. [PMID: 34859997 DOI: 10.1021/acsnano.1c09288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the canonical trade-off between the gauge factor and the working range, there is an emergent need for strain sensors with customizable sensitivity for various applications of different deformation ranges. However, current optimization strategies typically allow possessing either, not both, high-sensing performance or customizable sensing performance. Here, a laser-programmed heterogeneous strain sensor featured locally coupled electrical and mechanical properties (named an LCoup sensor) is developed to access customized sensor performance. Coupled electromechanical properties enable the applied strain to be mainly experienced by the higher sensitivity regions when stretched. By optimizing the parameters of laser processes, the gauge factor can systematically screen within 2 orders of magnitude (from 7.8 to 266.6) while maintaining good stretchability (50%). To prove the potential in human-machine interaction, the real-time monitoring and recognition of set hand gestures (left-click, right-click, and double-click) are demonstrated, representing the traditional input patterns of the computer mouse. Multiscale programming of material properties can further achieve excellent and tailored device performances, offering more opportunities for the design of a broad range of flexible electronics.
Collapse
Affiliation(s)
- Xi-Chao Tan
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jian-Dong Xu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jin-Ming Jian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Guan-Hua Dun
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Rui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
46
|
Zhao Y, Gao W, Dai K, Wang S, Yuan Z, Li J, Zhai W, Zheng G, Pan C, Liu C, Shen C. Bioinspired Multifunctional Photonic-Electronic Smart Skin for Ultrasensitive Health Monitoring, for Visual and Self-Powered Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102332. [PMID: 34554616 DOI: 10.1002/adma.202102332] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Indexed: 05/02/2023]
Abstract
Smart skin is highly desired to be ultrasensitive and self-powered as the medium of artificial intelligence. Here, an ultrasensitive self-powered mechanoluminescence smart skin (SPMSS) inspired by the luminescence mechanism of cephalopod skin and the ultrasensitive response of spider-slit-organ is developed. Benefitting from the unique strain-dependent microcrack structure design based on Ti3 C2 Tx (MXene)/carbon nanotube synergistic interaction, SPMSS possesses excellent strain sensing performances including ultralow detection limit (0.001% strain), ultrahigh sensitivity (gauge factor, GF = 3.92 × 107 ), ultrafast response time (5 ms), and superior durability and stability (>45 000 cycles). Synchronously, SPMSS exhibits tunable and highly sensitive mechanoluminescence (ML) features under stretching. A relationship between ML features, strain sensing performances, and the deformation has been established successfully. Importantly, the SPMSS demonstrates excellent properties as triboelectric nanogenerator (4 × 4 cm2 ), including ultrahigh triboelectric output (open-circuit voltage VOC = 540 V, short-circuit current ISC = 42 µA, short-circuit charge QSC = 317 nC) and power density (7.42 W m-2 ), endowing the smart skin with reliable power source supply and self-powered sensing ability. This bioinspired smart skin exhibits multifunctional applications in health monitoring, visual sensing, and self-powered sensing, showing great potential in artificial intelligence.
Collapse
Affiliation(s)
- Yi Zhao
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Wenchao Gao
- Department of Civil Engineering, Monash University, Clayton, 3800, Australia
| | - Kun Dai
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuo Wang
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zuqing Yuan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Jiannan Li
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wei Zhai
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Guoqiang Zheng
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Chuntai Liu
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Changyu Shen
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
47
|
Fakharuddin A, Li H, Di Giacomo F, Zhang T, Gasparini N, Elezzabi AY, Mohanty A, Ramadoss A, Ling J, Soultati A, Tountas M, Schmidt‐Mende L, Argitis P, Jose R, Nazeeruddin MK, Mohd Yusoff ARB, Vasilopoulou M. Fiber‐Shaped Electronic Devices. ADVANCED ENERGY MATERIALS 2021; 11. [DOI: 10.1002/aenm.202101443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 09/02/2023]
Abstract
AbstractTextile electronics embedded in clothing represent an exciting new frontier for modern healthcare and communication systems. Fundamental to the development of these textile electronics is the development of the fibers forming the cloths into electronic devices. An electronic fiber must undergo diverse scrutiny for its selection for a multifunctional textile, viz., from the material selection to the device architecture, from the wearability to mechanical stresses, and from the environmental compatibility to the end‐use management. Herein, the performance requirements of fiber‐shaped electronics are reviewed considering the characteristics of single electronic fibers and their assemblies in smart clothing. Broadly, this article includes i) processing strategies of electronic fibers with required properties from precursor to material, ii) the state‐of‐art of current fiber‐shaped electronics emphasizing light‐emitting devices, solar cells, sensors, nanogenerators, supercapacitors storage, and chromatic devices, iii) mechanisms involved in the operation of the above devices, iv) limitations of the current materials and device manufacturing techniques to achieve the target performance, and v) the knowledge gap that must be minimized prior to their deployment. Lessons learned from this review with regard to the challenges and prospects for developing fiber‐shaped electronic components are presented as directions for future research on wearable electronics.
Collapse
Affiliation(s)
| | - Haizeng Li
- Institute of Frontier and Interdisciplinarity Science Shandong University Qingdao 266237 China
| | - Francesco Di Giacomo
- Centre for Hybrid and Organic Solar Energy (CHOSE) Department of Electronic Engineering University of Rome Tor Vergata Rome 00133 Italy
| | - Tianyi Zhang
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W120BZ UK
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W120BZ UK
| | - Abdulhakem Y. Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta T6G 2V4 Canada
| | - Ankita Mohanty
- School for Advanced Research in Petrochemicals Laboratory for Advanced Research in Polymeric Materials Central Institute of Petrochemicals Engineering and Technology Bhubaneswar Odisha 751024 India
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals Laboratory for Advanced Research in Polymeric Materials Central Institute of Petrochemicals Engineering and Technology Bhubaneswar Odisha 751024 India
| | - JinKiong Ling
- Nanostructured Renewable Energy Material Laboratory Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Pahang Darul Makmur Kuantan 26300 Malaysia
| | - Anastasia Soultati
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| | - Marinos Tountas
- Department of Electrical and Computer Engineering Hellenic Mediterranean University Estavromenos Heraklion Crete GR‐71410 Greece
| | | | - Panagiotis Argitis
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| | - Rajan Jose
- Nanostructured Renewable Energy Material Laboratory Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Pahang Darul Makmur Kuantan 26300 Malaysia
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 Sion CH‐1951 Switzerland
| | - Abd Rashid Bin Mohd Yusoff
- Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| |
Collapse
|
48
|
Jung D, Lim C, Shim HJ, Kim Y, Park C, Jung J, Han SI, Sunwoo SH, Cho KW, Cha GD, Kim DC, Koo JH, Kim JH, Hyeon T, Kim DH. Highly conductive and elastic nanomembrane for skin electronics. Science 2021; 373:1022-1026. [PMID: 34446604 DOI: 10.1126/science.abh4357] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
Skin electronics require stretchable conductors that satisfy metallike conductivity, high stretchability, ultrathin thickness, and facile patternability, but achieving these characteristics simultaneously is challenging. We present a float assembly method to fabricate a nanomembrane that meets all these requirements. The method enables a compact assembly of nanomaterials at the water-oil interface and their partial embedment in an ultrathin elastomer membrane, which can distribute the applied strain in the elastomer membrane and thus lead to a high elasticity even with the high loading of the nanomaterials. Furthermore, the structure allows cold welding and bilayer stacking, resulting in high conductivity. These properties are preserved even after high-resolution patterning by using photolithography. A multifunctional epidermal sensor array can be fabricated with the patterned nanomembranes.
Collapse
Affiliation(s)
- Dongjun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaehong Lim
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung Joon Shim
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeongjun Kim
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Chansul Park
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaebong Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sang Ihn Han
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Won Cho
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Doo Cha
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Chan Kim
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Ji Hoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Taeghwan Hyeon
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea. .,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea. .,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
49
|
Kim H, Shaqeel A, Han S, Kang J, Yun J, Lee M, Lee S, Kim J, Noh S, Choi M, Lee J. In Situ Formation of Ag Nanoparticles for Fiber Strain Sensors: Toward Textile-Based Wearable Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39868-39879. [PMID: 34383459 DOI: 10.1021/acsami.1c09879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wearable electronic devices have attracted significant attention as important components in several applications. Among various wearable electronic devices, interest in textile electronic devices is increasing because of their high deformability and portability in daily life. To develop textile electronic devices, fiber-based electronic devices should be fundamentally studied. Here, we report a stretchable and sensitive fiber strain sensor fabricated using only harmless materials during an in situ formation process. Despite using a mild and harmless reducing agent instead of typical strong and hazardous reducing agents, the developed fiber strain sensors feature a low initial electrical resistance of 0.9 Ω/cm, a wide strain sensing range (220%), high sensitivity (∼5.8 × 104), negligible hysteresis, and high stability against repeated stretching-releasing deformation (5000 cycles). By applying the fiber sensors to various textiles, we demonstrate that the smart textile system can monitor various gestures in real-time and help users maintain accurate posture during exercise. These results will provide meaningful insights into the development of next-generation wearable applications.
Collapse
Affiliation(s)
- Hwajoong Kim
- Soft Biomedical Devices Lab, Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si 42988, Republic of Korea
| | - Ammar Shaqeel
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich 8092, Switzerland
| | - Solbi Han
- Soft Biomedical Devices Lab, Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si 42988, Republic of Korea
| | - Junseo Kang
- Soft Biomedical Devices Lab, Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si 42988, Republic of Korea
| | - Jieun Yun
- Soft Biomedical Devices Lab, Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si 42988, Republic of Korea
| | - Mugeun Lee
- Soft Biomedical Devices Lab, Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si 42988, Republic of Korea
| | - Seonggyu Lee
- Soft Biomedical Devices Lab, Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si 42988, Republic of Korea
| | - Jinho Kim
- Soft Biomedical Devices Lab, Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si 42988, Republic of Korea
| | - Seungbeom Noh
- Soft Biomedical Devices Lab, Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si 42988, Republic of Korea
| | - Minyoung Choi
- Soft Biomedical Devices Lab, Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si 42988, Republic of Korea
| | - Jaehong Lee
- Soft Biomedical Devices Lab, Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-si 42988, Republic of Korea
| |
Collapse
|
50
|
Zhu J, Wu X, Jan J, Du S, Evans J, Arias AC. Tuning Strain Sensor Performance via Programmed Thin-Film Crack Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38105-38113. [PMID: 34342977 DOI: 10.1021/acsami.1c10975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stretchable strain sensors with well-controlled sensitivity and stretchability are crucial for applications ranging from large deformation monitoring to subtle vibration detection. Here, based on single-metal material on the elastomer and one-pot evaporation fabrication method, we realize controlled strain sensor performance via a novel programable cracking technology. Specifically, through elastomeric substrate surface chemistry modification, the microcrack generation and morphology evolution of the strain sensing layer is controlled. This process allows for fine tunability of the cracked film morphology, resulting in strain sensing devices with a sensitivity gauge factor of over 10 000 and stretchability up to 100%. Devices with a frequency response up to 5.2 Hz and stability higher than 1000 cycles are reported. The reported strain sensors, tracking both subtle and drastic mechanical deformations, are demonstrated in healthcare devices, human-machine interaction, and smart-home applications.
Collapse
Affiliation(s)
- Juan Zhu
- Arias Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Xiaodong Wu
- Arias Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Jasmine Jan
- Arias Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - James Evans
- Arias Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Ana C Arias
- Arias Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| |
Collapse
|