1
|
Tian H, Li Y, Wang D, Chen Q, Jiang Y, Liu T, Li X, Wang C, Chen X, Shao J. In Situ Growth of Mushroom-Shaped Adhesive Structures on Flat/Curved Surfaces via Electrical Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408680. [PMID: 39499770 DOI: 10.1002/advs.202408680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Gecko-inspired adhesives have an extraordinary impact on robotic manipulation and locomotion. However, achieving excellent adhesive performance on curved surfaces, especially undevelopable surfaces, is still challenging. This can be attributed to a considerable difference between the fabrication method and practical necessity, i.e., the adhesive structures are generally fabricated on a flat substrate whereas the manipulating surface is curved, resulting in a low adhesive strength. Here, an in-situ growth strategy is proposed to fabricate mushroom-shaped structures at micro/nano-scale via electrical modulation on flat or curved surfaces. Since the adhesive structures are directly grown on target surfaces without a transfer procedure, they exhibit a large contact area and stress uniformity at the interface, corresponding to an excellent adhesive force. A comparison between grown structures using the proposed method and those fabricated using traditional approaches suggests that the adhesive forces are identical for flat testing surfaces, while the difference can be up to 4 times for developable surfaces and even 25 times for undevelopable surfaces. The proposed adhesion strategy extends the application prospects of gecko-inspired adhesives from flat surfaces to curved ones, composed of developable and undevelopable surfaces, opening a new avenue to develop gecko-inspired adhesive-based devices and systems.
Collapse
Affiliation(s)
- Hongmiao Tian
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yingze Li
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Duorui Wang
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Qi Chen
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yuanze Jiang
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Tianci Liu
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiangming Li
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chunhui Wang
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoliang Chen
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinyou Shao
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
2
|
Meng Z, Liu Y, Huang H, Wu S. Flexible self-supporting photonic crystals: Fabrications and responsive structural colors. Adv Colloid Interface Sci 2024; 333:103272. [PMID: 39216399 DOI: 10.1016/j.cis.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Photonic crystals (PCs) play an increasingly significant role in anti-counterfeiting, sensors, displays, and other fields due to their tunable structural colors produced by light manipulation of photonic stop bands. Flexible self-supporting photonic crystals (FSPCs) eliminate the requirement for conventional structures to rely on the existence of hard substrates, as well as the problem of poor mechanical qualities caused by the stiffness of the building blocks. Meanwhile, diverse production techniques and materials provide FSPCs with varied stimulus-responsive color-changing capacities, thus they have received an abundance of focus. This review summarizes the preparation strategies and variable structural colors of FSPCs. First, a series of preparation strategies by integrating polymers with PCs are summarized, including assembly of colloidal spheres on flexible substrates, polymer packaging, polymer-based direct assembly, nanoimprinting, and 3D printing. Subsequently, variable structural colors of FSPCs with different stimulations, such as viewing angle, chemical stimulation (solvents, ions, pH, biomolecules, etc.), temperature, mechanical/magnetic stress, and light, are described in detail. Finally, the outlook and challenges regarding FSPCs are presented, and several potential directions for their fabrication and application are discussed. It's believed that FSPCs will be a valuable platform for advancing the practical implementation of optical metamaterials.
Collapse
Affiliation(s)
- Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China..
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China..
| |
Collapse
|
3
|
Wang XY, Wu ST, Lin YZ, Ding SN, Xu JJ, Chen HY. Confinement Effect Enhanced Bipolar Electrochemistry: Structural Color Coding Coupled with Wireless Electrochemiluminescence Imaging Technology. Anal Chem 2024; 96:14372-14381. [PMID: 39190788 DOI: 10.1021/acs.analchem.4c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In this work, SiO2/CNTs photonic crystal beads were constructed by doping CNTs into SiO2 photonic crystals, which have an angle-independent responsive structural color and can be used as bipolar electrodes due to their good electrical conductivity. In addition, the bipolar electrode-electrochemiluminescence (BPE-ECL) experiments and finite element simulation prove that the low driving voltage can trigger the bipolar electrode electrochemical reactions by confinement effect. Inspired by this, it is the first to combine the SiO2/CNTs structural color coding scheme with low-drive voltage induced wireless BPE-ECL imaging based on the confinement effect of microchannels to achieve simultaneous immune detection of ovarian cancer biomarkers (CA125, CEA, AFP). The detection limits of successfully constructed high-throughput BPE-ECL biosensor for AFP, CEA, and CA125 are 0.72 ng/mL, 0.95 ng/mL, and 1.03 U/mL, respectively, and have good stability and specificity, which expands the application of electrochemiluminescence and lays a foundation for the development of electrochemiluminescence coding technology.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Sheng-Tong Wu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yi-Zhi Lin
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Chen H, Zhang X, Zhou T, Hou A, Liang J, Ma T, Xie K, Gao A. A Tunable Hydrophilic-Hydrophobic, Stimulus Responsive, and Robust Iridescent Structural Color Bionic Film with Chiral Photonic Crystal Nanointerface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311283. [PMID: 38716925 DOI: 10.1002/smll.202311283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Indexed: 10/01/2024]
Abstract
Bio-inspired in nature, using nanomaterials to fabricate the vivid bionic structural color and intelligent stimulus responsive interface as smart skin or optical devices are widely concerned and remain a huge challenge. Here, the bionic flexible film is designed and fabricated with chiral nanointerface and tunable hydrophilic-hydrophobic by the ultrasonic energy perturbation strategy and crosslinking of the cellulose nanocrystals (CNC). An intelligent nanointerface with adjustable hydrophilic and hydrophobic properties is constructed by the supramolecular assembly using a smart ionic liquid molecule. The bionic flexible film possessed the variable hydrophilic-hydrophobic, stimulus responsive, and robust iridescent structural color. The reflective wavelength and the helical pitch of the film can be easily modulated through the ultrasonic energy perturbation strategy. The bionic flexible film by covalent cross-linking has excellent robustness, good elasticity and flexibility. The tunable brilliant structural color of the chiral nanointerface is attributed to the surface charge change of the CNC photonic crystal, which is disturbed by ultrasonic energy perturbation. The bionic flexible film with tunable structure color has intelligent hydrophilic and hydrophobic stimulus response properties. The chiral bionic materials have potential applications in smart skin, optical devices, bionic materials, robots, anti-counterfeiting, colorful displays, and stealth materials.
Collapse
Affiliation(s)
- Huanghuang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xufang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Tianchi Zhou
- Institute of Flexible Functional Materials, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Aiqin Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jiahui Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Teng Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Kongliang Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Aiqin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, 312000, P. R. China
| |
Collapse
|
5
|
Hanyková L, Šťastná J, Krakovský I. Responsive Acrylamide-Based Hydrogels: Advances in Interpenetrating Polymer Structures. Gels 2024; 10:414. [PMID: 39057438 PMCID: PMC11276577 DOI: 10.3390/gels10070414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels, composed of hydrophilic homopolymer or copolymer networks, have structures similar to natural living tissues, making them ideal for applications in drug delivery, tissue engineering, and biosensors. Since Wichterle and Lim first synthesized hydrogels in 1960, extensive research has led to various types with unique features. Responsive hydrogels, which undergo reversible structural changes when exposed to stimuli like temperature, pH, or specific molecules, are particularly promising. Temperature-sensitive hydrogels, which mimic biological processes, are the most studied, with poly(N-isopropylacrylamide) (PNIPAm) being prominent due to its lower critical solution temperature of around 32 °C. Additionally, pH-responsive hydrogels, composed of polyelectrolytes, change their structure in response to pH variations. Despite their potential, conventional hydrogels often lack mechanical strength. The double-network (DN) hydrogel approach, introduced by Gong in 2003, significantly enhanced mechanical properties, leading to innovations like shape-deformable DN hydrogels, organic/inorganic composites, and flexible display devices. These advancements highlight the potential of hydrogels in diverse fields requiring precise and adaptable material performance. In this review, we focus on advancements in the field of responsive acrylamide-based hydrogels with IPN structures, emphasizing the recent research on DN hydrogels.
Collapse
Affiliation(s)
- Lenka Hanyková
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic; (J.Š.); (I.K.)
| | | | | |
Collapse
|
6
|
Feng H, Zhou P, Peng Q, Weng M. Soft multi-layer actuators integrated with the functions of electrical energy harvest and storage. Chemistry 2024; 30:e202303378. [PMID: 38009845 DOI: 10.1002/chem.202303378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Soft multi-layer actuators are smart, lightweight, and flexible, which can be used in a wide range of fields such as artificial muscles, advanced medical devices, and wearable devices. The research on the actuation property of the soft actuators has made significant progress, paving the way for the controllable motions of the actuators. However, compared with the intelligence and adaptability of life in nature, these actuators still have the problem of insufficient intelligence. The phenomenon is reflected in a lack of continuous supply of energy. Therefore, it has become a development trend to combine functions such as energy harvesting, storage, and conversion with actuators to build intelligent actuators. This concept presents a synopsis of the advancements made in soft actuators that have been coupled with the capabilities of electrical energy harvesting and storage. The design concepts and typical applications of this soft smart actuators are introduced in detail. Finally, the future research directions and applications of smart actuators are prospected from our perspective.
Collapse
Affiliation(s)
- Haihang Feng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Peidi Zhou
- Institute of Smart Marine and Engineering, Fujian Provincial Key Laboratory of Marine Smart Equipment, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Qinglu Peng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| | - Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian, 350118, China
| |
Collapse
|
7
|
Duan J, Cui L, Li M, Fan W, Sui K. Biomimetic 3D Color-Changing Hydrogel Actuators Constructed Based on Soft Permeable Photonic Crystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54018-54026. [PMID: 37957821 DOI: 10.1021/acsami.3c14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The integration of photonic crystals and self-shaping actuators is a promising method for constructing powerful biomimetic color-changing actuators. The major barrier is that common photonic crystals generally block the transfer/orientation of monomers/fillers and hence hinder the formation of heterogeneous structures for programmed 3D deformations as well as degrade the deformation capacity and mechanical properties of actuators. Herein, we present the construction of complex and strong 3D color-changing hydrogel actuators by asymmetric photolithography based on soft, permeable photonic crystals. The soft permeable photonic crystals are assembled by hydrogel microspheres with an ultralow volume fraction. During the asymmetric photolithography, the monomers in precursor solutions can thus transfer freely to generate heterogeneous microstructures, spatially patterned internal stresses, and interpenetrating networks for programming the deformation trajectories and initial 3D configurations and enhancing mechanical properties of actuators. Various 3D color-changing hydrogel actuators (e.g., flower and scroll painting) are constructed for applications such as information encryption and display.
Collapse
Affiliation(s)
- Jinghua Duan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P.R. China
| | - Lu Cui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P.R. China
| | - Mingyang Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P.R. China
| | - Wenxin Fan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P.R. China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P.R. China
| |
Collapse
|
8
|
Mehnath S, Sathish Kumar M, Chitra K, Jeyaraj M. Bone-Adhesive Hydrogel for Effective Inhibition of M. tuberculosis and Osteoblast Regeneration. ACS Infect Dis 2023; 9:2269-2281. [PMID: 37904258 DOI: 10.1021/acsinfecdis.3c00328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Currently, bone tuberculosis (TB) treatment largely involves lifelong drug prescriptions and surgical intervention, resulting in poor quality of life for patients. Therefore, the fabrication of injectable scaffolds to form a solid framework around the defective bone region is gaining importance over the extensive use of antimicrobial inhibitors. Herein, we synthesized a novel bone-adhesive and thermoresponsive hydrogel via conjugation of poly(N-isopropylacrylamide-co-glycidyl methacrylate) (PNIPAM-co-GMA) and cysteine (CYS). Thiolation of the polymer enables chemical cross-linking with the bone glycoprotein, enhancing bone adhesion and permitting control of scaffold retention time. The PNIPAM-co-GMA-CYS hydrogel shows higher cross-linking behavior at 37 °C, forms a strong gel in 260 s, and has 151 kPa adhesion strength on cortical bone. The lead compounds 5-methyl-5H-[1,2,4]triazino[5,6-b]indole-3-thiol (MTIT) and N-tert-butyl-4-methyl-6-(5-methyl-5H-[1,2,4]triazino[5,6-b]indol-3-ylthio)pyrimidin-2-amine (TMTIPA) were identified by a high-throughput screening method. Effective MTIT and TMTIPA are encapsulated in bone-adhesive hydrogel separately, and both have a high release rate above >70% in 180 h. The MTIT- and TMTIPA-loaded PNIPAM-co-GMA-CYS showed an excellent bactericidal effect, reducing the relative intracellular bacterial survival in macrophages. Furthermore, the as-synthesized hydrogel has outstanding mechanical and biocompatibility properties to become a bone-replacing material and provide support to promote bone repair. This work presents a novel bone-adhesive PNIPAM-co-GMA-CYS for the sustained release of lead compounds toward promising alternative bone TB treatment.
Collapse
Affiliation(s)
- Sivaraj Mehnath
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai , Tamil Nadu 600 025, India
| | - Marimuthu Sathish Kumar
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu 613 401, India
| | - Karuppannan Chitra
- Translational Research Platform for Veterinary Biologicals, Madhavaram Milk Colony, Chennai, Tamil Nadu 600 051, India
| | - Murugaraj Jeyaraj
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai , Tamil Nadu 600 025, India
| |
Collapse
|
9
|
Yang SY, Kang DS, Lee CY. Coloration on Bluish Alginate Films with Amorphous Heterogeneity Thereof. Polymers (Basel) 2023; 15:3627. [PMID: 37688253 PMCID: PMC10489677 DOI: 10.3390/polym15173627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Using sodium alginate (Alg) aqueous solution containing indigo carmine (IdC) at various concentrations we characterized the rippled surface pattern with micro-spacing on a flexible film as intriguing bluish Alg-IdC iridescence. The characterization was performed using Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, field emission scanning electron microscopy, atomic force microscopy, electron microscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction analysis, and photoluminescence detection. The edge pattern on the film had a maximum depth of 825 nm, a peak-to-peak distance of 63.0 nm, and an average distance of 2.34 nm. The center of the pattern had a maximum depth of 343 nm and a peak-to-peak distance of 162 nm. The pattern spacing rippled irregularly, widening toward the center and narrowing toward the edges. The rippled nano-patterned areas effectively generated iridescence. The ultraviolet absorption spectra of the mixture in the 270 and 615 nm ranges were the same for both the iridescent and non-iridescent film surfaces. By adding Ag+ ions to Alg-IdC, self-assembled microspheres were formed, and conductivity was improved. Cross-linked bluish materials were immediately formed by the addition of Ca2+ ions, and the film was prepared by controlling their concentration. This flexible film can be used in applications such as eco-friendly camouflage, anti-counterfeiting, QR code materials for imaging/sensing, and smart hybrid displays.
Collapse
Affiliation(s)
- Soo-Yeon Yang
- Institute of Aerospace System, Inha University, Incheon 21999, Republic of Korea
| | - Dong-Soo Kang
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea;
| | - Chang-Yull Lee
- Department of Aerospace Engineering, Inha University, Incheon 21999, Republic of Korea
| |
Collapse
|
10
|
Zhang Z, Vogelbacher F, Song Y, Tian Y, Li M. Bio-inspired optical structures for enhancing luminescence. EXPLORATION (BEIJING, CHINA) 2023; 3:20220052. [PMID: 37933238 PMCID: PMC10624395 DOI: 10.1002/exp.20220052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/06/2022] [Indexed: 11/08/2023]
Abstract
Luminescence is an essential signal for many plants, insects, and marine organisms to attract the opposite sex, avoid predators, and so on. Most luminescent living organisms have ingenious optical structures which can help them get high luminescent performances. These remarkable and efficient structures have been formed by natural selection from long-time evolution. Researchers keenly observed the enhanced luminescence phenomena and studied how these phenomena happen in order to learn the characteristics of bio-photonics. In this review, we summarize the optical structures for enhancing luminescence and their applications. The structures are classified according to their different functions. We focus on how researchers use these biological inspirations to enhance different luminescence processes, such as chemiluminescence (CL), photoluminescence (PL), and electroluminescence (EL). It lays a foundation for further research on the applications of luminescence enhancement. Furthermore, we give examples of luminescence enhancement by bio-inspired structures in information encryption, biochemical detection, and light sources. These examples show that it is possible to use bio-inspired optical structures to solve complex problems in optical applications. Our work will provide guidance for research on biomimetic optics, micro- and nano-optical structures, and enhanced luminescence.
Collapse
Affiliation(s)
- Zemin Zhang
- Key Laboratory of Green Printing, Institute of ChemistryChinese Academy of SciencesBeijingP. R. China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Beijing Advanced Innovation Center for Imaging TechnologyCapital Normal UniversityBeijingP. R. China
| | - Florian Vogelbacher
- Key Laboratory of Green Printing, Institute of ChemistryChinese Academy of SciencesBeijingP. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of ChemistryChinese Academy of SciencesBeijingP. R. China
| | - Yang Tian
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Beijing Advanced Innovation Center for Imaging TechnologyCapital Normal UniversityBeijingP. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing, Institute of ChemistryChinese Academy of SciencesBeijingP. R. China
- Key Laboratory of Materials Processing and Mold of Ministry of EducationZhengzhou UniversityZhengzhouP. R. China
| |
Collapse
|
11
|
Zhou Y, Lu C, Lu Z, Guo Z, Ye C, Tsukruk VV, Xiong R. Chiroptical Nanocellulose Bio-Labels for Independent Multi-Channel Optical Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303064. [PMID: 37162465 DOI: 10.1002/smll.202303064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Indexed: 05/11/2023]
Abstract
Advanced multiplexing optical labels with multiple information channels provide a powerful strategy for large-capacity and high-security information encryption. However, current optical labels face challenges of difficulty to realize independent multi-channel encryption, cumbersome design, and environmental pollution. Herein, multiplexing chiroptical bio-labels integrating with multiple optical elements, including structural color, photoluminescence (PL), circular polarized light activity, humidity-responsible color, and micro/nano physical patterns, are constructed in complex design based on host-guest self-assembly of cellulose nanocrystals and bio-gold nanoclusters. The thin nanocellulose labels exhibit tunable circular polarized structural color crossover the entire visible wavelength and circularly polarized PL with the highest-recorded dissymmetry factor up to 1.05 due to the well-ordered chiral organization of templated gold nanoclusters. Most importantly, these elements can independently encode customized anti-counterfeiting information to achieve five independent channels of high-level anti-counterfeiting, which are rarely achieved in traditional materials and design counterparts. Considering the exceptional seamless integration of five independent encryption channels and the recyclable features of labels, the bio-labels have great potential for the next generation anti-counterfeiting materials technology.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Zhixing Lu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Zhen Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Chunhong Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, United States
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
12
|
Wan YZ, Qian W. From Self-Assembly of Colloidal Crystals toward Ordered Porous Layer Interferometry. BIOSENSORS 2023; 13:730. [PMID: 37504128 PMCID: PMC10377590 DOI: 10.3390/bios13070730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Interferometry-based, reflectometric, label-free biosensors have made significant progress in the analysis of molecular interactions after years of development. The design of interference substrates is a key research topic for these biosensors, and many studies have focused on porous films prepared by top-down methods such as porous silicon and anodic aluminum oxide. Lately, more research has been conducted on ordered porous layer interferometry (OPLI), which uses ordered porous colloidal crystal films as interference substrates. These films are made using self-assembly techniques, which is the bottom-up approach. They also offer several advantages for biosensing applications, such as budget cost, adjustable porosity, and high structural consistency. This review will briefly explain the fundamental components of self-assembled materials and thoroughly discuss various self-assembly techniques in depth. We will also summarize the latest studies that used the OPLI technique for label-free biosensing applications and divide them into several aspects for further discussion. Then, we will comprehensively evaluate the strengths and weaknesses of self-assembly techniques and discuss possible future research directions. Finally, we will outlook the upcoming challenges and opportunities for label-free biosensing using the OPLI technique.
Collapse
Affiliation(s)
- Yi-Zhen Wan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- OPLI (Suzhou) Biotechnology Co., Ltd., New District, Suzhou 215163, China
| |
Collapse
|
13
|
Ma Y, Chen Q, Li W, Su H, Li S, Zhu Y, Zhou J, Feng Z, Liu Z, Mao S, Qiu Y, Wang H, Zhu Z. Spinal cord conduits for spinal cord injury regeneration. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
14
|
Luo C, Liu L, Huang Y, Lou X, Xia F, Song Y. Recent Advances in Printable Flexible Optical Devices: From Printing Technology and Optimization Strategies to Perspectives. J Phys Chem Lett 2022; 13:12061-12075. [PMID: 36542750 DOI: 10.1021/acs.jpclett.2c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, flexible optical devices have triggered booming developments in various research fields, including display equipment, sensors, energy conversion, and so on, due to their high compatibility, portability, and wearability. With the advantages of strong design ability, high precision, and high integration, printing technologies have been recognized as promising methods to realize flexible optical devices. In this Perspective, recent progress on printing strategies for fabricating flexible optical devices are introduced systematically. First, through adjusting the composition of inks, selecting flexible substrates, and controlling external stimulation, fabrication of flexible optical devices based on inkjet printing is illustrated. Then, flexible optical devices fabricated by template-induced printing, 3D printing, slot-die printing, and screen printing are summarized. Finally, prospects and future development directions based on printing technology for flexible optical devices are proposed.
Collapse
Affiliation(s)
- Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
| | - Lingxiao Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
15
|
Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing. Nat Commun 2022; 13:7095. [DOI: 10.1038/s41467-022-34866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract3D photonic crystals (PCs) have attracted extensive attention due to their unique optical properties. However, fabricating 3D PCs structure by 3D printing colloidal particles is limited by control of assembly under a fast-printing speed. Here, we employ continuous digital light processing (DLP) 3D printing strategy with hydrogen bonds assisted colloidal inks for fabricating well-assembled 3D PCs structures. Stable dispersion of colloidal particles inside UV-curable system induced by hydrogen bonding and suction force induced by continuous curing manner cooperatively realize the simultaneous macroscopic printing and microscopic particle assembly, which endows volumetric color property. Structural color can be well regulated by controlling the particle diameter and printing speed, through which various complex 3D structures with desired structural color distribution and optical light-guide properties are acquired. This 3D color construction approach shows great potential in customized jewelry accessories, decoration and optical device preparation, and will innovate the development of structural color.
Collapse
|
16
|
Xing Z, Shu DW, Lu H, Fu YQ. Undirected graphical model of adjacency matrix for dynamic elasticity in polyelectrolyte hydrogels. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Xiao X, Yang Z, Yu Q, Shi D, Dong W, Zhang H, Chen M. Regulating the wetting behaviors of hollow silica photonic crystals in detection and encryption applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Abstract
Structural color has been regarded as an ideal alternative to pigments because of the advantages of environmental friendliness, resistance to fading, and dynamic regulation. Responsive structural color can give real-time visible feedback to external stimuli and thus has great prospects in many applications, such as displays, sensing, anticounterfeiting, information storage, and healthcare monitoring. In this Perspective, we elucidate basic concepts, controllable fabrications, and promising applications of responsive structural colors. In particular, we systematically summarize the general regulation mode of all kinds of responsive structural color systems. First, we introduce the basic chromogenic structures as well as the regulation modes of responsive structural color. Second, we present the fabrication methods of patterned structural color. Then, the promising applications of responsive structural color systems are highlighted in detail. Finally, we present the existing challenges and future perspectives on responsive structural colors.
Collapse
Affiliation(s)
- Xiaoyu Hou
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P.R. China
| | - Fuzhen Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P.R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P.R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P.R. China
- Key Laboratory of Materials Processing and Mold of the Ministry of Education, Zhengzhou University, Zhengzhou 450002, P.R. China
| |
Collapse
|
19
|
Qi Y, Zhou C, Qiu Y, Cao X, Niu W, Wu S, Zheng Y, Ma W, Ye H, Zhang S. Biomimetic Janus photonic soft actuator with structural color self-reporting. MATERIALS HORIZONS 2022; 9:1243-1252. [PMID: 35080571 DOI: 10.1039/d1mh01693h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft actuators with variable signal/color play an important role in the fields of targeted locomotion, artificial phototropism, drug screening, cargo transportation, and interactive sensing. The ability to achieve rapid response, large curvature, wide bending angle, and full-color display continues to be an unresolved challenge for artificial actuating materials. Inspired by the angle-dependent structural color of broad-tailed hummingbird and the Janus wettability of the lotus leaf, a Janus photonic soft actuator (JPSA) was fabricated by integrating an underwater super-oleophilic copper micro-nano array and oil-phobic inverse opal through a Laplace channel. The JPSA exhibits unidirectional permeability to underwater oil droplets. Attractively, with the combination of a swellable super-oleophilic surface and photonic crystals, JPSAs were endowed with oil-controlled reversible bending behavior with self-reporting angle-dependent color indication. We described for the first time the directional actuating mechanism induced by underwater oil unidirectional penetration and revealed the corresponding actuating kinetics and the inner-stress distribution/transfer by using structural color. As an extension of such theory, a rapid responsive JPSA with a wide bending angle and full-color self-reporting is further fabricated. This work provides an efficient strategy for oil directional transportation and separation in aqueous media and inspires the fabrication of a soft actuator/sensor with structural color self-reporting.
Collapse
Affiliation(s)
- Yong Qi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Changtong Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Yisong Qiu
- International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, 2# Linggong Rd, Dalian 116024, China
| | - Xianfei Cao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Yonggang Zheng
- International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, 2# Linggong Rd, Dalian 116024, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Hongfei Ye
- International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, 2# Linggong Rd, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, P. O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| |
Collapse
|
20
|
Liu J, Su C, Chen Y, Tian S, Lu C, Huang W, Lv Q. Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering. Gels 2022; 8:gels8040216. [PMID: 35448118 PMCID: PMC9026461 DOI: 10.3390/gels8040216] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hydrogel materials have great application value in biomedical engineering. Among them, photocrosslinked hydrogels have attracted much attention due to their variety and simple convenient preparation methods. Here, we provide a systematic review of the biomedical-engineering applications of photocrosslinked hydrogels. First, we introduce the types of photocrosslinked hydrogel monomers, and the methods for preparation of photocrosslinked hydrogels with different morphologies are summarized. Subsequently, various biomedical applications of photocrosslinked hydrogels are reviewed. Finally, some shortcomings and development directions for photocrosslinked hydrogels are considered and proposed. This paper is designed to give researchers in related fields a systematic understanding of photocrosslinked hydrogels and provide inspiration to seek new development directions for studies of photocrosslinked hydrogels or related materials.
Collapse
Affiliation(s)
- Juan Liu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Wei Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
- Correspondence: (W.H.); (Q.L.)
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence: (W.H.); (Q.L.)
| |
Collapse
|
21
|
Shen H, Lin Q, Tang H, Tian Y, Zhang X. Fabrication of Temperature- and Alcohol-Responsive Photonic Crystal Hydrogel and Its Application for Sustained Drug Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3785-3794. [PMID: 35298167 DOI: 10.1021/acs.langmuir.1c03378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, crack-free photonic crystal templates with enhanced color contrast were first demonstrated by the coassembly of polystyrene (PS) microspheres and graphene oxide (GO). Then, photonic crystal hydrogels (PCHs) with quick responses to temperature and alcohol solution concentration changes were fabricated by photopolymerization of monomers in the gaps of the self-assembled colloidal crystal templates. The structural color of the PCHs changed from yellow to blue within 120 s as the temperature rose from 25 to 40 °C, whereas upon a decrease in temperature from 40 to 25 °C, the structural color changed from blue to yellow. The structural color of the PCHs also shows an obvious response with the concentration of alcohol solution ranging from 40 to 100 wt %. The quick responses of the PCHs' structural color to changes in temperature and alcohol solution concentration are attributed to the temperature sensitivity of poly(N-isopropylacrylamide) and preferential adsorption and swelling of the alcohol solution for the polymer chains. Furthermore, moxifloxacin (Mox) was loaded into PCHs by hydrogel swelling and exhibited sustained released by increasing the temperature. The sustained release process was facilely monitored by observing the corresponding color changes in real time. The rapid and visible response offers the fabricated PCHs great potential application prospects in the semiquantitative analysis of alcohol concentration and intelligent drug delivery.
Collapse
Affiliation(s)
- Huifang Shen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huachun Tang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuqin Tian
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xinya Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
22
|
Wu K, Zhu T, Zhu L, Sun Y, Chen K, Chen J, Yuan H, Wang Y, Zhang J, Liu G, Chen X, Sun J. Reversible Mechanochromisms via Manipulating Surface Wrinkling. NANO LETTERS 2022; 22:2261-2269. [PMID: 35234042 DOI: 10.1021/acs.nanolett.1c04494] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mechanochromic structural-colored materials have promising applications in various domains. In this Letter, we report three types of reversible mechanochromisms in simple material systems by harnessing mechano-responsive wrinkling dynamics including (i) brightness mechanochromism (BM), (ii) hue change mechanochromism (HCM), and (iii) viewable angle mechanochromism (VAM). Upon stretching, the BM device exhibits almost a constant hue but reduces light brightness due to the postbuckling mechanics-controlled deformation, while the HCM device can change the hue from blue to red with almost constant intensity because of the linear elastic mechanics-controlled deformation. The VAM device shows a constant hue because of the thin film interference effect. However, the viewable angles decrease with increasing applied strain owing to the light scattering of wrinkles. All of the mechanochromic behaviors exhibit good reversibility and durability. We clearly elucidated the underlying mechanisms for different mechanochromisms and demonstrated their potential applications in smart displays, stretchable strain sensors, and antipeeping/anticounterfeiting devices.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Ting Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Liangliang Zhu
- School of Chemical Engineering, Northwest University, Xi'an 710069, P.R. China
| | - Yu Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Kai Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiaorui Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Haozhi Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xi Chen
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
23
|
Lyu Q, Li M, Zhang L, Zhu J. Bioinspired Supramolecular Photonic Composites: Construction and Emerging Applications. Macromol Rapid Commun 2022; 43:e2100867. [PMID: 35255176 DOI: 10.1002/marc.202100867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/29/2022] [Indexed: 11/08/2022]
Abstract
Natural organisms have evolved fascinating structural colors to survive in complex natural environments. Artificial photonic composites developed by imitating the structural colors of organisms have been applied in displaying, sensing, biomedicine, and many other fields. As emerging materials, photonic composites mediated by supramolecular chemistry, namely, supramolecular photonic composites, have been designed and constructed to meet emerging application needs and challenges. This feature article mainly introduces the constructive strategies, properties, and applications of supramolecular photonic composites. First, constructive strategies of supramolecular photonic composites are summarized, including the introduction of supramolecular polymers into colloidal photonic array templates, co-assembly of colloidal particles (CPs) with supramolecular polymers, self-assembly of soft CPs, and compounding photonic elastomers with functional substances via supramolecular interactions. Supramolecular interactions endow photonic composites with attractive properties, such as stimuli-responsiveness and healability. Subsequently, the unique optical and mechanical properties of supramolecular photonic composites are summarized, and their applications in emerging fields, such as colorful coatings, real-time and visual motion monitoring, and biochemical sensors, are introduced. Finally, challenges and perspectives in supramolecular photonic composites are discussed. This feature article provides general strategies and considerations for the design of photonic materials based on supramolecular chemistry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Quanqian Lyu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Miaomiao Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Lianbin Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jintao Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
24
|
Wang M, Zhou L, Deng W, Hou Y, He W, Yu L, Sun H, Ren L, Hou X. Ultrafast Response and Programmable Locomotion of Liquid/Vapor/Light-Driven Soft Multifunctional Actuators. ACS NANO 2022; 16:2672-2681. [PMID: 35040625 DOI: 10.1021/acsnano.1c09477] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli response, fast speed, and precise control of the position and angle of the actuator, especially working in a toxic liquid or vapor environment, still requires long-term efforts. Here, we report a multi-external-stimuli-driven sandwich actuator with aligned carbon nanotubes as the constructive subject, which can respond to various types of liquids (organic solvents), vapor, and solar light. The actuator has an ultrafast response speed (<10 ms) and can accurately adjust the bending angle range from 0° to 180°. Through manipulating the stimuli positions, actuators can be wound into varied turns when simulating a flexible robotic arm. Hence, liquid/vapor/light-driven actuators are able to support diverse programmable motions, such as periodic blooming, gesture variations, caterpillar crawling, toxic surface evading, and bionic phototaxis. We believe that this multifunctional actuator is promising in supporting a complex scenario to complete a variety of tasks in the fields of healthcare, bioengineering, chip technology, and mobile sensors.
Collapse
Affiliation(s)
- Miao Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Lei Zhou
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Wenyan Deng
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yaqi Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wen He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lejian Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hao Sun
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Xu Hou
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Collaborative Innovation Centre of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
25
|
Liu C, Chen C, Tu C, Hung S, Chao C. Structure colorants based on cross‐linked cholesteric liquid crystalline polymeric slices. J Appl Polym Sci 2022. [DOI: 10.1002/app.51717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chun‐Yen Liu
- Department of Materials Science and Engineering National Cheng Kung University Tainan City Taiwan
| | - Cheng‐Chieh Chen
- Department of Chemical Engineering National Cheng Kung University Tainan City Taiwan
| | - Chia‐Ming Tu
- Department of Materials Science and Engineering National Cheng Kung University Tainan City Taiwan
| | - Sheng‐Chi Hung
- Department of Materials Science and Engineering National Cheng Kung University Tainan City Taiwan
| | - Chia‐Hui Chao
- Department of Materials Science and Engineering National Cheng Kung University Tainan City Taiwan
| |
Collapse
|
26
|
Liu J, Shang Y, Liu J, Wang J, Ikeda T, Jiang L. Janus Photochemical/Photothermal Azobenzene Inverse Opal Actuator with Shape Self-Recovery toward Sophisticated Motion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1727-1739. [PMID: 34962760 DOI: 10.1021/acsami.1c19826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Azobenzene actuators have aroused enormous research interest due to their excellent performance and promising applications in the fields of soft robots, artificial muscles, etc. However, there are still challenges for the fabrication of azobenzene actuators with a sophisticated actuation mode owing to the unitary actuation direction and slow thermal relaxation of cis- to trans-azobenzene mesogens. To solve these problems, this paper presents a facile fabrication method of a Janus azobenzene inverse opal actuator with one side made of the monodomain azobenzene polymer and the other side made of the polydomain azobenzene inverse opal structure. Gradient-layer spacing structure of the film in its cross section is proven by synchrotron small-angle X-ray diffraction. The introduction of the inverse opal structure mainly provides a polydomain mesogen alignment, large specific surface area, low elastic modulus, and structure color. The synergetic actuation of the photochemical/photothermal mode produces multiple actuation directions, a larger actuation force, and an alteration of the structure color. Shape self-recovery of this Janus azobenzene actuator contributes to some promising applications, such as crawling on a smooth surface, driving an engine axis, and logic electric circuit for the coding technique. This work is of great significance for the design and fabrication of novel-type photoactuators.
Collapse
Affiliation(s)
- Junchao Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuanyuan Shang
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Material Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 101407, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Tomiki Ikeda
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 101407, China
- Ji Hua Laboratory, Foshan, Guangdong 528000, China
| |
Collapse
|
27
|
Lai X, Ren Q, Vogelbacher F, Sha WEI, Hou X, Yao X, Song Y, Li M. Bioinspired Quasi-3D Multiplexed Anti-Counterfeit Imaging via Self-Assembled and Nanoimprinted Photonic Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107243. [PMID: 34731906 DOI: 10.1002/adma.202107243] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Innovative multiplexing technologies based on nano-optics for anti-counterfeiting have been proposed as overt and covert technologies to secure products and make them difficult to counterfeit. However, most of these nano-optical anti-counterfeiting materials are metasurfaces and metamaterials with complex and expensive fabrication process, often resulting in materials that are not damage tolerant. Highly efficient anti-counterfeiting technologies with easy fabrication process are targeted for intuitive and effective authentication of banknotes, secure documents, and goods packing. Here, a simple strategy exploiting self-assembling and nanoimprinting technique to fabricate a composite lattice photonic crystal architecture featuring full spatial control of light, multiplexed full-pixel imaging, and multichannel cryptography combined with customized algorithms is reported. In particular, the real-time encryption/recognition of mobile quick response codes and anti-counterfeiting labels on a postage stamp, encoded by the proposed photonic architecture, are both demonstrated. The wave optics of scattering, diffraction, and polarization process involved are also described, validated with numerical simulations and experiments. By introducing a new degree of freedom in the 3D space, the multichannel image switching exhibits unprecedented variability of encryption, providing a promising roadmap to achieve larger information capacity, better security, and higher definition for the benefit of modern anti-counterfeiting security.
Collapse
Affiliation(s)
- Xintao Lai
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100191, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Ren
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | - Florian Vogelbacher
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100191, China
| | - Wei E I Sha
- Key Laboratory of Micro-nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaoyu Hou
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100191, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Yao
- Department of Biomedical Sciences, Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100191, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzhu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100191, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Ministry of Education, Zhengzhou, 450002, China
| |
Collapse
|
28
|
Chen F, Huang Y, Li R, Zhang S, Wang B, Zhang W, Wu X, Jiang Q, Wang F, Zhang R. Bio-inspired structural colors and their applications. Chem Commun (Camb) 2021; 57:13448-13464. [PMID: 34852027 DOI: 10.1039/d1cc04386b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural colors, generated by the interaction of interference, diffraction, and scattering between incident light and periodic nanostructured surfaces with features of the same scale with incident visible light wavelengths, have recently attracted intense interest in a wide range of research fields, due to their advantages such as various brilliant colors, long-term stability and environmental friendliness, low energy consumption, and mysterious biological functions. Tremendous effort has been made to design structural colors and considerable progress has been achieved in the past few decades. However, there are still significant challenges and obstacles, such as durability, portability, compatibility, recyclability, mass production of structural-color materials, etc., that need to be solved by rational structural design and novel manufacturing strategies. In this review, we summarize the recent progress of bio-inspired structural colors and their applications. First, we introduce several typical natural structural colors displayed by living organisms from fundamental optical phenomena, including interference, diffraction grating, scattering, photonic crystals effects, the combination of different phenomena, etc. Subsequently, we review recent progress in bio-inspired artificial structural colors generated from advanced micro/nanoscale manufacturing strategies to relevant biomimetic approaches, including self-assembly, template methods, phase conversion, magnetron sputtering, atomic layer deposition, etc. Besides, we also present the current and potential applications of structural colors in various fields, such as displays, anti-counterfeiting, wearable electronics, stealth, printing, etc. Finally, we discuss the challenges and future development directions of structural colors, aiming to push forward the research and applications of structural-color materials.
Collapse
Affiliation(s)
- Fengxiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China. .,State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Ya Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Run Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Shiliang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Baoshun Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Wenshuo Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xueke Wu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Fei Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Tabassian R, Mahato M, Nam S, Nguyen VH, Rajabi‐Abhari A, Oh I. Electro-Active and Photo-Active Vanadium Oxide Nanowire Thermo-Hygroscopic Actuators for Kirigami Pop-up. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102064. [PMID: 34693658 PMCID: PMC8655174 DOI: 10.1002/advs.202102064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/08/2021] [Indexed: 05/08/2023]
Abstract
Emerging technologies such as soft robotics, active biomedical devices, wearable electronics, haptic feedback systems, and healthcare systems require high-fidelity soft actuators showing reliable responses under multi-stimuli. In this study, the authors report an electro-active and photo-active soft actuator based on a vanadium oxide nanowire (VONW) hybrid film with greatly improved actuation performances. The VONWs directly grown on a cellulose fiber network increase the surface area up to 30-fold and boost the hydrophilicity owing to the presence of oxygen-rich functional groups in the nanowire surfaces. Taking advantage of the high surface area and hydrophilicity of VONWs, a soft thermo-hygroscopic VONW actuator capable of being controlled by both light and electric sources shows greatly enhanced actuation deformation by almost 70% and increased actuation speed over 3 times during natural convection cooling. Most importantly, the proposed VONW actuator exhibits a remarkably improved blocking force of up to 200% compared with a bare paper actuator under light stimulation, allowing them to realize a complex kirigami pop-up and to accomplish repeatable shape transformation from a 2D planar surface to a 3D configuration.
Collapse
Affiliation(s)
- Rassoul Tabassian
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Sanghee Nam
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Van Hiep Nguyen
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Araz Rajabi‐Abhari
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Il‐Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
30
|
Wang H, Cai L, Zhang D, Shang L, Zhao Y. Responsive Janus Structural Color Hydrogel Micromotors for Label-Free Multiplex Assays. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9829068. [PMID: 34888526 PMCID: PMC8628110 DOI: 10.34133/2021/9829068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Micromotors with self-propelling ability demonstrate great values in highly sensitive analysis. Developing novel micromotors to achieve label-free multiplex assay is particularly intriguing in terms of detection efficiency. Herein, structural color micromotors (SCMs) were developed and employed for this purpose. The SCMs were derived from phase separation of droplet templates and exhibited a Janus structure with two distinct sections, including one with structural colors and the other providing catalytic self-propelling functions. Besides, the SCMs were functionalized with ion-responsive aptamers, through which the interaction between the ions and aptamers resulted in the shift of the intrinsic color of the SCMs. It was demonstrated that the SCMs could realize multiplex label-free detection of ions based on their optical coding capacity and responsive behaviors. Moreover, the detection sensitivity was greatly improved benefiting from the autonomous motion of the SCMs which enhanced the ion-aptamer interactions. We anticipate that the SCMs can significantly promote the development of multiplex assay and biomedical fields.
Collapse
Affiliation(s)
- Huan Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dagan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
31
|
Abstract
Unlike color dyes, structural colors only slightly fade during long-term usage. Here, structural colors were controllably achieved by constructing CoFeB photonic crystal layers on the surface of a nanoporous aluminum oxide (AAO) substrate by magnetron sputtering deposition. The resulting material showed a wide visible spectral response and achieved structural color control with a high resolution, high color purity, and saturation. The angle-dependent color changes of CoFeB@AAO films were further investigated by changing the incident light angle. The simulation results of the model are consistent with the experiments, which is significant in practical applications. This strategy may have great potential applications for solid structure color coatings, anti-counterfeiting and security, information storage, and electromagnetic sensors.
Collapse
|
32
|
Li P, Yu X, Xu Y. Chiral Nematic Cellulose Nanocrystals-Magnetite Nanocomposite Films Displaying Magnet-modulated Circular Dichroism Activity. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1245-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Wang X, Feng N, Shi Z, Zhou N, Lu J, Huang J, Gan L. Stimuli-responsive flexible membrane via co-assembling sodium alginate into assembly membranes of rod-like cellulose nanocrystals with an achiral array. Carbohydr Polym 2021; 262:117949. [PMID: 33838826 DOI: 10.1016/j.carbpol.2021.117949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Uniaxially assembling cellulose nanocrystals (CNCs) can induce strong solid-state emission based on optical inelastic scattering, whereas the CNC assembly membranes are not flexible enough for further applications. Thus, we introduced CNC into flexible sodium alginate (SA) and further controlled the assembly structure of CNC to increase the membrane toughness and maintain the emission properties. The results indicated that the stretchability increased from 0.027 % to 37 % when 33-37% when 33 % SA was introduced. The assembly achirality was controlled by tuning CNC concentration in suspension, and the co-assembly could further control the wavelength of the assembly-induced emission from 420 nm to 440 nm. Furthermore, the improved stretchability made assembly membrane an optical sensor, whose excitation wavelength blue-shifted about 30 nm under a 30 % strain. The emission of the co-assembly membrane could also respond to humidity, and this cellulose-based material should have great potential in biosensor and wearable devices.
Collapse
Affiliation(s)
- Xuhong Wang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, PR China
| | - Na Feng
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, PR China
| | - Zhenxu Shi
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, PR China
| | - Na Zhou
- School of Chemistry and Chemical Engineering, and Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832003, PR China
| | - Jun Lu
- College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441003, PR China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, PR China; School of Chemistry and Chemical Engineering, and Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832003, PR China; Joint International Research Laboratory of Biomass-Based Macromolecular Chemistry and Materials, Chongqing 400715, PR China.
| | - Lin Gan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, PR China; Joint International Research Laboratory of Biomass-Based Macromolecular Chemistry and Materials, Chongqing 400715, PR China.
| |
Collapse
|
34
|
Liu X, Wei M, Wang Q, Tian Y, Han J, Gu H, Ding H, Chen Q, Zhou K, Gu Z. Capillary-Force-Driven Self-Assembly of 4D-Printed Microstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100332. [PMID: 33885192 DOI: 10.1002/adma.202100332] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Capillary-force-driven self-assembly is emerging as a significant approach for the massive manufacture of advanced materials with novel wetting, adhesion, optical, mechanical, or electrical properties. However, academic value and practical applications of the self-assembly are greatly restricted because traditional micropillar self-assembly is always unidirectional. In this work, two-photon-lithography-based 4D microprinting is introduced to realize the reversible and bidirectional self-assembly of microstructures. With asymmetric crosslinking densities, the printed vertical microstructures can switch to a curved state with controlled thickness, curvature, and smooth morphology that are impossible to replicate by traditional 3D-printing technology. In different evaporating solvents, the 4D-printed microstructures can experience three states: (I) coalesce into clusters from original vertical states via traditional self-assembly, (II) remain curved, or (III) arbitrarily self-assemble (4D self-assembly) toward the curving directions. Compared to conventional approaches, this 4D self-assembly is distance-independent, which can generate varieties of assemblies with a yield as high as 100%. More importantly, the three states can be reversibly switched, allowing the development of many promising applications such as reversible micropatterns, switchable wetting, and dynamic actuation of microrobots, origami, and encapsulation.
Collapse
Affiliation(s)
- Xiaojiang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mengxiao Wei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Qiong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Yujia Tian
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiamian Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Hongcheng Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Haibo Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Qiang Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| |
Collapse
|
35
|
Hou M, Shi L, Zhou Y, Wang J, Jiang J, Jiang J, He J. Expanding the codes: The development of density-encoded hydrogel microcarriers for suspension arrays. Biosens Bioelectron 2021; 181:113133. [PMID: 33744669 DOI: 10.1016/j.bios.2021.113133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/05/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
Although suspension array technology (SAT), which uses encoded microspheres, provides high-quality results with versatile applicability for information-intensive bioanalytic applications, current encoding strategies limit the number of codes that can be distinguished. In this paper, we introduce density-encoded hydrogel microcarriers (DMs), which employ the intrinsic density property of biomaterials as a high-capacity coding dimension. Two hydrogel monomers were employed at different ratios to synthesize microgels with distinctive densities. DMs not only can be simultaneously decoded and separated using density gradient centrifugation, but also are compatible with flow cytometry detection. The size and color of DMs have been used as extra coding parameters, to construct an 8 × 2 × 4 (density × size × color) three-dimensionally encoded hydrogel microcarrier library. With aptamer-functionalized DMs (ADMs), we developed a 4-plex protein quantification method for the label-free detection of plasma biomarkers with sub-nanomolar detection limits and good linearities. Moreover, ADMs can be used for label-free naked-eye detection of tumor-derived exosomes. We believe that the simplicity and functionality of DMs will advance the field of suspension arrays and inspire the development of DM-based diagnostic applications.
Collapse
Affiliation(s)
- Min Hou
- College of Biology, Hunan University, Changsha, 410082, China
| | - Liyang Shi
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yancen Zhou
- College of Biology, Hunan University, Changsha, 410082, China
| | - Jiao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jiali Jiang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Jianjun He
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
36
|
Jia ZH, Xie R, Qiu Y, Lv XB, Ju XJ, Wang W, Liu Z, Chu LY. Magnetically Assembled Photonic Crystal Gels with Wide Thermochromic Range and High Sensitivity. Macromol Rapid Commun 2021; 42:e2100200. [PMID: 34028919 DOI: 10.1002/marc.202100200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Thermochromic poly(N-isopropyl acrylamide) (PNIPAM) photonic crystal gels based on 1D magnetically assembling colloidal nanocrystal clusters have attracted much attention due to its convenient preparation process, striking color response, and good mechanical strength. However, there remain challenges to broaden the thermochromic range and improve the sensitivity for their iridescent color display. Here, a PNIPAM photonic gel with wide thermochromic range and high sensitivity is prepared by using four-arm star poly(ethylene glycol) acrylamide (PEGAAm) as cross-linker at appropriately reduced magnetic field strength as well as cross-linker content. PEGAAm improves the homogeneity of the microstructure in PNIPAM photonic gel and thus maintains the structure colors at a wide temperature range from room temperature to 44 °C. The reduced magnetic field strength of 70 Gs and low cross-linker content (the molar ratio of monomer to cross-linker of 300:1) lead to a large initial lattice spacing of the photonic gel and thus wide diffraction wavelength migration of 194 nm. This optimized PNIPAM gel exhibits vivid iridescent colors from orange-red to indigo blue as temperature increases from 20 to 44 °C with satisfactory repeatability. Therefore, it may be an ideal candidate for temperature sensors and displays with utility and accuracy such as low-temperature burns.
Collapse
Affiliation(s)
- Zhi-Han Jia
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yue Qiu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Xing-Bin Lv
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
37
|
Dong Y, Ma Z, Song DP, Ma G, Li Y. Rapid Responsive Mechanochromic Photonic Pigments with Alternating Glassy-Rubbery Concentric Lamellar Nanostructures. ACS NANO 2021; 15:8770-8779. [PMID: 33913333 DOI: 10.1021/acsnano.1c01147] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photonic pigment particles prepared via self-assembly have been suffering from their poor mechanical performances; i.e., they can easily be damaged and lose structural color under a compression force. This greatly limits their uses as mechanochromic pigments. Here, a nanoscale concentric lamellar structure of alternating glassy-rubbery microdomains is successfully created within photonic microparticles through a confined self-assembly and photo-cross-linking strategy. The glassy domain is composed of polystyrene, and cross-linked bottlebrush polydimethylsiloxane served as the supersoft elastic domain. The obtained photonic structure not only shows large deformation and visible color changes under a loaded compression force but also rapidly recovers to its original state in less than 1 s (∼0.16 s) upon unloading. Continuously loading-unloading micro compression test indicates that no obvious damage can be identified after 250 cycles, indicating the high durability of the pigments against deformation. These pigments with different reflected colors are simply obtained using bottlebrush block copolymer formulations with tunable weight percentages of polymer additives. The mechanical robust photonic pigments may be useful in many important applications.
Collapse
Affiliation(s)
- Yun Dong
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhe Ma
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Guiqiu Ma
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
38
|
Cai Z, Li Z, Ravaine S, He M, Song Y, Yin Y, Zheng H, Teng J, Zhang A. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem Soc Rev 2021; 50:5898-5951. [PMID: 34027954 DOI: 10.1039/d0cs00706d] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either "top-down" lithographic or "bottom-up" self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications.
Collapse
Affiliation(s)
- Zhongyu Cai
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Serge Ravaine
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Mingxin He
- Department of Physics, Center for Soft Matter Research, New York University, New York, NY 10003, USA
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Hanbin Zheng
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Ao Zhang
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
39
|
Yang W, Yamamoto S, Sueyoshi K, Inadomi T, Kato R, Miyamoto N. Perovskite Nanosheet Hydrogels with Mechanochromic Structural Color. Angew Chem Int Ed Engl 2021; 60:8466-8471. [PMID: 33480099 DOI: 10.1002/anie.202015982] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Structural color colloidal sols of perovskite nanosheets were synthesized and were immobilized in a polymer hydrogel film by in situ photopolymerization, leading to a novel mechanochromic material. Visible absorption spectroscopy, polarized optical microscopy and small-angle X-ray scattering revealed that the nanosheets are aligned parallel to the film surface with the periodic distance of up to ca. 300 nm, giving the structural color tunable over full color range. The present structural color gel showed reversible mechanochromic response that detects weak stress of 1 kPa with the quick response time less than 1 ms as well as high mechanical toughness (compressive breaking stress of up to 3 MPa). These excellent properties are suitable for applications for mechano-sensors and displays.
Collapse
Affiliation(s)
- Wenqi Yang
- Graduate School of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295, Japan
| | - Shinya Yamamoto
- Graduate School of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295, Japan
| | - Keiichiro Sueyoshi
- Graduate School of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295, Japan
| | - Takumi Inadomi
- Graduate School of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295, Japan
| | - Riki Kato
- Graduate School of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295, Japan
| | - Nobuyoshi Miyamoto
- Graduate School of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295, Japan
| |
Collapse
|
40
|
Yang W, Yamamoto S, Sueyoshi K, Inadomi T, Kato R, Miyamoto N. Perovskite Nanosheet Hydrogels with Mechanochromic Structural Color. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenqi Yang
- Graduate School of Engineering Fukuoka Institute of Technology 3-30-1 Wajiro-higashi Higashi-ku Fukuoka 811-0295 Japan
| | - Shinya Yamamoto
- Graduate School of Engineering Fukuoka Institute of Technology 3-30-1 Wajiro-higashi Higashi-ku Fukuoka 811-0295 Japan
| | - Keiichiro Sueyoshi
- Graduate School of Engineering Fukuoka Institute of Technology 3-30-1 Wajiro-higashi Higashi-ku Fukuoka 811-0295 Japan
| | - Takumi Inadomi
- Graduate School of Engineering Fukuoka Institute of Technology 3-30-1 Wajiro-higashi Higashi-ku Fukuoka 811-0295 Japan
| | - Riki Kato
- Graduate School of Engineering Fukuoka Institute of Technology 3-30-1 Wajiro-higashi Higashi-ku Fukuoka 811-0295 Japan
| | - Nobuyoshi Miyamoto
- Graduate School of Engineering Fukuoka Institute of Technology 3-30-1 Wajiro-higashi Higashi-ku Fukuoka 811-0295 Japan
| |
Collapse
|
41
|
Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. PROGRESS IN MATERIALS SCIENCE 2021; 115:100702. [DOI: 10.1016/j.pmatsci.2020.100702] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Pei G, Wang J, Jiang L. Research Progress of Bioinspired Photonic Crystal Fibers. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Qiu X, Guo Q, Wang Y, Huang X, Cao J, Zheng Z, Zhang X. Self-Healing and Reconfigurable Actuators Based on Synergistically Cross-Linked Supramolecular Elastomer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41981-41990. [PMID: 32835472 DOI: 10.1021/acsami.0c11708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stimulus-responsive soft actuators show great potential in intelligent robot systems for their various virtues, such as arbitrary shape morphing, outstanding adaptability to environment, and multidegrees of freedom. However, it is extremely challenging to achieve a combination of excellent actuating performance and robust mechanical strength as well as self-healing property. Herein we report a near-infrared light-responsive soft actuator based on the synergistic effects of a crystalline physical cross-linked network and a hydrogen bonding supramolecular network. The actuator exhibits outstanding comprehensive performance including fast and reliable light-responsive behavior (bending angle over 90° within 1.6 s), robust mechanical strength (12.52 MPa), superfast self-healing speed (2 s), and satisfactory self-healing efficiency in both mechanical (87.68%) and actuating (99.50%) performance. In addition, it is convenient to fabricate and reconfigure the actuators by a mild-temperature molding strategy to acquire various three-dimensional structures, thus achieving diverse actuating locomotion. This work provides a powerful and facile strategy to prepare soft actuators with intriguing performance, allowing significant progress in broadening their practical application.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Quanquan Guo
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yuyan Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jie Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
44
|
Shen X, Du J, Sun J, Guo J, Hu X, Wang C. Transparent and UV Blocking Structural Colored Hydrogel for Contact Lenses. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39639-39648. [PMID: 32805949 DOI: 10.1021/acsami.0c10763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Usually, materials with perfect structures possess excellent properties, but it is not always the case. Here, a new approach is reported to construct structural colored hydrogel films with excellent ultraviolet (UV) blocking performance for contact lenses. The theoretical simulation predicts that with perfect periodic structures, the hydrogel films can strongly reflect incident light in a narrow visible wavelength range and thus exhibit extraordinarily brilliant colors. However, such hydrogel films cannot effectively block UV light. By slightly breaking the structural periodicity (quasi-periodic structure), strong diffuse scattering or pseudoabsorption of light can occur for all of the wavelengths shorter than a structural characteristic length, leading to perfect UV blocking. According to the theoretical prediction, a structural colored hydrogel film with nearly periodic polystyrene sphere arrays in poly(hydroxyethyl methacrylate) hydrogel matrix is fabricated; this hydrogel film possesses brilliant colors and perfect UV blocking, and the core particle composition and size have been investigated in detail for the optimized properties of contact lenses. Meanwhile, the cell proliferation assay proves the cytocompatibility of the hydrogel for real application. Regarding its unique optical characteristics, the as-prepared structural colored hydrogel shows great promise in the fields of UV-protective equipment, medical device, soft robot, sensor, and so on.
Collapse
Affiliation(s)
- Xiuqing Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jiayuan Du
- Department of Materials Science, and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jiaxin Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Xinhua Hu
- Department of Materials Science, and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
45
|
Gao Z, Xu B, Zhang T, Liu Z, Zhang W, Sun X, Liu Y, Wang X, Wang Z, Yan Y, Hu F, Meng X, Zhao YS. Spatially Responsive Multicolor Lanthanide‐MOF Heterostructures for Covert Photonic Barcodes. Angew Chem Int Ed Engl 2020; 59:19060-19064. [DOI: 10.1002/anie.202009295] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Zhenhua Gao
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Baoyuan Xu
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Tongjin Zhang
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhen Liu
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Weiguang Zhang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xun Sun
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yang Liu
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xue Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Zifei Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yongli Yan
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Fengqin Hu
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Xiangeng Meng
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
46
|
Spatially Responsive Multicolor Lanthanide‐MOF Heterostructures for Covert Photonic Barcodes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Sun X, Liu L, Zou H, Yao C, Yan Z, Ye B. Intelligent Drug Delivery Microparticles with Visual Stimuli-Responsive Structural Color Changes. Int J Nanomedicine 2020; 15:4959-4967. [PMID: 32764929 PMCID: PMC7367737 DOI: 10.2147/ijn.s249009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/18/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Particle-based drug delivery systems (DDSs) have a demonstrated value for drug discovery and development. However, some problems remain to be solved, such as limited stimuli, visual-monitoring. AIM To develop an intelligent multicolor DDSs with both near-infrared (NIR) controlled release and macroscopic color changes. MATERIALS AND METHODS Microparticles comprising GO/pNIPAM/PEGDA composite hydrogel inverse opal scaffolds, with dextran and calcium alginate hydrogel were synthesized using SCCBs as the template. The morphology of microparticle was observed under scanning electron microscopy, and FITC-dextran-derived green fluorescence images were determined using a confocal laser scanning microscope. During the drug release, FITC-dextran-derived green fluorescence images were captured using fluorescent inverted microscope. The relationship between the power of NIR and the drug release rate was obtained using the change in optical density (OD) values. Finally, the amount of drug released could be estimated quantitatively used the structural color or the reflection peak position. RESULTS A fixed concentration 8% (v/v) of PEGDA and 4mg/mL of GO was chosen as the optimal concentration based on the balance between appropriate volume shrinkage and structure color. The FITC-dextran was uniformly encapsulated in the particles by using 0.2 wt% sodium alginate. The microcarriers shrank because of the photothermal response and the intrinsic fluorescence intensity of FITC-dextran in the microparticles gradually decreased at the same time, indicating drug release. With an increasing duration of NIR irradiation, the microparticles gradually shrank, the reflection peak shifted toward blue and the structural color changed from red to orange, yellow, green, cyan, and blue successively. The drug release quantity can be predicted by the structural color of microparticles. CONCLUSION The multicolor microparticles have great potential in drug delivery systems because of its vivid reporting color, excellent photothermal effect, and the good stimuli responsivity.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, Jiangsu210009, People’s Republic of China
| | - Lingzi Liu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, Jiangsu210009, People’s Republic of China
| | - Hui Zou
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, Jiangsu210009, People’s Republic of China
| | - Caixia Yao
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, Jiangsu210009, People’s Republic of China
| | - Zhengyu Yan
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, Jiangsu210009, People’s Republic of China
| | - Baofen Ye
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, Jiangsu210009, People’s Republic of China
| |
Collapse
|
48
|
Zhou Q, Park JG, Bae J, Ha D, Park J, Song K, Kim T. Multimodal and Covert-Overt Convertible Structural Coloration Transformed by Mechanical Stress. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001467. [PMID: 32383288 DOI: 10.1002/adma.202001467] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Most materials and devices with structurally switchable color features responsive to external stimuli can actively and flexibly display various colors. However, realizing covert-overt transformation behavior, especially switching between transparent and colored states, is more challenging. A composite laminate of soft poly(dimethylsiloxane) (PDMS) with a rigid SiO2 -nanoparticle (NP) structure pattern is developed as a multidimensional structural color platform. Owing to the similarity in the optical properties of PDMS and SiO2 NPs, this device is fully transparent in the normal state. However, as their mechanical strengths differ considerably, upon compressive loading, a buckling-type instability arises on the surface of the laminate, leading to the generation of 1D or 2D wrinkled patterns in the form of gratings. Finally, an application of the device in which quick response codes are displayed or hidden as covert-overt convertible colored patterns for optical encryption/decryption, showing their remarkable potential for anticounterfeiting applications, is demonstrated.
Collapse
Affiliation(s)
- Qitao Zhou
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Gyu Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Juyeol Bae
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Dogyeong Ha
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 06520, Republic of Korea
| | - Kyungjun Song
- School of Mechanical Engineering, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
49
|
Hong W, Yuan Z, Chen X. Structural Color Materials for Optical Anticounterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907626. [PMID: 32187853 DOI: 10.1002/smll.201907626] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/14/2020] [Accepted: 02/23/2020] [Indexed: 05/23/2023]
Abstract
The counterfeiting of goods is growing worldwide, affecting practically any marketable item ranging from consumer goods to human health. Anticounterfeiting is essential for authentication, currency, and security. Anticounterfeiting tags based on structural color materials have enjoyed worldwide and long-term commercial success due to their inexpensive production and exceptional ease of percept. However, conventional anticounterfeiting tags of holographic gratings can be readily copied or imitated. Much progress has been made recently to overcome this limitation by employing sufficient complexity and stimuli-responsive ability into the structural color materials. Moreover, traditional processing methods of structural color tags are mainly based on photolithography and nanoimprinting, while new processing methods such as the inkless printing and additive manufacturing have been developed, enabling massive scale up fabrication of novel structural color security engineering. This review presents recent breakthroughs in structural color materials, and their applications in optical encryption and anticounterfeiting are discussed in detail. Special attention is given to the unique structures for optical anticounterfeiting techniques and their optical aspects for encryption. Finally, emerging research directions and current challenges in optical encryption technologies using structural color materials is presented.
Collapse
Affiliation(s)
- Wei Hong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhongke Yuan
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
50
|
Guo R, Wang DN, Wei YY, Zhang YZ, Yang CG, Xu ZR. Colloidal photonic crystal array chip based on nanoparticle self-assembly on patterned hydrophobic surface for signal-enhanced fluorescent assay of adenosine. Mikrochim Acta 2020; 187:194. [DOI: 10.1007/s00604-020-4164-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
|